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Strong magnetic fields and pasta phases reexamined
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In this work, we compute the structure and composition of the inner crust of a neutron star in the presence
of a strong magnetic field, such as can be found in magnetars. To determine the geometry and characteristics of
the crust inhomogeneities, we consider the compressible liquid drop model, where surface and Coulomb terms
are included in the variational equations, and we compare our results with previous calculations based on more
approximate treatments. For the equation of state (EoS), we consider two nonlinear relativistic mean-field models
with different slopes of the symmetry energy, and we show that the extension of the inhomogeneous region inside
the star core due to the magnetic field strongly depends on the behavior of the symmetry energy in the crustal
EoS. Finally, we argue that the extended spinodal instability observed in previous calculations can be related to
the presence of small amplitude density fluctuations in the magnetar outer core, rather than to a thicker solid
crust. The compressible liquid drop model formalism, while in overall agreement with the previous calculations,
leads to a systematic suppression of the metastable solutions, thus allowing a more precise estimation of the
crust-core transition density and pressure, and therefore a better estimation of the crustal radius.
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I. INTRODUCTION

Neutron star (NS) modeling is a subject of extreme interest
in the astrophysical community since the recent emergence
of multimessenger observations. However, their internal struc-
ture and composition is still very uncertain and a huge effort is
put by the scientific community in order to better understand
their properties. Schematically, the interior of a neutron star
is divided into four layers, an outer and inner crust and an
outer and inner core. In the bottom part of the inner crust
region, it is generally accepted that heavy clusters of matter
with exotic shapes, called pasta phases, could arise due to the
competition between the strong and the electromagnetic inter-
action [1–10]. From the observational point of view, the static
properties of the inner crust, particularly its moment of inertia,
should be related to neutron star phenomena such as pulsar
glitches [11–13], while its associated transport properties are
important to settle the magnetothermal evolution of the star
[14–17].

One category of neutron stars, called magnetars [18–21],
are the source of the strongest magnetic fields observed in
nature. These magnetic fields span between ≈1012 G to ≈1015

G on the surface [22,23], and, according to the scalar virial
theorem [24,25], may reach even higher values inside the
star, up to ≈1018 G, a threshold value also predicted in other
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calculations, where the coupled Maxwell-Einstein equa-
tions are solved numerically [26–32].

Numerous works have considered how these strong mag-
netic fields can affect the neutron star outer [33–36] and inner
[37–43] crusts. In Ref. [44], the authors study the effects of
the magnetic field on both the outer and inner crusts due to
the quantization of electron motion. They observed that the
inner crust is almost unaffected for fields below ≈1016G , and
only marginally affected for higher order fields.

In the case of the inner crust, Thomas-Fermi calculations
have been performed at constant proton fraction [45,46], and
more recently in Ref. [47] β-equilibrium matter, that is the
appropriate condition when dealing with neutron stars, was
considered. The general result of those studies is that the mag-
netic field affects the density profiles of the Wigner-Seitz cells,
with an increased average proton fraction and an increase of
the mass of the clusters in the crust. However the transition
densities between the different geometries and the crust-core
transition are affected in a very weak and nonmonotonous
way. In the most recent work, Ref. [47], that used the TM1
and IUFSU functionals, the authors reported a sizable effect
only for very strong magnetic fields, B = 1018 G, for which
an important decrease of the core-crust transition density was
observed.

An alternative approach based on a dynamical spinodal
calculation was first performed in [37,38], where it was
shown that new regions of instability arise at densities higher
than the one expected for the transition to the homoge-
neous core, due to the presence of a strong magnetic field.
In such a calculation [48,49], oscillations eigenfrequencies
are calculated by considering the matter response to small
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TABLE I. Symmetric nuclear matter properties at saturation density for the NL3 [56] and NL3ωρ [57,58] models. From left to right:
binding energy per baryon, saturation density, normalized nucleon effective mass, incompressibility, symmetry energy, and slope of the
symmetry energy.

B/A (MeV) ρ0 (fm−3) M∗/M K (MeV) Esym (MeV) L (MeV)

NL3 16.24 0.148 0.60 270 37.34 118
NL3ωρ 16.24 0.148 0.60 270 31.66 55

deviations from equilibrium in the distribution functions of
the particles and of the meson fields. In the core region,
the frequencies ω of the modes are real numbers, and the
fluctuations are spontaneously damped. Inside the spinodal
region, the frequencies are imaginary, reflecting the instability
of homogeneous matter with respect to density fluctuations.
The maximum frequency of the unstable modes � = |ω| can
be taken as the one that drives the instability, and it measures
the growth rate of the density fluctuation in the linear response
regime. In Refs. [37,38], only the longitudinal modes that
propagate along the magnetic field were considered. Later, in
Ref. [50], the authors also calculated the transverse modes,
and observed that for magnetic fields of the order of ≈ 1018G ,
the spinodal section is reduced, and for fields one order of
magnitude lower, the effect is completely washed out, and
the transverse spinodal coincides with the B = 0 field one,
meaning that the the propagation of the perturbations per-
pendicular to the magnetic field are more difficult under the
presence of strong magnetic fields, and accounting for lon-
gitudinal modes is enough. In the hypothesis that the linear
dynamics is continued until formation of the ion structure that
characterizes the solid crust, the density and pressure at which
the eigenfrequency goes to zero gives an estimation of the
crust-core transition point. In this interpretation, the extended
instability zone, due to the effect of the magnetic field, thus
corresponds to a higher crust-core transition density, and an
extended crust for the neutron star. These results appear in
contradiction with the previous findings of Ref. [47], where
the authors did not find such a region.

Subsequently, in Refs. [41,42], a coexistence phase (CP)
approximation was performed to check the dynamical spin-
odal results of Refs. [37,38]. This calculation was performed
both with fixed proton fraction [41] and at β equilibrium
[42]. In both Refs. [41,42], the solutions were in agreement
with the ones of the instability region found from the dy-
namical spinodal approach of Refs. [37,38]. This points to
the fact that the CP approach also predicts extra regions of
clusterized matter above the B = 0 region, and therefore a
thicker crust. However, in [42], it was also shown that these
extra regions of clustered matter have different properties with
respect to the rest of the inner crust. In particular, very close
densities between the clusters and the medium in which they
are embedded were found. This last finding suggests that
the extended crust might be rather interpreted as a slightly
inhomogeneous core, with density fluctuations of an ampli-
tude that is too small to be captured by the Thomas-Fermi
approach [47]. A definitive conclusion cannot be reached
though, because the CP calculation is not a self-consistent
approach. Indeed, surface and Coulomb terms are added af-
ter the minimization of the energy density, and therefore the

possible influence of the surface properties on the solution of
the variational equations is neglected.

To better settle the issue of the effect of the magnetic
field on the crust thickness, in this paper we study the struc-
ture of the inner crust of a neutron star in the presence of
a strong magnetic field by explicitly including the surface
and Coulomb contribution in the variational equations for the
inner crust, using the compressible liquid drop (CLD) model
[9,51–55].

We also calculate the pasta structures in the CP approx-
imation to compare with Refs. [41,42], and use the same
relativistic mean-field (RMF) functionals as in those previous
works, namely the NL3 [56] and the NL3ωρ [57,58].

These two models belong to the same family, i.e., they
have the same isoscalar properties. NL3ωρ was constructed
to model the density dependence of the symmetry energy
because NL3 has a very high slope of the symmetry energy at
saturation. We should keep in mind though that NL3 should be
adequate to study subsaturation density regimes, like the NS
inner crust, because this model gives a very good description
of the properties of stable nuclei. The properties of symmetric
nuclear matter at saturation density of these two models can
be found in Table I. Both these models predict stars with
masses above the 2M� [58,59], even when hyperonic degrees
of freedom are taken into account, and the NL3ωρ model
also satisfies the constraints imposed by neutron-matter mi-
croscopic calculations [58,60].

The crust-core transition density strongly depends on the
symmetry energy and particularly on its slope at saturation
L [15,58,61–65]. This latter quantity is still not yet well
constrained. Ab initio chiral effective field theory calcula-
tions seem to favor values for L below 60 MeV [66], or
below 90 MeV, when astrophysical observations are taken
into account as extra constraints [67]. Reed et al. [68] have
performed an analysis on the PREX-2 data [69], obtaining a
large value for L, L = 106 ± 37 MeV. However, other studies,
like the one performed by Essick et al. [70], that predicted
L = 53+14

−15 MeV, by also combining astrophysical observa-
tions, or the one by Estee et al. [71], that measured the charged
pion spectra at high transverse momenta, suggesting 42 <

L < 117 MeV, are both compatible with PREX-2 analysis.
Moreover, Reinhard et al. [72] based on the PREX-2 results,
were able to predict a smaller neutron skin thickness, which
lead them to infer a smaller slope of the symmetry energy,
L = 54 ± 8 MeV. Recently, the CREX [73] collaboration has
measured the 48Ca neutron skin thickness, and analyses seem
to indicate that L could be smaller than PREX-2 predic-
tions. Finally, Mondal et al. [74] have recently shown in a
Bayesian analysis that the constraints on L from both PREX-2
and CREX are very loose, if the uncertainties in the surface

045806-2



STRONG MAGNETIC FIELDS AND PASTA PHASES … PHYSICAL REVIEW C 107, 045806 (2023)

properties and their correlation with the bulk are accounted
for.

In the present paper, we show how different values of
L can lead to substantial differences in the behavior of the
system in the presence of a strong magnetic field. For both
equations of state, the CLD approach is shown to give a
very precise estimation of the transition point, because the
metastable solutions appearing in the simpler CP formalism
of Refs. [41,42] are suppressed. In qualitative agreement with
Ref. [47], the effect of the field on the extension of the crust
is seen to be small, even if we do not see the systematic
decrease of the transition densities observed in that study. We
confirm the qualitative effects in the proton density and proton
fraction observed in previous works, and additionally show
that the effect of the field is also to induce equilibrium density
fluctuations in the outer core. This finding nicely explains
the spinodal instabilities observed in the homogeneous matter
calculations of Refs. [37,38].

The paper is organized as follows. In Sec. II the methods
and the formalism are given. In Sec. III we show our results
and discussion, and finally, in Sec. IV, conclusions are drawn.

II. THEORETICAL FRAMEWORK

In this work, NS matter is described within a RMF ap-
proximation, where the interaction between the nucleons
is mediated by three types of mesons: the isoscalar-scalar
meson σ , the isoscalar-vector meson ω, and the isovector-
vector meson ρ. In order to achieve electrical neutrality, we
also introduce electrons in our description. Throughout the
work, we consider an electromagnetic field of the type Aμ =
(0, 0, Bx, 0), so that the resulting field is oriented along the z
axis. We take the anomalous magnetic moment of the nucle-
ons to be zero, as it was shown in the previous studies [42] that
its main effect is only to increase the number of disconnected
regions in the spinodal analysis, because of the removal of the
spin polarization degeneracy. We use the quantity B∗, defined
as B∗ = B/Bc

e, with Bc
e = 4.414 × 1013 G being the critical

field at which the electron cyclotron energy is equal to the
electron mass.

The Lagrangian density of our system is given by

L =
∑
i=p,n

Li + Le + Lσ + Lω + Lρ + Lnl + LA . (1)

Here, Le and LA are the standard electron Lagrangian density
and electromagnetic term, given by

Le = ψ̄e[γμ(i∂μ + eAμ) − me]ψe, (2)

LA = −1

4
FμνFμν (3)

with Fμν = ∂μAν − ∂νAμ. The nucleon Lagrangian density is
given by

Li = ψ̄i
[
γμiDμ − M∗]ψi (4)

with

M∗ = M − gσ φ , (5)

iDμ = i∂μ − gωV μ − gρ

2
τ · bμ − 1 + τ3

2
eAμ , (6)

where e = √
4π/137 is the electron charge, and τ3 = ±1 is

the isospin projection, respectively, for protons and neutrons.
The mesonic components of the Lagrangian density are

given by

Lσ = 1

2

(
∂μφ∂μφ − m2

σφ2 − 1

3
κφ3 − 1

12
λφ4

)
, (7)

Lω = −1

4
�μν�μν + 1

2
m2

ωVμV μ + ξ

4!
ξg4

ω(VμV μ)2 , (8)

Lρ = −1

4
Bμν · Bμν + 1

2
m2

ρbμ · bμ (9)

with the tensors written as

�μν = ∂μVν − ∂νVμ , (10)

Bμν = ∂μbν − ∂νbμ − gρ (bμ × bν ) . (11)

The NL3ωρ model considers an extra term,

Lnl = �ωρg2
ωg2

ρVμV μbμ · bμ ,

responsible for the density dependence of the symmetry en-
ergy.

From the Euler-Lagrange equations, we get the fields equa-
tions of motion in the mean-field approximation. As a result,
the scalar and vector densities for protons and neutrons, and
the electron density, are given by

ρs,p = qpBM∗

2π2

ν
p
max∑

ν=0

gs ln

∣∣∣∣ kp
F,ν + E p

F√
M∗2 + 2νqpB

∣∣∣∣ , (12)

ρs,n = M∗

2π2

[
En

F kn
F − M∗2 ln

∣∣∣∣kn
F + En

F

M∗

∣∣∣∣
]

, (13)

ρp = qpB

2π2

ν
p
max∑

ν=0

gsk
p
F,ν , (14)

ρn = kn
F

3

3π2
, (15)

ρe = |e|B
2π2

νe
max∑

ν=0

gsk
e
F,ν , (16)

where ν = n + 1
2 − 1

2
q
|q| s = 0, 1, . . . , νmax enumerates the

Landau levels (LL) for fermions with electric charge q, q = e
for electrons and q = qp for protons. s is the spin quantum
number, +1 for spin up cases and −1 for spin down cases.
The spin degeneracy factor of the Landau levels, gs, is equal to
gs = 1 for ν = 0 and gs = 2 for ν > 0, and νmax is the largest
LL occupied by fully degenerate charged fermions, defined as

νe
max = Ee2

F − m2
e

2|qe|B , (17)

ν p
max = E p2

F − M∗2

2qpB
. (18)

kq
F,ν and Eq

F are the Fermi momenta and energies of the parti-
cles, defined as

kp
F,ν =

√
E p2

F − M∗2 − 2νqpB , (19)
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kn
F =

√
En2

F − M∗2 , (20)

ke
F,ν =

√
Ee2

F − m2
e − 2ν|e|B . (21)

The reader should note that the energy, defined above, and
other thermodynamic quantities do not depend on x0, the co-
ordinate space defined as x0 = py/mω0 with ω0 = qB/m the
cyclotron frequency and py the quantum number that specifies
the x projection of the guiding center of the particle rotation,
even though the hamiltonian of the system corresponds to a
shifted harmonic oscillator by x0.

The mean-field evaluation of the fields allows a closed
expression for the bulk free energy density as

E = E f + Ep + En , (22)

where

E f = m2
ω

2
V 2

0 + ξg4
v

8
V 4

0 + m2
ρ

2
b2

0 + m2
σ

2
φ2

0 + κ

6
φ3

0

+ λ

24
φ4

0 + 3λωρg2
ρg2

ωV 2
0 b2

0 , (23)

En = 1

4π2

[
kn

F En3
F − 1

2
M∗

(
M∗kn

F En
F

+ M∗3 ln

∣∣∣∣kn
F + En

F

M∗

∣∣∣∣
)]

, (24)

Ep = qpB

4π2

νmax∑
ν=0

gs

[
kp

F,νE p
F + (M∗2 + 2νqpB)

· ln

∣∣∣∣ kp
F,ν + E p

F√
M∗2 + 2νqpB

∣∣∣∣
]

. (25)

Finally, the chemical potentials for protons, neutrons, and
electrons are given by

μp =E p
F + gωV 0 + 1

2 gρb0 , (26)

μn =En
F + gωV 0 − 1

2 gρb0 , (27)

μe =Ee
F =

√
ke2

F,ν + m2
e + 2ν|qe|B . (28)

and the baryonic pressure can be deduced as

P = μpρp + μnρn − E . (29)

When considering charge-neutral, β-equilibrium matter,
the following conditions should also be imposed:

ρp = ρe , (30)

μn = μp + μe . (31)

A. Cluster and pasta structures in the CLD approximation

In this work, we consider the CLD model [54] to calculate
the inner crust structures in β-equilibrium magnetized matter.
We compare our results with a simpler CP calculation, that
was also previously done in Ref. [42]. The reader should refer
to this publication for further details on this calculation.

In the CLD model, each Wigner-Seitz cell is composed of
a high-density (“cluster”) part, labeled I , and a low-density

(“gas”) part, labeled II . The equilibrium proportion of cluster
and gas is obtained by minimizing the total energy density,
including the interface surface and Coulomb terms, that is
given by

E = f E I + (1 − f )E II + ECoul + Esurf + Ee (32)

with respect to four variables: the linear size of the cluster, Rd ,
the baryonic density of the liquid phase ρI , the proton density
of the liquid phase ρI

p, and the volume fraction of the liquid
phase f . The Coulomb and surface terms are given by

ECoul = 2αe2π�R2
d

(
ρI

p − ρII
p

)2
, (33)

Esurf = σαD

Rd
, (34)

where α = f for droplets, rods, and slabs and α = 1 − f for
tubes and bubbles. � is given by

� =
(

2 − Dα1−2/D

D − 2
+ α

)
1

D + 2
, D = 1, 3 ,

� = α − 1 − ln α

D + 2
, D = 2 . (35)

The surface tension parameter σ depends on the total pro-
ton fraction of the system and its expression, for both EoS
models used in this work, can be found in Ref. [75]. This
parameter was obtained from a fit to a relativistic Thomas-
Fermi calculation. For more details, the reader should check
Ref. [75] and references therein. When we minimize ECoul +
Esurf with respect to the size of the cluster, Rd , we get

Esurf = 2ECoul , (36)

Rd =
⎡
⎣ σD

4πe2�
(
ρI

p − ρII
p

)2

⎤
⎦

1/3

. (37)

The remaining equilibrium conditions are

μI
n = μII

n , (38)

μI
p = μII

p − Esurf

(1 − f ) f
(
ρI

p − ρII
p

) , (39)

PI=PII + Esurf

[
3

2α

∂α

∂ f
+ 1

2�

∂�

∂ f
−

(
(1 − f )ρI

p + f ρII
p

)
(1 − f ) f

(
ρI

p − ρII
p

)
]

.

(40)

The reader can check, e.g., Ref. [42] for the different ex-
pressions in the total energy density. We note that we do
not consider superfluidity, since it has already been shown in
previous studies [76] that its impact on the static properties of
a neutron star is very small.

III. RESULTS AND DISCUSSION

In this section, we analyze the results obtained in our
study, comparing them to previous calculations, in particular,
the analysis of the dynamical spinodal in Refs. [37,38], and
the study done with the CP model in [42]. We will show
how the CLD model, while in agreement with the previous
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FIG. 1. Difference between the energy per baryon of homogeneous matter and the energy per baryon of clustered matter, as a function of the
total baryon density, for the NL3 (solid lines) and NL3ωρ (dashed lines) models, in a CP (left panels) and CLD (right panels) calculations. The
magnetic field intensity is fixed to B∗ = 5 × 103 (top panels) and B∗ = 104 (bottom panels). In red, this difference is positive, E/Ahm > E/Acl ,
and in blue it is negative.

calculations, allows a more realistic description of the system,
and helps clarifying some contradictory results that can be
found in the literature [47].

We consider stellar matter in β equilibrium, taking the
NL3 and the NL3ωρ RMF models, for different values of
the magnetic field. We will consider a magnetic field of
B∗ = 5 × 103 and B∗ = 104, corresponding, respectively, to
B = 2.2 × 1017 G and B = 4.4 × 1017 G. These values are the
same as in Ref. [42].

In Fig. 1, we plot the difference between the energy per
baryon of homogeneous matter and the one of clustered mat-
ter, comparing the results obtained with the CP and the CLD
calculations. The results for both values of the magnetic field
are shown. The density at which this difference crosses zero
indicates the transition between homogeneous (core-like) and
nonhomogeneous (crust-like) matter. From this figure we can
extract the following conclusions: the two calculations give
a similar value of the crust-core transition density; while the
CP calculation (left panels) tends to give both stable solutions,
i.e., solutions in which the clusterized matter energy is lower
than the one of homogeneous matter, and metastable solu-
tions, i.e., solutions in which the energy is higher than the one
of homogeneous matter, in the CLD calculation (right pan-
els), the metastable solutions are almost completely absent.
This feature is particularly pronounced at the highest value
of the field (lower panels) and for the softest EoS (dashed

lines). This finding suggests that the estimation of the tran-
sition density might be overestimated, if the CP approach is
considered.

In Fig. 2 we show the baryon (left) and proton (right)
densities of the clusterized (blue) and nonclusterized (red) part
of the Wigner-Seitz cell, together with the growth rates ωmax

obtained from the study of the dynamical spinodal, for both
values of the magnetic field, considering the NL3 model. The
growth rates are taken from [38], where the classical Vlasov
approach was used. They are included in the plot in order to
compare the new results to the ones in literature. In this figure,
the difference between the results given by the CP and CLD
calculations is always negligible compared to the scale of the
plot, making the two lines almost indistinguishable.

It can be seen from the plots that, as already showed in
Ref. [42], in the presence of the magnetic field, the inner
crust can be divided into two regions. In the first region, the
density inhomogeneity is important, even if it decreases with
the baryon density, and the protons are confined inside the
cluster. This is the standard feature of a solid crust, corre-
sponding to a periodic arrangement of the ions in the lattice,
and consequently of the electrostatic potential.

A second, extended region, only appears in the finite-
B calculation, and starts approximately at the B = 0
crust-core transition density. In this region, the inhomo-
geneous solution is still energetically favored over the
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FIG. 2. Baryon (left) and proton (right) densities of liquid (1, blue) and gas (2, red) phases as function of the total baryon density for
the NL3 model in a CP (dashed lines) and CLD (solid line) calculations, with B∗ = 5 × 103 (top) and B∗ = 104 (bottom). We also plot the
magnetized growth rates divided by a factor 102, |ωmax| (light blue), as well as the densities in the B = 0 case (black). The green and orange
segments indicate, respectively, ρ1→2 and ρcc, both defined in the text.

homogeneous one, but the amplitude of the inhomogeneity is
very small.

Indeed, the density fluctuation (ρclus − ρgas)/(ρclus + ρgas)
is in the range 1.3–5.5 % and the proportion of dripped
protons is significant with respect to the fraction of pro-
tons bound in the cluster, with proton density fluctuations
(ρ p

clus − ρ
p
gas)/(ρ p

clus + ρ
p
gas) in the range 21–57 %. We can also

see that at the border between the crust and this region, the
proton and baryon cluster densities discontinuously jump. The
equilibrium composition of matter obtained through the CLD
variational calculation is nicely reflected in the behavior of
the dynamical spinodal (curves labeled “ωmax” in Figs. 2 and
3), which suggests that the classical Vlasov approach is able
to describe, at least at a qualitative level, the behavior of the
system. A first, bigger region of instability can be seen in
the region corresponding to the B = 0 calculation, where the
densities are very different, and a second, smaller region of
instability, with a smaller value of the growth rate, which
appears only in the finite-B calculation, can be seen after
the discontinuous jump of the cluster density. If the crust-
core transition is defined as the transition point between the
solid and the liquid part of the star, these findings suggest
that the “extended crust” deduced from the spinodal analysis
[37–39,43] might be rather interpreted as a peculiar inho-
mogeneous liquid portion of the outer core. This shows the
limits of the Vlasov approach, that neglects both quantum

and nonlinear effects. In the following we will refer to the
transition density between the first and the second region as
ρ1→2, marked in the figure by a green segment, while we will
refer to the transition density between inhomogeneous and
homogeneous matter as ρcc, marked in the figure by an orange
segment. The values for both densities in the various cases can
be found in Table II.

The analysis presented in Fig. 2 is repeated in Fig. 3 in the
case of the NL3ωρ model. Also in this case, the CLD and

TABLE II. Crust-core transition densities (cc) and densities for
the transition from the solid (1) to the liquid (2) region of the inner
crust, in units of fm−3, for β-equilibrium matter, considering the NL3
and the NL3ωρ models in the CP and CLD approximations, and
taking B = 0, B∗ = 5 × 103, and B∗ = 104.

ρ1→2 ρcc

CP CLD CP CLD

NL3 B = 0 - - 0.06865 0.06780
B∗ = 5 × 103 0.06627 0.06627 0.07344 0.07369

B∗ = 104 0.06431 0.06421 0.07992 0.08007

NL3ωρ B = 0 - - 0.08662 0.08751
B∗ = 5 × 103 - - 0.08640 0.08682

B∗ = 104 - - 0.08560 0.08568
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FIG. 3. Baryon (left) and proton (right) densities of liquid (1, blue) and gas (2, red) phases as function of the total baryon density for the
NL3ωρ model in a CP (dashed line) and CLD (solid lines) calculations, with B∗ = 5 × 103 (top) and B∗ = 104 (bottom). We also plot the
magnetized growth rates divided by a factor 102, |ωmax| (light blue), as well as the densities in the B = 0 case (black). The orange segments
indicate ρcc, defined in the text.

CP results are indistinguishable on the scale of the figure as
in Fig. 2 above. For the NL3ωρ model, we see that the ex-
tended region does not appear and ρ1→2 ≡ ρcc. A tendency
towards a liquid region with small amplitude inhomogeneities
can still be seen as a (small) density drop correlated to the
instability observed in the spinodal analysis, but apparently
the homogeneous matter instability is not sufficient to produce
an equilibrium inhomogeneity. These results are in agreement
with the ones found before [42], but in Wang et al. this energy
criterium was not used, and this explains why the authors
interpreted the results as the persistence of the inhomogeneous
region to higher densities as compared to this work.

In Table II, we present the values for ρ1→2 and ρcc for the
different values of the magnetic field and for the two models.

In the NL3 model, the higher the value of B, the higher the
value of the transition density to homogeneous matter ρcc, and
in the NL3ωρ model, the opposite happens, i.e., the higher the
value of B, the smaller the value of the transition density. In
fact, this effect is due to the extended region, that only appears
in the NL3 model. If we discard this region, and consider the
crust-core transition as the the opening of proton drip ρ1→2,
this density decreases with increasing B, as in the NL3ωρ

model.
The different behavior of the two models with respect to

the magnetic field can be also appreciated by looking at Fig. 4,
where the geometry of the clusters is plotted as a function of

the baryon density. We observe that, for all the calculations
considered, the CLD model gives slightly higher transition
densities between the different shapes, as well as to homo-
geneous matter(values displayed in Table II as ρcc).

The fact that small discontinuities appear in the density
behavior of the clustered region at the highest densities, par-
ticularly for the higher value of the magnetic field (see inserts
in Fig. 3) suggests that the physical origin of the extended
region might be related to the discontinuous occupation of
the Landau levels. To better understand this peculiar ther-
modynamic behavior, where a spinodal instability does not
lead to phase separation but to an equilibrium configuration
with small amplitude inhomogeneities, we plot in Fig. 5 the
density evolution of the number of Landau levels (LL), in
the highest B case. The other value of B gives the same
qualitative information. Both models are considered, such
as to understand the origin of the model dependence of the
results.

In that figure, the maximum number νmax of occupied LL
for the protons Eq. (18) is displayed. This is calculated for
the higher density region I of Eq. (32) (blue curves labeled
“Clus” in Fig. 5), the lower density region II (red curves la-
beled “Gas”), and also for homogeneous nuclear matter (green
curves labeled “Hom.”). The CLD calculations are given by
solid curves, while CP ones (almost indistinguishable from
CLD) correspond to dashed curves.
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FIG. 4. Geometry of the clusters as a function of the total baryon
density for the NL3 (top) and NL3ωρ (bottom) models. The results
for B = 0 (black), B∗ = 5 × 103 (red), and for B∗ = 104 (blue) are
displayed, as well as the results for the CP (dashed line) and CLD
(solid line) calculations.

As a general statement, the number of occupied LL for a
particle q = e, p increases with its density, and so does the
kinetic energy of the system. Because of charge neutrality, the
behavior of νe

max is the same as the behavior of ν
p
max in the case

of an equivalent perfectly homogeneous system. In the case of
NL3 (top panel) we can see that preserving the inhomogeneity
in the extended region does not increase the number of occu-
pied LL in the denser part with respect to homogeneous matter
(because the amplitude of the inhomogeneity is very small),
and yet is enough to allow the protons in the dilute phase
to stay within the first LL. As a consequence, the effective
Fermi energy is reduced with respect to the homogeneous
configuration, and this energy gain is enough to compensate
the Coulomb and surface energy cost associated to the density
fluctuation. In the case of NL3ωρ, the lower value of L implies
a higher symmetry energy with respect to NL3. In turn, this
leads to a higher global proton fraction, as already pointed out
in Ref. [42], and shown by the fact that the second proton LL
is already occupied at relatively low densities, and the third LL
is also filled in the denser phase. As a consequence, keeping
the density fluctuation beyond the crust-core transition point
of the B = 0 case implies a higher cost in terms of effec-
tive Fermi energy, and the instability of homogeneous matter

FIG. 5. Proton νmax of high (blue, marked as “Clus”) and low
(red, marked as “Gas”) density phases, together with the proton νmax

of homogeneous matter (green, marked as “Hom.”), as function of
the total baryon density for the NL3 (top) and NL3ωρ (bottom)
models in a CP (dashed line) and CLD (solid line) calculations, with
B∗ = 104.

towards density fluctuations observed in the spinodal analysis
is effectively damped.

To conclude our analysis, we show the effects of the modi-
fication of the crust structure due to the magnetic field, on the
static properties of neutron stars. To this aim, we built a unified
EoS, by calculating the EoS of homogeneous npe matter in
the presence of magnetic field, using the same RMF models
for the inner crust. Concerning the magnetized outer crust,
we used the code by Chamel et al. [77], which was already
used to obtain the results in [78]. The outer core is defined
as usual as the region extending from the star radius inward
until the neutron drip point; the “solid” part of the inner crust
is assumed to end at the point ρ1→2 where the cluster density
discontinuously drop; the “liquid” part of the inner crust is
assumed to coincide with the extra inhomogeneous region
ending at the density point ρcc where homogeneous matter
becomes energetically favored.

In Table III, we report the spatial extension of the two dif-
ferent regions of the star, together with the associated masses
and the total radius of the star.

The results for two different values of the total mass
of the star are shown. We should note that for a com-
pletely consistent calculation, the coupled Maxwell-Einstein
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TABLE III. Mass and radial width of the solid (1) and liquid (2) crust of the NS, together with the total radius of the star RT , for the NL3
and NL3ωρ model in the CLD approximation, and taking B = 0, B∗ = 5 × 103, and B∗ = 104, for two different values of the total mass of the
star. See text for the definition of the different quantities.

M1(M�) M2(M�) RT (km) �R1(km) �R2(km)

MT = 1.4M� NL3 B = 0 0.0588 0.0 14.685 1.4270 0.0
B∗ = 5 × 103 0.0597 0.0258 14.908 1.6532 0.1541

B∗ = 104 0.0574 0.0414 15.025 1.7427 0.3148

NL3ωρ B = 0 0.0457 0.0 13.747 1.3665 0.0
B∗ = 5 × 103 0.0526 0.0 13.871 1.5431 0.0

B∗ = 104 0.0526 0.0 13.991 1.6556 0.0

MT = 2.0M� NL3 B = 0 0.0394 0.0 14.777 0.8691 0.0
B∗ = 5 × 103 0.0400 0.0132 14.914 1.0064 0.0932

B∗ = 104 0.0385 0.0288 14.989 1.0617 0.1973

NL3ωρ B=0 0.0326 0.0 14.079 0.8632 0.0
B∗ = 5 × 103 0.0384 0.0 14.161 0.9769 0.0

B∗ = 104 0.0383 0.0 14.234 1.0437 0.0

equations should have been computed (see, e.g., Ref. [28],
where the authors used the LORENE library to integrate those
equations). We also underline that here we assume force-free,
constant, and uniform magnetic fields throughout the star,
neglecting the effects of electric current and associated phe-
nomena within the star. Even if the absolute values of the radii
reported in Table III are not fully realistic, the qualitative be-
havior appears correct. In particular we observe, in agreement
with Ref. [28], an increase of the crustal mass and radius with
the magnetic field.

From the table, it can be seen that in the case of NL3 and
for high B, the mass of the “liquid” crust becomes comparable
to the one of the “solid” part.

IV. CONCLUSIONS

In this paper, we studied the structure of the inner crust of a
neutron star in the presence of a strong magnetic field, within a
relativistic mean-field framework, and using the compressible
liquid drop model for the calculation of the pasta phases. We
then compared our results with the ones obtained in previous
studies using the coexisting phases calculation [41,42], and
the dynamical spinodal method [37,38]. We considered two
different RMF models, NL3 [56] and NL3ωρ [57], and two
different values of the magnetic field, namely B = 1.3 × 1017

G and B = 4.4 × 1017 G.
Our main result is that the extended spinodal instability ob-

served in different previous works [37–41,43] leads to stable
or metastable equilibrium configurations that are inhomoge-
neous, with density fluctuations (ρclus − ρgas)/(ρclus + ρgas) in
the range 1.3–5.5 % and proton density fluctuations (ρ p

clus −
ρ

p
gas)/(ρ p

clus + ρ
p
gas) in the range 21–57 %. The energetic gain

of such small amplitude fluctuations is due to the possibility,
for the protons of the more dilute regions, of occupying a
lower order LL. Because of that, the existence of such in-
homogeneous configurations depends crucially on the proton
fraction, and therefore on both the strength of the magnetic

field, and on the value of the symmetry energy in the subsatu-
ration region. In particular, the configurations are stable only
if the slope parameter L is high, as in the case of the NL3
functional.

We found that the transition densities given by the CLD
calculation are in good agreement with the simpler CP ap-
proximation employed in the previous analysis [42].

The presence of metastable inhomogeneous solutions high-
lighted in the present work, particularly for the softer NL3ωρ

model, may explain why different results on a possible ex-
tended crust in magnetars were reported in the literature
depending on the chosen functionals and crust modeling
[37–43,47].

Moreover, the qualitative effect of the magnetic field on the
crust-core transition densities is also in good agreement with
the Thomas-Fermi calculations by Bao et al. [47] for the cases
where the extended crust does not appear, such as the NL3ωρ

model.
However, its contribution can amount to approximately 4%

of the mass and 6% of the radius of a heavily magnetized
canonical 1.4M� neutron star, for an EOS as stiff as NL3.
If L values as high as the ones proposed by recent analyses
of PREX-2 data [69] were to be confirmed in the future, it
will be very important to study the elasticity and conductivity
properties of this intermediate region, in order to settle its
possible influence on NS observations.
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