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Abstract: The continuous search for novel biobased polymers with high-performance properties
has highlighted the role of monofuranic-based polyesters as some of the most promising for future
plastic industry but has neglected the huge potential for the polymers’ innovation, relatively low cost,
and synthesis easiness of 5,5′-isopropylidene bis-(ethyl 2-furoate) (DEbF), obtained from the plat-
form chemical, worldwide-produced furfural. In this vein, poly(1,12-dodecylene 5,5′-isopropylidene
-bis(ethyl 2-furoate)) (PDDbF) was introduced, for the first time, as a biobased bisfuranic long-chain
aliphatic polyester with an extreme flexibility function, competing with fossil-based polyethylene.
This new polyester in-depth characterization confirmed its expected structure (FTIR, 1H, and 13C
NMR) and relevant thermal features (DSC, TGA, and DMTA), notably, an essentially amorphous char-
acter with a glass transition temperature of −6 ◦C and main maximum decomposition temperature
of 340 ◦C. Furthermore, PDDbF displayed an elongation at break as high as 732%, around five times
higher than that of the 2,5-furandicarboxylic acid counterpart, stressing the unique features of the
bisfuranic class of polymers compared to monofuranic ones. The enhanced ductility combined with
the relevant thermal properties makes PDDbF a highly promising material for flexible packaging.

Keywords: bisfuranic building-block monomers; 1,12-dodecandiol; biobased polyesters; flexible
materials

1. Introduction

In the past decades, an increasing social, environmental, legislative, and ultimately eco-
nomic demand for a more sustainable model of development [1] has witnessed a growing
interest in renewable-based polymers to replace their analogous from fossil origin, namely
the highly consumed polyethylene (PE), polypropylene (PP), poly(ethylene terephthalate)
(PET), and polystyrene (PS), among other thermoplastics [2–6].

In this vein, ubiquitous biomass fractions such as cellulose, lignin, polysaccharides,
proteins, and vegetable oils have emerged as an inexhaustible source of raw materials to
prepare a wide portfolio of valuable, and, in many cases, innovative building-block chemi-
cals for polymer synthesis. Among them, 2,5-furandicarboxylic acid (FDCA) and various
alkyl 2-furoates (including bisfuranic derivatives) are some of the most important [7–11].
While FDCA has been extensively used [11,12], mainly due to its structural similarity
to fossil-based terephthalic acid and a set of unique feature it can impart to polymers
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thereof (e.g., enhanced barrier properties) [13–15], opposite, bisfuran monomers have been
widely overlooked.

FDCA has been exploited in both fully aromatic polymers (mainly polyesters) [16–19]
as well as in aliphatic-furanic ones [20–24]. The most popular class is undoubtedly the
linear-aliphatic polyesters [12], with poly(ethylene 2,5-furandicarboxylate) (PEF) and
poly(1,3-propylene 2,5-furandicarboxylate) (PPF) occupying a preeminent place as biobased
alternatives to the petrochemical PET in films, fibers, and packaging [5]. Addition-
ally, other poly(alkylene 2,5-furandicarboxylate)s with longer alkyl chain-length have
also been extensively investigated to modulate the flexibility, crystallization kinetics,
and (bio)degradability, and, hence, to expand their overall use in, for example, pack-
aging [25,26].

Of particular interest are those with very long alkyl-chains (≥C8) due to the combi-
nation of rigidity imparted by the furan ring and the extreme softness associated with
the aliphatic moieties. Despite this feature, there are only a few reports on this type
of polyesters, focusing mostly on the optimization of their synthesis or in the study
of their thermal properties [25,27–31]. The high boiling points of the very long-chain
diols is one of the serious problems that hinders their synthesis by the classical poly-
condensation procedures via the evaporation of the excess of diols [30]. To circum-
vent this issue, in 2015, the Bikiaris group, developed an elegant approach to synthe-
size high-molecular-weight polyesters from these type of monomers, simply by reacting
dimethyl 2,5-furandicarboxylate (DMFDC) with the long-chain diols to form the corre-
spondent bis(hydroxyalkyl)-2,5-furandicarboxylates, followed by the addition of a slight
excess of DMFDC (1.05 eqv.) [27]. Later, in 2017, Li et al. [25] proposed a different strat-
egy based on the use of asymmetric 2-(hydroxyalkyl)-5-methyl 2,5-furandicarboxylate
monomer, prepared from FDCA, but following a highly unsustainable approach using acyl
chloride intermediate.

Other works focused instead on the assessment of properties of such polyesters [25,26,28];
for example, Feherenbacher et al. [32] early reported, in 2009, on the thermal charac-
terization of poly(1,6-hexylene 2,5-furandicarboxylate) (PHF), poly(1,12-dodecylene 2,5-
furandicarboxylate) (PDDF), and poly(1,18-octadecylene 2,5-furandicarboxylate) (PODF).
Importantly, they found that these polyesters are semi-crystalline polymers with a melting
feature decreasing with the increasing chain length. These results were later corroborated
by the work of Bikiaris and Papageorgiou [27]. Notably, PDDF displayed a melting temper-
ature (Tm) of 111 ◦C and a sub-ambient glass transition temperature (Tg~−22 ◦C). Despite
the relatively moderate melting and glass transition temperatures, FDCA-based long-chain
aliphatic polyesters display a combination of (bio)degradation and mechanical proper-
ties, which makes them suitable for a broad range of applications [24,26]. More recently,
nanocomposite films prepared by blending poly(lactic acid) (PLA), PDDF (10 wt%), and
reduced graphene oxide as filler were studied as new promising biobased materials for
packaging [31]. Fibers prepared from PLA/PDDF blends for textile applications have also
been reported [33].

Less extensive research has been dedicated to bisfurans, such as 5,5′-isopropylidene
bis-(ethyl 2-furoate) (DEbF), obtained with high purity, through a simple and cost-effective
process from the platform chemical furfural [34,35], albeit their huge potential for the poly-
mers’ innovation, relatively low cost [36], and synthesis easiness compared to FDCA [37].
DEbF has been readily prepared in optimized conditions, simply from the condensa-
tion of biobased ethyl 2-furoate with acetone in acidic medium [38]. Entirely aromatic
polyesters bearing bisfuranic and pyridinic units in the main chain display high Tg and
amorphous character [39], opposite to FDCA-based counterparts, which are typically
semi-crystalline materials. Ionic polyesters containing sulfonated functions and bisfuranic
moieties have sorption and hydrolytic degradation features [40,41]. High molecular weight
aliphatic-bisfuranic polyesters, obtained through the interfacial polycondensation of the
bisfuranic dichloride derivative 5,5′-isopropylidene bis-(2-furoyl chloride), with C2 to C6
diols (ethylene glycol, 1,4-butanediol and 1,6-hexandiol), typically exhibited good stability
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and moderate Tg, showing the same typical trend already mentioned for FDCA-based
polymers decreasing with the increasing number of methylene groups [6]. To the best
of our knowledge, the mechanical properties of this type of polymer have not been re-
ported before, despite the importance of this functional property for the assessment of
potential applications.

Additionally, to the best of our knowledge, bisfuranic long-chain aliphatic polyesters
have never been reported before, albeit their anticipated enhanced flexibility, imparted by
the combination of a long-aliphatic chain spacer and the less-rigid DEbF bisfuranic structure,
with a symmetrical carbon between the two furan rings. This kind of polyester will be of
interest for flexible packaging, an ever-growing sector [42]. Therefore, in the current study,
the unclosed potential of biobased long-chain aliphatic-bisfuranic polyesters was exploited
for the first time, by synthesizing the novel poly(1,12-dodecylene 5,5′-isopropylidene-
bis(ethyl 2-furoate)) (PDDbF), using a straightforward polycondensation approach. PDDbF
in-depth structural (FTIR and 1H and 13C NMR), thermal (TGA, DSC), and mechanical
(tensile testing and DMTA) properties were assessed.

2. Results and Discussions

In order to evaluate the unexploited influence of the chain length on bisfuranic poly-
mers properties, this study addresses, for the first time, the synthesis and characterization
of biobased poly(1,12-dodecylene 5,5′-isopropylidene-bis(ethyl 2-furoate)). PDDbF com-
prises both stiff units (5,5′-isopropylidene-bis(ethyl 2-furoate)) and soft aliphatic chain
(1,12-dodecylene), promptly synthesized by applying a two-step melt polycondensation
procedure, as described in the experimental section and depicted in Scheme 1. The
PDDbF isolation yield after purification was over 75% and the high intrinsic viscosity
([η] ≈ 0.63 dL.g−1) was found to be in accordance with a high molecular weight polymer
(Mv of 40,000). Highly supple films, with c.a. 700–800 µm thickness, prepared by polyester
melting/cooling process, pave the way to assess, for the first-time, the bisfuranic-based
materials’ mechanical properties.
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Scheme 1. Synthesis of PDDbF.

2.1. Structural Characterization

The detailed chemical structure of PDDbF was studied using FTIR, 1H and 13C
NMR spectroscopies (Figures 1 and 2) and compared to the monomers’ counterparts
(Figures S1–S3). The FTIR spectrum of Figure 1 displays all the typical characteristic bands
for furan rings. Namely, a small band at 3128 cm−1 assigned to =C-H stretching vibration,
an intense peak near 2922 cm−1 characteristic of the stretching mode of the methyl groups,
a band at 1590 cm−1 related to the C=C stretching, a very intense peak near 1127 cm−1

arising from the C-O-C furan ring vibration, and a band at 1020 cm−1 assigned to the
furan ring breathing and several bands (971, 803 and 759 cm−1) related to 2,5-disubstituted
furans. In addition, the FTIR spectrum also exhibits a band at 2852 cm−1 associated to the
C-H stretching of the methylene groups of the aliphatic diol moiety and two very intense
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bands near 1716 and 1295 cm−1 assigned to the C=O and C-O-C stretching vibrations of
ester groups, respectively.
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Figure 1. PDDbF FTIR spectrum.

The structure of PDDbF was also studied by 1H NMR (Figure 2 and Table S1 of the
Supplementary Materials). As expected for (hetero-)aromatic-based polyesters, the most
deshielded protons of PDDbF are those from the furanic rings [39,43,44], namely two
doublets at 6.98 and 6.10 ppm attributed to the protons of furan heterocycle (H5 and H4,
respectively). The resonance assigned to the methylene protons (H8) directly attached to
the carbonyl group appears at 4.15–4.20 ppm as a triplet. The other proton resonances of
the aliphatic segments are displayed at: 1.59–1.64 ppm (H9, multiplet), partially overlapped
with the singlet at 1.66 ppm (H1), and between 1.20–1.30 ppm (H10, H11, H12, H13).
Notably, the 1H NMR spectrum shows the high purity of PDDbF and the equivalence in
terms of integration. Additionally, the PDDbF 13C NMR spectrum (Figure S4 and Table S2
of the Supplementary Materials) corroborates the previous assessment, with the detection
of the following typical carbon resonances: 163.1 ppm arising from the carbonyl carbon
(C7); several resonances at 158.9, 134.7, 118.6, 107.3, 38.3, and 25.9 ppm assigned to the
furan ring carbons (C6, C3, C5, C4, C2 and C1, respectively); and at 64.9, 29.6, 29.5, 29.3,
28.7, and 26.0 ppm for the 1,12-dodecylene chain carbon resonances (C8, C9, C10, C11, C12,
and C13).
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2.2. Thermal and X-ray Diffraction Properties

The thermal stability of the as prepared PDDbF was evaluated by TGA. The ther-
mogram of Figure 3 exhibits a major characteristic feature, at a maximum decomposition
temperature (Td,max) of 341 ◦C (c.a. 83% weight loss), followed by a smaller peak near
430 ◦C. Comparing with linear low density poly(ethylene) (LLDPE), the thermal stability
of PDDbF is much higher (Td,max, c.a. 341 vs. 250 ◦C) [44].
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The thermal behavior of the PDDbF below the degradation temperature was studied
by DSC analysis. The heating thermogram (Figure S5 of the Supplementary Materials)
agrees with an essentially amorphous character, displaying accordingly, only one step
in the baseline, ascribed to the glass transition temperature (Tg) at −6 ◦C (also in agree-
ment with DMTA results described below). This moderately low Tg is due to the high
number of methylene groups in the aliphatic chain, which is associated to the high flex-
ibility of the macromolecular chain. Nevertheless, this Tg is still higher than that of
LLDPE [45]. This effect has never been exploited for the promising family of poly(5,5′-
isopropylidene-bis(2-furoate))s, although long aliphatic chain FDCA derivatives, such
as poly(1,12-dodecylene 2,5-furandicarboxylate) homologous (PDDF) [27] or poly(1,20-
eicosanediyl 2,5-furandicarboxylate) (PM20F) [29], also have low Tgs (Table 1). The DSC
thermogram also shows a small melting peak at 81.6 ◦C. However, the enthalpy associated
to such transition is much lower than that of PDDF with the same number of methylene
groups (9 J g−1 vs. 50 J g−1), which is indicative of a lower crystallinity degree and that the
crystallization of PDDbF is hampered by the bisfuranic moiety [27].

Table 1. Thermal properties of the synthesized PDDbF compared to PDDF, PM20F, and LLDPE.

Polyester Td,max/◦C a Tg/◦C b Tm/◦C c References

PDDbF 341, 430 −6 81.8 this work
PDDF - −5 c 111 [46]
PM20F 407 8 107 [29]
LLDPE 250 −15 122 [44,45,47]

a Td,max: temperature at which the rate of weight loss is maximum (DTG). b Tg: glass transition temperature. c Tm:
melting temperature determined by DSC at 10 ◦C.min−1.

The XRD diffractogram (Figure S6 of the Supplementary Materials) of PDDbF presents
only a halo centered at 2θ~19.2◦. Polymers bearing the bisfuran motif follow a simi-
lar trend, being typically amorphous materials [6,39,41], opposite to the FDCA-based
counterpart, poly(1,12-dodecylene 2,5-furandicarboxylate), which as mentioned above, is
semi-crystalline [27]. The amorphous nature of bisfuranic polymers is most likely related to
the myriad of different spatial arrangements of both furan rings hampering crystallization,
opposite to FDCA-based ones.
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2.3. DMTA and Mechanical Properties

Dynamic mechanical behavior of PDDbF was investigated by DMTA and its storage
modulus (E′) (Figure 4a), loss modulus (E”) (Figure S7 of the Supplementary Materials),
and tan δ (Figure 4b) traces were recorded. At sub-ambient temperatures, c.a. −24 ◦C, the
E’ trace shows a first small decrease of the modulus typically associated with an increase of
chain degrees of freedom and most probably ascribed to the β relaxation, followed by a
rapid drop attributed to an α relaxation, the Tg (c.a. 6 ◦C).

Importantly, the E’ value, measured at room temperature (20 ◦C) and in the region of
the glass transition (4.07 × 106 and 1.86 × 107 Pa, respectively), allowed to study the elastic
behavior of PDDbF. Typically, this polyester had a lower E’ than other aromatic polymers
incorporating shorter aliphatic moieties (e.g., PET and PEF), hence being less stiff [48].
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The tan δ trace (Figure 4b) obtained in the single cantilever mode agrees with the
transitions mentioned above, displaying two peaks centered at approximately −24 and
6 ◦C attributed to Tβ and Tg, respectively. After the glass transition, the chain segments
movement began to be easier, reaching a viscous liquid, which explain the loose increase of
the tan δ value.

Additionally, PDDbF compression molded films were subjected to stress–strain mea-
surements (Figure 5) in order to explore their mechanical properties and assess their
suitability to practical applications in, for example, flexible packaging [49]. Despite the
evident importance of mechanical properties for the applications’ evaluation, to the best of
our knowledge, this is the first study reporting these features for bisfuranic polyesters.
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The elongation at break, tensile stress at break, tensile stress at yield, and Young’s
modulus of PDDbF, and of similar FDCA-based polyesters, are summarized in Table 2.

PDDbF exhibits a low Young’s modulus, above 2 MPa, but the elongation at break
reached 732%, a value much higher than that of its FDCA counterpart (130%) with similar
molecular weight [27], which is indicative of the role played by the bisfuranic moiety in
the very flexible and easily deformable nature of the material obtained compared to the
FDCA-based counterparts (PDDF and PDeF, Table 2) or even to PE [50]. Thus, considering
also the PDDF values (Table 2), the explanation for the high elongation at break for PDDbF
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is not only due to the long-chain diol spacer but also due to the lower rigidity of the
5,5′-isopropylidene-bis(ethyl 2-furoate) moiety, most probably related to the symmetric
carbon between the two furan rings, which results in a greater unfolding stretchability
during deformation. Furthermore, the typical high stress at yield, high stress at break,
and low elongation at break of furanoate-based polyesters compared to those of PDDbF
can be explained by fact that the crystallites appear to serve a stress-bearing phase during
deformation [51].

Table 2. Mechanical properties of PDDbF compared with similar FDCA-based polyesters.

Polyester Elongation at
Break (%)

Tensile Stress at
Yield/MPa

Tensile Stress at
Break/MPa

Young’s
Modulus/MPa Reference

PDDbF 732.38 ± 114.62 0.48 ± 0.06 0.97 ± 0.25 2.3 ± 0.22 this work
PDDF 130 ± 10 9.5 ± 1.1 10.8 ± 0.9 180.7± 16 [27]
PDeF 135 ± 17 10.6 ± 1.4 11.4 ± 1.2 201.9 ± 15 [27]

3. Materials and Methods
3.1. Materials

1,12-Dodecandiol (DD, 99%), ethyl 2-furoate (99%), titanium (IV) tert-butoxide (TBT,
97%), deuterated dimethyl sulfoxide (DMSO-d6, 99.5% D), and deuterated chloroform
(CHCl3-d, 99.8% D) were purchased from Merck (Darmstadt, Germany). All solvents used
were analytical grade. All chemicals were used as received, without further purification.

3.2. Preparation of 5,5′-Isopropylidene-bis(ethyl 2-furoate) (DEbF)

DEbF was synthesized according to a procedure described elsewhere [44]. Briefly,
DEbF was prepared by reacting ethyl 2-furoate (0.214 mol) with acetone under acidic
conditions, at 60 ◦C for 8 h. The monomer was then isolated as fine crystals after extraction
with ethyl ether, followed by distillation and recrystallization from hexane. The struc-
ture and purity were confirmed by FTIR and 1H and 13C NMR spectroscopic techniques
(Figures S1–S3 of the Supplementary Materials).

3.3. Synthesis of Poly(1,12-dodecylene 5,5′-isopropylidene-bis(ethyl 2-furoate)) (PDDbF)

PDDbF was synthesized by melt polycondensation, according to a previously reported
procedure [29]. In the first step, stoichiometric amounts of DEbF (5 g, 15.6 mmol), an excess
of DD (6.4 g, 31.5 mmol) and TBT (6.5 mg, 19.2 × 10−3 mmol) were charged into the glass
reactor. The reaction started by heating progressively from 150 to 170 ◦C, during 3.5 h, and
kept at that maximum temperature, under a nitrogen atmosphere, for 1 h. Before starting
the second step, the reaction temperature was decreased to 150 ◦C, and an additional
quantity of DEbF (5 g, 15.6 mmol) was added and the temperature was slowly increased
again until 170 ◦C under vacuum for 3 h. Afterwards, the temperature was raised to 210 ◦C,
and then, during 2 h, progressively increased up to 230 ◦C and kept at that maximum
temperature for at least half hour. Finally, the obtained product was dissolved in chloroform,
precipitated in an excess of cold methanol, filtered, and dried. PDDbF film specimens were
prepared by melting procedure at c.a. 165 ◦C, placing the samples in a Teflon rectangular
mold (50 × 10 × 1 mm3).

3.4. Characterization

Attenuated total reflection Fourier transform infrared (ATR FTIR) spectra were ob-
tained using a PARAGON 1000 PerkinElmer FTIR spectrophotometer equipped with a
single horizontal Golden Gate ATR cell. The resolution was 8 cm−1 after 128 scans in the
range of 500–4000 cm−1.

1H and 13C Nuclear Magnetic Resonance spectroscopy (1H, 13C NMR) analyses of
samples dissolved in CDCl3 were recorded using a Bruker AMX 300 spectrometer operating
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at 300 or 75 MHz. All chemical shifts were expressed in parts per million (ppm) and
reported downfield from 0.00 ppm using tetramethylsilane (TMS) as an internal reference.

Intrinsic viscosity [η] measurements were performed using an Ubbelohde-type vis-
cometer, in a water bath at 25 ◦C. A mixture of phenol/1,1,2,2-tetrachloroethane (50/50)
(wt%/wt%) was used as solvent and at a polymer concentration of 0.1 g per 20 mL of
solution. The intrinsic viscosity was determined by the ratio of specific viscosity and
sample solution concentration: ηsp/c, where ηsp = (t1 − t0)/t0 and t0 and t1 are the solvent
mixture and polyester solution elution time, respectively. The viscosity-average molecular
weight (Mv) of PDDbF was calculated by the Mark–Houwink equation using the K and α

parameters for PET viscosity [η] = 4.68× 10−4M0.68
v [52–54].

Thermogravimetric analyses (TGA) were carried out with a Shimadzu TGA50 analyzer
equipped with a platinum cell using platinum pans to encapsulate the samples (ca. 7 mg).
Thermograms were recorded under a nitrogen flow of 20 mL min−1 at a constant heating
rate of 10 ◦C min−1 from 25 to 800 ◦C.

DSC thermograms were obtained with a Setaram DSC92 calorimeter. Scans were
carried out under dry nitrogen, with a heating rate of 10 ◦C min−1 in the temperature
range of −50 to 250 ◦C. Two heating/cooling cycles were performed. The first heating scan
was used to erase the thermal history of the polymer, and the second heating scan was
performed after rapid cooling from the melted polymer.

X-ray diffraction (XRD) patterns were acquired using a Philips X’pert MPD diffrac-
tometer operating with CuKα radiation (λ = 1.5405980 Å) at 45 kV and 40 mA. Samples
were scanned in the 2θ range of 3 to 60 ◦C, with a step size of 0.026◦ and a time per step
of 69 s.

Dynamical mechanical thermal analysis (DMTA) of thick samples (5.0 × 3.6 × 0.8 mm3)
were recorded with a Tritec 2000 DMTA Triton equipment operating in the single cantilever
bending geometry. Tests were performed in multifrequency mode (1 and 10 Hz), from
−100 to 200 ◦C, at 2 ◦C.min−1.

Tensile mechanical tests were performed on an Instron 5966 Series machine. A load
cell of 500 N was used and operated at a deformation rate of 10 mm.min−1, under am-
bient conditions. For each sample, at least 5 specimens were tested. Young’s modulus,
tensile strength, and elongation at break were calculated using the Bluehill 3 material
testing software.

4. Conclusions

This study highlights the possibility of preparing a new biobased homopolyester
from the bisfuranic monomer DEbF and a long-chain aliphatic diol spacer adopting a very
straightforward approach based on the two-step polymerization approach. However, most
importantly, this study uncloses these monomers’ ability to impart enhanced flexibility to
the ensuing polymer chain compared to FDCA counterparts, but still having higher thermal
stability and glass transition compared to polyolefins. In fact, the in-depth characterization
of PDDbF showed that this polyester is amorphous, with a sub-ambient glass transition
temperature (around −6 ◦C), and a maximum decomposition temperature of 341.4 ◦C,
much higher than the same parameter for LLDPE (341 vs. 250 ◦C, respectively) [44]. All
in all, PDDbF is a promising biobased polyester from the bisfuranic family and shows an
enhanced elongation at break value of about 732%, thus opening their wider exploration
among, for example, flexible packaging, an ever-growing sector.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28104124/s1, Figure S1: FTIR spectrum of DEbF,
Figure S2: 1H NMR spectrum of DEbF, Figure S3: 13C NMR spectrum of DEbF, Table S1: 1H NMR
resonances [300 MHz, CDCl3-d] of PDDbF, Figure S4: 13C NMR spectrum of PDDbF, Table S2: 13C
NMR chemical shifts assignments of PDDbF, Figure S5: DSC thermogram for PDDbF, Figure S6: XRD
pattern of PDDbF, Figure S7: Loss modulus trace of PDDbF.

https://www.mdpi.com/article/10.3390/molecules28104124/s1
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