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A SINGULAR PERTURBATION OF THE HEAT EQUATION
WITH MEMORY

J.R. BRANCO AND J.A. FERREIRA

Abstract: In this paper we consider a hyperbolic equation, with a memory term in
time, which can be seen as a singular perturbation of the heat equation with memory.
The qualitative properties of the solutions of the initial boundary value problems
associated with both equations are studied. We propose numerical methods for the
hyperbolic and parabolic models and their stability properties are analysed. Finally,
we include numerical experiments illustrating the performance of those methods.
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1. Introduction

Let us consider the hyperbolic equation

ǫ
∂2u

∂t2
(x, t) + α

∂u

∂t
(x, t) = γ

∂2u

∂x2
(x, t) +

∫ t

0

k(t − s)
∂2u

∂x2
(x, s) ds

+f(x, t, u(x, t)) ,
(1)

for x ∈ (a, b), t > 0, where k(s) is a scalar function, smooth enough, and
which will be specified later, with initial conditions

{

u(x, 0) = u0(x), x ∈ (a, b)
∂u

∂t
(x, 0) = u1(x), x ∈ (a, b)

(2)

and

u(a, t) = ua(t), u(b, t) = ub(t), t > 0. (3)

Initial boundary value problem (IBVP) (1)-(3) arises from a variety of math-
ematical models in engineering and physical sciences. We mention, for in-
stance, the theory of linear viscoelasticity. In this case u represents the dis-
placement of a body with density ǫ, viscosity α, tension γ and under external
force f.
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For ǫ → 0 IBVP (1)-(3) can be seen as a singular perturbation of the partial
differential equation

α
∂w

∂t
(x, t) = γ

∂2w

∂x2
(x, t) +

∫ t

0

k(t − s)
∂2w

∂x2
(x, s) ds + f(x, t), (4)

for x ∈ (a, b), t > 0, with initial condition

w(x, 0) = w0(x), x ∈ (a, b), (5)

and
w(a, t) = wa(t), w(b, t) = wb(t), t > 0. (6)

The behavior of the displacement u when the density ǫ converges to zero
was studied in [7], [8]. In those papers it was shown that, under certain
assumptions on the initial displacement, initial velocity and boundary con-
ditions, the displacement u, solution of (1)-(2), and its derivatives converge
to the solution w (of the heat IBVP (4)-(5)) and its derivatives, respectively,
when the density ǫ goes to zero.

Equation (4) is called heat equation with memory and has been considered,

for instance, in [4] and more recently in [9] with k(s) =
σ

τ
e−

s
τ . This equation

is established combining the mass conservation law with the Jeffreys flux

q(x, t) = −k1
∂u

∂x
(x, t) −

k2

τ

∫ t

0

e−
t−s
τ

∂u

∂x
(x, s) ds,

where k1 and k2 are, respectively, the effective thermal and elastic conductiv-
ity constants. Motivated by those considerations we consider in the present

paper k(s) =
σ

τ
e−

s
τ .

Our aim is to study the behavior of the solutions u and w, respectively, of
the hyperbolic IBVP (1)-(3) and the parabolic ǫ-limit IBVP (4)-(6) and to
present numerical methods which allow us to compute approximations to u
and w with the same behavior.

In Section 2 we study the stability of the IBVP (1)-(3) with respect to
perturbations of initial conditions. A numerical method for (1)-(3) is pro-
posed in Section 3. In this section, a discrete version of a stability inequality
established in Section 2 is proved. As a corollary of such stability result, the
convergence of the numerical method is concluded. In Section 4 we estab-
lish a stability result for the ǫ-limit IBVP (4)-(6). In Section 5 a numerical
method for (4)-(6) is proposed and its stability and convergence properties
are studied. In Section 6 the relation between the numerical approximations
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for the solutions of the hyperbolic problem (1)-(3) and the parabolic prob-
lem (1)-(3) is analysed. Finally, in Section 7, several numerical experiments
are presented illustrating the theoretical results established in the previous
sections.

2. The hyperbolic perturbed IBVP

In this section we study the stability of the hyperbolic IBVP (1)-(3) when
the initial conditions are perturbed. By (. , .) we represent the L2 inner
product and we denote by ‖.‖L2 the corresponding norm. If v is defined in
[a, b] × [0, T ] we represent v(. , t) by v(t).

We start by establishing an upper bound for the L2 norm of the solution
of (1)-(3) and for the L2 norm of the spatial and temporal gradients and its
past, with initial conditions u0, u1 and homogeneous boundary conditions.
Nevertheless we assume general Dirichlet boundary conditions when stability
results are established.

Theorem 1. Let u be a solution of (1)-(3) with homogeneous boundary con-
ditions. Let us suppose that

∂ℓu

∂tℓ
(t),

∂ℓu

∂xℓ
(t) ,

∫ t

0

e−
t−s
τ

∂u

∂x
(s)ds ∈ L2[a, b], ℓ = 1, 2,

∂2u

∂x∂t
(t) ∈ L2[a, b], t ∈ (0, T ].

(7)

Then, for each t ∈ (0, T ], holds

ǫ‖
∂u

∂t
(t)‖2

L2 + (γ − σ)‖
∂u

∂x
(t)‖2

L2 + σ‖
1

τ

∫ t

0

e−
t−s
τ

∂u

∂x
(s) ds +

∂u

∂x
(t)‖2

L2

≤
1

2α + ǫ

∫ t

0

emax{1, 2σ
τ(γ−σ)}(t−s)‖f(s)‖2

L2 ds

+emax{1, 2σ
τ(γ−σ)}t

(

ǫ‖u1‖
2
L2 + γ‖u′

0‖
2
L2

)

,

(8)

provided that σ 6= γ.
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Proof: Multiplying each member of (1) by
∂u

∂t
with respect to (. , .) and

integrating by parts we obtain

ǫ(
∂2u

∂t2
(t),

∂u

∂t
(t)) + α‖

∂u

∂t
(t)‖2

L2 = −γ(
∂u

∂x
(t),

∂2u

∂t∂x
(t))

−
σ

τ
(

∫ t

0

e−
t−s
τ

∂u

∂x
(s) ds,

∂2u

∂x∂t
(t)) + (f,

∂u

∂t
(t)) .

(9)

It can be shown that

(
1

τ

∫ t

0

e−
t−s
τ

∂u

∂x
(s) ds,

∂2u

∂x∂t
(t)) =

1

2

d

dt
‖
1

τ

∫ t

0

e−
t−s
τ

∂u

∂x
(s) ds +

∂u

∂x
(t)‖2

L2

−
1

2

d

dt
‖
∂u

∂x
(t)‖2

L2 −
1

τ
‖
∂u

∂x
(t)‖2

L2 +
1

τ
‖
1

τ

∫ t

0

e−
t−s
τ

∂u

∂x
(s) ds‖2

L2.

(10)
Considering that

(f,
∂u

∂t
(t)) ≤

1

4η2
‖f‖2

L2 + η2‖
∂u

∂t
(t)‖2

L2 (11)

for some positive constant η 6= 0, and

(
∂2u

∂t2
(t),

∂u

∂t∂t
(t)) =

1

2

d

dt
‖
∂u

∂t
(t)‖2

L2

and

(
∂u

∂x
(t),

∂2u

∂t∂x
(t)) =

1

2

d

dt
‖
∂u

∂x
(t)‖2

L2,

from (9), (10) and (11) we deduce the inequality

d

dt

(

ǫ‖
∂u

∂t
(t)‖2

L2 + (γ − σ)‖
∂u

∂x
(t)‖2

L2 + σ‖
1

τ

∫ t

0

e−
t−s
τ

∂u

∂x
(s) ds +

∂u

∂x
(t)‖2

L2

)

≤ 2(−α + η2)‖
∂u

∂t
(t)‖2

L2 +
2σ

τ
‖
∂u

∂x
‖2

L2 −
2σ

τ
‖
1

τ

∫ t

0

e−
t−s
τ

∂u

∂x
(s) ds‖2

L2

+
1

2η2
‖f‖2

L2 .

(12)
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Let η be defined by η2 = α + ǫ/2. Using the Poincaré-Friedrichs inequality

‖u(t)‖2
L2 ≤ (b − a)2‖

∂u

∂x
(t)‖2

L2 in (12) we obtain the differential inequality

d

dt

(

ǫ‖
∂u

∂t
(t)‖2

L2 + (γ − σ)‖
∂u

∂x
(t)‖2

L2 + σ‖
1

τ

∫ t

0

e−
t−s
τ

∂u

∂x
(s) ds +

∂u

∂x
(t)‖2

L2

)

≤ max

{

1,
2σ

(γ − σ)τ

}

(

ǫ‖
∂u

∂t
‖2

L2 + (γ − σ)‖
∂u

∂t
‖2

L2

)

+
1

ǫ + 2α
‖f‖2

L2

(13)
which allows us to conclude inequality (8).

The influence of initial conditions u0 and u1 on the behavior of ǫ‖
∂u

∂t
(t)‖2

L2,

‖
∂u

∂x
(t)‖2

L2 ‖

∫ t

0

e−
t−s
τ

∂u

∂x
(s) ds +

∂u

∂x
(t)‖2

L2 can be established from inequality

(8) for σ 6= γ.
For the particular case σ = γ similar results can be obtained but we do

not get an estimate for ‖
∂u

∂x
‖L2.

We are in position to establish the stability of (1)-(3) with respect to per-
turbation of the initial conditions u0 and u1.

Corollary 1. Let u and ũ be solutions of (1)-(3) with initial conditions u0, u1

and ũ0, ũ1, respectively, satisfying the assumptions of Theorem 1. Then, for
v = u − ũ and for each time t ∈ (0, T ], holds

ǫ‖
∂v

∂t
(t)‖2

L2 + (γ − σ)‖
∂v

∂x
(t)‖2

L2 + σ‖
1

τ

∫ t

0

e−
t−s
τ

∂v

∂x
(s) ds +

∂v

∂x
(t)‖2

L2

≤ emax{1, 2σ
τ(γ−σ)}t

(

ǫ‖u1 − ũ1‖
2
L2 + γ‖u′

0 − ũ′
0‖

2
L2

)

.

(14)

Proof: The proof follows the proof of Theorem 1 with f = 0.

As an immediate consequence of Theorem 1, if (1)-(3) has a solution u then
u is unique.

Stability results for the solution of (1)-(3) when γ = σ can be established
following the proof of Theorem 1.
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3. The parabolic ǫ− limit IBVP

The hyperbolic problem (1)-(3) can be seen, for ǫ small enough, a singular
perturbation of a heat equation with a memory term. In fact, let us suppose
that ǫ is a parameter and the boundary conditions are homogeneous. We
suppose that u0 and u1 are ǫ depending, that is u0 and u1 are replaced by
u0,ǫ and u1,ǫ, and f is also ǫ dependent. Let uǫ be the solution of the initial
boundary value problem correspondent to problem (1)-(3) with α = 1. In [7]
and [8] was established that if fǫ → f, u0,ǫ → w0, ǫu1,ǫ → 0 (in L2) when

ǫ → 0, then uǫ → w,
∂uǫ

∂x
→

∂w

∂x
and

∂uǫ

∂t
→

∂w

∂t
(in L2) where w is solution

of the heat equation

∂w

∂t
(x, t) = γ

∂2w

∂x2
(x, t) +

σ

τ

∫ t

0

e−
t−s
τ

∂2w

∂x2
(x, s) ds + f(x, t), x ∈ (a, b), t > 0,

(15)
with initial and boundary conditions







w(x, 0) = w0(x), x ∈ (a, b),

w(a, t) = 0, w(b, t) = 0, t > 0 .
(16)

In this section we establish for w an estimate analogous to estimate (8).
Firstly we remark that taking in (8) the limit when ǫ → 0 we conclude for w
the following estimate

(γ − σ)‖
∂w

∂x
(t)‖2

L2 + σ‖
1

τ

∫ t

0

e−
t−s
τ

∂w

∂x
(s) ds +

∂w

∂x
(t)‖2

L2

≤
1

2

∫ t

0

emax{1, 2σ
τ(γ−σ)}(t−s)‖f(s)‖2

L2 ds + emax{1, 2σ
τ(γ−σ)}tγ‖w′

0‖
2
L2.

(17)

The behavior of ‖w(t)‖L2 does not follow directly from inequality (17). In
the following we establish an estimate to ‖w(t)‖L2 using the energy method.

Theorem 2. Let w be a solution of (15)-(16). Let us suppose that

∂w

∂t
(t),

∂ℓw

∂xℓ
(t),

∫ t

0

e−
t−s
τ

∂w

∂x
(s)ds ∈ L2[a, b], ℓ = 1, 2, t > 0. (18)
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Then, for each t > 0, holds

‖w(t)‖2
L2 +

σ

τ
‖

∫ t

0

e−
t−s
τ

∂w

∂x
(s) ds‖2

L2 ≤ e
2 max{− γ

(b−a)2
+ 1

2 ,− 1
τ
}t
‖w0‖

2
L2

+

∫ t

0

e
2 max{− γ

(b−a)2
+ 1

2 ,− 1
τ
}(t−s)

‖f(s)‖2
L2 ds .

(19)

The proof differs only in minor details of the proof of Theorem 1 of [3].
As a corollary of Theorem 2 we have the next result:

Corollary 2. Let w and w̃ be solutions of (15)-(16) with initial conditions
w0 and w̃0 respectively satisfying the assumptions of Theorem 2. Then, for
v = w − w̃ and for each time t > 0, holds

‖v(t)‖2
L2 +

σ

τ
‖

∫ t

0

e−
t−s
τ

∂v

∂x
(s) ds‖2

L2 ≤ e
2 max{− γ

(b−a)2
+ 1

2 ,− 1
τ
}t
‖w0 − w̃0‖

2
L2.

(20)

4. A discrete perturbed IBVP

Let us consider in [a, b] a grid Ih = {xj, j = 0, . . . , N} with x0 = a, xN = b
and xj − xj−1 = h. In [0, T ] we consider the grid {tn, n = 0, . . . , M} with
t0 = 0, tM = T and tn+1 − tn = ∆t.

We discretize the second partial derivative with respect to x in (1) and (15)
using the second-order centered finite-difference operator D2,x defined by

D2,xv
n
h(xi) =

vn
h(xi+1) − 2vn

h(xi) + vn
h(xi−1)

h2
.

By D2,t we represent the second-order finite difference operator defined by

D2,tv
n
h(xi) =

vn+1
h (xi) − 2vn

h(xi) + vn−1
h (xi)

∆t2
.

In the stability and convergence analysis of the numerical methods studied
in this paper we consider a discrete version of the L2 norm that we present
in what follows.

We denote by L2(Ih) the space of grid functions vh defined in Ih such that
vh(x0) = vh(xN) = 0. In L2(Ih) we consider the discrete inner product

(vh, wh)h = h

N−1
∑

i=1

vh(xi)wh(xi), vh, wh ∈ L2(Ih), (21)
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and by ‖.‖L2(Ih) we denote the norm induced by the above inner product. For
grid functions wh and vh defined in Ih we introduce the notations

(wh, vh)h,+ =
N
∑

i=1

hwh(xi)vh(xi), ‖wh‖L2(I+
h ) =

(

N
∑

i=1

hwh(xi)
2

)1/2

.

Discretizing the spatial derivatives using D2,x and D2,t and the memory
term using a rectangular rule we obtain a fully discrete approximation un

h

defined by

ǫD2,tu
n
h(xi) + αD−tu

n+1
h (xi) = γD2,xu

n+1
h (xi) +

σ

τ
∆t

n+1
∑

j=1

e−
tn+1−tℓ

τ D2,xu
j
h(xi)

+ f(xi, tn+1), i = 1, . . . , N − 1, n = 1, . . . , M − 1,
(22)

where
uj

h(x0) = ua(tj), uj
h(xN) = ub(tj), j = 1, . . . , M − 1,

u1
h(xi) = u0

h(xi) = u0(xi), i = 1, . . . , N − 1.
(23)

In what follows we establish for the numerical approximation defined by
(22)-(23), a discrete version of Theorem 1 when γ > σ. In this result we
characterize the behavior of the discrete L2 norm of the numerical temporal
and spatial gradients as well the past in time of the numerical spatial gradient.
The stability of method (22)-(23) is then concluded.

Theorem 3. Let uj
h be defined by (22)-(23) with ua(t) = ub(t) = 0, t > 0.

Then
ǫ‖D−tu

n+1
h ‖2

L2(Ih) + ‖D−xu
n+1
h ‖2

L2(I+
h )

+σ‖
∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h + D−xu

n+1
h ‖2

L2(I+
h )

≤ Sn
p (1 + σ(1 +

∆t

τ
)2)‖D−xu

0
h‖

2
L2(I+

h )

+
∆t

maxσ,γ,τ (2α + ǫ)

n
∑

j=1

Sn+1−j
p ‖fh(tj+1)‖

2
L2(Ih) ,

(24)

with
Sp =

maxσ,γ,τ

1 − ∆t
, (25)
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max
σ,γ,τ

= max{1, γ+σ
(

3e−
∆t
τ +

∆t

τ
+2e−2∆t

τ (1+
∆t

τ
)
)

, σ
(

e−
∆t
τ +2e−2∆t

τ (1+
∆t

τ
)
)

},

τ − 2σ +
√

(τ − 2σ)2 + 4σ(γ − σ − 1) > 0, (26)

and for ∆t such that

∆t ≤
τ

2σ

(

τ(τ − 2σ) + τ
√

(τ − 2σ)2 + 4σ(γ − σ − 1)
)

. (27)

Proof: Multiplying each member of (22) by D−tu
n+1
h with respect to the

inner product (. , .)h and using summation by parts we obtain

ǫ(D2,tu
n
h, D−tu

n+1
h )h + α‖D−tu

n+1
h ‖2

L2(Ih) = γ(D2,xu
n+1
h , D−tu

n+1
h )h

+(fh(tn+1), D−tu
n+1
h )h − σ(

∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h, D−xD−tu

n+1
h )h,+ ,

(28)
where fh(tn+1)(xj) = f(xj, tn+1).

Considering that we have

(D2,tu
n
h, D−tu

n+1
h )h =

‖D−tu
n+1
h ‖2

L2(Ih) − (D−tu
n
h, D−tu

n+1
h )h

∆t

≥
‖D−tu

n+1
h ‖2

L2(Ih) − ‖D−tu
n
h‖

2
L2(Ih)

2∆t
,

(29)

(D2,xu
n+1
h , D−tu

n+1
h )h =

(D−xu
n+1
h , D−xu

n
h)h,+ − ‖D−xu

n+1
h ‖2

L2(I+
h )

∆t

≤
‖D−xu

n
h‖

2
L2(I+

h )
− ‖D−xu

n+1
h ‖2

L2(I+
h )

2∆t
,

(30)

and

(fh(tn+1), D−tu
n+1
h )h ≤ η2

1‖D−tu
n+1
h ‖2

L2(Ih) +
1

4η2
1

‖fh(tn+1)‖
2
L2(Ih), (31)

being η1 6= 0 an arbitrary constant, from (28) we obtain
( ǫ

2
+ ∆t(α − η2

1)
)

‖D−tu
n+1
h ‖2

L2(Ih) +
γ

2
‖D−xu

n+1
h ‖2

L2(I+
h )

≤
ǫ

2
‖D−tu

n
h‖

2
L2(Ih) +

γ

2
‖D−xu

n
h‖

2
L2(I+

h ) +
∆t

4η2
1

‖fh(tn+1)‖
2
L2(Ih)

−σ(
∆t2

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h, D−xD−tu

n+1
h )h,+ .

(32)
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We establish in what follows as estimate to

(
∆t2

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h, D−xD−tu

n+1
h )h,+.

We have

(
∆2t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h, D−xD−tu

n+1
h )h,+

=
1

2
‖
∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h + D−xu

n+1
h ‖2

L2(I+
h )

−
1

2
‖D−xu

n+1
h ‖2

L2(I+
h ) +

1

2
‖
∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h‖

2
L2(I+

h )

+(
∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h, D−xu

n
h)h,+.

Attending that

(
∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h, D−xu

n
h)h,+

≤
1

2
e−

∆t
τ ‖

∆t

τ

n
∑

j=1

e−
tn−tj

τ D−xu
j
h + D−xu

n
h‖

2
L2(I+

h )

+
1

2

(

3e−
∆t
τ +

∆t

τ

)

‖D−xu
n
h‖

2
L2(I+

h ) +
∆t

2τ
‖D−xu

n+1
h ‖2

L2(I+
h ) ,

‖
∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h‖

2
L2(I+

h ) ≤ (
∆t

τ
+ (

∆t

τ
)2)‖D−xu

n+1
h ‖2

L2(I+
h )

+2e−2∆t
τ (1 +

∆t

τ
)‖

∆t

τ

n
∑

j=1

e−
tn+1−tj

τ D−xu
j
h + D−xu

n
h‖

2
L2(I+

h )

+2e−2∆t
τ (1 +

∆t

τ
)‖D−xu

n
h‖

2
L2(I+

h )
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and

‖
∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h + D−xu

n+1
h ‖2

L2(I+
h ) ≤ ‖

∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h‖

2
L2(I+

h )

+2∆t(
∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h, D−xD−tu

n+1
h )h,+ + ‖D−xu

n+1
h ‖2

L2(I+
h )

+2(
∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h, D−xu

n
h)h,+

we deduce

−∆t(
∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h, D−tD−xu

n+1
h )h,+

≤ −
1

2
‖
∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h + D−xu

n+1
h ‖2

L2(I+
h )

+
(e−

∆t
τ

2
+ e−2∆t

τ (1 +
∆t

τ
)
)

‖
∆t

τ

n
∑

j=1

e−
tn−tj

τ D−xu
j
h + D−xu

n
h‖

2
L2(I+

h )

+
(1

2
(3e−

∆t
τ +

∆t

τ
) + e−2∆t

τ (1 +
∆t

τ
)
)

‖D−xu
n
h‖

2
L2(I+

h )

+
1

2

(

1 + 2
∆t

τ
+ (

∆t

τ
)2
)

‖D−xu
n+1
h ‖2

L2(I+
h ) .

(33)

Using (33) in (32) with η2
1 = α +

ǫ

2
we obtain

(1 − ∆t)ǫ‖D−tu
n+1
h ‖2

L2(Ih) +
(

γ − σ − σ
(

2
∆t

τ
+ (

∆t

τ
)2
)

)

‖D−xu
n+1
h ‖2

L2(I+
h )

+σ‖
∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h + D−xu

n+1
h ‖2

L2(I+
h )

≤ ǫ‖D−tu
n
h‖

2
L2(Ih) +

(

γ + σ
(

3e−
∆t
τ +

∆t

τ
+ 2e−2∆t

τ (1 +
∆t

τ
)
)

)

‖D−xu
n
h‖

2
L2(I+

h )

+σ
(

e−
∆t
τ + 2e−2∆t

τ (1 +
∆t

τ
)
)

‖
∆t

τ

n
∑

j=1

e−
tn−tj

τ D−xu
j
h + D−xu

n
h‖

2
L2(I+

h )

+
∆t

2α + ǫ
‖fh(tn+1)‖

2
L2(Ih) .

(34)
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Let γ, σ and τ such that (26) holds. Then, for ∆t satisfying (27), from (34)
we establish

(

ǫ‖D−tu
n+1
h ‖2

L2(Ih) + ‖D−xu
n+1
h ‖2

L2(I+
h )

+σ‖
∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h + D−xu

n+1
h ‖2

L2(I+
h )

)

≤ Sp

(

ǫ‖D−tu
n
h‖

2
L2(Ih) + ‖D−xu

n
h‖

2
L2(I+

h )

+σ‖
∆t

τ

n
∑

j=1

e−
tn−tj

τ D−xu
j
h + D−xu

n
h‖

2
L2(I+

h )

)

+
∆t

(1 − ∆t)(2α + ǫ)
‖fh(tn+1)‖

2
L2(Ih) .

(35)

Finally considering inequality (35) and attending that u1
h = u0

h we obtain
(24).

Theorem 3 can be seen as a discrete version of Theorem 1 for the numerical
approximation defined by method (22)-(23). This result allows us to charac-
terize the behavior of the numerical derivatives and the past in discrete time
of the spatial gradient of such approximation. As a corollary of Theorem 3
we have:

Corollary 3. Let uj
h be defined by method (22)-(23). Under the assumptions

of Theorem 3, if

max
σ,γ,τ

≤ 1 + C∆t, (36)

then exists a positive time and space independent constant C such that

ǫ‖D−tu
n+1
h ‖2

L2(Ih) + ‖D−xu
n+1
h ‖2

L2(I+
h )

+σ‖
∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h + D−xu

n+1
h ‖2

L2(I+
h )

≤ C
(

(1 + σ(1 +
∆t

τ
)2)‖D−xu

0
h‖

2
L2(I+

h )

+
∆t

(1 − ∆t)(2α + ǫ)

n
∑

j=1

‖fh(tj+1)‖
2
L2(Ih)

)

.

(37)
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If uj
h and ũj

h are defined by method (22)-(23) with initial conditions,respectively,

u0 and ũ0, then, under the assumptions of Theorem 3 and (36), for vj
h =

uj
h − ũj

h, holds

ǫ‖D−tv
n+1
h ‖2

L2(Ih) + ‖D−xv
n+1
h ‖2

L2(I+
h )

+σ‖
∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xv
j
h + D−xv

n+1
h ‖2

L2(I+
h )

≤ C(1 + σ(1 +
∆t

τ
)2)‖D−x(u

0
h − ũ0

h)‖
2
L2(I+

h )
.

(38)

Proof: From Theorem 3, under assumption (36), we conclude

ǫ‖D−tu
n+1
h ‖2

L2(Ih) + ‖D−xu
n+1
h ‖2

L2(I+
h )

+σ‖
∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h + D−xu

n+1
h ‖2

L2(I+
h )

≤ en∆t(C+1)
1−∆t (1 + σ(

∆t

τ
)2)‖D−xu

0
h‖

2
L2(I+

h )

+
∆t

(1 − ∆t)(2α + ǫ)

n
∑

j=1

e(n−j)∆t(C+1)
1−∆t ‖fh(tj+1)‖

2
L2(Ih) ,

(39)

and then we get (37) for some positive time and space independent constant
C.

Inequality (38) follows from the fact that vn+1
h satisfies inequality (37) with

fh and u0
h replaced respectively by the null function and u0

h − ũ0
h.

Let us consider Theorem 3 and Corollary 3 with uj
h replaced by the error

ej
s,h = uj

h − Rhu(. , tj), where Rh denotes the restriction operator. Attending

that the discretization (22)-(23) is consistent provided that the solution u
is smooth enough (the required smoothness is detailed in Corollary 4), we
conclude the following

ǫ‖D−te
n+1
s,h ‖2

L2(Ih) → 0

‖D−xe
n+1
s,h ‖2

L2(I+
h ) → 0

σ‖
∆t

τ

n+1
∑

j=1

e−
tn+1−tj

τ D−xe
j
s,h + D−xe

n+1
s,h ‖2

L2(I+
h )

→ 0

(40)
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when ∆t, h → 0. Using the discrete Poincaré-Friedrichs inequality

‖en+1
s,h ‖2

L2(Ih) ≤ (b − a)2‖D−xe
n+1
s,h ‖2

L2(I+
h )

the convergence

‖en+1
s,h ‖2

L2(Ih) → 0 (41)

is obtained.
We proved the following convergence result:

Corollary 4. If the solution of (1)-(2), u, is such that
∂3u

∂t3
∈ C0[a, b] × L2[0, T ],

∂3u

∂x3
∈ L2[a, b] × C0[0, T ],

∂3u

∂t∂x2
∈ C0[a, b] × L2[0, T ], then, for each time tn+1,

exists a unique solution un+1
h defined by (22)-(23) such that (40), (41) hold

provided that (27), (26), (36) are satisfied.

5. A discrete ǫ-limit model

In this section we present a numerical method for the computation of an
approximation to the solution of the ǫ-limit heat equation with memory (15).
The method is established discretizing the memory term of (15) with a rect-
angular rule. A splitting approach was followed in [2] for the computation of
numerical approximations to the solution of the heat equation (15) but this
approach do not enables us to observe for the numerical solution a discrete
version of (19).

Let wn
h be the fully discrete approximation to the solution of (15) defined

by

D−tw
n+1
h (xi) = γD2,xw

n+1
h (xi) +

σ

τ
∆t

n+1
∑

ℓ=1

e−
tn+1−tℓ

τ D2,xw
ℓ
h(xi)

+f(xi, tn+1), i = 1, . . . , N − 1,

(42)

where

wj
h(x0) = wa(tj), wj

h(xN) = wb(tj), j = 1, . . . , M − 1,
w0

h(xi) = w0(xi), i = 1, . . . , N − 1.
(43)

The scheme was obtained integrating numerically the temporal derivative of
(19) using the Euler-Implicit method and considering a rectangular rule on
the discretization of the memory term.
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Theorem 4. Let wℓ
h be defined by (42)-(43) with wa(t) = wb(t) = 0, t > 0.

Then

‖wn+1
h ‖2

L2(Ih) +
σ

τ
‖∆t

n+1
∑

j=1

e−
tn+1−tj

τ D−xw
j
h‖

2
L2(I+

h )

≤ ∆t
n
∑

j=1

Sn+1−j
I1

‖fh(tj+1)‖
2
L2(Ih) + Sn

I1
SI2

(

∆t‖fh(t1)‖
2
L2(Ih) + ‖w0

h‖
2
L2(Ih)

)

(44)
where

SI1
=

1

min{1, 1 − ∆t
(

1 −
2γ+∆tσ

τ

(b−a)2

)

}
(45)

and

SI2
=

1

min{1, 1 − ∆t
(

1 − 2γ
(b−a)2

)

}
(46)

provided that

1 − ∆t
(

1 −
2γ

(b − a)2

)

> 0. (47)

Proof:

(1) Let us consider in (42) n ∈ N. Multiplying each member of (42) by

wn+1
h with respect to the inner product (. , .)h and using summation

by parts we obtain

‖wn+1
h ‖2

L2(Ih) = (wn
h, w

n+1
h )h − γ∆t‖D−xw

n+1
h ‖2

L2(I+
h )

+ ∆t(fh(tn+1), w
n+1
h )h

−
σ∆t2

τ
(

n+1
∑

j=1

e−
tn+1−tj

τ D−xw
j
h, D−xw

n+1
h )h,+ ,

(48)
where fh(tn+1)(xj) = f(xj, tn+1).

As

(

n+1
∑

j=1

e−
tn+1−tj

τ D−xw
j
h, D−xw

n+1
h )h,+ =

1

2
‖

n+1
∑

j=1

e−
tn+1−tj

τ D−xw
j
h‖

2
L2(I+

h )

−
1

2
e−2∆t

τ ‖
n
∑

j=1

e−
tn−tj

τ D−xw
j
h‖

2
L2(I+

h )
+

1

2
‖D−xw

n+1
h ‖2

L2(I+
h )

,

(49)
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from (48) we have

‖wn+1
h ‖2

L2(Ih) +
σ

2τ
‖∆t

n+1
∑

j=1

e−
tn+1−tj

τ D−xu
j
h‖

2
L2(I+

h )

= (wn
h, wn+1

h )h + ∆t(fh(tn+1), w
n+1
h )h

+
σ

2τ
e−2∆t

τ ‖∆
n
∑

j=1

e−
tn−tj

τ D−xw
j
h‖

2
L2(I+

h ) − ∆t
(σ∆t

2τ
+ γ
)

‖D−xu
n+1
h ‖2

L2(I+
h ) .

(50)
Considering in (50) the discrete Poincaré-Friedrichs inequality and the
estimates

(wn
h, w

n+1
h )h ≤

1

2
‖wn+1

h ‖2
L2(Ih) +

1

2
‖wn

h‖
2
L2(Ih),

(fh(tn+1), w
n+1
h )h ≤

1

2
‖fh(tn+1)‖

2
L2(Ih) +

1

2
‖wn+1

h ‖2
L2(Ih),

we conclude
(

1 − ∆t + ∆t
2γ + σ∆t

τ

(b − a)2

)

‖wn+1
h ‖2

L2(Ih) + σ‖∆t
n+1
∑

j=1

e−
tn+1−tj

τ D−xw
j
h‖

2
L2(I+

h )

≤ ∆t‖fh(tn+1)‖
2
L2(Ih) + ‖wn

h‖
2
L2(Ih) +

σ

τ
e−2∆t

τ ‖∆t
n
∑

j=1

e−
tn−tj

τ D−xw
j
h‖

2
L2(I+

h ) .

(51)
If we assume that ∆t satisfies

1 − ∆t
(

1 −
2γ + ∆tσ

τ

(b − a)2

)

> 0, (52)

which is consequence of (45), inequality (51) enables to conclude

‖wn+1
h ‖2

L2(Ih) +
σ

τ
‖∆t

n+1
∑

j=1

e−
tn+1−tj

τ D−xw
j
h‖

2
L2(I+

h )

≤ ∆t
n
∑

j=1

Sn+1−j
I ‖fh(tj+1)‖

2
L2(Ih)

+Sn
I1

(

‖w1
h‖

2
L2(Ih) +

σ∆t2

τ
‖D−xw

1
h‖

2
L2(I+

h )

)

(53)

with SI1
defined by (45).
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(2) We consider now in (42) n = 0. Following the proof of (51) it can
shown that

min{1, 1 − ∆t
(

1 −
2γ

(b − a)2

)

}
(

‖w1
h‖

2
L2(Ih) +

σ

τ
‖∆tD−xw

1
h‖

2
L2(I+

h )

)

≤ ∆t‖f(t1)‖
2
L2(Ih) + ‖w0

h‖
2
L2(Ih) ,

(54)

and then

‖w1
h‖

2
L2(Ih) +

σ

τ
‖∆tD−xw

1
h‖

2
L2(I+

h )

≤
1

min{1, 1 + ∆t
(

2γ
(b−a)2 − 1

)

}

(

∆t‖fh(t1)‖
2
L2(Ih) + ‖w0

h‖
2
L2(Ih)

) (55)

provided that (47) holds.

Theorem 4 implies the following stability result:

Corollary 5. Let wj
h, w̃

j
h be defined by (42)-(43) with initial conditions w0

and w̃0 respectively. Under the assumptions of Theorem 4, vj
h = wj

h − w̃j
h

satisfies

‖vn+1
h ‖2

L2(Ih) +
σ

τ
‖∆t

n+1
∑

j=1

e−
tn+1−tj

τ D−xv
j
h‖

2
L2(I+

h )
≤ Sn

I1
SI2

‖w0
h − w̃0

h‖
2
L2(Ih). (56)

Considering the error equation for the global error ej
h = wj

h − Rhw(., tj)
and following the proof Theorem 4, it can be shown that

‖en+1
h ‖2

L2(Ih) +
σ

τ
‖∆t

n+1
∑

j=1

e−
tn+1−tj

τ D−xe
j
h‖

2
L2(I+

h ) → 0, (57)

when ∆t, h → 0, provided that w - solution of (4)-(6) - is smooth enough.
In Corollary 6 we summarize the convergence result.

Corollary 6. If the solution w of the IBVP (4)-(6) is such that
∂2w

∂t2
∈ C0[a, b] × L2[0, T ],

∂3w

∂x3
∈ L2[a, b] × C0[0, T ],

∂3w

∂t∂x2
∈ C0[a, b] × L2[0, T ],

then, for each for each time tn+1, exists a unique solution wn+1
h defined by

(42)-(43) such that (57) holds provided that ∆t satisfies (47).
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6. The two discrete models

In this section we study the behavior of ‖un+1
h −wn+1

h ‖L2(Ih) where un+1
h and

wn+1
h are defined by (22)-(23) and (42)-(43) respectively. We suppose that

Corollaries 4 and 6 hold.
As we have

‖un+1
h −wn+1

h ‖L2(Ih) ≤ ‖en+1
s,h ‖L2(Ih) + ‖Rh(u−w)(. , tn+1)‖L2(Ih) + ‖en+1

h ‖L2(Ih) ,
(58)

and, from (41) and (57),

‖en+1
s,h ‖L2(Ih) + ‖en+1

h ‖L2(Ih) → 0,

if we prove

lim
ǫ→0

lim
h,∆t→0

‖Rh(u − w)(. , tn+1)‖L2(Ih) = lim
∆t,h→0

lim
ǫ→0

‖Rh(u − w)(. , tn+1)‖L2(Ih),

(59)
we conclude

lim
h,∆t→0

lim
ǫ→0

‖un+1
h − wn+1

h ‖L2(Ih) = lim
ǫ→0

lim
h,∆t→0

+‖un+1
h − wn+1

h ‖L2(Ih) = 0, (60)

provided that u is such that

‖
∂3u

∂t3
‖C0[a,b]×L2[0,T ] , ‖

∂3u

∂x3
‖L2[a,b]×C0[0,T ] , ‖

∂3u

∂t∂x2
‖C0[a,b]×L2[0,T ]

are ǫ-uniformly bounded.
Convergence (59) is an immediate consequence of

‖Rh(u − w)(. , tn+1)‖
2
L2(Ih) ≤ ‖(u − w)(. , tn+1)‖

2
L2

+2h‖(u − w)(. , tn+1)‖L2(a,b) + ‖
∂

∂x
(u − w)(. , tn+1)‖L2,

provided that ‖
∂u

∂x
‖L2×C0[0,T ] is ǫ− uniformly bounded.

7. Numerical simulation

Let us start by illustrating the performance of method (22)-(23) on the
computation of numerical approximations to the solution of (1)-(3) with a =
0, b = 1 and homogeneous boundary conditions. The numerical experiments
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were obtained with

u0,ǫ(x) =



































0, x ∈ [0, 0.4− ǫ) ∪ (0.6 + ǫ, 1]

1 + (x − 0.4 − ǫ)/(2ǫ), x ∈ [0.4− ǫ, 0.4 + ǫ]

1 − (x − 0.6 + ǫ)/(2ǫ) x ∈ [0.6 − ǫ, 0.6 + ǫ]

1, x ∈ [0.4 + ǫ, 0.6 − ǫ]

(61)

which converges to

w0(x) =







0, x ∈ [0, 0.4) ∪ (0.6, 1]

1, x ∈ [0.4, 0.6]
(62)

when ǫ → 0.
In Figure 1 we plot the results obtained with ǫ = 0.05, fǫ = 0, γ =

0.15, σ = 0.1, h = ∆t = 0.01, τ = 1 and τ = 0.001. This figure illustrates the
behavior of u when τ increases. In this case, attending that the weight of the
second order spatial derivative in the memory term decreases, we observe an
increasing of the smoothness of the solution.

The same smoothness behavior is observed when ǫ decreases. In Figures 2
we plot the numerical solutions obtained with ǫ = 0.1 and ǫ = 0.0001. As
we expected, when ǫ decreases the hyperbolic character of equation (1) also
decreases.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
t=0
t=0.05
t=0.1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
t=0
t=0.05
t=0.1

Figure 1. Numerical solutions obtained with method (22)-(23),
for ǫ = 0.05, h = ∆t = 0.01, τ = 1 (left) and τ = 0.001 (right).
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Figure 2. Numerical solutions obtained with method (22)-(23),
for h = ∆t = 0.01, ǫ = 0.1(left) and ǫ = 0.0001(right).
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Figure 3. Numerical solutions obtained with method (22)-(23),
for h = ∆t = 0.01, at t = 0, t = 5 and t = 10, with fǫ = 0(left)
and f2ǫ defined by (63)(right).

In order to capture the behavior of the solution of (1)-(3) when a source
function in applied, we took, in the next numerical experiments, γ = 0.015, σ =
0.01, τ = 1, T = 10 and

fǫ(x, t) =







0, x ∈ [0, 0.6)∪ (0.9, 1]

ǫ, x ∈ [0.6, 0.9] .
(63)

In Figure 3 we plot the numerical results obtained with h = ∆t = 0.01,
ǫ = 0.05 and f2ǫ.
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Figure 4. Numerical solutions obtained with methods (42)-
(43), for h = ∆t = 0.01, with τ = 1(left) and τ = 0.001(right).
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Figure 5. Numerical solutions obtained with methods (22)-(23)
and (42)-(43), for h = ∆t = 0.01, with ǫ = 0.05 at t = 0.05(left),
t = 0.1 (center) and t = 0.5(right).

In what follows we illustrate the behavior of method (42)-(43) with initial
condition (62) and f = 0. In Figure 4 we plot the numerical results obtained
with γ = 0.15, σ = 0.1, h = ∆t = 0.01, and τ = 1, 0.001. The decreasing of
τ implies an increasing of the smoothness of the solution the heat equation
with memory.

Let us consider now the convergence behavior of the difference between the
numerical approximations to the solutions of the IBVPs (1)-(2) , (15)-(16)
when ǫ → 0. In order to observe the previous behavior we start by taking
fǫ = f = 0, γ = 0.15, σ = 0.1, τ = 1 and h = ∆t = 0.01. In Figures 5 and 6
we plot the numerical solutions obtained considering method (22)-(23) with
u0,ǫ defined by (61) for ǫ = 0.05, 0.0001 and (42)-(43) at t = 0.05, 0.1, 0.5.
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Figure 6. Numerical solutions obtained with methods (22)-
(23) and (42)-(43), for h = ∆t = 0.01, with ǫ = 0.0001 at
t = 0.05(left), t = 0.1 (center) and t = 0.5(right).
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Figure 7. Numerical solutions obtained with methods (22)-(23)
and (42)-(43), for h = ∆t = 0.01 with ǫ = 0.05 at t = 1(left),
t = 5 (center) and t = 10(right).
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Figure 8. Numerical solutions obtained with methods (22)-(23)
and (42)-(43), for h = ∆t = 0.01, with ǫ = 0.0001 at t = 1(left),
t = 5 (center) and t = 10(right).

Finally in Figures 7 and 8 we consider f2ǫ defined by (63), γ = 0.015, σ =
0.01, τ = 1, ǫ = 0.05 and ǫ = 0.001 for t = 1, 5, 10.
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The numerical results plotted in Figures 5, 6, 7 and 8 illustrate in fact the
the convergence of ‖un+1

h − wn+1
h ‖L2(Ih) → 0 when h, ∆t, ǫ → 0.
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