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Abstract: Solar activity has been subject to increasingly more research in the last decades. Its
influence on life on Earth is now better understood. Solar winds impact the earth’s magnetic field
and atmosphere. They can disrupt satellite communication and navigation tools and even electrical
power grids and several other infrastructure crucial for our technology-based society. Coronal mass
ejections (CMEs), solar energetic particles, and flares are the main causes of problems that affect the
systems mentioned. It is possible to predict some of those by monitoring the sun and analyzing
the images obtained in different spectra, thus identifying solar phenomena related to its activity,
such as filaments, pores, and sunspots. Several studies have already been carried out on the subject
of automation of the mentioned analysis, most of which use neural networks and other machine
learning approaches. In this work, we develop a method for sunspot detection based on the YOLOv5
network, applying it to a dataset of images from the Geophysical and Astronomical Observatory of
the University of Coimbra (OGAUC), which has one of the oldest and more complete datasets of sun
images in the world. Our method reaches mAP@.5 over 90% with YOLOv5s, which is higher than
other methods previously applied for the same dataset. This shows that CNN models can be used in
spectroheliographs for detecting and tracking sunspots.

Keywords: sunspot detection; convolutional neural network; YOLO; spectroheliograph; OGAUC

1. Introduction

Even though the sun looks almost invariant and quite from the earth, it is full of
activity that can have not only a biological impact but also a strong societal impact on Earth.
Hence, there is an increasing interest in studying the sun and monitoring solar activity.

Space weather is the sub-field of science that deals specifically with the events that
happen in the sun and influence life on Earth, producing frequent malfunctions on electric
and electronic equipment, both in orbit and on the surface of our planet [1–3]. Therefore,
it becomes obvious why the monitoring and forecasting of solar activity is important in
the modern world. Solar activity can affect communications, electrical devices, power
grids, industrial and commercial assets, as well as space missions and other aspects of
life on Earth and space [2]. Large solar storms can disrupt communications and cause
power overloads that damage power lines, as well as shutting down or even destroying
unprotected electrical systems.
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Monitoring solar activity can be accomplished through the detection and tracking of
sunspots, which are the most visible phenomena that occur on the surface of the sun that
give a rather accurate picture of solar activity [4]. Sunspots are small and transient regions
on the surface of the sun, where the magnetic field becomes strong enough to interfere with
the solar convection and heat transfer close to its surface. Therefore, regions cooler than
their surroundings exhibit a darker appearance by contrast with the other hotter regions.

The appearance and evolution of sunspots show a high correlation with the production
of large solar flares, which can be projected toward Earth, sometimes causing a number
of disruptions in electrical-based apparatuses [5]. The Geophysical and Astronomical
Observatory of the University of Coimbra (OGAUC) has been monitoring solar activity
since 1926. Every day, a picture of the sun is taken and the features or events found
in the sun’s atmosphere are visualized, except when it is not possible because of poor
weather conditions. The images are taken using a Hale-Deslandres spectroheliograph
installed at coordinates 40°12’ N, 8°26’ W. The older pictures, which were stored in physical
photographic plates, where the sunspots were imprinted, have already been digitized and
are available in a modern digital picture format [6]. Due to this fact, OGAUC offers one of
the largest datasets of solar images in the world, containing daily pictures of the sun over
almost one century [7]. Using those pictures, it is possible to study the daily activity of
the sun from 1926 to the present day, the only exceptions being days of very poor weather
conditions in Coimbra. Considering the number of images available, automatic methods to
detect and track sunspots are a very much needed improvement in the field of solar weather
monitoring [8]. Those methods facilitate the process of manual analysis and longitudinal
studies of the evolution of sunspots.

A method for automatic sunspot detection has already been applied to images from
the OGAUC. It is an algorithm based on mathematical morphology that reaches an accuracy
of up to 86.25% [9], using Hα continuum images. Those images are taken at wavelengths
6558.7 Å, which is close to the Hα emission wavelength at 6562.8 Å, with Hα being the
lowest energy emission in the Balmer series of Hydrogen, a transition that occurs very
efficiently in the sun’s atmosphere. The method is discussed in more detail in Section 3.

Many different approaches have been proposed for automatic sunspot detection in
solar images. Most of those approaches used images taken by satellites in orbit, therefore
above the earth’s atmosphere. In general, those images have very good quality, for they
are not affected by our atmosphere, with its numerous particles and layers that affect
sun rays. However, satellite pictures have been available for just the last few decades.
Spectroheliograph pictures have been available for almost one century, as is the case of
OGAUC, so they can tell the evolution of the solar weather for a much longer period of
time. There are thousands of images that recorded solar events before satellites or probes
were put in orbit. The information in those images is very important to understand the
evolution of solar cycles and their impact on Earth. The history of solar cycles is, in fact,
very important to understand different aspects of life on Earth [10].

There are many traditional approaches for automatic sunspot detection. Carvalho et al.
analyzed many of those common approaches [9].

Statistical methods, mathematical morphology and computer vision methods are pop-
ular approaches [8,11,12]. Multi-wavelength analysis algorithms have also been used [13].

However, most of the modern approaches proposed for the automatic detection of
sunspots involve the use of convolutional neural networks (CNNs), which are possibly
the best method available. This will also be covered in Section 3. CNNs are deep neural
networks consisting of several layers, which perform convolution operations to select
features and classify images. For automatic object detection, they are more versatile and
efficient than traditional feed-forward networks. They have gained popularity as one of
the best methods for image analysis [14], and they are also a promising tool for the task of
detecting sunspots [15–18].

YOLO is currently one of the most popular convolutional neural networks for object
detection. It gained popularity for being efficient and fast, even for difficult tasks, such as
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distinguishing dogs from cats [19]. It is able to perform target detection and recognition,
and predicts the positions and categories of multiple candidate objects at the same time [20].
It has been used in a wide range of applications for object detection, including real-time
and near real-time applications [21,22]. For those reasons, this network was chosen for the
present study, due to the high performance and ability to process large amounts of data
in reasonable amounts of time. A YOLOv5 network was trained using 2000 Hα contin-
uum images from solar cycle 24, taken with the OGAUC spectroheliograph. The images
were pre-processed and then used as a dataset for training the network. Several training
instances were made, using different YOLO models, reaching a maximum precision of
90%. The results prove the ability of the YOLO model to detect sunspots in spectrohe-
liographs, with the highest precision achieved. The dataset marked is also available for
interested researchers.

Section 2 presents a brief description of the network used in this research, showing
the different models and the main differences between them. An overview of previous
work on the matter is described in Section 3. The methods used in the present study are
described more in detail in Sections 4 and 5. Finally, some conclusions and future work are
presented in Section 6.

2. Convolution Neural Networks and YOLO Architecture

Convolution neural networks are computational models that became popular in digital
image analysis (even though they can be adapted and used for different types of inputs
besides images). They gained popularity due to their versatility, speed of inference and
low error rate comparing to other neural networks and image analysis methods. The input
image is subjected to a number of convolutions, which act as filters to select the relevant
features from the background. Using the features extracted, the objects are then detected
and classified in fully connected layers, which generate as output the result of the detection
and classification.

YOLO is an acronym for “You Only Look Once”, and it is a CNN model created by
Redmon et al., proposed for the first time in 2016 [23]. The reason for the name is the fact
that the input image is processed only once through the CNN. That is different from other
region proposal CNNs, which perform detection on several region proposals, resulting in
many predictions for different areas in an image. The performance of YOLO is also very
good for different types of problems, which makes YOLO a popular choice, especially for
real-time operation.

Different versions of YOLO have been proposed, with small improvements compared
to previous implementations. YOLOv5, implemented over the PyTorch framework, was
chosen for the present work. The version used is available at its GitHub repository (https://
github.com/ultralytics/yolov5 (accessed on 26 April 2023)). It comes in different variations,
whose names correspond to the network size, from n (nano) to x (extra-large). A smaller
architecture corresponds to a faster train and inference, while more complex models offer
better performance for difficult tasks, at the cost of additional processing time.

3. Related Work

Many researchers have been working on automatic sunspot analysis through different
methods and sources. Some use images taken from the earth, while others use images
taken from space. Traditional approaches are based on image processing techniques, while
more modern techniques in general use deep learning neural networks.

3.1. Previous Work with OGAUC Images

The images of the OGAUC observatory pose some difficulties when compared to
modern images obtained from space, mostly due to atmosphere-related features and
additional information directly engraved on the image itself. Figure 1 shows a good
image, after removing the identification text. Figure 2 shows an example of a picture
taken at the observatory, which is particularly challenging due to the bad weather that day.

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5


Appl. Sci. 2023, 13, 5833 4 of 15

The picture clearly shows the slices due to the imaging process used, and it also contains
its identification marking letters.

Figure 1. Example of a good image taken at OGAUC, showing just the solar disk. The identification
marks were removed.

Figure 2. Example of an image taken under adverse atmospheric conditions, in particular, clouds
blocking the sunlight. This spectroheliogram was taken on 11 April 2011.

A previous work with images from the OGAUC performed sunspot detection using
an algorithm with mathematical morphology to detect sunspots and facular regions [9,24].
The dataset consists of images taken from the spectroheliograph of OGAUC. In this work,
the goal was to develop one method to apply to all the images captured at the OGAUC.
Two methods to detect sunspots were considered:

• Method based on mathematical morphology;
• Method based on the intensities of the pixels.

Both methods were applied to a subset of images with features and other characteristics
identified visually by an experienced solar observer. The work was based on an Hα subset
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of images, consisting of 144 spectroheliograms. Those were 8-bit images of the solar cycle 24,
spread over several years and different seasons. Image dimensions are 1200 × 1000 pixels.

As a first step, images were submitted to a pre-processing that consisted of a series of
filters that, in addition to making the image easier to read by the algorithms, identified the
solar disk [9]. The filters applied were the following:

• Morphological operation closing to make the image more homogeneous.
• Morphological operation opening to remove letters from the image. Those letters are

added to the original images to mark them, and contain information, such as date.
• Subtraction of the resulting image from the original image (as a mask).
• Morphological reconstruction of the image obtained as a mark.
• Application of an adaptive threshold filter with a lower cutting value of 30 and an

upper cutting value of 124.
• Application of a morphological gradient called thinning, to obtain the contour of

the sunspot.

The mathematical morphology-based method takes the pre-processed images as input,
and filters and processes the image in order to output the contour of the sunspots and
its penumbra. The threshold is defined by the average value between the maximum and
minimum gray levels inside the sunspot. If the pixel value is lower than the threshold
value, then it will be considered the umbra (the central part of the sunspot); otherwise, it
will be considered the penumbra (the grayish outer part).

The second approach is based on the intensity of the digital level of the pixels, des-
ignated by PI. It consists of a two-stage process comprising (i) intensity normalization of
the original image, and (ii) a sunspot detection stage, with the segmentation of umbra
and penumbra. The goal is to create a synthetic image, in which the solar disk presents
homogeneous digital levels and the background has a digital level of zero. This approach
uses the same pre-processing as the first one presented. Using simple equations, the authors
could also locate the center of the sunspots detected.

The results reported from the approaches mentioned are 86.25% for the mathematical
morphology approach, and 84.32% for the pixel intensity approach.

3.2. Deep Learning for Automatic Recognition of Magnetic Type in Sunspot Groups

Fang et al. [25] developed a deep learning algorithm to detect magnetic type in sunspot
groups. Although the article focuses on the recognition of magnetic fields, a recognition of
the sunspots themselves was needed. The authors constructed three models, which differ
in the input content, that consist of the following:

• Model A: magnetograms, images built from the detection of the intensity and polarity
of the magnetic fields over the solar surface, where the sunspots are also detected but
with the extra information on the polarity of the magnetic field;

• Model B: SDO/HMI continuum images;
• Model C: two-channel pictures.

The datasets used in the study consist of images collected by SDO/HMI (Solar Dy-
namics Observatory/Helioseismic and Magnetic Imager) and SHARP (Spaceweather HMI
Active Region Patch) data, taken between May 2010 and May 2017. The data include
magnetograms and continuum images with the time period of 12 min and location range
of ±75 heliolongitude degrees from the solar disk center, in order to reduce the influence
of projection [25]. In the active region, in order to ensure sufficient variations between the
nearest images, the data are obtained every 96 min.

This way, the gray value of the pixel point with magnetic field strength greater than or
equal to the maximum (800.0) obtains the value of 255; on the other hand, the gray value
of the pixel point with a magnetic field lower than or equal to −800.0 is given the value
of zero [25]. The resulting pictures are interpolated into a uniform size of 160 × 80 pixels,
to match the input size required by the CNN. After data processing, the CNN is trained
using the dataset.
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The CNN has good performance in the identification of the active region magnetic
types. The overall accuracy of all three models is over 87%, and the total accuracy reaches
over 95%. The accuracy for the Alpha type reaches 98% and the recognition accuracy for
the Beta type always has values above 88%.

3.3. Detecting a Predefined Solar Spot Group with a Pre-Trained Convolutional Neural Network

Camargo et al. [26] detected sunspots doing some pre-processing and using a CNN
developed for sunspot and sunspot group characterization and classification. The dataset
consists of 853 images, generated from 72 images from the HMI, in Intensitygram Flat
format to allow easier manipulation of the image, which facilitates the pre-processing
mentioned above. Regarding the dataset partition, 600 out of the 853 figures were used for
training, while the other 253 were used for the testing phase.

Before being fed to the CNN, the images were pre-processed. The pre-processing
consisted of the following steps:

1. Image adjust (contrast stretching): method used to increase the contrast of the
output image;

2. RGB to gray: converts the RGB images into gray level images (uni-dimensional scale);
3. Image to black and white: considering a threshold, the image is converted to a binary

matrix, where the values above the threshold are converted to white, while the pixels
below the threshold are converted to black;

4. Image open (growth): this method performs an erosion followed by a dilation on the
gray scale or binary image, using the same structuring element for both operations;

5. Image complement: computes the complement of the image, inverting black and
white colors;

6. Region properties: used to measure a set of priorities for each connected object in the
binary image;

7. Image crop: obtains a region of an image in determined coordinates, within a box of
certain dimensions;

8. Image write: writes an image with a name specified by the user, in the determined
format, in the current folder.

The authors present an example of the pre-processing stage, showing the resulting
image of each step mentioned above, and including the final result with the detection of
the sunspots.

3.4. Hierarchical Method for Quick and Automatic Recognition of Sunspots

Ziliang et al. [20] proposed to develop a neural network based on YOLOv3, for the
automatic recognition of sunspots. The dataset used consists of 700 continuum images
obtained from SDO/HMI dataset for training, and continuum images randomly selected
from 2010 to 2014 for testing.

The final result shows that the entire processing flow achieves a 73.41% intersection
ratio, 98.50% recognition rate and 0.60% false recognition rate. Regarding the recogni-
tion speed, this approach obtained much better results in comparison to other sunspot
recognition algorithms.

3.5. Fast Solar Image Classification Using Deep Learning and Its Importance for Automation in
Solar Physics

Armstrong et al. [27] proposed a CNN for the classification of solar images, composed
of 13 layers, characterized as one of the following types: convolutional, pooling and dense
layers. Images obtained from Hinode Solar Optical Telescope (SOT) are analyzed by the
mentioned neural network and classified into one of five classes: filaments, flare ribbons,
prominences, sunspots, and quiet sun (absence of the previous four).

The dataset was divided into training set and validation set. The training set consists
of 11,857 Hα images from the SOT, classified manually into one of the classes mentioned
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above. The validation set consists of 1318 Hinode/SOT Hα images spread approximately
equally between the classes. There is a total of 13,175 images used in the whole project.

Regarding the initialization of the network, in order to reduce the number of training
epochs, He initialization was employed.

The optimization method used was SGD with Nesterov momentum, which is similar
to the standard but has an additional parameter: velocity. This ensures better performance
for the network.

To improve the network stability and normalize the output of the convolution calcula-
tion, “batch normalization” was applied to the convolution operation’s output. Addition-
ally, to avoid the vanishing gradient problem, Armstrong et al. used the rectified linear
unit (ReLU) function. Maxpooling layers are used for downsampling the data in order to
increase processing performance by reducing the number of parameters. The downsam-
pling works by converting the image into square grids of 2 × 2 pixels. This results in a new
image in which each pixel represents four pixels of the input image. For the training phase,
the loss function used is the “cross entropy loss”, which is based on the discrete version of
a multinomial logistic regression.

The results obtained were very satisfactory, as the CNN reached an accuracy of 99.92%,
which means that only 1 out of the 1318 images was misclassified.

3.6. Automatic Analysis of Magnetograms for Identification and Classification of Active Regions
Using Deep Learning

Oliveira et al. [28] proposed a deep learning technique in Python for the detection
and classification of active regions. Several deep learning models were taken into account
in order to compare the results between them and find the one(s) with the best accuracy.
The goal of the methods developed was to classify the solar flares as one of the classes
shown in Table 1.

Table 1. Classification of the solar flares according to their peak flux, in W/m2 (Oliveira et al. [28]).

Class X-ray Peak Flux in W/m2 between 1 Å and 8 Å

A <10−7

B ≥10−7 and <10−6

C ≥10−6 and <10−5

M ≥10−5 and <10−4

X ≥10−4

The dataset was obtained from The Helioviewer Project (2019) (https://helioviewer.
org/, accessed on 5 May 2023). The data were divided into two sets, according to the
neural network to be trained. For the detection algorithm, 1000 magnetograms (that were
labeled using Fiji software, with the ALP plugin) were used to train the first neural network.
For the classification algorithm, the dataset consisted of 1548 images, divided into classes
characterized by the magnetic configurations:

• A (α): 223 images;
• AG (α − γ): 111 images;
• B (β): 408 images;
• BG (β − γ): 774 images;

Each sub-dataset was also divided into a training set (70% of the total dataset), valida-
tion set (20%), and test set (10%).

Since the dataset did not include the classification for all the sunspots found, two
neural networks were created: one only for the detection of sunspots and the other for
classifications of the sunspots found. The neural networks used were feed-forward super-
vised learning networks. The best model developed for the detection of the active regions
reached a maximum accuracy of 80.75%, while for the classification algorithm, the best
model reached a maximum level of 88%.

https://helioviewer.org/
https://helioviewer.org/


Appl. Sci. 2023, 13, 5833 8 of 15

3.7. Sunspot Identification and Tracking with OpenCV

Toit et al. [29] reported the development of a neural network for the identification and
tracking of sunspots. It is split into two phases that consist of each of the goals of the neural
network mentioned.

The dataset consists of ten continuum images taken in February 2014. Due to the
fact that the solar cycle was at its height for sunspot generation, this was determined to
be the ideal moment. The images went through a pre-processing phase that consisted of
the following:

1. Filtering phase: This process consists of removing the noise from the image and
detecting the solar disk, as well as its radius and center. It includes the creation of
the mask that is used in the filtering process. With the use of some equations, it is
possible to calculate the position angle, latitude and heliographic longitude.

2. Correlation phase: in this phase, magnetogram images are used to correlate both
magnetogram and Michelson Doppler images (MDI) from the first stage.

The method reached an accuracy of 88.4% in sunspot detection.

3.8. Other Approaches

Besides the approaches described, there exists other research toward automating the
process of detecting sunspots in digital archives. Bibhuti et al. work with images from the
Kodaikanal Solar Observatory, which allegedly possesses solar images since 1904 [30].

Alasta et al. use PICARD satellite images to detect and calculate the filling factor of
sunspots [31]. E. Fini proposes a method to detect and count sunspots using a model based
on U-net deep convolutional neural network [32]. Quan et al. compare the performance of
R-CNN and YOLOv3 to detect sunspots in HMI SDO images [33]. Soler et al. propose a
method to predict the evolution of sunspots, based on light bridges, using deep learning
methods [34].

3.9. Summary

As shown previously, space weather is very important for life on Earth; thus, the area
of sunspot detection has been subject to heavy research. Spectroheliograph images have
been available for almost a century, so they keep a long record of the history of the sun.
Modern satellite images have higher quality, but they record only the last few decades.
Hence, the following research questions remain open, and answers are sought in the present
work: (i) How can deep learning methods be used to detect sunspots in spectroheliograph
images from the OGAUC database? (ii) What is the best performance achievable in sunspot
detection with one modern and fast CNN model, namely YOLOv5?

4. Materials and Methods

Experiments for the present work were performed using a dataset of OGAUC images
and an open source implementation of YOLOv5.

4.1. Data Sets of Selected Images

The set of images used for the present work consisted of 2000 Hα continuum im-
ages, with resolution 1200 × 1000 pixel. Those images were taken at the OGAUC spec-
troheliograph, between 15 February 2012 and 26 April 2019, so they correspond to solar
cycle 24. They were obtained from the public repository Bass2000 Solar Survey Archive
(https://bass2000.obspm.fr/accessed on 26 April 2023). The images contain the solar disk
and side annotations, as shown in Figure 2. As happens with images taken from the earth’s
surface, the quality depends on the atmospheric conditions of the day they were taken.
That means the quality of the images is not always the same. Figure 2 in particular shows
an image that was taken in a cloudy day, so the quality is very poor and only the larger
sunspot is clearly visible. Additionally, the images were captured using a composition
process that sometimes results in images shown as a number of different slices. Those
characteristics make them harder to analyze than other sun images, especially those taken

https://bass2000.obspm.fr/
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from outer space by satellites or telescopes in orbit, where there is no influence of the
earth’s atmosphere.

Throughout the study, a number of different experiments were performed in order to
determine the best image-marking methods and parameters of the YOLO models, as well
as the pre-processing methods to be used. Therefore, six different smaller datasets were
created, named A to F, to perform different experiments. The main difference between
datasets is the number of images. Smaller datasets were created for faster experiments and
larger datasets for more accurate results. A more detailed description is as follows:

• Dataset A—a small subset, to experiment with the annotation software and create
the first models. It consists of 50 images, which were expanded to 120 using data
augmentation methods, namely flip, rotate and shear.

• Dataset B—consists of 932 images, expanded to a total of 2076 through data augmen-
tation processes flip, rotate and shear.

• Dataset C—a total of 1000 images, expanded to 2379 through data augmentation pro-
cesses. This dataset was created in order to experiment with more precise annotation
of the dataset.

• Dataset D—dataset of cropped images. The frame around the solar circle was removed
so that only the relevant part was maintained. From 500 spectroheliograms, 958 im-
ages were generated through data augmentation processes, in this case, just flipping
the image.

• Datasets E and F—created as the final dataset for the work. Dataset E is the first half
of the final dataset, which is dataset F. The first and second halves of dataset F consist
of 1919 and 1928 images, respectively, generated from 1000 images each, through data
augmentation processes (again, just flipping).

For datasets D, E and F, the images were cropped in order to reduce the pixel loss
when scaled for the network input. Cropping consisted of removing the letters and most of
the black area around the sun disc, leaving just the relevant area. Cropping removes data
which are not relevant and also makes the sunspots larger and easier to identify, so this
pre-processing step was assumed important and used in the final experiments.

Dataset F is divided into train and validation sets with 3247 and 600 images, respectively.

4.2. Experimental Setup

YOLO is a state-of-the-art deep neural network in object detection [20]. Therefore,
it was the framework chosen for the present implementation. Namely, the PyTorch im-
plementation YOLOv5(https://github.com/ultralytics/yolov5 (accessed on 5 May 2023)),
which has a number of different versions available. Some of those versions are smaller and
faster, while others are larger and require more computation resources. The versions tested
for the present work were YOLOv5s (small), YOLOv5m (medium) and YOLOv5l (large).

The datasets were organized, marked and managed using the Roboflow (https://
app.roboflow.com/(accessed on 5 May 2023)) framework. Training was performed using
Google Colaboratory (https://colab.research.google.com (accessed on 7 May 2023)), a tool
with an environment similar to Jupyter Notebook that provides computing resources from
Google servers, such as GPU, which is ideal for training deep neural networks, such as
YOLOv5. The notebook was started from a template provided by Roboflow Model Zoo
(https://models.roboflow.com/object-detection/yolov5 (accessed on 7 May 2023)).

4.3. Performance Metrics

The main performance metrics used for assessment of the model are precision (P) and
recall (R). Precision is a measure of the predictive value, and recall is also known as a
measure of the sensitive value. They are defined as follows:

P =
TP

TP + FP
(1)

https://github.com/ultralytics/yolov5
https://app.roboflow.com/
https://app.roboflow.com/
https://colab.research.google.com
https://models.roboflow.com/object-detection/yolov5
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R =
TP

TP + FN
(2)

In the equations, TP means true positive, FP means false positive and FN means false
negative. Another performance metric used is mean average precision (mAP), which is
the average precision of the model when a given threshold is imposed for detection. A
threshold of 0.5, for example, requires that the bounding box of a sunspot detected by the
network overlaps at least 50% with the bounding box designed when marking the dataset.

5. Experiments and Results

The results obtained show that YOLOv5 is able to detect a large percentage of the
sunspots, despite the difficulties posed by the quality of some of the spectroheliograms.

5.1. Experiments with Different Datasets

Several training experiments were performed, with the different datasets described
in Section 4. Table 2 shows a summary of the main experiments, including the relevant
parameters and the results obtained.

Table 2. Summary of the experiments performed and results obtained with YOLOv5s. The first
column specifies the dataset name and the number of images it comprises. The other columns refer
to the name of the file where the results were saved; number of epochs of training; batch size defined
for training; best precision achieved; and epoch in which the best result was achieved.

Dataset (Size) File Epochs Batch Size Best Precision Epoch

A (120) Standard Train 5000 12 33.33% 73

B (2076)

Standard Train (1) 200 12 42.74% 95
Standard Train(2) 200 12 86.53% 47

Incremental Train(p1) 500 12 63.55% 203
Incremental Train(p2) 500 12 62.15% 304
Incremental Train(p3) 500 12 62.99% 220

Several Steps(p1) 500 173 61.65% 398
Several Steps(p2) 500 12 63.46% 7
Several Steps(p3) 500 6 65.47% 320

C (2379) Standard Train 1000 13 90.53% 156

D (958)

Cropped(1) 500 12 83.61% 209
Cropped(2) 300 12 79.76% 291
Cropped(3) 300 12 79.69% 233
Cropped(4) 300 12 80.12% 126
Cropped(5) 300 12 81.81% 221

Erosion 300 12 81.03% 298
Equalize Hist(1) 300 12 93.67% 9
Equalize Hist(2) 300 12 83.23% 8
Equalize Hist(3) 300 12 99.41% 6
Equalize Hist(4) 300 12 79.59% 277

CLAHE(1) 300 12 79.45% 184
CLAHE(2) 300 12 77.46% 197
CLAHE(3) 300 12 96.24% 6
CLAHE(4) 300 12 77.17% 219

E (1929)

Standard Train (1) 500 12 86.91% 206
Standard Train (2) 500 12 85.94% 266
Standard Train (3) 500 12 86.12% 271
Standard Train (4) 500 12 86.01% 184

F (3827)
Standard Train (1) 300 12 84.77% 108
Standard Train (2) 300 12 83.77% 111
Standard Train (3) 300 12 88.85% 245
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The table shows the results of various experiments performed in order to determine
the best values for the hyperparameters. The first experiment had the purpose of evaluating
whether the YOLO model was learning, or how fast it was learning. The result was very
unsatisfactory due to the small amount of images to train with, but it still showed the ability
of the model to learn and achieved a precision of 33.33% after 73 epochs with a batch size
of 12. Example of the sunspot detection using the best weights obtained with the various
network structures L, M and S show in Figure 3.

(a) (b) (c)

Figure 3. Example of the sunspot detection using the best weights obtained with the various network
structures L, M and S ((a), (b) and (c), respectively). The image corresponds to a spectroheliogram
taken on 19 April 2012.

Using dataset B, three different experiments were performed in order to glean insight
into the performance of each method and determine the best one for the present problem.
The methods were as follows:

• Standard train—consists of a 200 epochs training;
• Incremental train—the weights generated by a training experiment are used in the

following one, counting up to three instances;
• Train with several steps—the batch size starts large and then decreases;

Dataset C was used for a single experiment. The results were apparently good since the
precision was over 90%. However, that was at the cost of data augmentation. For better con-
fidence in the results, more images were marked later, and larger datasets were constituted.

Dataset D was used to test different pre-processing methods, as described in Section 4.
First, the images were cropped, removing the frame around the solar disk. The results
obtained with the cropped images were good and stable between different runs, even
though the dataset was small. From this point on, the experiments were performed using
cropped images. The table shows that the other pre-processing methods brought no
improvement to the results. In some experiments, there were good results, but they were
not repeatable; thus, they probably show that pre-processing can actually make the process
more unstable.

The last experiments were performed with 1000 marked images, which were used
to make datasets E and F. Dataset E was used to test whether there was a significant
advantage using more annotated images. The results show that the YOLO model was
able to achieve some of the best precision rates, and the results were repeatable, with only
minor variations between each run. Afterward, more experiments were performed, using
the same images and adding more data augmentation techniques, thus producing dataset
F. As the table shows, there is no significant advantage in adding more images through
data augmentation.

As the results show, the standard training method is able to achieve good results,
and the results are, in general, stable and repeatable. There are differences in the results
because the initial conditions are random and, therefore, the learning process may converge
faster or slower, or even converge to the local minima. Some experiments were run more
than once in order to minimize the influence of random results in the conclusions.
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5.2. Discussion

In the first experiments, although many tests reached good precision rates, they were
achieved very early in the training process and they were not always repeatable in other test
sets. This likely happened because the datasets were too small, so the results were mostly
randomly overfit to those particular samples. The experiments show that a minimum of
1000 manually annotated images were necessary to train a robust model and have some
confidence in the results obtained.

The results also show that YOLO benefits from images that are as large as possible.
When the frames and annotations around the images were removed, the performance
improved significantly. Processing the images using contrast enhancing techniques did not
contribute to improving the results.

The results above were obtained using the smallest model of the YOLOv5 family,
which is YOLOv5s. Additional experiments were performed with more powerful models,
namely the m and l versions. A comparison of the relevant results is shown in Table 3.

Table 3. Summary of the best results obtained with the different models trained.

Model Time Precision Recall Obj mAP@.5 mAP@.95

YOLOv5s ∼3 h 88.85% 82.31% 2.76% 90.43% 49.14%
YOLOv5m ∼4 h 15 m 88.90% 82.95% 2.64% 91.14% 51.44%
YOLOv5l ∼6 h 15 m 90.00% 82.38% 2.69% 91.53% 52.71%

The results presented show the main differences between the YOLO models. The table
shows the best precision, recall, objectness (Obj) and mean average precision (mAP) with
confidence 0.5 and 0.95. It also shows the time required to train each model. As the table
shows, the larger models have a slightly better precision. However, that comes at the cost
of much longer training times. This may be an obstacle for training with larger datasets.
For inference, however, that problem is less important because the network only needs to
process each image one time.

The results obtained in the present experiments are inferior to many described in Section 2.
However, other authors use images which are obtained using satellites or telescopes in
outer space. Images obtained from space do not suffer from atmospheric conditions. They
are cleaner, clearer and show the sunspots in greater detail. The atmosphere adds different
types of noise to the images, where many particles in the air interfere with the light coming
from the sun, absorbing or reflecting part of it.

Comparing to previous work that uses images from the OGAUC, namely Carvalho et al. [9],
the YOLOv5 neural network achieved a slightly higher detection accuracy on a much larger
dataset, even though the version implemented will only return the bounding box and
not additional spot information. Additional information, such as the sunspot area or
umbra, as reported by Carvalho et al., may be detected by segmentation models. Table 4
shows a summary of the best precisions reported by Carvalho et al., using mathematical
morphology, pixel intensity, and the YOLO models. YOLOv5s offers a precision which is
2.60% higher than the mathematical morphology method, and YOLOv5l has a precision
1.15% higher than the smaller architecture. It should be noted that all the images used
in all the tests are from the same OGAUC dataset and the same solar cycle. Nonetheless,
the subset used by Carvalho et al. is smaller than the subsets used for the experiments with
YOLO models, in part because training for deep neural networks requires larger numbers
of samples when compared to mathematical morphology and pixel intensity models.
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Table 4. Comparison between the precision obtained in the different approaches using spectroheli-
ograms from OGAUC.

Method/Model Train Dataset Size Test Dataset Size Precision

Mathematical
Morphology 144 144 86.25%

Pixel Intensity 144 144 84.32%
YOLOv5s 3247 600 88.85%
YOLOv5l 3247 600 90.00%

Compared with other authors, for example, Fang et al., described in Section 3, the pre-
cision of the YOLO models is lower. Fang et al. achieved up to 98%. Ziliang et al. achieved
98.5%. Armstrong et al. achieved 99.92%. The difference comes from the different types
of images used—Fang et al. used images taken from space, while the OGAUC image are
taken from Earth.

Other approaches achieve more modest results, comparable to those obtained in the
present work. For example, Oliveira et al. and Toit et al. reported up to 88% precision.

5.3. Main Contributions

The present work offers several contributions to the state of the art. The research
questions proposed in Section 3 are answered. The most important contributions are
listed below.

• To the best of the authors’ knowledge, it is the first time that the YOLO model is used
to detect sunspots in images from the OGAUC spectroheliograph. The results show
that the YOLO model is up to the task and achieves performance slightly higher than
the methods previously used.

• Pre-processing and marking images for deep learning is a tedious and very time-
consuming task. Therefore, the authors make the dataset available for other re-
searchers. It is available at Kaggle (https://www.kaggle.com/datasets/aaiisec/ogauc-
solar-images-marked-for-yolo-cnn-cycle-24/ (accessed on 26 April 2023)).

6. Conclusions

Sunspot detection and solar activity monitoring are very important in order to predict
possible CMEs (coronal mass ejections) that can have a major effect on Earth. Automatic
detection of sunspots can be very important for tracking the spots and studying their
evolution along the time. The present work shows that YOLOv5s can detect sunspots in Hα
images from the solar cycle 24, obtained with the OGAUC spectroheliograph, with up to
90% precision, which is an improvement compared to previous work with the same images.

The YOLO networks used in the experiments work just with bounding boxes and
do not perform segmentation, tracking or area calculations over time. Future work will
include experiments with CNN models that perform these tasks in order to determine and
follow the evolution of spots and solar activity through solar cycle 24 and other cycles
as well.
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