ON THE ETINGOF-KAZHDAN QUANTIZATION OF NON-DEGENERATE TRIANGULAR LIE BIALGEBRAS

CARLOS MORENO AND JOANA TELES

Abstract

Relatively to a Drinfeld associator Φ we present Etingof and Kazhdan quantization of any quasitriangular finite dimension Lie-bialgebra ($\mathfrak{a},[,]_{\mathfrak{a}}, \varepsilon_{\mathfrak{a}}=d_{c} r_{1}$) over a field \mathbb{K} of characteristic zero. When $r_{1} \in \mathfrak{a} \wedge \mathfrak{a}$ is non-degenerate we prove: a) replacing r_{1} by $r_{\hbar}=r_{1}+r_{2} \cdot \hbar+\cdots \in \mathfrak{a} \wedge \mathfrak{a}[[\hbar]]$ we obtain a triangular Hopf-QUEalgebra $A_{\mathfrak{a}[[\hbar]],\left(\tilde{J}_{T_{\hbar}}^{\Phi}\right)^{-1}}$ which is a quantization of the Lie-bialgebra \mathfrak{a}. We call $\tilde{J}_{r_{\hbar}}^{\Phi}$ an invariant star product on the Lie-bialgebra \mathfrak{a}. In particular and for example in the real case, $\tilde{J}_{r_{\hbar}}^{\Phi}$ defines an invariant deformation quantization on any Lie group G endowed with the invariant Poisson structure r_{1} or the invariant symplectic structure $\beta_{1}=r_{1}^{-1} \in \mathfrak{a}^{*} \otimes \mathfrak{a}^{*} ;$ b) given $r_{\hbar}=r_{1}+r_{2} \cdot \hbar+\cdots$ and $r_{\hbar}^{\prime}=r_{1}+r_{2}^{\prime} \cdot \hbar+\cdots \in \mathfrak{a} \wedge \mathfrak{a}[[\hbar]]$, the star products $\tilde{J}_{r_{\hbar}}^{\Phi}$ and $\tilde{J}_{r_{\hbar}^{\prime}}^{\Phi}$ are (Hochschild) equivalent if and only if the invariant Chevalley (de Rham) cohomology classes of β_{\hbar} and β_{\hbar}^{\prime} coincide. The classifying space of invariant star products on the Lie-bialgebra \mathfrak{a}, under equivalence, in the Etingof-Kazhdan quantization and in the previously constructed Drinfeld quantization of the Lie-bialgebra \mathfrak{a}, Campbell-Hausdorff group, coincide and equal $H^{2}(\mathfrak{a})[[\hbar]]$; c) if Φ and Φ^{\prime} are two Drinfeld associators and F is an invariant star product on the Lie-bialgebra \mathfrak{a} we have the following triangular-Hopf-QUE-algebras isomorphisms $A_{\mathfrak{a}[\hbar \hbar], F^{-1}} \simeq A_{\mathfrak{a}[[\hbar]],\left(\tilde{J}_{r_{\hbar}}^{\Phi}\right)^{-1}} \simeq A_{A[[\hbar]],\left(\tilde{J}_{\left.r_{\hbar}^{\Phi^{\prime}}\right)^{\prime}}\right.}$ for some r_{\hbar} and r_{\hbar}^{\prime} as before. Explicit

 proofs of the above assertions will be given in a forthcoming paper.Keywords: Quantum Groups, Quasi-Hopf algebras, Lie bialgebras, deformation algebras.

1. Some definitions

Let \mathbb{K} be a field of characteristic 0 and $\left(\mathfrak{a},[,]_{\mathfrak{a}}\right)$ a Lie algebra over \mathbb{K}. Recall the following definitions.

A finite dimensional Lie bialgebra over \mathbb{K} is a set $\left(\mathfrak{a},[,]_{\mathfrak{a}}, \varepsilon_{\mathfrak{a}}\right)$ where $\varepsilon_{\mathfrak{a}}$: $\mathfrak{a} \rightarrow \mathfrak{a} \otimes \mathfrak{a}$ is a 1 -cocycle of \mathfrak{a}, with values in $\mathfrak{a} \otimes \mathfrak{a}$, with respect to the adjoint action of \mathfrak{a} such that $\varepsilon_{\mathfrak{a}}^{\mathfrak{t}}: \mathfrak{a}^{*} \otimes \mathfrak{a}^{*} \rightarrow \mathfrak{a}^{*}$ is a Lie bracket on \mathfrak{a}^{*}.
It is called quasitriangular if $\varepsilon_{\mathfrak{a}}=d_{c} r_{1}$, where d_{c} is the Chevalley-Eilenberg coboundary, $r_{1} \in \mathfrak{a} \otimes \mathfrak{a}$ is a solution to $\operatorname{CYBE}\left(\left[r_{1}, r_{1}\right]=0\right)$ and $\left(r_{1}\right)_{12}+\left(r_{1}\right)_{21}$ is $\operatorname{ad}_{\mathfrak{a}}$-invariant. In case r_{1} is skew-symmetric, it is said to be a triangular

[^0]Lie bialgebra. Moreover if $\operatorname{det}\left(r_{1}\right) \neq 0$ it is called a nondegenerate triangular Lie bialgebra.

From any Lie bialgebra $\left(\mathfrak{a},[,]_{\mathfrak{a}}, \varepsilon_{\mathfrak{a}}\right)$ we may obtain a Manin triple [5] $\left(\mathfrak{g}=\mathfrak{a} \oplus \mathfrak{a}^{*},[,]_{\mathfrak{a} \oplus \mathfrak{a}^{*}},\langle;\rangle_{\mathfrak{a} \oplus \mathfrak{a}^{*}}\right)$, where $\langle(x ; \xi) ;(y ; \eta)\rangle_{\mathfrak{a} \oplus \mathfrak{a}^{*}}=\langle\xi ; y\rangle+\langle\eta ; x\rangle$ and

$$
[(x ; \xi),(y ; \eta)]_{\mathfrak{a} \oplus \mathfrak{a}^{*}}=\left([x, y]_{\mathfrak{a}}+a d_{\xi}^{*} y-a d_{\eta}^{*} x ;[\xi, \eta]_{\mathfrak{a}^{*}}+a d_{x}^{*} \eta-a d_{y}^{*} \xi\right) .
$$

This Manin triple has a canonical quasitriangular Lie bialgebra structure defined by the (canonical) element $r=\sum_{i=1}^{n}\left(e_{i} ; 0\right) \otimes\left(0 ; e^{i}\right) \in\left(\mathfrak{a} \oplus \mathfrak{a}^{*}\right) \otimes\left(\mathfrak{a} \oplus \mathfrak{a}^{*}\right)$, where $\left(e_{i}, i=1, \ldots, n\right)$ is a basis of \mathfrak{a} and $\left(e^{i}\right)$ its dual basis.

The set $\left(\mathfrak{a} \oplus \mathfrak{a}^{*},[,]_{\mathfrak{a} \oplus \mathfrak{a}^{*}}, \varepsilon_{\mathfrak{a} \oplus \mathfrak{a}^{*}}=d_{c} r\right)$ is called the (quasitriangular Lie bialgebra) classical double of the Lie bialgebra $\left(\mathfrak{a},[,]_{\mathfrak{a}}, \varepsilon_{\mathfrak{a}}\right)$.

2. Etingof-Kazhdan quantization method

Etingof and Kazhdan (E-K) presented [9] a method to construct a quantization to, in particular, any finite dimensional quasitriangular Lie bialgebra. See also [19].

2.1. Quantization of the classical double.

2.1.1. Drinfeld associator.

Let $T_{n}, n>1$, be the associative algebra with unit over a field \mathbb{K} generated by the elements $\left\{t_{i j}, i \neq j, 1 \leq i, j \leq n\right\}$ with defining relations $t_{i j}=t_{j i}$, $\left[t_{i j}, t_{k l}\right]=0$, if i, j, k, l are distinct and $\left[t_{i j}, t_{i k}+t_{j k}\right]=0$.

Let I_{1}, \ldots, I_{n} be disjoint subsets of $\{1, \ldots, m\}$.
Proposition 2.1. [10] There exists a unique homomorphism $\tau_{I_{1}, \ldots, I_{n}}: T_{n} \longrightarrow$ T_{m} defined by $\tau_{I_{1}, \ldots, I_{n}}\left(t_{i j}\right)=\sum_{k \in I_{i}, l \in I_{j}} t_{k l}$.

For any $X \in T_{n}$, we denote $\tau_{I_{1}, \ldots, I_{n}}(X)$ by $X_{I_{1}, \ldots, I_{n}}$. Let $T_{n}[[\hbar]]$ be the set of the formal power series in \hbar with coefficients in the algebra T_{n}.

Definition 2.2. [8] A Drinfeld associator is an element $\Phi \in T_{3}[[\hbar]]$ such that
(i) $\Phi=1+O\left(\hbar^{2}\right)$;
(ii) $\Phi=e^{P\left(\hbar t_{12}, \hbar t_{23}\right)}$, P is a Lie formal series with coefficients in \mathbb{K} (we may take $\mathbb{K}=\mathbb{Q}$) ;
(iii) In $T_{4}[[\hbar]]$, Φ satisfies the pentagon relation

$$
\Phi_{1,2,34} \cdot \Phi_{12,3,4}=\Phi_{2,3,4} \cdot \Phi_{1,23,4} \cdot \Phi_{1,2,3} ;
$$

(iv) If $B_{12}=e^{\frac{\hbar}{2} t_{12}} \in T_{2}[[\hbar]]$, in $T_{3}[[\hbar]]$, Φ and B satisfy the hexagon relations

$$
\begin{aligned}
& B_{12,3}=\Phi_{3,1,2} \cdot B_{1,3} \cdot \Phi_{1,3,2}^{-1} \cdot B_{2,3} \cdot \Phi_{1,2,3} \\
& B_{1,23}=\Phi_{2,3,1}^{-1} \cdot B_{1,3} \cdot \Phi_{2,1,3} \cdot B_{1,2} \cdot \Phi_{1,2,3}^{-1} .
\end{aligned}
$$

2.1.2. Drinfeld braided tensor category $\mathcal{M}_{\mathfrak{g}}$.

Let $\left(\mathfrak{a},[,]_{\mathfrak{a}}, \varepsilon_{\mathfrak{a}}\right)$ be a Lie bialgebra and let $\left(\mathfrak{g} \equiv \mathfrak{a} \oplus \mathfrak{a}^{*},[,]_{\mathfrak{g}}, \varepsilon_{\mathfrak{g}}=d_{c} r\right)$ be its classical double. We use the identifications $\mathfrak{a} \equiv \mathfrak{g}_{+}$and $\mathfrak{a}^{*} \equiv \mathfrak{g}_{-}$. We set

$$
\Omega_{12}=r_{12}+r_{21}=\sum\left(\left(e_{i} ; 0\right) \otimes\left(0 ; e^{i}\right)+\left(0 ; e^{i}\right) \otimes\left(e_{i} ; 0\right)\right) .
$$

Let $\mathcal{M}_{\mathfrak{g}}$ denote the category whose objects are \mathfrak{g}-modules and $\operatorname{Hom}_{\mathcal{M}_{\mathfrak{g}}}(U, V)=$ $\operatorname{Hom}_{\mathfrak{g}}(U, V)[[\hbar]]$. This category has a tensor product \otimes. If $U, W \in \mathbf{O b}_{\mathcal{M}_{\mathfrak{g}}}$, $U \otimes W$ is the usual tensor product of \mathfrak{g}-modules.
Consider the algebra homomorphism $\Theta: T_{n} \longrightarrow \mathcal{U}^{\mathbb{g}^{\otimes^{n}}}$ defined through $\Theta\left(t_{i j}\right)=\Omega_{i j}$. The element $\Theta\left(t_{12}\right)=\Omega_{12} \in \mathcal{U} \mathfrak{g} \otimes \mathcal{U} \mathfrak{g}$ defines a \mathfrak{g}-module morphism $\Omega_{U V}: U \otimes V \longrightarrow U \otimes V$, because Ω is $a d_{\mathfrak{g}}$-invariant. The element $\Phi=\Theta(\Phi) \in \mathcal{U} \mathfrak{g}\left[[\hbar] \otimes^{\otimes 3}\right.$ is also $a d_{\mathfrak{g}}$-invariant, so it defines an element $\Phi_{V U W} \in$ $\operatorname{Hom}_{\mathcal{M}_{\mathfrak{g}}}((V \otimes U) \otimes W, V \otimes(U \otimes W))$ for any $V, U, W \in \mathbf{O b}_{\mathcal{M}_{\mathfrak{g}}}$.

For any $V, U \in \mathbf{O b}_{\mathcal{M}_{\mathfrak{g}}}$ introduce the isomorphism $\beta_{V U}: V \otimes U \longrightarrow U \otimes V$ where $\beta=\sigma R^{0}=\sigma \circ e^{\hbar \Omega / 2}$ and σ is the usual permutation.

It follows from pentagon and hexagon relations on the associator that the morphisms $\Phi_{V U W}$ and $\beta_{V U}$ define the structure of a braided monoidal category on $\mathcal{M}_{\mathfrak{g}}([7,11])$.

Using the elements $\Phi \in \mathcal{U} \mathfrak{g}[[\hbar]]^{\otimes^{3}}$ and $R^{0}=e^{\hbar \Omega / 2} \in \mathcal{U} \mathfrak{g}[[\hbar]]^{\otimes^{2}}$ we may define (see [8]) a structure of quasi-triangular quasi-Hopf QUE algebra

$$
\begin{equation*}
\left(\mathcal{U} \mathfrak{g}[[\hbar]], \cdot, 1, \Delta_{0}, \epsilon_{0}, \Phi, S_{0}, \alpha=c^{-1}, \beta=1, R^{0}=e^{\frac{\hbar}{2} \Omega}\right) \tag{1}
\end{equation*}
$$

where $\Delta_{0}, \epsilon_{0}, S_{0}$, are the extensions of the corresponding maps in the universal enveloping algebra $\mathcal{U} \mathfrak{g}, c=\sum X_{i} \cdot S_{0}\left(Y_{i}\right) \cdot Z_{i}$ with $\Phi=\sum X_{i} \otimes Y_{i} \otimes Z_{i}$, see [7] prop.1.3.

2.1.3. The functor $\mathcal{F}: \mathcal{M}_{\mathfrak{g}} \longrightarrow \mathcal{A}$.

Let \mathcal{A} denote the symmetric monoidal category (tensor category) [11] of topologically free $\mathbb{K}[[\hbar]]$-modules, with trivial associativity and commutativity constraints.

Let $\mathcal{F}: \mathcal{M}_{\mathfrak{g}} \longrightarrow \mathcal{A}$ be the functor given by $\mathcal{F}(V)=\operatorname{Hom}_{\mathcal{M}_{\mathfrak{g}}}(\mathcal{U} \mathfrak{g}, V)$, for $V \in \mathbf{O b}_{\mathcal{M}_{\mathfrak{g}}}$ and if $V, U \in \mathbf{O b}_{\mathcal{M}_{\mathfrak{g}}}$ the map $\mathcal{F}: \operatorname{Hom}_{\mathcal{M}_{\mathfrak{g}}}(V, U) \longrightarrow$
$\operatorname{Hom}_{\mathcal{A}}(\mathcal{F}(V), \mathcal{F}(U))$ is defined as $\mathcal{F}(f)(g)=f \circ g$, for $f \in \operatorname{Hom}_{\mathcal{M}_{\mathfrak{g}}}(V, U)$ and $g \in \mathcal{F}(V)$.
There is also a (forgetful) functor $\mathcal{G}: \mathcal{M}_{\mathfrak{g}} \longrightarrow \mathcal{A}$ defined in objects by $\mathcal{G}(V)=V[[\hbar]]$ and if $f \in \operatorname{Hom}_{\mathcal{M}_{\mathfrak{g}}}(V, W)$ then $\mathcal{G}(f) \equiv f$.

The map $\delta: \mathcal{F} \longrightarrow \mathcal{G}$ defined, for each $V \in \mathbf{O b}_{\mathcal{M g}_{\mathfrak{g}}}$ and $f \in \mathcal{F}(V)$, by $\delta_{V}(f)=f(1)$ defines a natural isomorphism from the functor \mathcal{F} to \mathcal{G}.
2.1.4. \mathfrak{g}-modules M_{+}and M_{-}.

By the Poincaré-Birkhoff-Witt theorem, the product in $\mathcal{U} \mathfrak{g}=\mathcal{U}\left(\mathfrak{g}_{+} \oplus \mathfrak{g}_{-}\right)$ defines linear isomorphisms $\mathcal{U g}_{+} \otimes \mathcal{U g}_{-} \longrightarrow \mathcal{U} \mathfrak{g}$ and $\mathcal{U} \mathfrak{g}_{-} \otimes \mathcal{U g}_{+} \longrightarrow \mathcal{U} \mathfrak{g}$.
Introduce the following two induced representations, objects of $\mathcal{M}_{\mathfrak{g}}$

$$
\begin{aligned}
M_{+} & =\mathcal{U} \mathfrak{g} \otimes_{\mathcal{G}_{+}} W_{+}=\mathcal{U} \mathfrak{g} \otimes_{\mathcal{U}_{+}} e_{+}=\mathcal{U}_{\mathfrak{g}_{-}}\left(1 \otimes_{\mathbf{K}} e_{+}\right)=\mathcal{U}_{\mathfrak{g}_{-}} 1_{+} \\
M_{-} & =\mathcal{U} \mathfrak{g} \otimes_{\mathcal{U}_{-}} W_{-}=\cdots=\mathcal{U}_{\mathfrak{g}_{+}}\left(1 \otimes_{\mathbf{K}} e_{-}\right)=\mathcal{U}_{g_{+}} 1_{-}
\end{aligned}
$$

where $W_{ \pm}$is the trivial $\mathfrak{g}_{ \pm}$-module and $1_{ \pm} \otimes 1_{ \pm}$is $\mathfrak{g}_{ \pm}$-invariant.
Lemma 2.3. There exist \mathfrak{g}-module morphisms $i_{ \pm}: M_{ \pm} \longrightarrow M_{ \pm} \otimes M_{ \pm}$such that $i_{ \pm}\left(1_{ \pm}\right)=1_{ \pm} \otimes 1_{ \pm}$.

Proposition 2.4. [9] The assignment $1 \in \mathcal{U g} \longrightarrow 1_{+} \otimes 1_{-}$extends to an isomorphism of \mathfrak{g}-modules $\phi: \mathcal{U} \mathfrak{g} \longrightarrow M_{+} \otimes M_{-}$.

Proof: If $\phi(1)=1_{+} \otimes 1_{-}$and ϕ is a \mathfrak{g}-module morphism, the construction of ϕ is unique. It is clear that ϕ preserves the standard filtration, then it defines a map $\operatorname{grad}(\phi)$ on the associated graded objects. This map $\operatorname{grad}(\phi)$ is bijective and then ([3] chapter III, $\S 2$, n8, corollary of theorem 1) ϕ is bijective.
2.1.5. A tensor structure on \mathcal{F}.

Definition 2.5. [11] A tensor structure on the functor \mathcal{F} is a natural isomorphism of functors $J: \mathcal{F}(\cdot) \otimes \mathcal{F}(\cdot) \longrightarrow \mathcal{F}(\cdot \otimes \cdot)$ such that $J_{V W}: \mathcal{F}(V) \otimes$ $\mathcal{F}(W) \longrightarrow \mathcal{F}(V \otimes W)$ satisfies

$$
\begin{aligned}
& \mathcal{F}\left(\Phi_{V W U}\right) \circ J_{V \otimes W, U} \circ\left(J_{V W} \otimes 1\right)=J_{V, W \otimes U} \circ\left(1 \otimes J_{W U}\right), V, W, U \in \mathbf{O b}_{\mathcal{M}_{\mathfrak{g}}} \\
& J_{V I}=J_{I V}=1, \quad \mathcal{F}\left(I_{\mathcal{M}_{\mathfrak{g}}}\right)=\mathbb{K}[[\hbar]]=I_{\mathcal{A}}, V \in \mathbf{O b}_{\mathcal{M}_{\mathfrak{g}}} .
\end{aligned}
$$

A functor equipped with a tensor structure is called a tensor functor.

Etingof and Kazdhan [9, 12] define the following map, for $V, W \in \mathbf{O b}_{\mathcal{M}_{\mathfrak{g}}}$ and $v \in \mathcal{F}(V), w \in \mathcal{F}(W)$, let $J_{V W}(v \otimes w)$ be the composition

$$
\begin{aligned}
J_{V W}(v \otimes w)= & (v \otimes w) \circ\left(\phi^{-1} \otimes \phi^{-1}\right) \circ \Phi_{1,2,34}^{-1} \circ\left(1 \otimes \Phi_{2,3,4}\right) \circ \\
& \circ\left(1 \otimes\left(\sigma \circ e^{\frac{\hbar}{2} \Omega}\right) \otimes 1\right) \circ\left(1 \otimes \Phi_{2,3,4}^{-1}\right) \circ \Phi_{1,2,34} \circ\left(i_{+} \otimes i_{-}\right) \circ \phi .
\end{aligned}
$$

Proposition 2.6. [9] The maps $J_{V W}$ define a tensor structure on \mathcal{F}.
2.2. The quasitriangular Hopf algebra $(\operatorname{End}(\mathcal{F}), \cdot, i d, \hat{\Delta}, \hat{\epsilon}, \hat{S}, \hat{R})$.

We may adapt the general reconstruction theorem in [13] (Chapter 9) to obtain [9] a quasitriangular Hopf algebra $(\operatorname{End}(\mathcal{F}), \cdot, i d, \hat{\Delta}, \hat{\epsilon}, \hat{S}, \hat{R})$, where $\operatorname{End}(\mathcal{F})$ is the set of natural transformations from the functor \mathcal{F} to itself.
To define a comultiplication $\hat{\Delta}: \operatorname{End}(\mathcal{F}) \longrightarrow \operatorname{End}(\mathcal{F}) \otimes \operatorname{End}(\mathcal{F})$, we introduce first a functor $\mathcal{F}^{2}: \mathcal{M}_{\mathfrak{g}} \times \mathcal{M}_{\mathfrak{g}} \longrightarrow \mathcal{A}$ defined by $\mathcal{F}^{2}(V, W)=$ $\mathcal{F}(V) \hat{\otimes} \mathcal{F}(W),\left(\mathcal{F}^{2}=\otimes(\mathcal{F} \times \mathcal{F})\right)$.

Consider the map $\hat{\Delta}: \operatorname{End}(\mathcal{F}) \longrightarrow \operatorname{End}(\mathcal{F}) \hat{\otimes} \operatorname{End}(\mathcal{F})=\operatorname{End}\left(\mathcal{F}^{2}\right)$ where, if $a \in \operatorname{End}(\mathcal{F})$, for any $V, W \in \mathbf{O b}_{\mathcal{M}_{\mathfrak{g}}}$.

$$
\begin{equation*}
(\hat{\Delta}(a))_{V, W}=J_{V, W}^{-1} \circ a_{V \otimes W} \circ J_{V, W} . \tag{2}
\end{equation*}
$$

Lemma 2.7. If $a \in \operatorname{End}(\mathcal{F})$, then $\hat{\Delta}(a)$ is a natural transformation from \mathcal{F}^{2} to \mathcal{F}^{2}, i.e., $\hat{\Delta}(a) \in \operatorname{End}\left(\mathcal{F}^{2}\right)$.

Consider now the element $\hat{R} \in \operatorname{End}(\mathcal{F}) \hat{\otimes} \operatorname{End}(\mathcal{F})=\operatorname{End}\left(\mathcal{F}^{2}\right)$ such that $\hat{R}_{V, W}=\sigma \circ J_{W, V}^{-1} \circ \mathcal{F}\left(\sigma \circ e^{\frac{\hbar}{2} \Omega_{V, W}}\right) \circ J_{V, W}=\sigma \circ J_{W, V}^{-1} \circ \mathcal{F}\left(\beta_{V, W}\right) \circ J_{V, W}, V, W \in \mathbf{O b}_{\mathcal{M}_{\mathfrak{g}}}$.

Lemma 2.8. \hat{R} is a natural transformation from \mathcal{F}^{2} to \mathcal{F}^{2}, i.e., $\hat{R} \in \operatorname{End}\left(\mathcal{F}^{2}\right)$.

Finally, let us consider the map $\hat{\epsilon}: \operatorname{End}(\mathcal{F}) \longrightarrow \mathbb{K}[[\hbar]]$ defined as

$$
\begin{equation*}
\hat{\epsilon}(a)=\delta_{\mathbf{K}}\left(a_{\mathbf{K}}\left(\delta_{\mathbf{K}}^{-1}(1)\right)\right) \tag{4}
\end{equation*}
$$

for $a \in \operatorname{End}(\mathcal{F})$, where δ is the natural isomorphism defined before from \mathcal{F} to the forgetful functor on $\mathcal{M}_{\mathfrak{g}}$.

Remark 2.9. If H is a quasi-Hopf algebra, over a commutative ring k, with antipode S, then the category of left H-modules of finite dimension is rigid
($[7,13]$). The left dual of the H-module V is $V^{*}=\operatorname{Hom}_{k}(V, k)$ with

$$
(h \cdot f)(v)=f((S h) v), \quad v \in V, f \in V^{*}, h \in H
$$

and maps ev $(f \otimes v)=f(\alpha \cdot v)$, coev $=\sum_{i} \beta \cdot e_{i} \otimes e^{i}$, where α, β are elements of the definition of quasi-Hopf algebra, $\left\{e_{i}\right\}$ is a basis of V and $\left\{e^{i}\right\}$ its dual basis.

Consider now the category of left H-modules (not necessarily of finite dimension), for each object V, let us call dual object of V to the element $V^{*}=\operatorname{Hom}_{k}(V, k)$ which is also a H-module, considering the action already defined. Thus, we have a map between objects of this category. If f is a morphism of H-modules from V to W we define $f^{t}: W^{*} \longrightarrow V^{*}$ as

$$
f^{\mathrm{t}}\left(w^{*}\right)(v)=w^{*}(f(v)), \quad v \in V, w^{*} \in W^{*} .
$$

It is easy to prove that $f^{\mathfrak{t}}$ is also a module morphism and $(f \circ g)^{\mathfrak{t}}=g^{\mathfrak{t}} \circ$ $f^{\mathfrak{t}}$ for any morphisms f and g of H-modules. Then we conclude that $*$ is a contravariant functor from the category of H-modules (not necessarily of finite dimension) to itself.

We can also define a H-module morphism, for any module V,

$$
\begin{gather*}
\tau_{V}: V^{*} \otimes V \longrightarrow k \\
\tau_{V}\left(v^{*} \otimes v\right)=v^{*}(\alpha \cdot v), \quad v^{*} \in V^{*}, v \in V \tag{5}
\end{gather*}
$$

We remark that τ_{V} coincides with the map $e v_{V}$ defined above in case of finite dimension.

If \mathcal{D} is a rigid tensor category, V an object of \mathcal{D} and F is a tensor functor, then it is immediate that

$$
F(V)^{*^{\prime}}=F\left(V^{*}\right) \quad e v_{F(V)}^{\prime}=F\left(e v_{V}\right) \circ J_{V^{*}, V} \quad \operatorname{coev}_{F(V)}^{\prime}=J_{V, V^{*}}^{-1} \circ F\left(\operatorname{coev}_{V}\right)
$$

are a left dual for $F(V)$. Hence according to the uniqueness of duals up to isomorphism, we have induced an isomorphism $d_{V}: F\left(V^{*}\right) \longrightarrow F(V)^{*}$ defined by

$$
\begin{equation*}
d_{V}=\left(e v_{F(V)}^{\prime} \otimes i d_{F(V)^{*}}\right) \circ\left(i d_{F\left(V^{*}\right)} \otimes \operatorname{coev}_{F(V)}\right) \tag{6}
\end{equation*}
$$

with inverse $d_{V}^{-1}=\left(e v_{F(V)} \otimes i d_{F\left(V^{*}\right)}\right) \circ\left(i d_{F(V)^{*}} \otimes \operatorname{coev}_{F(V)}^{\prime}\right)$.
Consider the quasi-Hopf algebra (1), the functor $*$ is a functor from $\mathcal{M}_{\mathfrak{g}}$ to $\mathcal{M}_{\mathfrak{g}}$, and it exists also an analogous functor $*$ from \mathcal{A} to \mathcal{A} (generalization
of the one in vector spaces, if V is a vector space and $V[[\hbar]]$ an object of \mathcal{A}, the dual object is $(V[[\hbar]])^{*}$. Then, $(\mathcal{F} \circ *)$ and $(* \circ \mathcal{F})$ are (contravariant) functors from the category $\mathcal{M}_{\mathfrak{g}}$ to the category \mathcal{A}.

For any $V \in \mathbf{O b}_{\mathcal{M}_{\mathfrak{g}}}$, let us define $\xi_{V}: \mathcal{F}\left(V^{*}\right) \longrightarrow \mathcal{F}(V)^{*}$ as

$$
\begin{equation*}
\xi_{V}\left(v^{*}\right)(v)=\delta_{\mathbf{K}}\left(\mathcal{F}\left(\tau_{V}\right) \circ J_{V^{*}, V}\left(v^{*} \otimes v\right)\right), \quad v^{*} \in \mathcal{F}\left(V^{*}\right), v \in \mathcal{F}(V), \tag{7}
\end{equation*}
$$

where δ is the natural isomorphism from \mathcal{F} to the forgetful functor, and τ the map defined in (5). This map corresponds to the natural isomorphism defined by Etingof-Kazhdan in [9], where $\mathcal{F}(\mathbb{K})$ and $\mathbb{K}[[\hbar]]$ are identified.

Lemma 2.10. ξ is a natural isomorphism from the functor $(\mathcal{F} \circ *)$ to the functor $(* \circ \mathcal{F})$.

If $a \in \operatorname{End}(\mathcal{F})$, let us define

$$
\begin{equation*}
\bar{S}(a)_{V}=\left(\xi_{V}^{\mathrm{t}}\right)^{-1} \circ a_{V^{*}}^{\mathrm{t}} \circ \xi_{V}^{\mathrm{t}} \tag{8}
\end{equation*}
$$

a morphism from $\mathcal{F}(V)^{* *}$ to $\mathcal{F}(V)^{* *}$.
Lemma 2.11. The subspace $\mathcal{F}(V) \subset \mathcal{F}(V)^{* *}$ is invariant by this morphism.
Lemma 2.12. For $a \in \operatorname{End}(\mathcal{F})$, let us consider

$$
\begin{equation*}
\hat{S}(a)_{V}=\left.\bar{S}(a)_{V}\right|_{\mathcal{F}(V)} \tag{9}
\end{equation*}
$$

for any $V \in \mathbf{O b}_{\mathcal{M}_{\mathfrak{g}}}$. Then, \hat{S} is a map $\operatorname{End}(\mathcal{F}) \longrightarrow \operatorname{End}(\mathcal{F})$.

We may, using the proof of this lemma, present a simpler expression to define the map \hat{S}. Let $a \in \operatorname{End}(\mathcal{F}), V$ an object of $\mathcal{M}_{\mathfrak{g}}$ and $u \in \mathcal{F}(V)$, then

$$
\hat{S}(a)_{V}(u)=\delta_{V}^{-1}\left(\mu_{V}\left(Q^{-1} \cdot S_{0}(A) \cdot Q\right) \circ \delta_{V}(u)\right)
$$

where $\mu_{V}: V[[\hbar]] \longrightarrow V[[\hbar]]$ is defined as $\mu_{V}(A)(x)=A x, x \in V$ and $A=a_{\mathcal{U g}^{\prime}}\left(i d_{\mathcal{U g}_{\mathfrak{g}}}\right)(1)$.

Using the definition (8), we may see that the map \hat{S} is an algebra anti-automorphism, that is, $\hat{S}(a \cdot b)=\hat{S}(b) \cdot \hat{S}(a), \quad a, b \in \operatorname{End}(\mathcal{F})$.

In the particular case of considering only finite dimensional modules the $\operatorname{map} \hat{S}: \operatorname{End}(\mathcal{F}) \longrightarrow \operatorname{End}(\mathcal{F})$ is defined, for any $a \in \operatorname{End}(\mathcal{F})$, by

$$
\left(\hat{S}(a)_{V}\right)^{\mathfrak{t}}=d_{V} \circ a_{V^{*}} \circ d_{V}^{-1}
$$

where d_{V} is the isomorphism that appears in (6), identifying $\mathcal{F}(\mathbb{K})$ and $\mathbb{K}[[\hbar]]$, and the transpose map is defined in the same section. For each $v^{*} \in \mathcal{F}\left(V^{*}\right)$, we have

$$
\begin{aligned}
d_{V}\left(v^{*}\right) & =\left(\mathcal{F}\left(e v_{V}\right) \circ J_{V^{*}, V} \otimes i d_{\mathcal{F}(V)^{*}}\right) \circ\left(i d_{\mathcal{F}\left(V^{*}\right)} \otimes \operatorname{coev}_{\mathcal{F}(V)}\right)\left(v^{*}\right) \\
& =\left(\mathcal{F}\left(e v_{V}\right) \circ J_{V^{*}, V}\right)\left(v^{*} \otimes e_{i}\right) \otimes e^{i}, \quad e_{i} \in \mathcal{F}(V) \text { basis }, e^{i} \in \mathcal{F}(V)^{*}
\end{aligned}
$$

(see chapter 9.4 in [13]). If $v \in \mathcal{F}(V)$, finally, we get

$$
d_{V}\left(v^{*}\right)(v)=\left(\mathcal{F}\left(e v_{V}\right) \circ J_{V^{*}, V}\right)\left(v^{*} \otimes v\right),
$$

coinciding with the definition of ξ_{V} in [9]. Without using the above identification, the expression for $d_{V}\left(v^{*}\right)(v)$ would coincide with the one of $\xi_{V}\left(v^{*}\right)(v)$ defined in (7). Using the definition of transpose map and the expression of d_{V}, we have

$$
\begin{aligned}
\hat{S}(a)_{V}=\left(i d _ { \mathcal { F } (V) } \otimes \left(\mathcal{F}\left(e v_{V}\right)\right.\right. & \left.\left.\circ J_{V^{*}, V}\right)\right) \circ\left(i d_{\mathcal{F}(V)} \otimes a_{V^{*}} \otimes i d_{\mathcal{F}(V)}\right) \circ \\
& \circ\left(\left(J_{V, V^{*}}^{-1} \circ \mathcal{F}\left(\operatorname{coev}_{V}\right)\right) \otimes i d_{\mathcal{F}(V)}\right) .
\end{aligned}
$$

Theorem 2.13. Relatively to the elements defined in (2), (3), (4) and (9), we have
(a) $(\hat{\Delta} \otimes 1) \circ \hat{\Delta}(a)=(1 \otimes \hat{\Delta}) \circ \hat{\Delta}(a)$,
(b) $\hat{\Delta}(a \cdot b)=\hat{\Delta}(a) \cdot \hat{\Delta}(b), \quad a, b \in \operatorname{End}(\mathcal{F})$.
(c) $(\hat{\Delta} \otimes 1) \hat{R}=\hat{R}_{13} \cdot \hat{R}_{23}, \quad(1 \otimes \hat{\Delta}) \hat{R}=\hat{R}_{13} \cdot \hat{R}_{12}$,
(d) $\sigma(\hat{\Delta}(a)) \cdot \hat{R}=\hat{R} \cdot \hat{\Delta}(a)$,
(e) $(\hat{\epsilon} \otimes 1) \circ \hat{\Delta}=1, \quad(1 \otimes \hat{\epsilon}) \circ \hat{\Delta}=1$,
$(f) \cdot((\hat{S} \otimes 1) \circ \hat{\Delta}(a))=i d(\hat{\epsilon}(a)), \quad \cdot((1 \otimes \hat{S}) \circ \hat{\Delta}(a))=i d(\hat{\epsilon}(a))$.
Therefore, the set $(\operatorname{End}(\mathcal{F}), \cdot, i d, \hat{\Delta}, \hat{\epsilon}, \hat{S}, \hat{R})$ is a quasitriangular Hopf algebra over the ring $\mathbb{K}[[\hbar]]$.

Theorem 2.14. [9] The algebra $\operatorname{End}(\mathcal{F})$ and the topological usual associative algebra $\mathcal{U} \mathfrak{g}[[\hbar]]$ are isomorphic.

This isomorphism allows us to define on the algebra $\mathcal{U} \mathfrak{g}[[\hbar]]$ the pull-back of the quasitriangular Hopf algebra structure on $\operatorname{End}(\mathcal{F}):(\mathcal{U} \mathfrak{g}[[\hbar]], \cdot, \Delta, S, R)$.

Theorem 2.15. [9] The set $(\mathcal{U} \mathfrak{g}[[\hbar]], \cdot, \Delta, S, R)$ verifies

$$
\Delta(u)=J^{-1} \cdot \Delta_{0}(u) \cdot J, \quad S(u)=Q^{-1} \cdot S_{0}(u) \cdot Q, \quad R=\sigma J^{-1} \cdot e^{\frac{\hbar}{2} \Omega} \cdot J
$$

where $Q=\sum S_{0}\left(u_{i}\right) \cdot v_{i}$ if $J=\sum u_{i} \otimes v_{i}, u_{i}, v_{i} \in \mathcal{U} \mathfrak{g}[[\hbar]]$ and
$J=\left(\phi^{-1} \otimes \phi^{-1}\right)\left(\Phi_{1,2,34}^{-1} \circ \Phi_{2,3,4} \circ \sigma_{23} \circ e^{\frac{\hbar}{2} \Omega_{23}} \circ \Phi_{2,3,4}^{-1} \circ \Phi_{1,2,34}\left(i_{+} \otimes i_{-}\right)(\phi(1))\right)$.
It is a quasitriangular Hopf QUE algebra and a quantization, [7, 9], of the quasitriangular Lie bialgebra $\left(\mathfrak{g}=\mathfrak{a} \oplus \mathfrak{a}^{*},[,]_{\mathfrak{g}}, \varepsilon_{\mathfrak{g}}=d_{c} r\right)$ where the topological algebra structure of $\mathcal{U} \mathfrak{g}[\hbar \hbar]]$ is the usual one. It is obtained from the quasitriangular quasi-Hopf algebra (1) by a twist via J^{-1}, and we denote it as $A_{\mathfrak{g}[\hbar]], \Omega, J-J^{-1}}$.

2.3. Quantization of quasitriangular Lie bialgebras.

1)Let $\left(\mathfrak{a},[,]_{\mathfrak{a}}, \varepsilon_{\mathfrak{a}}=d_{c} r_{1}\right)$ be a quasitriangular Lie bialgebra. Set

$$
\mathfrak{g}_{+}=\left\{(1 \otimes f) r_{1} \mid \forall f \in(\mathcal{U} \mathfrak{a})^{*}\right\} \subseteq \mathcal{U} \mathfrak{a}, \quad \mathfrak{g}_{-}=\left\{(f \otimes 1) r_{1} \mid \forall f \in(\mathcal{U} \mathfrak{a})^{*}\right\} \subseteq \mathcal{U} \mathfrak{a}
$$

where $r_{1}=r_{1}^{m n} e_{m} \otimes e_{n}$ with $\left\{e_{m}\right\}$ a basis of \mathfrak{a}. Then $(1 \otimes f)\left(r_{1}\right)=r_{1}^{m n} e_{m} f\left(e_{n}\right)$ with $f \in(\mathcal{U} \mathfrak{a})^{*}$. Because r_{1} is a finite sum, the only elements for which $(1 \otimes f)\left(r_{1}\right)$ is not zero will be elements $f \in \mathfrak{a}^{*}$. Therefore, in this case, the above definitions are equivalent to

$$
\mathfrak{g}_{+}=\left\{(1 \otimes f) r_{1} \mid \forall f \in \mathfrak{a}^{*}\right\} \subseteq \mathfrak{a}, \quad \mathfrak{g}_{-}=\left\{(f \otimes 1) r_{1} \mid \forall f \in \mathfrak{a}^{*}\right\} \subseteq \mathfrak{a} .
$$

Using a result from [18], \mathfrak{g}_{+}and \mathfrak{g}_{-}are Lie subalgebras of \mathfrak{a}.
Let us define $\chi_{r_{1}}: \mathfrak{g}_{+}^{*} \rightarrow \mathfrak{g}_{-}$by $\chi_{r_{1}}(g)=(g \otimes 1) r_{1} . \quad \chi_{r_{1}}$ is a linear isomorphism. Using this isomorphism we may define (see [9]) a Lie algebra structure $[,]_{\overline{\mathfrak{g}}}$ on the vector space $\overline{\mathfrak{g}}=\mathfrak{g}_{+} \oplus \mathfrak{g}_{-}$, and also a $a d_{\overline{\mathfrak{g}}}$-invariant bilinear form $<;>_{\overline{\mathfrak{g}}}$. With these structures $\left(\overline{\mathfrak{g}}=\mathfrak{g}_{+} \oplus \mathfrak{g}_{-},[,]_{\mathfrak{g}},<;>_{\overline{\mathfrak{g}}}\right)$ is a Manin triple. This Manin triple is the image by $\left(1 \oplus \chi_{r_{1}}\right)$ of the classical double of the Lie bialgebra $\left(\mathfrak{g}_{+},[,]_{\mathfrak{g}_{+}}, \varepsilon\right), \mathfrak{g}_{+} \subseteq \mathfrak{a}$, where ε is the transpose of $[,]_{\mathfrak{g}_{+}^{*}}$ (see also [19]).
Furthermore, the map $\pi: \mathfrak{g}_{+} \oplus \mathfrak{g}_{-} \longrightarrow \mathfrak{a}$ defined as $\pi(x ; y)=x+y$, for $x \in \mathfrak{g}_{+}, y \in \mathfrak{g}_{-}$is a Lie algebra morphism.

Theorem 2.16. [9] From $\pi: \mathfrak{g}_{+} \oplus \mathfrak{g}_{-} \longrightarrow \mathfrak{a}$, let us define $\tilde{\pi}: \mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{g}_{+}^{*} \longrightarrow$ \mathfrak{a} by $\tilde{\pi}=\pi \circ\left(1 \oplus \chi_{r_{1}}\right)$. Then, $\tilde{\pi}$ is a Lie algebra homomorphism and

$$
(\tilde{\pi} \otimes \tilde{\pi})(r)=r_{1} .
$$

Therefore, $\tilde{\pi}$ can be uniquely extended to an associative algebra homomorphism $\tilde{\pi}: \mathcal{U} \mathfrak{g} \longrightarrow \mathcal{U} \mathfrak{a}$.
2)Let $\mathcal{M}_{\mathfrak{a}}$ be the category whose objects are \mathfrak{a}-modules and $\operatorname{Hom}_{\mathcal{M}_{\mathfrak{a}}}(V, W)=$ $\operatorname{Hom}_{\mathfrak{a}}(V, W)[[\hbar]]$. Let $\mathcal{M}_{\mathfrak{g}}$ be the Drinfeld category associated to \mathfrak{g}. We have the pullback functor $\tilde{\pi}^{*}: \mathcal{M}_{\mathfrak{a}} \longrightarrow \mathcal{M}_{\mathfrak{g}}$ defined by $\tilde{\pi}^{*}(V)=V$, as vector spaces, and if $v \in \tilde{\pi}^{*}(V), x \cdot v=\tilde{\pi}(x) \cdot v, x \in \mathfrak{g}$. We have also $\tilde{\pi}^{*}$: $\operatorname{Hom}_{\mathcal{M}_{\mathfrak{a}}}(V, W) \longrightarrow \operatorname{Hom}_{\mathcal{M}_{\mathfrak{g}}}\left(\tilde{\pi}^{*} V, \tilde{\pi}^{*} W\right)$ defined by $\left(\tilde{\pi}^{*} f\right)(x \cdot v)=\left(\tilde{\pi}^{*} f\right)(\tilde{\pi}(x)$. $v)=f(\tilde{\pi}(x) \cdot v)=\tilde{\pi}(x) \cdot f(v)=x \cdot\left(\tilde{\pi}^{*} f\right)(v)$ with $x \in \mathfrak{g}, \quad v \in \tilde{\pi}^{*} V=V$.
We may define on $\mathcal{M}_{\mathfrak{a}}$ a braided monoidal structure, using the one of $\mathcal{M}_{\mathfrak{g}}$: the associativity constraint on $\mathcal{M}_{\mathfrak{a}}$ is $\tilde{\Phi}=(\tilde{\pi} \otimes \tilde{\pi} \otimes \tilde{\pi}) \Phi \in \mathcal{U} \mathfrak{a}^{\otimes^{3}}[[\hbar]]$ where $\Phi \in \mathcal{U g}^{\otimes^{3}}[[\hbar]]$ is the one of $\mathcal{M}_{\mathfrak{g}}$ and the commutativity constraint on $\mathcal{M}_{\mathfrak{a}}$ is $\tilde{\beta}=(\tilde{\pi} \otimes \tilde{\pi}) \beta \in \mathcal{U}^{\otimes^{2}}[[\hbar]]$ where $\beta \in \mathcal{U}^{\mathbb{g}^{2}}[[\hbar]]$ is the one of $\mathcal{M}_{\mathfrak{g}}$.
3)Let us consider the following functor $\tilde{\mathcal{F}}: \mathcal{M}_{\mathfrak{a}} \longrightarrow \mathcal{A}$ defined by $\tilde{\mathcal{F}}(V)=\operatorname{Hom}_{\mathcal{M}_{\mathfrak{g}}}\left(\mathcal{U} \mathfrak{g}, \tilde{\pi}^{*} V\right)=\mathcal{F}\left(\tilde{\pi}^{*} V\right)$ and if $f \in \operatorname{Hom}_{\mathcal{M}_{\mathfrak{a}}}(V, W), \tilde{\mathcal{F}}(f)=$ $\tilde{\pi}^{*}(f)$.

The tensor structure on $\tilde{\mathcal{F}}$ is introduced in the same way that the one on \mathcal{F}, that is to say, let $\tilde{J}_{V W}: \tilde{\mathcal{F}}(V) \otimes \tilde{\mathcal{F}}(W) \longrightarrow \tilde{\mathcal{F}}(V \otimes W)$ be such that, if $\tilde{v} \in \tilde{\mathcal{F}}(V), \tilde{w} \in \tilde{\mathcal{F}}(W)$, then $\tilde{J}_{V W}(\tilde{v} \otimes \tilde{w}): \mathcal{U} \mathfrak{g} \longrightarrow \tilde{\pi}^{*}(V \otimes W)$ is the composition

$$
\begin{aligned}
\tilde{J}_{V W}(\tilde{v} \otimes \tilde{w})= & (\tilde{v} \otimes \tilde{w}) \circ\left(\phi^{-1} \otimes \phi^{-1}\right) \circ \Phi_{1,2,34}^{-1} \circ\left(1 \otimes \Phi_{2,3,4}\right) \circ \\
& \circ\left(1 \otimes\left(\sigma \circ e^{\frac{\hbar}{2} \Omega}\right) \otimes 1\right) \circ\left(1 \otimes \Phi_{2,3,4}^{-1}\right) \circ \Phi_{1,2,34} \circ\left(i_{+} \otimes i_{-}\right) \circ \phi .
\end{aligned}
$$

Proposition 2.17. \tilde{J} is a tensor structure on the functor $\tilde{\mathcal{F}}$.
The general reconstruction theorem [13] (chapter 9) can be considered in the present setting, obtaining in this way [9] a quasitriangular Hopf algebra $(\operatorname{End}(\tilde{\mathcal{F}}), \cdot, \check{\Delta}, \check{S}, \check{R})$.

Proposition 2.18. There exists an algebra isomorphism $\tilde{\Lambda}: \mathcal{U a}[[\hbar]] \longrightarrow$ $\operatorname{End}(\tilde{\mathcal{F}})$, between the topological usual associative algebra $\mathcal{U} \mathfrak{a}[[\hbar]]$ and $\operatorname{End}(\tilde{\mathcal{F}})$.

This isomorphism $\tilde{\Lambda}$ allows us to define on the algebra $\mathcal{U a}[[\hbar]]$ the pull-back of the quasitriangular Hopf algebra structure on $\operatorname{End}(\tilde{\mathcal{F}}):(\mathcal{U} \mathfrak{a}[[\hbar]], \cdot, \tilde{\Delta}, \tilde{S}, \tilde{R})$.

Theorem 2.19. Suppose that $\left(\mathfrak{a},[,]_{\mathfrak{a}}, \varepsilon_{\mathfrak{a}}=d_{c} r_{1}\right)$ is a quasitriangular Lie bialgebra. Let $\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{g}_{+}^{*}$ be the classical double of the Lie bialgebra $\left(\mathfrak{g}_{+},[,]_{\mathfrak{g}_{+}}, \varepsilon\right)$ and let $(\mathcal{U g} \mathfrak{g}[\hbar \hbar]], \cdot, \Delta, S, R)$ be the quasitriangular Hopf QUE algebra obtained
by Etingof-Kazhdan quantization (theorem 2.15). Then, we have

$$
\begin{array}{ll}
\tilde{\Delta}(a)=\tilde{J}_{r_{1}}^{-1} \cdot \Delta_{\mathfrak{a}}(a) \cdot \tilde{J}_{r_{1}}, \quad \text { where } \tilde{J}_{r_{1}}=(\tilde{\pi} \otimes \tilde{\pi}) J, \quad \tilde{R}=(\tilde{\pi} \otimes \tilde{\pi}) R, \\
\tilde{S}(a)=\tilde{Q}^{-1} \cdot S_{\mathfrak{a}}(a) \cdot \tilde{Q}, \quad \text { where } \tilde{Q}=\sum S_{\mathfrak{a}}\left(p_{i}\right) \cdot q_{i}, \quad \tilde{J}_{r_{1}}=\sum p_{i} \otimes q_{i}, a \in \mathcal{U} \mathfrak{a},
\end{array}
$$ where $\tilde{\pi}=\pi \circ\left(1 \oplus \chi_{r_{1}}\right)$ and $\Delta_{\mathfrak{a}}, S_{\mathfrak{a}}$ are the usual ones on $\mathcal{U} \mathfrak{a}$.

$(\mathcal{U a}[[\hbar]], \cdot, \tilde{\Delta}, \tilde{S}, \tilde{R})$ is a quasitriangular Hopf QUE algebra and a quantization, $[7,9]$, of the quasitriangular Lie bialgebra $\left(\mathfrak{a},[,]_{\mathfrak{a}}, \varepsilon_{\mathfrak{a}}=d_{c} r_{1}\right)$.

Remark 2.20. $\tilde{J}_{r_{1}}$ satisfies the relation

$$
\tilde{\Phi}_{1,2,3} \cdot\left(\Delta_{\mathfrak{a}} \otimes 1\right) \tilde{J}_{r_{1}} \cdot\left(\tilde{J}_{r_{1}} \otimes 1\right)=\left(1 \otimes \Delta_{\mathfrak{a}}\right) \tilde{J}_{r_{1}} \cdot\left(1 \otimes \tilde{J}_{r_{1}}\right) .
$$

3. Quantization of nondegenerate triangular Lie bialgebras

Let $\left(\mathfrak{a},[,]_{\mathfrak{a}}, \varepsilon_{\mathfrak{a}}=d_{c} r_{1}\right)$ be a nondegenerate triangular Lie bialgebra. In this case $r_{1} \in \wedge^{2}(\mathfrak{a})$ and $\operatorname{det}\left(r_{1}\right) \neq 0$. So, as vector spaces we have

$$
\mathfrak{g}_{+}=\left\{(1 \otimes f) r_{1} \mid \forall f \in \mathfrak{a}^{*}\right\}=\mathfrak{a}=\mathfrak{g}_{-}=\left\{(f \otimes 1) r_{1} \mid \forall f \in \mathfrak{a}^{*}\right\}
$$

Then the classical double of \mathfrak{g}_{+}is the classical double of the Lie bialgebra \mathfrak{a}. If $\left\{e_{i}\right\}$ is a basis of \mathfrak{a} and $\left\{e^{i}\right\}$ is the corresponding dual basis, then

$$
(\tilde{\pi} \otimes \tilde{\pi}) \Omega=(\tilde{\pi} \otimes \tilde{\pi})\left(r_{12}+r_{21}\right)=\left(r_{1}\right)_{12}+\left(r_{1}\right)_{21}=0 .
$$

Proposition 3.1. Given a nondegenerate triangular Lie bialgebra \mathfrak{a} and a Drinfeld associator Φ, we have

$$
\begin{aligned}
& \tilde{\Phi}=(\tilde{\pi} \otimes \tilde{\pi} \otimes \tilde{\pi}) \Phi=1 \otimes 1 \otimes 1, \quad \Phi \in \mathcal{U} \mathfrak{g}^{\otimes 3}[[\hbar]] \\
& \tilde{R}=(\tilde{\pi} \otimes \tilde{\pi}) R=\left(\sigma \tilde{J}_{r_{1}}^{-1}\right) \cdot(1 \otimes 1) \cdot \tilde{J}_{r_{1}}, \quad \tilde{J}_{r_{1}} \in \mathcal{U} \mathfrak{a}^{\otimes 2}[[\hbar]] \\
& \left(\Delta_{\mathfrak{a}} \otimes 1\right) \tilde{J}_{r_{1}} \cdot\left(\tilde{J}_{r_{1}} \otimes 1\right)=\left(1 \otimes \Delta_{\mathfrak{a}}\right) \tilde{J}_{r_{1}} \cdot\left(1 \otimes \tilde{J}_{r_{1}}\right)
\end{aligned}
$$

$\left(\tilde{J}_{r_{1}}\right.$ is called an invariant star product (ISP) on $\left(\mathfrak{a},[,]_{\mathfrak{a}}, \varepsilon_{\mathfrak{a}}=d_{c} r_{1}\right)[1,6,14$, 15, 16]).

The quantization of the above nondegenerate triangular Lie bialgebra is the triangular Hopf QUE algebra $(\mathcal{U} \mathfrak{a}[[\hbar]], \cdot, \tilde{\Delta}, \tilde{S}, \tilde{R})$, denoted by $A_{\mathfrak{a}[[\hbar]], \tilde{J}_{r_{1}}^{-1}}$, which is obtained by a twist via $\tilde{J}_{r_{1}}^{-1}$ from the usual Hopf QUE algebra $(\mathcal{U a}[[\hbar]], \cdot$, $\Delta_{\mathfrak{a}}, S_{\mathfrak{a}}, R_{\mathfrak{a}}=1$).

Let Γ be a neighborhood of 0 in \mathbb{R}. Consider a family of elements $r_{t}=$ $r_{1}+r_{2} t+r_{3} t^{2}+\cdots \in \mathfrak{a} \wedge \mathfrak{a}$ such that, for each $t \in \Gamma, r_{t}$ is a nondegenerate solution of the $\operatorname{CYBE}\left(\left[r_{t}, r_{t}\right]=0\right)$. If $\left(\mathfrak{a},[,]_{\mathfrak{a}}\right)$ is a Lie algebra over \mathbb{C}, the set
$\left(\mathfrak{a},[,]_{\mathfrak{a}}, \varepsilon_{\mathfrak{a}}=d_{c} r_{t}\right)$ is a nondegenerate triangular Lie bialgebra, for each $t \in \Gamma$. The Lie algebra structure on \mathfrak{a}^{*} is defined by

$$
\left[f_{1}, f_{2}\right]_{\mathfrak{a}_{r_{t}^{*}}}=\left(d_{c} r_{t}\right)^{\mathfrak{t}}\left(f_{1} \otimes f_{2}\right), \quad f_{1}, f_{2} \in \mathfrak{a}^{*}
$$

Let $\mathfrak{g}=\mathfrak{a} \oplus \mathfrak{a}^{*}$ be the classical double of the Lie bialgebra $\left(\mathfrak{a},[,]_{\mathfrak{a}}, \varepsilon_{\mathfrak{a}}=d_{c} r_{t}\right)$, that we will denote as $\mathfrak{g}_{r_{t}}=\mathfrak{a} \oplus \mathfrak{a}_{r_{t}}^{*}$ because the Lie algebra structure of \mathfrak{a}^{*} is defined as

$$
\begin{equation*}
[\xi, \eta]_{\mathfrak{a}_{r_{t}^{*}}}=\left(d_{c} r_{t}\right)^{\mathfrak{t}}(\xi \otimes \eta) . \tag{10}
\end{equation*}
$$

We could begin with the Lie algebra defined from \mathfrak{a} by the extension of scalars $\mathbb{K} \longrightarrow \mathbb{K}[[\hbar]][4,2]$. We prefer here to begin with a convergent series in $\mathfrak{a} \wedge \mathfrak{a}, t \in \Gamma, \mathbb{K}=\mathbb{R}$. When proving, for example, Proposition 3.4 that follows, we see first both members of the equalities as formal power series in t and \hbar. Then put $t=\hbar$. The proof doesn't depend on the field \mathbb{R} and is then true for any \mathbb{K}. We read in [17, 16] Drinfeld Theorem 7 [6] under this optical. We don't have today enough arguments to underestimate this optical. This simple remark is to be joint to the "universality properties" of Φ in $[7,8]$ which are at the basis for the existence of the Quantization Functor $[9,12]$. See also [20].
Lemma 3.2. [19] The element J of theorem 2.15 will be now $J_{r_{t}} \in \mathcal{U}_{r_{t}}^{\otimes^{2}}[[\hbar]]$ given by

$$
\begin{aligned}
J_{r_{t}} & =\left(\phi^{-1} \otimes \phi^{-1}\right)\left(\left(\Phi_{t}^{-1}\right)_{1,2,34}\left(\Phi_{t}\right)_{2,3,4} \sigma_{23}{ }^{\frac{\hbar}{2} \Omega_{23}}\left(\Phi_{t}^{-1}\right)_{2,3,4}\left(\Phi_{t}\right)_{1,2,34}\left(i_{+} \otimes i_{-}\right) \phi(1)\right) \\
& =1 \otimes 1+\frac{1}{2} r \hbar+\sum_{k \geq 2}\left(r_{t}^{i_{1} j_{1}} \ldots r_{t}^{i_{l(k)} j_{l(k)}} Q_{i_{1}, \ldots, i_{l(k)}, j_{1}, \ldots, j_{l(k)}, k}\right) \hbar^{k},
\end{aligned}
$$

where when an ordered basis is chosen $Q_{i_{1}, \ldots, i_{l(k)}, j_{1}, \ldots, j_{l(k)}, k} \in \mathcal{U} \mathfrak{g} \otimes \mathcal{U} \mathfrak{g}$ is independent of r_{t}, but the algebra structure depends on r_{t}, and $r=\sum\left(e_{i} ; 0\right) \otimes\left(0 ; e^{i}\right)$.

Applying $\tilde{\pi}_{t} \otimes \tilde{\pi}_{t}$ to $J_{r_{t}}$, we come to the following:
Proposition 3.3. [19]

$$
\begin{gathered}
\tilde{J}_{r_{\hbar}}^{\Phi}=\left(\tilde{J}_{r_{t}}\right)_{t=\hbar}=\left(\left(\tilde{\pi}_{t} \otimes \tilde{\pi}_{t}\right) J_{r_{t}}\right)_{t=\hbar}=1 \otimes 1+\frac{1}{2} r_{1} \hbar+\sum_{R=2}^{\infty}\left(\frac{1}{2} r_{R}+\right. \\
+\sum_{i_{2}, j_{2}, \ldots i_{R}, j_{R}} \sum_{A_{i_{2}, j_{2}}(R), \ldots, A_{i_{R} j_{R}}(R)}\left(r_{1}^{i_{2} j_{2}}\right)^{A_{i_{2} j_{2}}(R)} \ldots\left(r_{R-1}^{i_{R} j_{R}}\right)^{A_{i_{R} j_{R}}(R)} \\
\left.\cdot H_{i_{2}, \ldots, i_{R}, j_{2}, \ldots, j_{R}, A_{i_{2} j_{2}}(R), \ldots, A_{i_{R} j_{R}}(R), R}\right) \hbar^{R}
\end{gathered}
$$

with $H_{i_{2}, \ldots, i_{R}, j_{2}, \ldots, j_{R}, A_{i_{2} j_{2}}(R), \ldots, A_{i_{R} j_{R}}(R), R} \in \mathcal{U a} \otimes \mathcal{U} \mathfrak{a}$ independent of r_{k} and k, $A_{i_{a} j_{a}}(R) \in \mathbb{N}$.

Proposition 3.4. [19] Let $\Phi \in T_{3}[[\hbar]]$ be a Drinfeld associator. Let $r_{t}=$ $r_{1}+r_{2} t+r_{3} t^{2}+\cdots$ be a nondegenerate solution of the CYBE, for each t. Let $\left(\mathfrak{a},[,]_{\mathfrak{a}}, \varepsilon_{\mathfrak{a}}=d_{c} r_{t}\right)$ be the nondegenerate triangular Lie bialgebra defined by r_{t}. Let $\left(\mathcal{U a}[[\hbar]], \cdot, \tilde{\Delta}_{t}, \tilde{S}_{t}, \tilde{R}_{t}\right)$ be the quantization obtained in the EtingofKazhdan's theorem, (proposition 3.1), as the quantization of the above nondegenerate triangular Lie bialgebra, from the usual Hopf algebra by a twist via $\left(\tilde{J}_{r_{t}}\right)^{-1}$.

Consider the element $\tilde{J}_{r_{\hbar}}^{\Phi}=\left(\tilde{J}_{r_{t}}\right)_{t=\hbar} \in \mathcal{U} \mathfrak{a}[[\hbar]] \hat{\otimes} \mathcal{U} \mathfrak{a}[[\hbar]]$, then
(a) $\left(\Delta_{\mathfrak{a}} \otimes 1\right) \tilde{J}_{r_{\hbar}}^{\Phi} \cdot\left(\tilde{J}_{r_{\hbar}}^{\Phi} \otimes 1\right)=\left(1 \otimes \Delta_{\mathfrak{a}}\right) \tilde{J}_{r_{\hbar}}^{\Phi} \cdot\left(1 \otimes \tilde{J}_{r_{\hbar}}^{\Phi}\right)$;
(b) $\tilde{J}_{r_{\hbar}}^{\Phi}=1 \otimes 1+\frac{1}{2} r_{1} \hbar+0\left(\hbar^{2}\right)$;
(c) Defining $\Delta(a)=\left(\tilde{J}_{r_{\hbar}}^{\Phi}\right)^{-1} \cdot \Delta_{\mathfrak{a}}(a) \cdot \tilde{J}_{r_{\hbar}}^{\Phi}, R=\left(\sigma \tilde{J}_{r_{\hbar}}^{\Phi}\right)^{-1} \cdot(1 \otimes 1) \cdot \tilde{J}_{r_{\hbar}}^{\Phi}$ and $S(a)=Q^{-1} \cdot S_{\mathfrak{a}}(a) \cdot Q$, where $Q=\sum S_{\mathfrak{a}}\left(a_{i}\right) \cdot b_{i}, \tilde{J}_{r_{\hbar}}^{\Phi}=\sum a_{i} \otimes b_{i}, a_{i}, b_{i} \in \mathcal{U} \mathfrak{a}[[\hbar]]$, the set $(\mathcal{U a}[[\hbar]], \cdot, \Delta, S, R)$ is a triangular Hopf QUE algebra obtained twisting the usual Hopf algebra $\left(\mathcal{U a}[[\hbar]], \cdot, \Delta_{\mathfrak{a}}, S_{\mathfrak{a}}, R_{\mathfrak{a}}=1\right)$ via the element $\left(\tilde{J}_{r_{\hbar}}^{\Phi}\right)^{-1} \in \mathcal{U} \mathfrak{a}[[\hbar]] \hat{\otimes} \mathcal{U} \mathfrak{a}[[\hbar]]$. We write it as $A_{\mathfrak{a}[\hbar \hbar],\left(\tilde{T}_{r_{\hbar}}\right)^{-1}}$.

Let $\tilde{J}_{r_{\hbar}^{\prime}}^{\Phi}$ be the star product determined, in the same way, by

$$
r_{t}^{\prime}=r_{1}+r_{2} t+\cdots+r_{k-1} t^{k-2}+\left(r_{k}+s_{k}\right) t^{k-1}+\ldots
$$

that also verifies $r_{t}^{\prime} \in \wedge^{2}(\mathfrak{a})$, and r_{t}^{\prime} is a nondegenerate solution of YangBaxter equation, for each t. Then $\tilde{J}_{r_{\hbar}}^{\Phi}$ and $\tilde{J}_{r_{\hbar}^{\prime}}^{\Phi}$ coincide up to order $k-1$ and

$$
\left(\tilde{J}_{r_{\hbar}^{\prime}}^{\Phi}\right)_{k}-\left(\tilde{J}_{r_{\hbar}}^{\Phi}\right)_{k}=\frac{1}{2} s_{k} .
$$

4. A result on triangular Hopf QUE algebras of the form $A_{\mathfrak{a}[\hbar \hbar], F^{-1}}$ and Drinfeld associators

Denote by $A_{\mathfrak{a}[[\hbar]], F^{-1}}[7]$ the triangular Hopf QUE algebra which is a quantization of the nondegenerate triangular Lie bialgebra \mathfrak{a} and the twist, via $F^{-1} \in \mathcal{U} \mathfrak{a} \otimes \mathcal{U} \mathfrak{a}[[\hbar]]$, of the usual triangular Hopf QUE algebra $\mathcal{U} \mathfrak{a}[[\hbar]]$.

Theorem 4.1. [19] Let \mathfrak{a} be a nondegenerate triangular Lie bialgebra and $A_{\mathfrak{a}[\hbar \hbar], F^{-1}}$ a triangular Hopf QUE algebra which is a quantization of this Lie bialgebra. Then:
(a) There exist elements $r_{\hbar}=r_{1}+r_{2} \hbar+r_{3} \hbar^{2}+\cdots \in \wedge^{2}(\mathfrak{a})[[\hbar]]$ and $E^{r_{\hbar}}=$ $1+E_{1}^{r_{\hbar}} \hbar+\cdots+E_{n}^{r_{\hbar}} \hbar^{n}+\cdots \in \mathcal{U} \mathfrak{a}[[\hbar]]$, such that

$$
F=\Delta_{\mathfrak{a}}\left(\left(E^{r_{\hbar}}\right)^{-1}\right) \cdot \tilde{J}_{r_{\hbar}} \cdot\left(E^{r_{\hbar}} \otimes E^{r_{\hbar}}\right),
$$

i.e., F is an invariant star product equivalent to $\tilde{J}_{r_{\hbar}}([6,16])$.
(b) In this case the triangular Hopf QUE algebras $A_{\mathfrak{a}[\hbar \hbar], F^{-1}}$ and $A_{\mathfrak{a}[\hbar \hbar]], \tilde{T}_{r_{\hbar}^{1}}^{-1}}$ are isomorphic.
As a consequence, we notice $A_{\mathfrak{a}[[\hbar]], F^{-1}} \stackrel{i s o m}{\approx} A_{\mathfrak{a}[[\hbar]],\left(\tilde{J}_{r_{\hbar}}\right)^{-1}} \stackrel{i \text { som }}{\approx} A_{\mathfrak{a}[\hbar \hbar],\left(\tilde{J}_{r_{\hbar}^{\Phi_{\hbar}^{\prime}}}\right)^{-1}}$ when two different associators are considered.

Using Knizhnik-Zamolodchikov associator ($[7,8,19]$) we have obtained for $\tilde{J}_{r_{\hbar}}$, up to the term of order \hbar^{2}, exactly the same expression obtained by Drinfeld ([6] and explicitly written in [21]).

5. Invariant star products on $\left(\mathfrak{a},[,]_{\mathfrak{a}}, \varepsilon_{\mathfrak{a}}=d_{c} r_{1}\right)$

Let Γ be a neighbourhood of 0 in \mathbb{R}. Consider a family of elements $r_{t} \in \mathfrak{a} \wedge \mathfrak{a}$ such that, for each $t \in \Gamma, r_{t}$ is a nondegenerate solution of the CYBE. Let $\mu_{r_{t}}: \wedge^{r}(\mathfrak{a}) \longrightarrow \wedge_{r}(\mathfrak{a})$ be the isomorphism defined by $\left(\mu_{r_{t}}^{-1}(\alpha)\right)^{i_{1} \ldots i_{r}}=$ $\left(r_{t}\right)^{j_{1} i_{1}} \ldots\left(r_{t}\right)^{j_{r} i_{r}} \alpha_{j_{1} \ldots j_{r}}$

If G is a Lie group with Lie algebra \mathfrak{g}, the adjoint representation of G induces a representation on the Chevalley complex $H^{*}(\mathfrak{g})$ that is trivial. This is one starting point for the proof of next theorem which is similar for the Etingof-Kazhdan quantization to that for the Drinfeld quantization of bialgebra \mathfrak{a}. See also $[16,17]$ and compare with the proof given there.

Theorem 5.1. Let $\tilde{J}_{r_{\hbar}}=\left(\tilde{J}_{r_{t}}\right)_{t=\hbar}$ and $\tilde{J}_{r_{\hbar}^{\prime}}=\left(\tilde{J}_{r_{t}^{\prime}}\right)_{t=\hbar}$ be ISP on the nondegenerate triangular Lie bialgebra ($\mathfrak{a},[,]_{\mathfrak{a}}, \varepsilon_{\mathfrak{a}}=d_{c^{\prime}} r_{1}$) which appear from E - K quantization. Suppose $\beta_{t}=\mu_{r_{t}}\left(r_{t}\right)=\beta_{1}+\beta_{2} t+\cdots$ and $\beta_{t}^{\prime}=\mu_{r_{t}^{\prime}}\left(r_{t}^{\prime}\right)=$ $\beta_{1}+\beta_{2}^{\prime} t+\cdots$.

Then, $\tilde{J}_{r_{\hbar}}$ and $\tilde{J}_{r_{\hbar}^{\prime}}$ are equivalent ISP if, and only if, β_{t} and β_{t}^{\prime} belong to the same formal cohomological class. In other words, $\tilde{J}_{r_{\hbar}}$ and $\tilde{J}_{r^{\prime} \hbar}$ are equivalent ISP if, and only if, there exists a formal 1-cochain $\alpha_{t}=\alpha_{1} t+\alpha_{2} t^{2}+\ldots$ such that $\beta_{t}^{\prime}=\beta_{t}+d_{c} \alpha_{t}$.

References

[1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Deformation theory and quantization, Ann. Phys. 111 (1978), 61 - 151.
[2] N. Bourbaki, Algèbre, Chapitre 9, Actualités Scientifiques et Industrielles, Hermann, Paris, 1959.
[3] , Algèbre Commutative, chapitres 3 et 4, Actualités Scientifiques et Industrielles, vol. 1293, Hermann, Paris, 1961.
[4] , Algèbre, Chapitres 1 à 3, Éléments de Mathématique, Hermann, Paris, 1970.
[5] V.G. Drinfeld, Hamiltonian structures on Lie Groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations, Sov. Math. Dokl. 27 (1983), 68 - 71.
[6] , On constant, quasiclassical solutions of the Yang-Baxter equations, Sov. Math. Dokl. 28 (1983), $667-671$.
[7] , Quasi-Hopf algebras, Leningrad Math. J. 1 (6) (1990), 1419 - 1457.
$[8]$, On quasitriangular quasi-Hopf algebras and a group closely connected with Gal $(\overline{\mathbf{Q}} / \mathbb{Q})$, Leningrad Math. J. 2 (4) (1991), 829 - 860.
[9] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica 2 (1) (1996), 1 - 41.
[10] J. González-Lorca, Série de Drinfeld, monodromie et algèbres de Hecke, Thèse de doctorat, École Normale Supérieure, 1998.
[11] C. Kassel, Quantum groups, GTM, vol. 155, Springer-Verlag, 1994.
[12] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, III, J. Amer. Math. Soc. 7 (1994), $335-381$.
[13] S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, 1995.
[14] C. Moreno and L. Valero, Produits star invariants et équation de Yang-Baxter quantique constante, Journées relativistes, Grenoble, 1990.
[15] __ Star products and quantization of Poisson-Lie groups, J. Geom. Phys. 9 (4) (1992), $369-402$.
[16] _, The set of equivalent classes of invariant star products on $\left(G ; \beta_{1}\right)$, J. Geom. Phys. 23 (4) (1997), $360-378$.
[17] C. Moreno, Star Products and Quantum Groups, Mathematical Physics Studies, vol. 15, Kluwer Academic Publishers, 1994, pp. 203-234.
[18] N.Yu. Reshetikhin and M.A. Semenov-Tian-Shansky, Quantum R-matrices and factorization problems, J. Geom. Phys. 5 (4) (1988), 533 - 550.
[19] J. Teles, The formal Chevalley cohomology in the quantization by Etingof and Kazhdan of nondegenerate triangular Lie bialgebras and their classical doubles, Ph.D. thesis, Departamento de Matemática, Universidade de Coimbra, 2003.
$[20] \quad$, On the quantization of a class of non-degenerate triangular Lie bialgebras over $\mathbb{K}[[\hbar]]$, Communication on the Workshop "From Lie algebras to Quantum Groups", Coimbra, 2006.
[21] L. Valero, Productos Estrella y Equación Cuántica triangular de Yang-Baxter, Ph.D. thesis, Universidade Complutense de Madrid, 1995.

Carlos Moreno

Laboratoire Gevrey de Mathématique Physique, Université de Bourgogne, BP47870, 21078 Dijon Cedex, France and Departamento de Física Teórica, Universidad Complutense, E-28040 Madrid, Spain
E-mail address: cmo@ccr.jussieu.fr
Joana Teles
Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal
E-mail address: jteles@mat.uc.pt

[^0]: Received November 9, 2006.
 The second author acknowledges the financial support POCI/MAT/58452/2004 and CMUC.

