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REAL PALEY-WIENER THEOREMS FOR THE
KOORNWINDER-SWARTTOUW q-HANKEL TRANSFORM
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Abstract: We derive two real Paley-Wiener theorems in the setting of quantum
calculus. The first uses techniques due to Tuan and Zayed [21] in order to describe
the image of the space L2

q
(0, R) under Koornwinder and Swarttouw q-Hankel trans-

form [14] and contains as a special case a description of the domain of the q-sampling
theorem associated with the q-Hankel transform [1]. The second characterizes the
image of compactly supported q-smooth functions under a rescaled version of the
q-Hankel transform and is a q-analogue of a recent result due to Andersen [6].
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1. Introduction

The original Paley-Wiener theorem asserts that the Paley-Wiener space

PW =

{
f ∈ L2 (R) : f(x) =

1√
2π

∫ π

−π

eixtu (t) dt, u ∈ L2 (−π, π)

}

is composed by functions allowing analytic continuation to the whole complex
plane as entire functions of exponential type at most π. Since the proof of
this theorem does not lend very naturally to other integral transformations,
alternative approaches using real variable methods have been developed in
order to give a description of the space PW and its generalizations. For
instance, Bang [8] proved that

lim
n→∞

∥∥∥∥
dn

dxn
f

∥∥∥∥

1
n

p

= sup{|λ| : λ ∈ suppFf},

and, as a consequence,

PW =

{
f ∈ L2 (R) : lim

n→∞

∥∥∥∥
dn

dxn
f

∥∥∥∥

1
n

2

= π

}
.

Received September 14, 2006.
Partial financial assistance by Fundação Ciência e Tecnologia and Centro de Matemática da
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Tuan proved a complementary statement using the primitive operator [18]
and extended Bang´s result to other transforms, replacing the operator d

dx
by

a second order operator possessing the kernel of the integral transformation
as eigenfunction [16], [17]. A unified approach to obtain such propositions
for a general Sturm-Liouville transform is due to Tuan and Zayed [21]. A
problem that attracted many attention in recent years was the extension of
Paley-Wiener theorems to the Dunkl transform on the real line [15], [7], [19].

A class of Paley-Wiener theorems sitting inside the Schwarz space was
obtained by Andersen in [5], where it is shown that the Fourier transform is
a bijection between smooth functions supported in [−R, R] and the space of
all Schwartz functions satisfying, for all N ∈ N0,

sup
x∈R, n∈N0

R−nn−N(1 + |x|)N

∣∣∣∣
dn

dxn
f

∣∣∣∣ < ∞.

An analogous result for the Hankel transform was given in [6], where it is
proved that the Hankel transform with kernel (xy)−νJν(xy), in the space
L1(R+, x2ν+1dx), is a bijection between the space of even smooth functions
supported in [−R, R] and the space of all even Schwartz functions satisfying,
for all N ∈ N0,

sup
x∈R, n∈N0

R−nn−N(1 + |x|)N |∆n
νf | < ∞,

where ∆ν stands for the second order differential operator having (xy)−νJν(xy)
as eigenfunctions with eigenvalue y2.

In many cases, the Paley-Wiener theorems give a description of the func-
tions for which a sampling formula is valid. For instance, PW is the domain
space for the celebrated Whittaker-Shannon-Koltenikov theorem. In [1], a
sampling theorem valid for functions in the following q-Bessel version of the
Paley-Wiener space has been derived:

PW ν
q =

{
f ∈ L2

q

(
R+

)
: f (x) =

∫ 1

0

(tx)
1
2 J (3)

ν

(
xt; q2

)
u (t) dqt, u ∈ L2

q (0, 1)

}
,

(1)

where J
(3)
ν (z; q) is the third Jackson (or Hahn-Exton) q-Bessel function. The

functions in PW ν
q can be recovered from a very sparse grid of sampling

points, located near the arithmetic progression {q−n, n ∈ N}. It is desirable
to describe such functions in terms of growth conditions. Since the space
PW ν

q is the image under Koornwinder and Swarttouw´s q-Hankel transform
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[14] of the space L2
q (0, 1), it can be described using a Paley-Wiener type

theorem.
In the present paper we provide two real Paley-Wiener theorems for the

q-Hankel transform in terms of second order q-difference equations whose
eigenfunctions are q-Bessel functions. In the third section we obtain, using
some of Tuan and Zayed´s techniques from [21], a Paley-Wiener theorem for
square q-integrable functions that includes a description of PW ν

q as a special
case. Then, section 4 uses a different normalization of the q-Hankel transform
in order to obtain a q-analogue of Andersen´s Paley-Wiener theorem for the
Hankel transform. To this end we will make use of the properties of the q-
Bessel functions studied by Fitouhi, Hamza and Bouzeffour [10]. We should
stress that Fitouhi and Dhaoudi [11] obtained a q-Paley-Wiener for the q-sine
transform, but their result goes in a different direction of ours, characterizing
growth by means of a certain q-hyperbolic cosine.

2. Preliminaries

Choose a number 0 < q < 1. In what follows, the standard conventional
notations from [12] will be used

(a; q)0 = 1, (a; q)n =

n∏

k=1

(1 − aqk−1),

(a; q)∞ = lim
n→∞

(a; q)n.

The q-difference operator Dq is

Dqf(x) =
f(x) − f(qx)

(1 − q)x
. (2)

The set Rq is defined as

Rq = {qk, k = 0,±1,±2, ....}.
The third Jackson q-Bessel function is defined by the power series

J (3)
ν (z; q) = zν (qν+1; q)∞

(q; q)∞

∞∑

k=0

(−1)k q
k(k+1)

2

(qν+1; q)k(q; q)k

z2k, (3)

In the preprint [3] it is shown how this function can be used to construct a
theory of Fourier series on q-linear grids.
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Jackson´s q-integral in the interval (0, a) is defined as
∫ a

0

f (t) dqt = (1 − q) a

∞∑

n=0

f (aqn) qn, (4)

and in the interval (0,∞) as
∫ ∞

0

f (t) dqt = (1 − q)
∞∑

n=−∞
f (qn) qn. (5)

The notation Lp
q(X) will stand for the Banach space induced by the norm

‖f‖L
p
q(X) =

[∫

X

|f (t)|p dqt

]

and in the presence of a weight we will write

‖f‖L
p
q(X,w(t)) =

[∫

X

|f (t)|p w(t)dqt

]

Define, after Koornwinder and Swarttouw [14], a q-Hankel transform for
functions f in L1

q(0,∞):

(
Hν

q f
)
(x) =

∫ ∞

0

(xt)
1
2 J (3)

ν

(
xt; q2

)
f (t) dqt. (6)

It was shown in [14] that such a q-Hankel transform satisfies the inversion
formula

f (t) =

∫ ∞

0

(xt)
1
2 J (3)

ν

(
xt; q2

) (
Hν

q f
)
(x) dqx =

(
Hν

q

(
Hν

q f
))

(t) , (7)

where t takes the values qk, k = 0,±1,±2, .... As a result, it satisfies Parseval
identity

‖f‖L2
q(0,1) =

∥∥Hν
q f

∥∥
L2

q(0,1)
(8)

and provides a Hilbert space isometry between L2
q(0, 1) and the space PW ν

q .
Setting A = 1, B = 0 and M = 1 in Lemma 1 of [2] we infer that u(x) =

x
1
2J

(3)
ν

(
x; q2

)
satisfies

[
q

3
2−ν

(1 − q2)
− (1 − qν− 1

2 )(1 − q−ν− 1
2 )

(1 − q2)x2

]−1

D2
qu(x) = −u(qx)
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This justifies defining the operator Lq,ν,x by

Lq,ν,xf(x) = −
[

q
3
2−ν

(1 − q2)
− (1 − qν− 1

2 )(1 − q−ν− 1
2 )

(1 − q2)x2

]−1

D2
qf(q−1x).

Clearly,
Lq,ν,xu(xy) = y2u(xy).

We use x on the subscript to indicate that the q-differences are taken with
respect to x. When there is no possible confusion we drop the subscript.

3. A real Paley-Wiener theorem for L2 functions.

Let R > 0 and Ln
q,νf denote n repeated applications of the operator Lq,ν

to f . Define the Paley-Wiener space PW ν
q,R as

PW ν
q,R = {f ∈ C∞

q (R+) : Ln
q,νf ∈ L2

q(R
+), n = 0, 1, ... and lim

n→∞

∥∥Ln
q,νf

∥∥ 1
2n = R}

The main result in this section will depend on the following Lemma..
Lemma 1 Let xnF (x) ∈ L2

q(0,∞) for all n = 0, 1, 2, .... Then

lim
n→∞

[∫ ∞

0

x4n |F (x)|2 dqx

] 1
4n

= sup
x∈sup pF

|x| (9)

Proof. Proceed exactly as in the proof of Lemma 2 in [21], with m = 1,
λ = x2 and replacing the measure

∫ ∞
−∞ dρj(λ) by

∫ ∞
0 dqx. �

Theorem 1. The q-Hankel transform is a bijection of L2
q(0, R) onto PW ν

q,R.

Proof. Let R > 0 and assume that Hν
q (f) ∈ L2

q(0, R). Then xnHν
q (f) ∈

L2
q(0,∞) for n = 0, 1, .... A repeated application of the operator Lq,ν,x to the

identity (7) gives, if y ∈ Rq,

Ln
q,ν,yf(y) =

∫ ∞

0

Ln
q,ν,y(xy)

1
2J (3)

ν (xy; q2)Hν
q (f)(x)dqx

= (−1)n

∫ ∞

0

x2n(xy)
1
2J (3)

ν (xy; q2)Hν
q (f)(x)dqx

= (−1)nHν
q (x2nHν

q (f))

using Parseval identity (8) we have

∥∥Ln
q,νf

∥∥2
=

∫ ∞

0

x4n
∣∣Hν

q (f)(x)
∣∣2 dqx. (10)
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Applying (9) gives

lim
n→∞

∥∥Ln
q,νf

∥∥ 1
2n = sup

x∈sup pF

|x| = R

and f ∈ PW ν
q,R.

Conversely, let f ∈ PW ν
q,R. The definition of PW ν

q,R implies that (Lq,ν)
nf ∈

L2
q(0, R) and by (10) also xnHν

q (f) ∈ L2
q(0, R). Using (9) and again (10) gives

sup
x∈sup pHν

q (f)(x)

|x| = lim
n→∞

[∫ ∞

0

x4n
∣∣Hν

q (f)(x)
∣∣2 dqx

] 1
4n

= lim
n→∞

∥∥Ln
q,νf

∥∥ 1
2n = R

and (9) shows that Hν
q (f) ∈ L2

q(0, R). �

Remark 1. In particular, Hν
q provides a bijection between L2

q(0, 1) and the
space PW ν

q,1. In face of (1), this is equivalent to the identity

PW ν
q,1 = PW ν

q

and we have reached our first goal of finding a description of the space PW ν
q .

In Theorem 2 of [1] it is proved that xν−u+ 1
2J

(3)
u (x; q2) ∈ PW ν

q .

Remark 2. The proof of the above theorem uses ideas from section 2 of [21],
where the authors dealt with general Sturm-Liouville problems and therefore
had to deal with many assumptions that are verified automatically in the case
of our q-Hankel transform. Many of these assumptions were later removed
in [20] We remark that the paper [4] lays the foundations for a q-analogue
Sturm-Liouville theory.

Remark 3. Theorem 1 is reminiscent of Theorem 5 in [6] and of Theorem
2 in [16].

4. A real Paley-Wiener space contained in the q-Schwartz

space

Denote by lRq the the sequence space on Rq ∩(0, R) (observe that this is the
proper q-analogue of the space C∞(0, R), since any sequence function can be
extended to a C∞ one).

Denote by Sq(Rq) the q-Schwartz space, the space of restrictions on Rq of
functions such that

sup
x∈Rq;0≤k≤n

∣∣(1 + x2)mDk
qf(x)

∣∣ < +∞
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In this section we will use a q-Bessel function which results after minor

changes from J
(3)
ν . We will follow exactly the normalization of [10] where the

authors derived the basic properties that we are going to list. The preprint
[9] also contains a detailed introduction to the concepts we are using. The
only difference in our presentation is that we replace ”even functions on R”
by ”functions on R+”, an equivalent class.

The q-Hankel transform hν
q is defined, for functions in L1

q((0,∞), x2ν+1), as

hν
q (f)(y) =

∫ ∞

0

f(x)jν(xy; q2)x2ν+1dqx

where

jν(x; q2) = (1 − q2)ν Γq2(α + 1)

((1 − q)q−1z)ν
J (3)

ν ((1 − q)q−1z; q2)

This is a q-analogue of the transform considered in [6]. It is shown in Theorem
3 of [9] that hν

q is an isomorphism of Sq(Rq) into itself.
Define the operator

∆q,ν,xf(x) = −Dq

[
x2ν+1Dqf

]
(q−1x)

x2ν+1

The functions jν(x; q2) are eigenvalues of ∆q
ν with eigenvalues y2 [10, (43)]

∆q,ν,x

[
jν(x; q2)

]
= y2jν(x; q2)

We also have [9, (23)]

hν
q(∆q,ν,xf) =

y2

q2ν+1
hν

q(f) (11)

For all x ∈ Rq, we have the growth estimate [10, (48)]

∣∣jν(x; q2)
∣∣ ≤ 1

(q; q2)2
∞

. (12)

Remark 4. Some emphasis should be put on the fact that estimate (12) is
only valid on the set Rq. Actually, the function jν(x; q2) is unbounded on the
real line, since it is an entire function of order zero. Nevertheless, remains
bounded at the grid {qk}. Luckily, this is all we are going to need, since the
support points of the q-integral are located over Rq.
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Define the real Paley-Wiener space pwν
q,R as

pwν
q,R = {f ∈ Sq(Rq): sup

x∈R,n∈N0

(
R

q

)−2n

An,N , q(1 + |x|)2N
∣∣∆n

q,ν,xf(x)
∣∣ < ∞},

(13)

where An,N,q = (q2n;q−2)N

q2N (1−q)2N . The elements in pwν
q,R satisfy the growth condition

on their q-differences:

sup
x∈R,n∈N0

∣∣∆n
q,ν,xf(x)

∣∣ < C

(
R

q

)2n
1

An,N,q

1

(1 + |x|)2N
.

The next theorem is a generalization of Theorem 3 in [6] and the proof
follows making the necessary adaptations to deal with the q-setting.

Theorem 2. The q-Hankel transform hν
q is a bijection of lRq onto pwν

q,R.

Proof.Let f ∈ pwν
q,R and consider y ∈ Rq outside [0, R]. Iterating (11) n

times we obtain

hν
q (f)(y) =

q2n(2ν+1)

y2n
hν

q ([(∆q,ν)
nf ])

=
q2n(2ν+1)

y2n

∫ ∞

0

(∆q,ν)
nf(x)jν(xy; q2)x2ν+1dqx.

Therefore, (if 2N ≥ 2ν + 3), for a positive constant C, we have, using (12)
and (13),

∣∣hν
q (f)(y)

∣∣ ≤ q2n(2ν+1)

y2n

1

(q; q2)2
∞

∫ ∞

0

(∆q,ν)
nf(x)x2ν+1dqx

≤ C

(
Rq2ν+1

y

)2n
(1 − q)2N

((q2n; q−2)N(q; q2)2
∞

∫ ∞

0

(1 + |x|)−2N+2ν+1dqx.

Since ν > −1
2, |q| < 1 and R < y, this last quantity clearly approaches zero as

n → ∞. It follows that supp hν
q(f) ⊂ [0, R] . Conversely let f ∈ C∞

q (0,∞).
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Fix N ∈ N0. Then, for n ∈ N0,

y2N∆n
q,ν,yh

ν
q (f)(y) =

∫ ∞

0

f(x)y2N∆n
q,ν,yjν(xy; q2)x2ν+1dqx (14)

=

∫ ∞

0

x2nf(x)y2Njν(xy; q2)x2ν+1dqx

=

∫ ∞

0

x2nf(x)∆N
q,ν,xjν(xy; q2)x2ν+1dqx

=

∫ ∞

0

∆N
q,ν,x

[
x2nf(x)

]
jν(xy; q2)x2ν+1dqx. (15)

It remains to estimate ∆N
q,ν,x

[
x2nf(x)

]
. A calculation gives

∆q,ν,x

[
x2nf(x)

]
=

(
x

q

)2n−2
(1 − q2n)(1 − q2n−1)

(1 − q)2
{
(

1 − q2ν+1

1 − q2n−1
+ q2ν+1

)
f(x)

+

(
1 − q2ν+1

1 − q2n−1

1 − q

1 − q2n
q2n−1 +

1 − q2

1 − q2n−1
q2ν+2n−1

)
xDqf(x)

+
(1 − q)2

(1 − q2n)(1 − q2n−1)
q2ν+4n−1x2D2

qf(x)}.

Taking into account that for nonnegative n holds 1−q
1−q2n < 1, iteration of the

above calculation gives, if n > N ,

∆N
q,ν,x

[
x2nf(x)

]
=

(
x

q

)2n−2N
(q2n; q−2)N

(1 − q)2N
fN(x),

where fN is a function such that suppfN ⊂suppf , and

‖fN‖∞ ≤ C

2N∑

k=0

∥∥Dk
q f

∥∥
∞ ,

with C a constant depending in ν and R but not on n. We thus get

∣∣∆N
q,ν,x

[
x2nf(x)

]∣∣ ≤ C

(
x

q

)2n−2N
(q2n; q−2)N

(1 − q)2N

2N∑

k=0

∥∥∥∥
dk

dxk
f

∥∥∥∥
∞

(16)

Now, a short calculation using the definition of the q-integral (4) gives
∫ R

0

x2ν+1dqx =
1 − q

1 − q2ν+2
R2ν+2. (17)
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Inserting estimate (16) on (14)-(15) gives, using (17) and (12),

∣∣y2N∆n
q,ν,yh

ν
q (f)(y)

∣∣ ≤ C̃

(
1

q

)2n−2N

R2n−2N+2ν+2 (q2n; q−2)N

(1 − q)2N−1

2N∑

k=0

∥∥∥∥
dk

dxk
f

∥∥∥∥
∞

,

where C̃ is another constant depending in ν and R but not on n. This shows
that hν

q (f) ∈ pwν
q,R. �

Remark 5. In section 3.2 of [10] it is shown that

jν+p(x; q2) =

∫ 1

0

t2ν+1Wp−1(t; q
2)jν(xt; q2)dqt

where Wp−1(t; q
2) is a smooth function. As a result, jν+p(x; q2) ∈ pwν

q,1 and
satisfies

sup
x∈R,n∈N0

∣∣∆n
q,ν,x[jν+p(x; q2)]

∣∣ < C

(
1

q

)2n
1

An,N,q

1

(1 + |x|)2N
.
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