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Abstract: In the history of cellulose chemistry, hydrogen bonding has been the predominant ex-
planation when discussing intermolecular interactions between cellulose polymers. This is the
general consensus in scholarly textbooks and in many research articles, and it applies to several
other biomacromolecules’ interactions as well. This rather unbalanced description of cellulose has
likely impacted the development of materials based on the processing of cellulose—for example, via
dissolution in various solvent systems and regeneration into solid materials, such as films and fibers,
and even traditional wood fiber handling and papermaking. In this review, we take as a starting
point the questioning of the general description of the nature of cellulose and cellulose interactions
initiated by Professor Björn Lindman, based on generic physicochemical reasoning about surfactants
and polymers. This dispute, which became known as “the Lindman hypothesis”, highlights the
importance of hydrophobic interactions in cellulose systems and that cellulose is an amphiphilic
polymer. This paper elaborates on Björn Lindman’s contribution to the subject, which has caused the
scientific community to revisit cellulose and reconsider certain phenomena from other perspectives.

Keywords: cellulose; amphiphilicity; intermolecular interactions; dissolution; regeneration; emulsifi-
cation; composite materials

1. Introduction

In 2010, a paper by Lindman, Karlström and Stigsson discussed the mechanisms of
cellulose dissolution, pointing out some discrepancies in the common literature, where
hydrogen bonding was argued as the most crucial interaction to overcome. The paper
(re)introduced hydrophobic interactions and cellulose amphiphilicity as essential to con-
sider for the successful development of future cellulose solvents [1]. In a review by
Medronho and Lindman et al., published two years later, cellulose solubility or insolubility
in water was revisited more carefully [2]. By considering some fundamental polymer
physicochemical principles and some widely recognized inconsistencies in cellulose’s be-
havior, the authors emphasized that the hydrophobic molecular interactions have been
underestimated, relative to hydrogen bonding, and are significantly important for the
understanding of cellulose. Cellulose amphiphilicity was highlighted again. This time, one
of the journal editors brought the matter into the spotlight for serious scrutinization by the
scientific community. In a follow-up response paper, published in the same journal issue,
several well-reputed cellulose scientists with a wide range of experience and representing
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a variety of scientific disciplines were invited to debate what was coined as “the Lindman
hypothesis” [3]. Since then, a myriad of studies have been published dealing with cellulose
dissolution and regeneration, and the consequences of cellulose’s amphiphilicity. This re-
view, fully dedicated to the subject, is intended to highlight some important developments
in the area over the years, based on what has been triggered by Lindman’s dispute, and
give an outlook of emerging cellulose applications.

2. The “History” of Cellulose in Science and Technology
2.1. Addressing Cellulose Intermolecular Interactions
2.1.1. In Cellulose Biosynthesis

Via freeze-fracture techniques applied in electron microscopy studies, cellulose biosyn-
thesis by plasma membrane-bound complexes has been visualized. The first observations
of the synthesis machinery were made at the tip of elongating cellulose microfibrils in
the green alga Oocystis, and, due to this, the synthesis machinery was designated as the
terminal complex (TC) [4]. In most algae, the TCs are organized as linear arrays, but in
higher plants, the cellulose-synthesizing machinery is designated as rosettes and occurs in
the form of hexagonal structures with six-fold symmetry [5,6]. Cellulose biosynthesis is a
complex, cell-directed event. The nature of the enzyme complexes controls the outcome,
essentially via the number and positioning of the glycosyltransferases within the com-
plexes [7]. This thereafter leads to cellulose secretion to the cell surface through complex
secretion pore structures.

Polymerization and crystallization are two separate and sequential steps in native
cellulose biosynthesis [8]. It is known that the crystallization step is the rate-limiting
step, and when crystallization is prevented by the binding of fluorescent brighteners, the
polymerization rate can significantly increase. In biosynthesis, cellulose crystallization
has been described as a three-step process, starting with the formation of monomolecular
glucan chain sheets due to van der Waals forces. Thereafter, the association of these sheets
leads to mini-crystals (sub-elementary fibrils) stabilized by H-bonding, and finally the
convergence of the mini-crystals into the native crystalline microfibril takes place [9–11].

2.1.2. In Dissolution and Regeneration of Cellulose

Currently, two processes in the dissolution and regeneration of cellulose are of tech-
nical and commercial importance: the viscose process and the lyocell process. The manu-
facturing of viscose rayon from cellulose raw material is based on an invention by Cross,
Bevan and Beadle in 1891. The treatment involves dissolving pulps (sulfite and prehy-
drolysis kraft pulps) or cotton with concentrated alkali (NaOH), followed by a reaction
with carbon disulfide (xanthation), which makes the intermediate soluble in NaOH (aq)
and possible to process by spinning, casting and regeneration into fibers (rayon) and
films (cellophane). Another type of regenerated cellulose fiber is lyocell (U.S. brand name
Tencel). In the lyocell process, the cellulose solution is produced from dissolving pulp
using the N-methylmorpholine-N-oxide (NMMO) solvent. The lyocell fiber is precipitated
from NMMO, in which no substitution of the hydroxyl groups occurs, and no chemical
intermediates are formed. The invention appeared first in a patent in 1981 by McCorsley,
describing the basic process of dissolving cellulose [12]. Nowadays, Lenzing is the world’s
largest lyocell fiber manufacturer, capable of supplying ca. 130,000 metric tons of lyocell
fiber for the global rayon market each year.

Cellulose is insoluble in water and in hydrocarbons, but soluble in several simple
and “exotic” solvents. Thus, non-derivatizing solvents for cellulose show enormous vari-
ation, including, e.g., strongly acidic and alkaline aqueous systems; aqueous NaOH and
urea; transition metal complexes, such as copper salts mixed with concentrated ammo-
nia (Cuoxam); aqueous copper–ethylenediamine complex solutions (CED); mixtures of
dimethylsulfoxide with metal salts; N,N-dimethylacetamide (DMAc)/LiCl, NMMO; con-
centrated ZnCl2 aqueous solutions; and a range of different ionic liquids (IL) (Figure 1). In
recent reviews, many additional examples are given and here also the significant diversity
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of solvents is underlined [13,14]. From a thermodynamic point of view, the formation of
extended crystalline regions in cellulose implies the lowered solubility of these regions
compared with the amorphous ones, since the crystalline state always has the lowest free
energy.

Molecules 2023, 28, x FOR PEER REVIEW 3 of 31 
 

 

dimethylsulfoxide with metal salts; N,N-dimethylacetamide (DMAc)/LiCl, NMMO; 
concentrated ZnCl2 aqueous solutions; and a range of different ionic liquids (IL) (Figure 
1). In recent reviews, many additional examples are given and here also the significant 
diversity of solvents is underlined [13,14]. From a thermodynamic point of view, the 
formation of extended crystalline regions in cellulose implies the lowered solubility of 
these regions compared with the amorphous ones, since the crystalline state always has 
the lowest free energy. 

 
Figure 1. Classification of different cellulose solvents. Reprinted from [15]. 

2.1.3. In Cellulose Swelling 
Due to their complex hierarchical structures and organization, cellulose fibers show 

a different picture, characterized by heterogeneous swelling and dissolution [16]. The 
heterogeneous swelling can elicit unusual effects, such as the ballooning that occurs due 
to preferential swelling in specific areas along the fibers (Figure 2). In 1864, Nägeli 
described the ballooning phenomenon [17], and it was further reported in investigations 
by Pennetier [18], Flemming and Thaysen [19,20], Rollins and Tripp [21], Hock [22] and 
Warwicker et al. [23]. Later studies have shown that the swelling and dissolution 
mechanisms are strongly coupled with the solvent quality [24,25]. 

 
Figure 2. Nonhomogeneous swelling (ballooning phenomenon) in cellulose fibers when dispersed 
in cold aqueous-based alkali. The scale bar represents 100 μm. 

As described above, cellulose swelling in strongly alkaline solutions has been known 
for a long time, and the swelling is often accompanied, to some extent, by dissolution. In 
the groundbreaking work by Neale, this was attributed to the osmotic pressure of the 
counterions, as cellulose is deprotonated and charged at a high pH [26]. It was further 

Figure 1. Classification of different cellulose solvents. Reprinted from [15].

2.1.3. In Cellulose Swelling

Due to their complex hierarchical structures and organization, cellulose fibers show
a different picture, characterized by heterogeneous swelling and dissolution [16]. The
heterogeneous swelling can elicit unusual effects, such as the ballooning that occurs due to
preferential swelling in specific areas along the fibers (Figure 2). In 1864, Nägeli described
the ballooning phenomenon [17], and it was further reported in investigations by Pen-
netier [18], Flemming and Thaysen [19,20], Rollins and Tripp [21], Hock [22] and Warwicker
et al. [23]. Later studies have shown that the swelling and dissolution mechanisms are
strongly coupled with the solvent quality [24,25].
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As described above, cellulose swelling in strongly alkaline solutions has been known
for a long time, and the swelling is often accompanied, to some extent, by dissolution.
In the groundbreaking work by Neale, this was attributed to the osmotic pressure of the
counterions, as cellulose is deprotonated and charged at a high pH [26]. It was further
discovered that, along with swelling at high hydroxide concentrations, there might be
appreciable swelling also at a lower pH due to the occurrence of acidic groups, especially
carboxylic acid groups, formed during wood pulp processing through hydrogen peroxide
bleaching [27,28]. Moreover, sulfonic acid groups from the chemi-thermomechanical or
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sulfite pulping processes may also contribute to this. Furthermore, Lindström and Carlsson
noted that the water retention values of holocellulose and unbleached sulfate pulps showed
major increases as a function of pH, in the range in which carboxylic acid groups ionize [27].
Clearly, the osmotic swelling due to counterion entropy, notably in polymer gels, is due to
the ionization of the polysaccharides and lignin, e.g., due to the dissociation of carboxylic
acid groups in cellulose and hemicelluloses (and sulfonic acid and/or phenolic groups in
lignin). As for polymer systems in general, swelling increases with the charge density and
decreases with the electrolyte concentration and the valency of the counterions [29,30]. We
will return to the pH effect in Section 3.2.

Regarding the combination of hydrophobic and electrostatic interactions in cellulose,
the addition of thiourea produces enhanced cellulose swelling in NaOH solutions, as was
reported by Zhang et al. [31]. Strong effects of electrolyte additions, where the difference
in polarity between the two ions is significant, can also be expected to promote swelling—
namely, combinations of high-charge-density cations, such as Ca2+ and Li+, with large,
polarizable anions, such as I− and SCN−. For example, LiSCN is very effective in enhancing
swelling [32], which can be interpreted as the weak association of the anions with cellulose,
whereas the cations are depleted. Furthermore, the significant swelling of cellulose fibers
has been demonstrated using mixed solutions of NaSCN and urea [16,33].

2.1.4. In Partial Dissolution and Plasticization of Cellulose

Plasticization can in some ways be regarded as extreme swelling, gelation or the partial
dissolution of cellulose fibers, which drastically increases the cellulose chain’s mobility.
Efficient plasticizing solvents should have similar properties to good dissolving agents. In
this respect, the early findings of urea as a plasticizing agent were vital, showing that the
weakening of the hydrophobic interactions between cellulose molecules has a key role [34].
Plasticized, or vulcanized, paper was already developed in the 1860s, when several layers
of paper, impregnated by zinc chloride, capable of swelling the cellulose fibers and partially
dissolving them, were pressed together and zinc chloride washed out in several steps [35].
Plasticization increases the density, mechanical strength and strain at the break of the
paper, with an unchanged or slightly increased specific stiffness [36,37]. With improved
mechanical properties, the range of uses for cellulose fiber products is expanded, capable
of replacing plastics in many applications.

Plasticization partly changes the crystallinity of cellulose fibers from cellulose I to
cellulose II and increases the content of amorphous cellulose, which thereby influences
the properties of the fibers and paper [38]. Furthermore, plasticization increases the fiber-
to-fiber bond strength. The surface layers of the cellulose fibers can also be affected, and
higher strain at break, stiffness and tensile strength can be introduced [39–41].

2.1.5. In Cellulose Pulp Fiber and Papermaking

Since ancient times, paper has been produced from fibers that were initially obtained
via the processing of annual plants. Thanks to cellulose, correctly processed plants hold
the fibrous structure needed to form a sufficiently strong network that can be dewatered,
pressed and finally dried into sheets for further utilization. In the early days, the mechanical
processing of plant raw material into lignocellulosic pulp, mainly for use as printing paper,
was the only alternative. During industrialization in the 19th century, the mechanical
processing of wood into fibers by “disassembling” logs with a stone grinder, often driven
by waterpower, into groundwood pulp was introduced. Slightly later, chemical pulping
was invented and evolved rapidly.

In its dried state, wood consists of polysaccharides and polyaromatic lignin, giving the
wood a yellowish to brownish color. Somewhat dependent on the wood species, about 70%
of the dry weight is constituted by the polysaccharides, and hereof cellulose is the main
component [42]. In chemical pulping, most of the lignin is removed from the fibers and
the superior brightness stability of the paper can be obtained after subsequent bleaching.
The removal of lignin from the cellulose pulp fibers also makes them more flexible and
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adaptable when forming a web, and the produced paper material generally becomes much
stronger. Thus, delignification brought new possibilities to utilize cellulose fibers in areas
beyond printing paper, which were later exploited during the 20th century.

Due to the versatility of paper and its economic importance for many countries, a
respectable amount of academic and industrial research has been dedicated to the topic
over the years. A significant focus has been placed on developing and understanding the
paper strength and the influence of fiber–water interactions [43]. The strength of the paper
is obviously necessary for the final product, but, often, it is even more critical in paper
production. The production rate in a paper machine can be far above 1000 m/min, and the
forces exhibited under production can easily be detrimental and result in paper breaks and
lost production. Of course, the different unit operations in the paper production process
must be optimized as well. However, the paper strength from the wet to the dry state is
finally the limiting parameter.

There is no doubt that hydrogen bonding between the fibers in paper has some
importance for the strength, especially when no chemical additives are added into the
papermaking stock. However, the beneficial effects of hydrogen bonding in the fiber–fiber
interactions and paper strength are strictly limited to dried paper. If water surrounds the
fibers, other phenomena due to, e.g., morphological changes related to fibrillation, and the
geometrical and mechanical properties of the fibers and fiber walls introduced by directed
processing, are always much more relevant to discuss [43]. Unfortunately, very often in
scholarly textbooks and research literature discussing papermaking, hydrogen bonding
has been incorrectly used as a simple explanation for fiber–fiber interactions and paper
strength. In a very recent review by Wohlert et al., an excellent overview was presented of
the current knowledge of intermolecular interactions related to cellulose-based materials at
different hierarchical scales, from oligomers to macroscopic fibers [44].

2.2. Revisiting Cellulose—The Lindman Hypothesis
2.2.1. Considerations and Implications of Cellulose’s Dual Properties

The insolubility of cellulose in water is, in many publications, considered as a result
of the complex hydrogen bonding network [45,46]. Since the general view of cellulose
in the past suggested the dissolution of the polymer by breaking the cellulose–cellulose
hydrogen bonds, it implied that the key to increasing cellulose’s solubility is to find a
solvent that effectively disrupts the interchain hydrogen bonding in cellulose. Thus, the
argued explanation for cellulose solubility in certain solvents, such as ILs, is that they
“break” the hydrogen bonds. Moreover, in a somewhat imprecise way, some authors also
refer to the crystallinity of cellulose as a contributing factor in its insolubility [47,48]. In
general, polymer solubility is dependent on a balance between entropy, which drives
solubility, and enthalpy, which opposes solubility. Entropy contributions are of different
types, such as translational (determined by polymer molecular weight), configurational
(determined by polymer flexibility) and counterion entropy (ionic polymers). Therefore,
low-molecular-weight polymers are more soluble than high-molecular-weight ones, flexible
ones are more soluble than stiff ones and ionic ones are more soluble than non-ionic ones.

Regarding the interactions determining the enthalpy, the strong hydrogen bonding
between cellulose molecules has been emphasized in the literature. It is true that there are
strong hydrogen bonds between cellulose molecules, but it has often been forgotten that,
on dissolution in water, these are replaced by cellulose–water hydrogen bonds, which are
equally as strong (ca. 5 kcal/mole) [49]. Hydrogen bonding can, therefore, not explain the
low aqueous solubility. In fact, solute–solute hydrogen bonding in an aqueous solution is
not expected to drive association or cause insolubility. Water is a highly hydrogen-bonded
solvent. On the introduction of a solute, there is the formation of “cavities” in water. If
the solute is nonpolar, there is a large opposing force for solubility, since cavity formation
leads to a loss of water–water hydrogen bonding. There is partial compensation, especially
at lower temperatures, because of the “structuring” of water around the co-solute; this
leads to anomalously high solubility at low temperatures, as clearly manifested in the non-
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monotonic variation in many properties around room temperature [50]. On the association
of two nonpolar molecules in water, “hydrophobic association”, there is a reversal of this
process and a considerable gain in free energy due to the release of water molecules to the
bulk (increasing the entropic contribution) and formation of water–water hydrogen bonds.

If cellulose is argued to be amphiphilic, its solubility and association behavior in water
should be significantly affected by co-solutes known to eliminate/weaken hydrophobic
interactions. In this respect, urea is well known to eliminate hydrophobic association in
protein denaturation and surfactant demicellization, and surfactants have significant effects
on cellulose solubility [46,51–53]. A general property of amphiphilic compounds is to
migrate to interfaces, a tendency particularly observable in aqueous systems [54]. Further
consequences are to self-assemble—for many polymers, this results in in gel formation—
and to associate with other amphiphilic compounds, such as surfactants, polar lipids and
block copolymers.

Close examination of the crystal structure of cellulose reveals that there is clear spatial
segregation of C-H and O-H bonds, thus leading to both nonpolar and polar regions and
suggesting distinct amphiphilicity [55–57]. It can be noted that other polyglucoses, such as
cyclodextrins and amylose, also display distinctly nonpolar domains and interact strongly
with both polar and nonpolar molecules [58].

2.2.2. Response from the Scientific Community on Lindman’s Dispute

The Lindman hypothesis [2] was debated by some of the most well-known cellulose
scientists in a follow-up article [3]. The overall conclusion from his peers can be sum-
marized by the following quote: “The general perspective of cellulose as a polymer in
which intermolecular stress transfer involves more than hydrogen bonds. Hydrophobic
and amphiphilic behaviors have been acknowledged for some time but may have been
underestimated in conventional considerations of structure, solubility, etc. Ever since the
discovery of hydrogen bonds, there has been a tendency to over-exaggerate their impor-
tance in determining the solid-state structure. The energy of a hydrogen bond is much
more than the van der Waals energy of attraction between say C–H groups, but we must
remember that there are a lot of C–H groups in cellulose.”

From the biosynthesis perspective, if it takes place in discrete steps in time and space,
then these findings could reflect the structural inhomogeneities, which could lead us to bet-
ter understand how to formulate more efficient cellulose solvents. Some other compounds,
e.g., carboxymethylcellulose, have a very distinct and dramatic role, inhibiting higher-order
aggregations in cellulose’s ribbon structure [59]. This would indicate that native agents
co-secreted with cellulose could change and control cellulose’s crystallinity. Since living
organisms create cellulose structures that are in fact different on some structural level, while
being identical in chemical (molecular) structure, the properties and possible dissolution
behavior would be different. The latter might be a consequence of the thermodynamically
driven molecular aggregation process of cellulose chains, being influenced by the presence
of heteropolysaccharides and proteins during the biosynthesis.

3. Recent Progress in the Scientific Understanding of Cellulose

The previous lack of discussion and general acceptance of cellulose as being an am-
phiphilic molecule is understandable. The main explanation for this is that synthetic
amphiphilic polymers, such as block and graft copolymers, have been more commonly
produced in recent decades. Moreover, the perception of biomacromolecular amphiphilicity
and the importance of hydrophobic interactions in biological macromolecular systems have
been very limited and neglected. However, proteins and lipopolysaccharides are good
and accepted examples of biological macromolecules possessing amphiphilic properties.
The secondary structure in proteins is determined by a balance between hydrophilic and
hydrophobic interactions. Recently, the importance of hydrophobic interactions has also
received considerable attention in the field of biology regarding liquid–liquid phase sep-
aration [60]. Nevertheless, in DNA, where the double helix structure of DNA owes its
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stability to hydrophobic interactions, as well as in cellulose, the role of amphiphilicity
has not been properly considered [61,62]. Figure 3 illustrates the physicochemical and
structural characteristics behind the amphiphilic nature of the two biopolymers.
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3.1. Theoretical Considerations of Molecular Cellulose

A large body of computer simulations has substantially contributed to the understand-
ing of the origin of hydrophobic interactions, ranging from studies of the methane–water
system [63] to micelle formation [64], peptide interactions [65] and DNA double-helix stabil-
ity [66]. A particularly interesting study investigated the effect of salt in the methane–water
system and concluded that “the number of broken H-bonds is significantly larger in the
presence of salt and should contribute to an increase in the free energy of dissolution, and
hence to a lowering of the solubility and an increase in the hydrophobic interaction” [67].
For cellulose explicitly, Miyamoto et al. investigated the structural reorganization of two
different types of molecular sheets derived from the cellulose II crystal by using molecular
dynamics (MD) simulations to distinguish the initial structure of the cellulose crystal during
its regeneration from the solution [57]. The molecular sheet formed after a one-nanosecond
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simulation by van der Waals forces along the (1–10) crystal plane did not alter its structure
in an aqueous environment, while the one formed by hydrogen bonds along the (110)
crystal plane changed into a van der Waals-associated molecular sheet. The two structures
showed substantial similarities, such as the high occupancy of intramolecular hydrogen
bonds between O3H and O5 of over 0.75, few intermolecular hydrogen bonds and the high
occurrence of hydrogen bonding with water.

It is observed that the van der Waals-associated molecular sheet in the solution can
be the initial structure of the cellulose crystal formed after the convergence of the two
structures into one. The results imply that the van der Waals-associated molecular sheet
becomes stable in a water environment with its hydrophobic interior and hydrophilic
periphery. Interestingly, and consequently, in a benzene environment, a hydrogen-bonded
molecular sheet is preferred, which is also expected to be the initial structure formed in
benzene.

Bergenstråhle et al. used MD simulations to calculate the potentials of mean force
for the separation of short cellooligomers in an aqueous solution as a means of estimating
the contributions of hydrophobic stacking and hydrogen bonding to the insolubility of
crystalline cellulose. The outcome of the study indicated that both hydrophobic association
and hydrogen bonding favor the cellulose crystal, which makes it less surprising that
cellulose is so insoluble. However, the contribution of H-bonding to cellulose’s insolubility
in an aqueous environment was an order of magnitude smaller than the hydrophobic
solvation energies [68].

Nishiyama studied the molecular interactions in nanocellulose assembly. The contri-
bution of hydrogen bonds and the London dispersion force in the cohesion of cellulose
was evaluated and discussed considering features, such as the structure, spectroscopic
data, empirical molecular modeling parameters and the thermodynamic data of analogue
molecules. The London dispersion interaction was estimated from empirical attraction
terms in molecular modeling by simple integration over all components. The short-range
interaction was found to be dominant for the cohesion of cellulose and equivalent to
compression of 3 GPa. Because of the reduced number of hydroxyl groups in cellulose
compared to simple alcohols, the London dispersion force provides the main contribution
to intermolecular cohesion in nanocelluloses [69].

3.2. Dissolution of Cellulose

Since cellulose does not melt, dissolution is a required step for its feasible processing
into different shapes and forms, such as fibers, films, particles, hydrogels and emulsions,
among many others. The dissolution of cellulose is certainly not trivial, as the most efficient
solvents are remarkably different in nature and thus the understanding of the delicate
balance between the different interactions involved becomes difficult to rationalize, but
it is very important for further solvent development and improvement. Nowadays, it
is reasonable to state that, since the work of Prof. Lindman, the cellulose community is
more aware of the decisive role of hydrophobic interactions in cellulose dissolution and
regeneration in aqueous media. The mainstream view that H-bonds are the sole argument
to explain cellulose behavior is now considered clearly overstated and the recent literature
clearly supports this [70].

The amphiphilic nature of cellulose, the hydrophobic interactions and H-bonding’s
role in dissolution and regeneration, the polyelectrolyte behavior at an extreme pH and the
role of crystallinity were some of the critical aspects discussed by Prof. Lindman. All these
aspects are quite relevant in polymer solubility (in general) and in cellulose (in particular)
and have led to important discussions and eventually contributed to the development of
new solvents and the improvement of some of the existing ones [14,71]. Many of these
studies were carried out at Coimbra University (Portugal) and at different research centers
in Sweden, with the main goal of developing new aqueous-based solvent systems for
cellulose dissolution and shaping into novel fibers for textile applications [51,72].



Molecules 2023, 28, 4216 9 of 30

It is well known that cellulose can be dissolved in aqueous alkali at low tempera-
tures [16], but the performance of the solvent regarding solubility, stability and rheological
properties can be boosted by the addition of different additives (e.g., urea, thiourea, ZnO
and amphiphilic molecules) [51]. Even lignin has been recently observed to enhance cel-
lulose’s dissolution and stability [73]. Superior dissolution performance is also observed
when small inorganic cations, such as sodium or lithium, are replaced by amphiphilic
organic cations, such as tetrabutylammonium (TBA+) or tetrabutylphosphonium (TBP+)
(Figure 4) [74]. These systems belong to the so-called family of “onium hydroxides”, which
have shown a notable capacity to solubilize high concentrations of cellulose in relatively
mild conditions [75–77].

The use of amphiphilic cations or species of intermediate polarity, such as urea or
thiourea, typically enhances the stability of the cellulose dopes (delay of gelation), which is
very important for many applications, such as fiber spinning [78,79]. This improvement
in stability is mainly attributed to two factors: first, the amphiphilic-like or intermediate
polarity species can avoid the re-aggregation of dissolved cellulose chains, driven by
hydrophobic interactions [80–84], and secondly, a higher dissolution degree represents a
lower fraction of undissolved crystallites that could potentially act as crosslinking points,
as suggested by the work of Pereira et al. [79]. In this work, it was found that the formation
of crystalline domains is due to the crystallization and precipitation of cellulose in aqueous
NaOH, which eventually drives sample gelation.

Apart from the enhanced stability of cellulose solutions, the use of amphiphilic-
like cations has been observed to improve dissolution and allows reaching a molecularly
dissolved state of cellulose (Figure 4b). On the other hand, the use of inorganic counterparts,
such as in NaOH-based systems (Figure 4a), often leads to incomplete dissolution. The
understanding of the state of dissolution of cellulose in a certain solvent is not trivial
and state-of-the-art techniques are of the utmost importance. In this regard, polarization
transfer solid-state NMR (PTssNMR) has emerged as a very promising technique for the
reliable and robust characterization of the solution state of cellulose [85] in different solvent
systems, being capable to distinguish between dissolved and undissolved fractions and to
characterize the cellulose polymorphs [86–88].

Returning to the alkaline-based systems containing inorganic or amphiphilic-like
cations, PTssNMR confirmed the higher degree of dissolution in the latter case; an in-
tense “insensitive nuclei enhancement by polarization transfer” (INEPT) signal coming
from dissolved cellulose (red line in Figure 4c) is observed, while the “cross-polarization”
(CP) signal, arising from the solid/undissolved cellulose fraction, is absent (blue line in
Figure 4c). Due to the amphiphilic nature of organic cations, such as TBA+, it was an-
ticipated that if their beneficial effect in cellulose dissolution is related to weakening
hydrophobic interactions, then once the cations are hindered or removed from the solution,
cellulose’s solubility should be compromised. This hypothesis was successfully tested using
different cyclodextrins (CDs) as host agents to form complexes with TBA+ cations [89]. The
formation of CD:TBA+ complexes was proven by NMR and the worsening of the solvent
quality with CD addition was clearly observed from the polarized light microscopy and
turbidimetry measurements. Overall, data support the hypothesis that the amphiphilic
properties of TBA+ are determinant for the efficient dissolution of cellulose.

It is reasonable to assume that the dissolution state of a polymer such as cellulose may
affect the way in which it arranges in a solution and how it organizes upon regeneration.
Thus, the properties of the regenerated cellulose-based materials are expected to be deeply
impacted by the dissolution level (i.e., molecular dissolution, colloidal aggregates). This is
clearly seen in Figure 4d, where the regenerated cellulose is observed to be amorphous, in
the case of previous dissolution with TBAH (aq), and crystalline (cellulose type II) for the
materials regenerated from NaOH (aq). Results such as the ones previously discussed have
inspired many scientists worldwide and contributed to the reevaluation of the role of the
different interactions in cellulose’s behavior, even in nanocrystals [90,91].
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Figure 4. Scanning electron microscopy images of microcrystalline cellulose (MCC) dissolved in
aqueous 8 wt% (2 M) NaOH (a) and in aqueous 40 wt% (1.54 M) tetrabutylammonium hydroxide
(b). The scale bar represents 5 µm. PTssNMR of 10 wt% MCC in aqueous NaOH (c, bottom),
10 wt% MCC in aqueous TBAH (c, middle), MCC starting material (c, top) and X-ray diffraction
patterns of regenerated cellulose from MCC dissolved in different solvents (d). (a–d) were adapted
from [74], while (c) was adapted from [86] with permission from Elsevier, © 2023, and Royal Society
of Chemistry, respectively, © 2023.

The driving forces responsible for cellulose regeneration and the formation of crys-
talline domains have been evaluated by different authors [15]; for instance, Isobe et al.
have demonstrated that the crystalline arrangement of cellulose is driven by hydrophobic
interactions [92].

At this stage, it is clear that in order to develop novel solvents for cellulose or improve
existing ones, different aspects need to be considered. One of these important, but often ne-
glected, effects that has been already mentioned is related to the ionization of cellulose. Note
that, since hydroxyls were thought to be solely engaged in the H-bonds, it was disregarded
that they could also be involved in other phenomena, such as ionization. The role of the
cellulose charge and the concomitant ion entropy effects should not be underestimated [14].
Contrary to the previously widely disseminated and accepted view focusing solely on the
need to disrupt the H-bonding network in concentrated alkali/acids to promote cellulose
dissolution, Prof. Lindman highlighted that the protonation/deprotonation of cellulose’s
hydroxyl groups drives a nonionic polymer into a polyelectrolyte with enhanced solubility
due to the counterion entropy [1] (Figure 5). This ionization effect was probed by Bialik
et al., where electrophoretic NMR assays demonstrated that cellobiose may act as an acid
with two dissociation steps, while MD simulations demonstrated that such charging of
the cellulose chains in a solution prevented its aggregation (electrostatic repulsion among
chains) and thus enhanced its solution stability [93].
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Further NMR studies have shown that TBA+ cations bind to cellulose with ca. 1.2 TBA+

ions/AGU [94]. This was later supported by comprehensive scattering assays, where SAXS
data were consistent with the formation of a sheath of bulky TBA+ ions solvating the
cellulose molecules [95,96]. From a mechanistic point of view, the electrostatic interactions
between the ionized cellulose molecules and the TBA+ cations are suggested to be the main
driving forces [94]. Nevertheless, due to the above-mentioned amphiphilic properties of
TBA+, it is reasonable to also anticipate a significant contribution from the hydrophobic
effect regarding the favorable TBA+–cellulose interactions. These works strongly suggest
that cellulose is, to a large extent, charged in a concentrated alkaline medium, an overlooked
but relevant factor to rationalize its solubilization behavior.

Organic co-solvents, such as dimethyl sulfoxide (DMSO), have been observed to
enhance cellulose’s dissolution, allowing the use of much less alkaline media [80,97–99].
Several solvent systems containing DMSO in their formulations have been successfully
reported in the last decade [97,100–108]. DMSO, as a polar and aprotic co-solvent, displays
major swelling properties for cellulose, thus facilitating the diffusion of solvent ions into
the cores of cellulose fibrils [109]. DMSO is particularly efficient in decreasing the viscosity
of different solvent systems, such as ILs, which also benefits the mass transport and
dissolution efficiency [110,111]. Other authors also suggest that the addition of DMSO
may enhance the solubility of cellulose in ionic liquid-based systems by weakening the
electrostatic interactions among ions [112].

The work of Idström et al. is particularly interesting since cellulose–DMSO contacts
were found to be three times longer than the DMSO–DMSO interactions [99]. Nevertheless,
no clear role has been described for DMSO. Recently, Medronho et al. estimated that the
fraction of “bound” molecules, Pb, of DMSO is ca. two times lower than the Pb of TBA+,
which demonstrates the preferential interaction of TBA+ with cellulose [80]. The fact that
the Pb values change less for DMSO than for TBA+ suggests the weaker adsorption of
the former. As mentioned, DMSO facilitates cellulose dissolution, not only by tuning
the solvent viscosity (enhancing mass transport) but also by solvating cellulose (here, the
binding is not in the same sense as with the TBA+ ions), which facilitates further interaction
between the TBA+ ions and cellulose. The highly polar character of the S-O bond in DMSO
drives the overall negative charge density in the oxygen atom. On the other hand, the
sulfur atom, despite displaying a positive charge density, carries a pair of non-bonding
electrons [113]. Thus, both atoms are nucleophilic and not prone to interact with the
negatively charged oxygen atoms of ionized cellulose. Furthermore, the hydrophobic
features of the methyl groups in DMSO are expected to be less pronounced than those of
the butyl groups in TBA+, which further substantiates the preferred interaction of cellulose
for the latter.
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As an emerging class of biomass solvents, deep eutectic solvents (DES) are interesting.
Mixtures of natural bio-sourced cations and anions (natural DES or NADES), such as those
obtained from natural organic acids, amino acids, non-nutritive sweeteners or natural com-
pounds including choline or betaine, are particularly appealing due to their environmental
benignity and relatively low cost when compared to, e.g., the synthetic ILs [114]. However,
similarly to many ILs, the high viscosity of DES is a drawback for large-scale applications
with cellulose. Moreover, the solubility of cellulose in DES is much lower than in most
ILs [115,116].

3.3. Cellulose in Emulsions

Cellulose is a versatile source of natural emulsifiers and can be utilized as such over
the whole hierarchical size range, from cellulose particles and gels to macromolecules;
see Figure 6. The capability of all forms of cellulose to adsorb at oil–water interfaces
and stabilize emulsions has been reported in the literature [117,118]. This phenomenon
indirectly evidences the significance of the hydrophobic interactions between cellulose
molecules and how they can affect the dissolution and regeneration of cellulose. Recently,
it was observed that the stability of emulsions could be altered by tuning the solvent
characteristics to achieve a more or less soluble cellulose in an aqueous environment. With
a solvent such as TBAH (aq), an amphiphilic medium and good solvent for cellulose, it
was not possible to form stable emulsions. On the other hand, with NaOH (aq), emulsions
were formed and could be stabilized for a very long period, once cellulose was regenerated
at the interface [73,119]. The same happens in the acidic solvent H3PO4 (aq) [120–122].
Another important observation was that molecular cellulose is indeed able to decrease the
interfacial tension between an oil phase and the aqueous solvent phase, a property inherent
to amphiphilic molecules, such as surfactants and polymeric surfactants [73,119–125]. This
behavior is similar to what is observed for cellulose derivatives (e.g., MC and HPMC).
Molecular dynamic simulations indicated that molecularly dispersed cellulose gradually
assembles at the oil–water interface, eventually surrounding the oil droplet [123].
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One means of producing emulsions using dissolved cellulose is by following a
dissolution–emulsification “in situ” regeneration approach, where the oil is directly dis-
persed in the cellulose solution and regeneration takes place at the oil–water interface
(in situ). A continuous-like coating is formed around the oil droplet, giving it a smooth
appearance [118,121,124]. Another approach starting with a cellulose solution is by regen-
erating cellulose prior to emulsification, which can give Pickering emulsions of solid or
soft cellulose particles (microgels), since the oil is either dispersed in a water suspension of
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cellulose particles or in a water suspension of cellulose microgels, respectively [117,118]. A
fundamental difference between the two described approaches is related to the existence
of dissolved cellulose during oil emulsification, which acts as a polymeric surfactant by
decreasing the IFT and contributing to a reduction in the emulsion’s droplet size. Overall,
the emulsions produced by both methods display very good stability against droplet coa-
lescence, which can be attributed to the irreversible adsorption of cellulose onto the droplet
surfaces [125].

Several researchers have also demonstrated the ability of cellulose particles to self-
assemble at oil–water interfaces and to stabilize w/o emulsions without the aid of classical
surfactants [126–128]. It is believed that the amphiphilic character of nanocellulose resides
in its crystalline organization at the elementary “brick” level, and, thus, cellulose nanocrys-
tals have both hydrophilic and hydrophobic edges that are preferentially wetted by water
and oil phases, respectively. Cellulose’s stabilization of w/o emulsions is more challenging,
but, a “hydrophobic” cellulose microgel has been recently developed, by regenerating
cellulose in the presence of an oil [129]. This cellulose microgel is more easily dispersed in
oil than water, and stable w/o emulsions can be formed.

3.4. Regeneration of Cellulose

Cellulose dissolved in a good solvent is solidified when its solvency is decreased by
any means, and this can be attained in several ways. Most commonly, different non-solvents
(antisolvents) are being used to obtain this efficiently. Regeneration can also be imposed by,
e.g., the addition of different salts or a combination of an antisolvent and salt. Remarkably,
regeneration can also be triggered by temperature changes, without the addition of any
other substances. In an aqueous solvent system comprising alkali and urea, gelation occurs
via a sol–gel transformation when increasing the temperature of the cellulose solution [78],
similar to what is observed for nonionic polyoxyethylene systems. Depending on the nature
of the solvent and the regeneration method, the solidified cellulose appears differently
from the perspective of molecular ordering. There is no accepted evidence that native semi-
crystalline cellulose that has undergone dissolution can be regenerated into its previous
polymorph, cellulose I. Generally, cellulose II is formed, which is the most energetically
favorable cellulose crystal structure. However, depending on the treatment, cellulose can
also take the form of other polymorphs, e.g., cellulose III and cellulose IV [130].

The above-mentioned methodologies can be utilized when dissolved cellulose under-
goes regeneration into the solid state to control the degree of crystallinity. Since crystallinity
affects many different material properties of the solidified cellulose, such as the surface mor-
phology, transparency and haze, mechanical strength, density, water contact angle, moisture
uptake and gas permeability [131,132], this is an interesting physical route to follow when
tuning the cellulose II material. The opportunity behind this arises from a range of factors,
where differences in cellulose–cellulose, cellulose–solvent and cellulose–antisolvent interac-
tions exist and are important. Moreover, external force fields such as mass transport by flow
and diffusion, which regulates the kinetics, and shear during solidification, which releases
stress and imposes the relaxation of the polymer chains, strongly contribute to the final
properties of the material. On a molecular level, cellulose’s amphiphilicity and the interplay
between hydrophobic interactions and H-bonding regulates the finer details. The latter was
observed in an XRD deconvolution analysis on solid films of cellulose II (Figure 7) obtained
from alkali–urea-dissolved cellulose regenerated in alcohols of different hydrocarbon chain
lengths [133]. In Figure 7, the expression of different crystallographic planes in cellulose
II is observed as diffraction intensities for a certain reflection representing hydrophilic or
hydrophobic unit cell planes [57,92,134].
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Figure 7. To the left, X-ray diffraction (XRD) patterns of the cellulose II films prepared with
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differences in transparency and surface structure. Reprinted from ongoing work [133].

4. Emerging Applications and Future Development

Global warming and the accumulation of microplastics in the oceans have driven
research efforts toward developing bio-based and biodegradable materials to replace
petroleum-based products. At the beginning of 2023, the European Polysaccharide Net-
work Of Excellence (EPNOE) released the Research Roadmap 2040, a strategic document
that summarizes the most relevant scientific questions to be answered for biomass and
polysaccharides during the coming decades [135]. Cellulose, and particularly nanocellulose
and regenerated cellulose, offers a sustainable alternative for the production of a variety of
technical materials with a low carbon footprint, such as films for food packaging, mem-
branes for filters, filaments for textiles and aerogels for insulation [136–138]. Yang et al.
developed transparent and bendable cellulose films from alkali–urea systems, with high
gas barrier properties [132] and high water repellency [139], suitable for food packaging.
Composite films developed by Wu et al., based on cellulose, starch and lignin and dissolved
in IL, showed good thermal stability, strong mechanical properties and low gas permeabil-
ity [140]. By blending cellulose with chitosan and dissolving it in NMMO, high-strength
films with natural antibacterial properties were produced [141]. Cellulose-based films with
such properties could be beneficial for, e.g., food packaging and wound dressing. Similarly,
in textile production, regenerated cellulose–chitosan composite fibers would be expected to
give textile materials with antibacterial properties.

Recently, a promising breakthrough in IL development for the dissolution of cellulose
was achieved by research groups in Finland, led by Profs. Herbert Sixta and Ilkka Kilpeläi-
nen [142]. The methodology was developed into a production process and is currently
being commercialized. In 2022, Prof. Sixta and Prof. Kilpeläinen were awarded the Marcus
Wallenberg Prize for the development of high-performance textile fibers based on different
qualities of wood pulp. This innovation builds on the design and synthesis of novel su-
perbase ILs (1,5-diaza-bicyclo[4.3.0]non-5-enium acetate, [DBNH][OAc]) that enable the
efficient dissolution of wood pulp in high concentrations and at a viscosity level suitable
for a spinning dope. This spinning dope can then be spun into high-quality regenerated
cellulose fibers for the textile industry [143].
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4.1. Nanocellulose in Material Design

The first isolation of nanocellulose occurred in the mid-20th century [144], while the
advances in utilizing nanocellulose as a building block in developing new functional materi-
als were only recognized at the beginning of the 21st century [145], when the more effective
approaches for the isolation of nanocellulose with enhanced colloidal properties (charge-
driven) were introduced [146]. In general, the term nanocellulose is considered for cellulosic
particles with varying aspect ratios and at least one dimension in the nanoscale, namely cel-
lulose nanofibrils (CNFs), cellulose nanocrystals (CNCs) and bacterial cellulose (BC) [147].
CNFs and CNCs are isolated from fibril aggregates by chemical and/or (sono)mechanical
defibrillation (top-down approach), while BC can be obtained by bacterial oxidative fermen-
tation (bottom-up approach) [147,148]. Although all types of nanocellulose have similar
chemical compositions and structures (cellulose I), depending on the preparation protocol
and origin, variations in properties such as the morphology, particle size and crystallinity
will influence the overall properties and targeted applications [147–149]. As summarized
in several reviews [146–150], nanocellulose’s properties, such as the high specific area and
aspect ratio, high strength and high content of surface hydroxyl groups, make it a candidate
for many potential applications, e.g., in energy, electronics, sensing, biomedical devices,
food, packaging, optical devices, textiles, catalysts, insulation, decontamination and fil-
tration applications, as exemplified in Figure 8 [151]. In addition, nanocellulose-based
hydrogels have been shown to be very suitable for, e.g., electronic skin (e-skin) flexible
electronics [152–155].

Considering the advances over the past twenty years, several challenges have been
identified that hinder the transition of nanocellulose production and utilization to a large
industrial scale. To overcome the difficulties, improvements in the production efficiency
with environmentally friendly approaches and less energy-consuming processes to lower
the cost are strongly recommended [146–150,156,157]. In this regard, quite recently, some
researchers in the field have highlighted the importance of revisiting the fundamental
understanding of nanocellulose–water interactions and the colloidal behavior of nanocellu-
loses in solving some of the challenges encountered [146,147]. A conclusion drawn from
this was that nanocellulose has amphiphilic characteristics considering the properties and
dynamics of a nanocellulose–water system, as concluded from the reported computational
and experimental results on the distinction of hydrophilic (110) and hydrophobic (100)
faces in cellulose I (hence nanocellulose) [147]. Regarding the nanocellulose dispersions,
the intermolecular hydrogen bonding between the surface hydroxyl groups and van der
Waals interactions between the hydrophobic sites in nanocellulose play different roles in
the aggregation in water, organic solvents and polymer matrices.

4.2. Regenerated Cellulose with Added Functionalities

The term all-cellulose composite was first introduced by Nishino et al. [158]. By dis-
tinguishing the solubility of the matrix cellulose into the solvent from that of the cellulose
fibers through pretreatment, all-cellulose composites were prepared. Shortly after this,
Gindl and Keckes presented a study on nanocomposite films with different ratios of cel-
lulose I and II, produced from partially dissolved microcrystalline cellulose in lithium
chloride–N,N-dimethylacetamide [159]. Via the dissolution of cellulose in water-based
solvents, such as the already described alkali–urea system, water-dispersible polymers and
particles can be mixed with cellulose and co-regenerated into solid composite materials.
Many possibilities to design novel materials that benefit from the inherent strength prop-
erties of cellulose, combined with the special features and functionalities of the additives,
can be foreseen. The methodology has been utilized in several studies by Lina Zhang’s
group in Wuhan [138]. Regenerated cellulose composite materials can be constructed
from cellulose solutions in the presence of various organic and inorganic particles or poly-
mers via blending with subsequent modification, often without any chemical reactions
involved [160].
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Figure 8. Fibrillated cellulose for far-term technologies. (a) Nanopaper for optoelectronics. Left, a
photograph of transparent nanopaper (top) and the optical properties (bottom) of several selective
nanopapers showing high optical transmittance and tunable transmittance haze. Middle, a layer
diagram (top) and photograph (bottom) of a nanopaper-based solar cell. Right, a layer diagram
(top) and photograph (bottom) of an organic light-emitting diode display. Gr, graphene; PEDOT:PSS,
poly(3,4-ethylenedioxythiophene) polystyrene sulfonate; PEIE, polyethylenimine ethoxylated; PET,
polyethylene terephthalate. (b) Selective transport of multiscale mass (from solids to ions) across
different length scales in various fibrillated cellulose membranes for filtration, ion selectivity, solar
desalination and thermally efficient distillation. (c) Fibrillated cellulose soft gels for bio-applications,
including wound repair, soft and hard tissue engineering, ion regulation, the human (ion)–machine
(electron) interface and health monitoring. Adapted from [151] with permission from Springer, ©
2023.

Yang et al. prepared transparent and flexible cellulose–montmorillonite nanocom-
posite films by dissolving cellulose in a montmorillonite-dispersed LiOH–urea aqueous
solution, followed by regeneration in acetone [161]. The high aspect ratio of the mont-
morillonite platelet and the formation of regular intercalated nanolayered structures in
the cellulose matrix led to improvements in film properties. A cellulose–graphite oxide
blended film was prepared by Han et al. by dissolving cellulose in a NaOH–urea–graphite
oxide aqueous suspension, followed by coagulation in H2SO4 [162]. Composite films with
7.5 wt% graphite oxide immobilized in the cellulose matrix introduced a significant increase
in the tensile strength and an improvement in the E-modulus. Morgado and Coma et al.
and Almeida and Coma et al. studied bio-based films by dissolving and blending chitosan
and cellulose in NaOH–thiourea, followed by film casting [163,164]. From their investi-
gations, it was found that an increase in chitosan content led to higher tensile strength
and strain before break. Similarly, Yang and Norgren et al. prepared cellulose–chitosan
nanocomposite films via dissolution in alkali–urea and regeneration in ethanol/water [165].
The outcome of mechanical testing showed generally much better performance than in the
previously mentioned studies, which could be due to the well-controlled drying conditions.
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However, the opposite trend in strength development was observed; upon increasing the
chitosan content in the films, the tensile strength gradually decreased. In another study
(Figure 9), cellulose–chitosan particles with different sizes and morphologies depending on
the preparation technique were produced [166]. Particles in the millimeter scale, displaying
core–shell structures, were prepared by dripping dissolved cellulose into an acetic solution
of chitosan, resulting in instant co-regeneration. Two different approaches to obtain fully
intermixed particles were applied by first mixing cellulose and chitosan solutions, with
or without a crosslinking agent, followed by creating water-in-oil (w/o) emulsions in
isooctane-Span®80. Thereafter, the sol–gel transition was triggered by increasing the tem-
perature of the w/o emulsion and lowering the solubility of the biopolymer, to solidify the
cellulose–chitosan droplets into micrometer-sized spherical nanocomposites. The two types
of chemically or physically crosslinked microparticles obtained were thereafter washed,
solvent-exchanged, freeze-dried from tert-butanol and thoroughly characterized.
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Qi et al. reported on a sensor system prepared from cellulose dissolved in alkali–urea
mixed with multi-walled carbon nanotubes (MWNT) and regenerated. MWNT–cellulose
films displayed both flexible and conducting MWNT characteristics in an interval of
2–10 wt% MWNTs. Films with multifunctional sensing ability for the monitoring of stress–
strain, temperature and humidity were obtained, with potential for electronic, magnetic,
semiconducting and biotechnological applications and as water sensors [167,168].

Cellulose-based fibers from a combination of hydrophilic cellulose and hydrophobic
polyaniline (PANI) were prepared to yield antistatic fibers [169,170]. PANI doped with
acidic phosphate ester dissolved in cellulose–NaOH–urea at a low temperature gave a PANI–
cellulose supra-molecular complex solution that was more stable than the cellulose solution
itself, indicating good processability. Composite filament fibers were spun from the PANI–
cellulose dope by wet spinning. No external doping was needed to achieve conductivity,
presenting a viable method for antistatic fiber fabrication [171]. Fiber production via the
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electrospinning of single cellulose–NaOH–urea solutions has not been successful. However,
by introducing high-molecular-weight polyethylene glycol (PEG), PEG–cellulose composite
fibers, with a diameter of around 400 nm, could be electrospun [172].

Ye et al. recently presented a green route to the fabrication of strong and tough
regenerated cellulose films [173]. The films comprised tightly stacked and long-range
aligned cellulose nanofibers self-assembled from a cellulose solution in alkali–urea aqueous
systems. Remarkable toughness of 41.1 MJ m−3 was reached in anisotropic nanofiber-
structured cellulose films (ACFs). The well-aligned and densely packed cellulose nanofibers
significantly decreased the interstitial spaces and minimized light scattering, giving ACFs
with high optical clarity (91%), low haze (<3%) and birefringence behaviors. The simple
methodology was argued to be scalable in fabricating high-strength, super tough and
transparent cellulose films for emerging biodegradable next-generation packaging, flexible
electronics and optoelectronic applications.

An interesting approach to synthesize cellulose hybrid materials in situ has been
described by Eivazihollagh et al. [174]. A facile method to procedure spherical copper
nanoparticles (NPs), templated by a gelled cellulose II matrix under alkaline aqueous
reaction conditions, was reported (Figure 10). The cellulose–copper hybrid material was
prepared by the chemical reduction of chelated Cu2+ ions in a dispersion of alkali–urea-
dissolved cellulose. The nucleation of the NPs was suggested to be initiated in the vicin-
ity of the deprotonated hydroxyl groups in cellulose under highly alkaline conditions.
Well-dispersed and spherical Cu/Cu2O NPs of a narrow size distribution decorating the
cellulose were obtained. The hybrid material showed efficient antibacterial properties and
its potential for catalytic and electronic applications was highlighted.
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Figure 10. (a) FE-SEM images of synthesized hybrid material, Cu NPs in a regenerated cellulose
network. (b) XRD pattern of the Cu NP–cellulose hybrid material. The positions of the expected
Bragg peaks from copper (black lines), cellulose II (blue dotted lines) and cuprous oxide (red arrows)
are marked and labeled with their respective Miller indices. The insets show FE-SEM images of the
sample, highlighting the polycrystalline nature of the nanoparticles in the cellulose matrix. Adapted
and reprinted from reference [174] with permission from Elsevier, © 2023.

4.3. Cellulose in Electrical Applications

An electrical energy supply and utilization are essential for the functioning of society.
In May 2021, the International Energy Agency (IEA) released its roadmap to global net-zero
emissions, analyzing the implications of existing net zero pledges and showing a pathway
to net zero emissions in electric energy production globally by 2050 [175]. In connection
to this, a tremendous annual increase in off-grid electric energy storage and distribution
is already appearing, and material solutions that can contribute to CO2 reduction, as
with many other aspects of sustainability, are receiving increased attention scientifically
and technically. Since the energy and climate crisis are two major challenges that we are
facing, where the transition to green energy is urgently needed, this is an emerging field
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for cellulose-based materials. Cellulose can be utilized in many ways in energy storage
and harvesting, and the whole value chain from the produced energy to the customer can
thereby become more sustainable.

4.3.1. Energy Storage—Supercapacitors and Batteries

Cellulose in different forms has been widely used as a separator, electrolyte, binder
and dispersion agent in material for energy storage devices [176]. Nanocelluloses are most
commonly used, especially CNFs and CNCs, due to their superior mechanical properties,
flexibility, low cost, non-toxicity and appealing electrochemical properties.

Supercapacitors are considered one of the potential candidates in the domain of energy
storage devices for future generations. There is a wide variety of applications, such as
storing waste energy to power electric vehicles and other electronic systems and balancing
the electric grid from fluctuations that arise from renewable energy sources such as solar
and wind power. Supercapacitors have generated great interest due to their high power
density, long cycle lifetime and fast charge–discharge [177,178]. A supercapacitor is usually
constructed with two electrodes, with an ion-permeable separator between the electrodes,
all soaked in an electrolyte. The electrodes often consist of carbon material, e.g., activated
carbon [179], or graphene [180] as an active material and a binder that provides mechanical
stability. CNF has been proven suitable as a binder without decreasing the electrical
performance [181]. Figure 11 shows an example of how CNF enhances the mechanical
stability of battery–graphite films.
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Figure 11. Mechanical stability and wet strength of battery–graphite films. (a) Battery–graphite film
without NFC after light load. (b) Battery–graphite film with 10% NFC after light load. (c) Battery–
graphite film without NFC. (d) Battery–graphite film with 10% NFC after operation in a SC. Reprinted
from reference [181] with permission from Wiley-VCH Verlag GmbH & Co., © 2023.

Hajian et al. suggested that there is an association between nanocellulose and carbon
nanomaterial, and the attraction increases with the surface charge of the cellulose [182].
CNC was also proven suitable to stabilize aqueous suspensions of carbon nanotubes [183].
The cellulose surface charges provide electrostatic stabilization of the cellulose–carbon
complexes, preventing aggregation [184]. Between the electrodes, there is an ion-permeable
separator, where cellulose-based materials have shown excellent properties, e.g., regen-
erated cellulose [185], paper [186], cellulose fibers [187] and nanocellulose [176]. The
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ion conductivity through CNF membranes was shown to depend on the choice of elec-
trolyte, where swelling and deswelling of the network structure was observed based on the
Hofmeister series [188] (Figure 12a). However, crosslinking via the periodate oxidation of
cellulose inhibited the swelling (Figure 12b).
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Figure 12. (a) Standard direct Hofmeister series for anions and cations based on precipitation studies
of negatively charged proteins. To the right, ions have the highest stabilization power and increase
swelling, whereas the left-hand side shows the opposite effect, for these specific systems. For the
hydrophilic CNF system, the reversed series for cations is applicable. (b) Swelling behavior of TEMPO
48 h and periodate 48 h after soaking in different electrolytes/water for 20 min (left). All electrolytes
are 1 M. Light microscopy cross-section images on TEMPO 48 h before and after soaking in water for
20 min (right). Adapted and reprinted from reference [188] with permission from Elsevier, © 2023.

Batteries are power sources with high energy density, consisting of one or more
electrochemical cells, with external connections that can be used to power electrical devices,
such as electric cars and mobile phones. A battery consists of a negative electrode (anode), a
positive electrode (cathode) and an electrolyte, and a separator is sometimes used to prevent
short-circuits. In batteries, a binder is used to prevent electrode swelling and mechanical
degradation and to protect the active material against the electrolyte, with maintained
ion transport throughout the binder [189]. One of the challenges for high-energy-density
devices, e.g., lithium-ion batteries, is that the active nanoparticles undergo a significant
volume change during lithiation and delithiation. This results in mechanical stress on the
binder surrounding the nanoparticles, which consequently leads to the degradation of
the battery and decreased performance. Carboxymethyl cellulose (CMC) can be used as a
binder, and it is capable of compensating for the volume change while maintaining stable
performance [190]. Bridel et al. suggested that hydrogen bonding between the carboxyl
group of CMC and the silica particles enabled self-healing during cycling [191]. CNC has
been shown to be promising as a binder in Li-S batteries [192]. Separators are used as a
physical barrier between the anode and cathode materials. It can also serve as an electrolyte
reservoir for ion transport during the charging–discharging cycle. The separators are
non-active electrochemical components; nevertheless, their features, such as their structural
and physical properties, have a significant impact on battery performance [193]. Some key
properties are related to the high ionic conductivity through the separator and low internal
resistance. Different types of cellulose-based membranes have been used as separators,
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e.g., nanopapers made from CNF [194] and mesoporous membranes from CNC [195].
Polymer electrolytes, both gel and solid, are well-suited components in battery applications.
Due to the local polymer chain relaxation, ion conductivity is enabled. Some examples
of polysaccharides used are methyl cellulose [196] and ethyl cellulose [197]. Among
supercapacitors, a hydrogel electrolyte produced from CNC, crosslinked with aluminum
ions, exhibited superior ionic conductivity [198].

4.3.2. Triboelectric Nanogenerators

Historically, due to its excellent dielectric properties, cellulose (paper) has been and
still is widely used as an insulator material in high-power transformers [199,200]. Besides
the traditional use of cellulose in the electric power industry, the need for small-scale dis-
tributed harvesting systems, especially suitable for sensor powering and wide-spread IoT
solutions, is currently also growing. In this context, the triboelectric nanogenerator (TENG)
is an interesting option with a work function that fits well in producing electricity from
mechanical energy that is otherwise wasted [201]. The research on cellulose in the context
of TENGs is, however, still in an early stage. TENGs comprise two separated dielectric
surfaces electrostatically charged by frictional contacts between the surface layers. The
transfer of electrons via an external circuit evens out the potential difference arising between
the electrodes attached to the tribolayers [201,202]. TENGs can be designed and used as
battery-less and self-sufficient power supplies for sensors and many other electronic devices
needed for future sustainable solutions [203–207]. The vast majority of TENGs designed
with organic tribolayers are based on synthetic polymers of questionable chemistry from a
sustainable perspective. Owing to their great abundance, relative cheapness, renewability,
non-toxicity and biodegradability as well as recyclability, the introduction of materials
based on cellulose and several other biopolymers would be very well received [206].

Cellulose was recently demonstrated as a very potent triboelectric material [208]. In
a TENG comprising two slightly different cellulose II tribolayers operating in contact-
separation mode, an output power density corresponding to 300 W m−2 could be reached.
This is a striking result that shows that, once processed correctly, cellulose can fulfil the
demands regarding the performance to replace fossil-based polymers in TENGs. Neverthe-
less, there is still a limited fundamental understanding of how the structural characteristics
relate to the electric properties of cellulose and affect the output in triboelectric applications.
However, in a newly published study, the dependence of cellulose’s physical structure on
different length scales was elaborated more systematically with regard to the triboelectric
performance [133]. Specifically, the effects of morphology and surface structural changes
on the output power density were investigated. Native cellulose I was converted into
cellulose II via dissolution in alkali–urea and regenerated in alcohols of varying aliphatic
chain lengths. In Figure 13, an illustration of the TENG setup is shown and the working
mechanism for the contact-separation mode is explained.

By utilizing triboelectric counter-layers with different mechanical softness, effects
from both surface roughness and surface polarity could be followed in triboelectric power
generation. The assigned peaks at 2θ 12.3◦, 20.5◦ and 22◦ in the XRD diffractograms shown
in Figure 7 correspond to the plane reflections (1–10), (110) and (020), respectively [209]. The
intensity of the (1–10) diffraction peak increased with the increasing aliphatic chain length
of the alcohols, and, correspondingly, the intensity of (110) and (020) was found to decrease.
Isobe et al. reported similar findings regarding the surface and structural properties of
cellulose hydrogels prepared from a LiOH–urea solvent with different alkyl alcohols as
non-solvents [210]. Here, the hydrophilicity of the cellulose surface was assigned to the
intensity of the (1–10) XRD reflection. This agrees very well with reported calculations of
the surface energies of the different crystallographic planes, where (1–10) was shown to
have the highest surface energy due to the frequency of exposed hydroxyl groups [56]. As
previously discussed, the regeneration of cellulose from an aqueous alkali–urea system
has been suggested to involve the hydrophobic stacking of glucopyranoside rings into
monomolecular sheets, reflecting the (110) plane, followed by their mutual association by
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hydrogen bonding, reflecting the (1–10) and (020) planes, resulting in a hydrated form
of the cellulose II polymorph [92,134]. MD simulations also show that the polarity of
the coagulant controls the hydrophobic interactions between cellulose molecules during
regeneration [57]. Moreover, this will induce the reorientation of the more hydrophilic parts
of cellulose (hydroxyl groups) towards the film interface, which appears as an increase
in the (1–10) reflection intensity, thereby producing more hydrophilic cellulose, which is
further attributed to the low measured contact angles [57,92,134].
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disappears, resulting in a current flowing in the opposite direction and producing an alternating 
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Figure 13. (a) Schematic illustration of the TENG setup and (b) the working mechanism following
contact-separation mode. At (I) there are no charges on the tribolayer surfaces. Charge transfer
occurs when the two tribolayers are pressed together, into physical contact (II). When the surfaces are
separating (III), the static charges generate an electric field and induce a potential difference between
the two electrodes, whereas electrons will flow in the external circuit from one electrode to the other
in order to diminish the potential difference, creating a current, until fully released (IV). When the
two layers are pressed into contact again (V), the charges are neutralized and the electrostatic field
disappears, resulting in a current flowing in the opposite direction and producing an alternating
current.

5. Concluding Remarks

Cellulose, growing on land and in the oceans, is the largest biomaterial resource on
Earth and therefore an exceptionally important renewable raw material for humanity. With
Prof. Lindman’s profound revisiting of the fundamentals of cellulose, scientific discussions
of the interactions and mechanisms in cellulose systems have been facilitated. Cellulose’s
amphiphilicity has been highlighted, and hydrogen bonding, which often has been used as
the sole explanation for cellulose’s intramolecular interactions in aqueous systems, has been
reconsidered theoretically as well as empirically in many papers. This has led to a deeper
understanding of the hierarchical cellulose and its behavior, from molecules to macrofibers.
This work paves the way to new thinking in all areas of cellulose technology, which is vital
for the continuous and incremental optimization of different processes involving cellulose,
as well as for the future development and design of novel cellulose materials to replace
petroleum-based ones, with the aim of sustainable development.
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