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ON THE ETINGOF-KAZHDAN QUANTIZATION OF
NON-DEGENERATE TRIANGULAR LIE BIALGEBRAS
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Abstract: Relatively to a Drinfeld associator Φ we present Etingof and Kazhdan
quantization of any quasitriangular finite dimension Lie-bialgebra (a, [, ]a, εa = dcr1)
over a field IK of characteristic zero. When r1 ∈ a ∧ a is non-degenerate we prove:
a) replacing r1 by r~ = r1 +r2 ·~+ · · · ∈ a∧a[[~]] we obtain a triangular Hopf-QUE-

algebra A
a[[~]],(J̃Φ

r~
)−1 which is a quantization of the Lie-bialgebra a. We call J̃Φ

r~
an

invariant star product on the Lie-bialgebra a. In particular and for example in the
real case, J̃Φ

r~
defines an invariant deformation quantization on any Lie group G en-

dowed with the invariant Poisson structure r1 or the invariant symplectic structure
β1 = r−1

1 ∈ a∗⊗a∗; b) given r~ = r1 +r2 ·~+ · · · and r′
~

= r1 +r′2 ·~+ · · · ∈ a∧a[[~]],

the star products J̃Φ
r~

and J̃Φ
r′

~

are (Hochschild) equivalent if and only if the invari-

ant Chevalley (de Rham) cohomology classes of β~ and β′

~
coincide. The classifying

space of invariant star products on the Lie-bialgebra a, under equivalence, in the
Etingof-Kazhdan quantization and in the previously constructed Drinfeld quantiza-
tion of the Lie-bialgebra a, Campbell-Hausdorff group, coincide and equal H2(a)[[~]];
c) if Φ and Φ′ are two Drinfeld associators and F is an invariant star product on the
Lie-bialgebra a we have the following triangular-Hopf-QUE-algebras isomorphisms
Aa[[~]],F−1 ≃ A

a[[~]],(J̃Φ
r
~
)−1 ≃ A

A[[~]],(J̃Φ′

r
′

~

)−1 for some r~ and r′
~

as before. Explicit

proofs of the above assertions will be given in a forthcoming paper.

Keywords: Quantum Groups, Quasi-Hopf algebras, Lie bialgebras, deformation
algebras.

1. Some definitions

Let IK be a field of characteristic 0 and (a, [, ]a) a Lie algebra over IK. Recall
the following definitions.

A finite dimensional Lie bialgebra over IK is a set (a, [, ]a, εa) where εa :
a → a⊗a is a 1-cocycle of a, with values in a⊗a, with respect to the adjoint
action of a such that εt

a : a∗ ⊗ a∗ → a∗ is a Lie bracket on a∗.
It is called quasitriangular if εa = dcr1, where dc is the Chevalley-Eilenberg

coboundary, r1 ∈ a⊗a is a solution to CYBE ([r1, r1] = 0) and (r1)12 +(r1)21

is ada-invariant. In case r1 is skew-symmetric, it is said to be a triangular
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Lie bialgebra. Moreover if det(r1) 6= 0 it is called a nondegenerate triangular
Lie bialgebra.

From any Lie bialgebra (a, [, ]a, εa) we may obtain a Manin triple [5]
(g = a ⊕ a∗, [, ]a⊕a∗, 〈; 〉a⊕a∗), where 〈(x; ξ); (y; η)〉a⊕a∗ = 〈ξ; y〉 + 〈η; x〉 and

[(x; ξ), (y; η)]a⊕a∗ = ([x, y]a + ad∗ξy − ad∗ηx; [ξ, η]a∗ + ad∗xη − ad∗yξ).

This Manin triple has a canonical quasitriangular Lie bialgebra structure
defined by the (canonical) element r =

∑n
i=1(ei; 0)⊗(0; ei) ∈ (a⊕a∗)⊗(a⊕a∗),

where (ei, i = 1, . . . , n) is a basis of a and (ei) its dual basis.
The set (a ⊕ a∗, [, ]a⊕a∗, εa⊕a∗ = dcr) is called the (quasitriangular Lie bial-

gebra) classical double of the Lie bialgebra (a, [, ]a, εa).

2. Etingof-Kazhdan quantization method

Etingof and Kazhdan (E-K) presented [9] a method to construct a quanti-
zation to, in particular, any finite dimensional quasitriangular Lie bialgebra.
See also [19].

2.1. Quantization of the classical double.

2.1.1. Drinfeld associator.
Let Tn, n > 1, be the associative algebra with unit over a field IK generated

by the elements {tij, i 6= j, 1 ≤ i, j ≤ n} with defining relations tij = tji,
[tij, tkl] = 0, if i, j, k, l are distinct and [tij, tik + tjk] = 0.

Let I1, . . . , In be disjoint subsets of {1, . . . , m}.

Proposition 2.1. [10] There exists a unique homomorphism τI1,...,In
: Tn −→

Tm defined by τI1,...,In
(tij) =

∑

k∈Ii,l∈Ij
tkl.

For any X ∈ Tn, we denote τI1,...,In
(X) by XI1,...,In

. Let Tn[[~]] be the set of
the formal power series in ~ with coefficients in the algebra Tn.

Definition 2.2. [8] A Drinfeld associator is an element Φ ∈ T3[[~]] such
that

(i) Φ = 1 + O(~2);
(ii) Φ = eP (~ t12,~ t23), P is a Lie formal series with coefficients in IK (we

may take IK = Q) ;
(iii) In T4[[~]], Φ satisfies the pentagon relation

Φ1,2,34 · Φ12,3,4 = Φ2,3,4 · Φ1,23,4 · Φ1,2,3;
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(iv) If B12 = e
~

2 t12 ∈ T2[[~]], in T3[[~]], Φ and B satisfy the hexagon relations

B12,3 = Φ3,1,2 · B1,3 · Φ
−1
1,3,2 · B2,3 · Φ1,2,3

B1,23 = Φ−1
2,3,1 · B1,3 · Φ2,1,3 · B1,2 · Φ

−1
1,2,3.

2.1.2. Drinfeld braided tensor category Mg.
Let (a, [, ]a, εa) be a Lie bialgebra and let (g ≡ a ⊕ a∗, [, ]g, εg = dcr) be its

classical double. We use the identifications a ≡ g+ and a∗ ≡ g−. We set

Ω12 = r12 + r21 =
∑

((ei; 0) ⊗ (0; ei) + (0; ei) ⊗ (ei; 0)).

Let Mg denote the category whose objects are g-modules and HomMg
(U, V ) =

Homg(U, V )[[~]]. This category has a tensor product ⊗. If U, W ∈ ObMg
,

U ⊗ W is the usual tensor product of g-modules.
Consider the algebra homomorphism Θ : Tn −→ Ug⊗

n

defined through
Θ(tij) = Ωij. The element Θ(t12) = Ω12 ∈ Ug ⊗ Ug defines a g-module
morphism ΩUV : U ⊗ V −→ U ⊗ V , because Ω is adg-invariant. The element

Φ = Θ(Φ) ∈ Ug[[~]]⊗
3

is also adg-invariant, so it defines an element ΦV UW ∈
HomMg

((V ⊗ U) ⊗ W, V ⊗ (U ⊗ W )) for any V, U, W ∈ ObMg
.

For any V, U ∈ ObMg
introduce the isomorphism βV U : V ⊗ U −→ U ⊗ V

where β = σR0 = σ ◦ e~Ω/2 and σ is the usual permutation.
It follows from pentagon and hexagon relations on the associator that the

morphisms ΦV UW and βV U define the structure of a braided monoidal cate-
gory on Mg ([7, 11]).

Using the elements Φ ∈ Ug[[~]]⊗
3

and R0 = e~Ω/2 ∈ Ug[[~]]⊗
2

we may define
(see [8]) a structure of quasi-triangular quasi-Hopf QUE algebra

(Ug[[~]], ·, 1, ∆0, ǫ0, Φ, S0, α = c−1, β = 1, R0 = e
~

2Ω) (1)

where ∆0, ǫ0, S0, are the extensions of the corresponding maps in the universal
enveloping algebra Ug, c =

∑

Xi · S0(Yi) · Zi with Φ =
∑

Xi ⊗ Yi ⊗ Zi, see
[7] prop.1.3.

2.1.3. The functor F : Mg −→ A.
Let A denote the symmetric monoidal category (tensor category) [11] of

topologically free IK[[~]]-modules, with trivial associativity and commutativ-
ity constraints.

Let F : Mg −→ A be the functor given by F(V ) = HomMg
(Ug, V ),

for V ∈ ObMg
and if V, U ∈ ObMg

the map F : HomMg
(V, U) −→
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HomA(F(V ),F(U)) is defined as F(f)(g) = f ◦ g, for f ∈ HomMg
(V, U)

and g ∈ F(V ).
There is also a (forgetful) functor G : Mg −→ A defined in objects by

G(V ) = V [[~]] and if f ∈ HomMg
(V, W ) then G(f) ≡ f .

The map δ : F −→ G defined, for each V ∈ ObMg
and f ∈ F(V ), by

δV (f) = f(1) defines a natural isomorphism from the functor F to G.

2.1.4. g-modules M+ and M−.
By the Poincaré-Birkhoff-Witt theorem, the product in Ug = U(g+ ⊕ g−)

defines linear isomorphisms Ug+ ⊗ Ug− −→ Ug and Ug− ⊗ Ug+ −→ Ug.
Introduce the following two induced representations, objects of Mg

M+ = Ug ⊗Ug+
W+ = Ug ⊗Ug+

e+ = Ug−(1 ⊗IK e+) = Ug−1+

M− = Ug ⊗Ug− W− = · · · = Ug+(1 ⊗IK e−) = Ug+1−

where W± is the trivial g±-module and 1± ⊗ 1± is g±-invariant.

Lemma 2.3. There exist g-module morphisms i± : M± −→ M± ⊗ M± such
that i±(1±) = 1± ⊗ 1±.

Proposition 2.4. [9] The assignment 1 ∈ Ug −→ 1+ ⊗ 1− extends to an
isomorphism of g-modules φ : Ug −→ M+ ⊗ M−.

Proof : If φ(1) = 1+ ⊗ 1− and φ is a g-module morphism, the construction
of φ is unique. It is clear that φ preserves the standard filtration, then it
defines a map grad (φ) on the associated graded objects. This map grad (φ)
is bijective and then ([3] chapter III, §2, n8, corollary of theorem 1) φ is
bijective.

2.1.5. A tensor structure on F .

Definition 2.5. [11] A tensor structure on the functor F is a natural iso-
morphism of functors J : F(·) ⊗ F(·) −→ F(· ⊗ ·) such that JV W : F(V ) ⊗
F(W ) −→ F(V ⊗ W ) satisfies

F(ΦV WU) ◦ JV ⊗W,U ◦ (JV W ⊗ 1) = JV,W⊗U ◦ (1 ⊗ JWU), V, W, U ∈ ObMg

JV I = JIV = 1, F(IMg
) = IK[[~]] = IA, V ∈ ObMg

.

A functor equipped with a tensor structure is called a tensor functor.
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Etingof and Kazdhan [9, 12] define the following map, for V, W ∈ ObMg

and v ∈ F(V ), w ∈ F(W ), let JV W (v ⊗ w) be the composition

JV W (v ⊗ w) =(v ⊗ w) ◦ (φ−1 ⊗ φ−1) ◦ Φ−1
1,2,34 ◦ (1 ⊗ Φ2,3,4)◦

◦ (1 ⊗ (σ ◦ e
~

2Ω) ⊗ 1) ◦ (1 ⊗ Φ−1
2,3,4) ◦ Φ1,2,34 ◦ (i+ ⊗ i−) ◦ φ.

Proposition 2.6. [9] The maps JV W define a tensor structure on F .

2.2. The quasitriangular Hopf algebra (End(F), ·, id, ∆̂, ǫ̂, Ŝ, R̂).
We may adapt the general reconstruction theorem in [13] (Chapter 9) to

obtain [9] a quasitriangular Hopf algebra (End(F), ·, id, ∆̂, ǫ̂, Ŝ, R̂), where
End(F) is the set of natural transformations from the functor F to itself.

To define a comultiplication ∆̂ : End(F) −→ End(F) ⊗ End(F), we
introduce first a functor F2 : Mg × Mg −→ A defined by F2(V, W ) =
F(V )⊗̂F(W ), (F2 = ⊗(F × F)).

Consider the map ∆̂ : End(F) −→ End(F)⊗̂End(F) = End(F2) where,
if a ∈ End(F), for any V, W ∈ ObMg

.

(∆̂(a))V,W = J−1
V,W ◦ aV ⊗W ◦ JV,W . (2)

Lemma 2.7. If a ∈ End(F), then ∆̂(a) is a natural transformation from F2

to F2, i.e., ∆̂(a) ∈ End(F2).

Consider now the element R̂ ∈ End(F)⊗̂End(F) = End(F2) such that

R̂V,W = σ◦J−1
W,V ◦F(σ◦e

~

2ΩV,W )◦JV,W = σ◦J−1
W,V ◦F(βV,W )◦JV,W , V, W ∈ ObMg

.

(3)

Lemma 2.8. R̂ is a natural transformation from F2 to F2, i.e., R̂ ∈ End(F2).

Finally, let us consider the map ǫ̂ : End(F) −→ IK[[~]] defined as

ǫ̂(a) = δIK

(

aIK(δ−1
IK (1))

)

(4)

for a ∈ End(F), where δ is the natural isomorphism defined before from F
to the forgetful functor on Mg.

Remark 2.9. If H is a quasi-Hopf algebra, over a commutative ring k, with
antipode S, then the category of left H-modules of finite dimension is rigid
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([7, 13]). The left dual of the H-module V is V ∗ = Homk(V, k) with

(h · f)(v) = f((Sh)v), v ∈ V, f ∈ V ∗, h ∈ H.

and maps ev(f ⊗ v) = f(α · v), coev =
∑

i β · ei ⊗ ei, where α, β are elements
of the definition of quasi-Hopf algebra, {ei} is a basis of V and {ei} its dual
basis.

Consider now the category of left H-modules (not necessarily of finite di-
mension), for each object V , let us call dual object of V to the element
V ∗ = Homk(V, k) which is also a H-module, considering the action already
defined. Thus, we have a map between objects of this category. If f is a
morphism of H-modules from V to W we define f t : W ∗ −→ V ∗ as

f t(w∗)(v) = w∗(f(v)), v ∈ V, w∗ ∈ W ∗.

It is easy to prove that f t is also a module morphism and (f ◦ g)t = gt ◦
f t for any morphisms f and g of H-modules. Then we conclude that ∗ is
a contravariant functor from the category of H-modules (not necessarily of
finite dimension) to itself.

We can also define a H-module morphism, for any module V ,

τV : V ∗ ⊗ V −→ k

τV (v∗ ⊗ v) = v∗(α · v), v∗ ∈ V ∗, v ∈ V. (5)

We remark that τV coincides with the map evV defined above in case of finite
dimension.

If D is a rigid tensor category, V an object of D and F is a tensor functor,
then it is immediate that

F (V )∗
′

= F (V ∗) ev′F (V ) = F (evV ) ◦ JV ∗,V coev′F (V ) = J−1
V,V ∗ ◦ F (coevV )

are a left dual for F (V ). Hence according to the uniqueness of duals up
to isomorphism, we have induced an isomorphism dV : F (V ∗) −→ F (V )∗

defined by

dV =
(

ev′F (V ) ⊗ idF (V )∗

)

◦
(

idF (V ∗) ⊗ coevF (V )

)

, (6)

with inverse d−1
V =

(

evF (V ) ⊗ idF (V ∗)

)

◦
(

idF (V )∗ ⊗ coev′F (V )

)

.

Consider the quasi-Hopf algebra (1), the functor ∗ is a functor from Mg to
Mg, and it exists also an analogous functor ∗ from A to A (generalization
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of the one in vector spaces, if V is a vector space and V [[~]] an object of A,
the dual object is (V [[~]])∗. Then, (F ◦ ∗) and (∗ ◦ F) are (contravariant)
functors from the category Mg to the category A.

For any V ∈ ObMg
, let us define ξV : F(V ∗) −→ F(V )∗ as

ξV (v∗)(v) = δIK(F(τV ) ◦ JV ∗,V (v∗ ⊗ v)), v∗ ∈ F(V ∗), v ∈ F(V ), (7)

where δ is the natural isomorphism from F to the forgetful functor, and τ

the map defined in (5). This map corresponds to the natural isomorphism
defined by Etingof-Kazhdan in [9], where F(IK) and IK[[~]] are identified.

Lemma 2.10. ξ is a natural isomorphism from the functor (F ◦ ∗) to the
functor (∗ ◦ F).

If a ∈ End(F), let us define

S(a)V = (ξt
V )−1 ◦ at

V ∗ ◦ ξt
V (8)

a morphism from F(V )∗∗ to F(V )∗∗.

Lemma 2.11. The subspace F(V ) ⊂ F(V )∗∗ is invariant by this morphism.

Lemma 2.12. For a ∈ End(F), let us consider

Ŝ(a)V = S(a)V |F(V ) (9)

for any V ∈ ObMg
. Then, Ŝ is a map End(F) −→ End(F).

We may, using the proof of this lemma, present a simpler expression to
define the map Ŝ. Let a ∈ End(F), V an object of Mg and u ∈ F(V ), then

Ŝ(a)V (u) = δ−1
V

(

µV (Q−1 · S0(A) · Q) ◦ δV (u)
)

,

where µV : V [[~]] −→ V [[~]] is defined as µV (A)(x) = Ax, x ∈ V and
A = aUg(idUg)(1).

Using the definition (8), we may see that the map Ŝ is an algebra anti-au-

tomorphism, that is, Ŝ(a · b) = Ŝ(b) · Ŝ(a), a, b ∈ End(F).

In the particular case of considering only finite dimensional modules the
map Ŝ : End(F) −→ End(F) is defined, for any a ∈ End(F), by

(Ŝ(a)V )t = dV ◦ aV ∗ ◦ d−1
V ,
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where dV is the isomorphism that appears in (6), identifyingF(IK) and IK[[~]],
and the transpose map is defined in the same section. For each v∗ ∈ F(V ∗),
we have

dV (v∗) = (F(evV ) ◦ JV ∗,V ⊗ idF(V )∗) ◦ (idF(V ∗) ⊗ coevF(V ))(v
∗)

= (F(evV ) ◦ JV ∗,V )(v∗ ⊗ ei) ⊗ ei, ei ∈ F(V ) basis , ei ∈ F(V )∗

(see chapter 9.4 in [13]). If v ∈ F(V ), finally, we get

dV (v∗)(v) = (F(evV ) ◦ JV ∗,V )(v∗ ⊗ v),

coinciding with the definition of ξV in [9]. Without using the above identifi-
cation, the expression for dV (v∗)(v) would coincide with the one of ξV (v∗)(v)
defined in (7). Using the definition of transpose map and the expression of
dV , we have

Ŝ(a)V = (idF(V ) ⊗ (F(evV ) ◦ JV ∗,V )) ◦ (idF(V ) ⊗ aV ∗ ⊗ idF(V ))◦

◦ ((J−1
V,V ∗ ◦ F(coevV )) ⊗ idF(V )).

Theorem 2.13. Relatively to the elements defined in (2), (3), (4) and (9),
we have

(a) (∆̂ ⊗ 1) ◦ ∆̂(a) = (1 ⊗ ∆̂) ◦ ∆̂(a),

(b) ∆̂(a · b) = ∆̂(a) · ∆̂(b), a, b ∈ End(F).

(c) (∆̂ ⊗ 1)R̂ = R̂13 · R̂23, (1 ⊗ ∆̂)R̂ = R̂13 · R̂12,

(d) σ(∆̂(a)) · R̂ = R̂ · ∆̂(a),

(e) (ǫ̂ ⊗ 1) ◦ ∆̂ = 1, (1 ⊗ ǫ̂) ◦ ∆̂ = 1,

(f) ·((Ŝ ⊗ 1) ◦ ∆̂(a)) = id(ǫ̂(a)), ·((1 ⊗ Ŝ) ◦ ∆̂(a)) = id(ǫ̂(a)).

Therefore, the set
(

End(F), ·, id, ∆̂, ǫ̂, Ŝ, R̂
)

is a quasitriangular Hopf al-

gebra over the ring IK[[~]].

Theorem 2.14. [9] The algebra End(F) and the topological usual associative
algebra Ug[[~]] are isomorphic.

This isomorphism allows us to define on the algebra Ug[[~]] the pull-back of
the quasitriangular Hopf algebra structure on End(F): (Ug[[~]], ·, ∆, S, R).

Theorem 2.15. [9] The set (Ug[[~]], ·, ∆, S, R) verifies

∆(u) = J−1 · ∆0(u) · J, S(u) = Q−1 · S0(u) · Q, R = σJ−1 · e
~

2Ω · J,
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where Q =
∑

S0(ui) · vi if J =
∑

ui ⊗ vi, ui, vi ∈ Ug[[~]] and

J = (φ−1 ⊗ φ−1)
(

Φ−1
1,2,34 ◦ Φ2,3,4 ◦ σ23 ◦ e

~

2Ω23 ◦ Φ−1
2,3,4 ◦ Φ1,2,34(i+ ⊗ i−)(φ(1))

)

.

It is a quasitriangular Hopf QUE algebra and a quantization, [7, 9], of the
quasitriangular Lie bialgebra (g = a ⊕ a∗, [, ]g, εg = dcr) where the topological
algebra structure of Ug[[~]] is the usual one. It is obtained from the qua-
sitriangular quasi-Hopf algebra (1) by a twist via J−1, and we denote it as
Ag[[~]],Ω,J−1.

2.3. Quantization of quasitriangular Lie bialgebras.

1)Let (a, [, ]a, εa = dcr1) be a quasitriangular Lie bialgebra. Set

g+ = {(1 ⊗ f)r1 | ∀f ∈ (Ua)∗} ⊆ Ua, g− = {(f ⊗ 1)r1 | ∀f ∈ (Ua)∗} ⊆ Ua

where r1 = rmn
1 em⊗en with {em} a basis of a. Then (1⊗f)(r1) = rmn

1 emf(en)
with f ∈ (Ua)∗. Because r1 is a finite sum, the only elements for which
(1 ⊗ f)(r1) is not zero will be elements f ∈ a∗. Therefore, in this case, the
above definitions are equivalent to

g+ = {(1 ⊗ f)r1 | ∀f ∈ a∗} ⊆ a, g− = {(f ⊗ 1)r1 | ∀f ∈ a∗} ⊆ a.

Using a result from [18], g+ and g− are Lie subalgebras of a.
Let us define χr1

: g∗+ → g− by χr1
(g) = (g ⊗ 1)r1. χr1

is a linear iso-
morphism. Using this isomorphism we may define (see [9]) a Lie algebra
structure [, ]g on the vector space g = g+ ⊕g−, and also a adg-invariant bilin-
ear form <; >g. With these structures (g = g+ ⊕ g−, [, ]g, <; >g) is a Manin
triple. This Manin triple is the image by (1 ⊕ χr1

) of the classical double of
the Lie bialgebra (g+, [, ]g+

, ε), g+ ⊆ a, where ε is the transpose of [, ]g∗+ (see
also [19]).

Furthermore, the map π : g+ ⊕ g− −→ a defined as π(x; y) = x + y, for
x ∈ g+, y ∈ g− is a Lie algebra morphism.

Theorem 2.16. [9] From π : g+⊕g− −→ a, let us define π̃ : g = g+⊕g∗+ −→
a by π̃ = π ◦ (1 ⊕ χr1

). Then, π̃ is a Lie algebra homomorphism and

(π̃ ⊗ π̃)(r) = r1.

Therefore, π̃ can be uniquely extended to an associative algebra homomor-
phism π̃ : Ug −→ Ua.
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2)Let Ma be the category whose objects are a-modules and HomMa
(V, W ) =

Homa(V, W )[[~]]. Let Mg be the Drinfeld category associated to g. We
have the pullback functor π̃∗ : Ma −→ Mg defined by π̃∗(V ) = V , as
vector spaces, and if v ∈ π̃∗(V ), x · v = π̃(x) · v, x ∈ g. We have also π̃∗ :
HomMa

(V, W ) −→ HomMg
(π̃∗V, π̃∗W ) defined by (π̃∗f)(x·v) = (π̃∗f)(π̃(x)·

v) = f(π̃(x) · v) = π̃(x) · f(v) = x · (π̃∗f)(v) with x ∈ g, v ∈ π̃∗V = V .
We may define on Ma a braided monoidal structure, using the one of Mg:

the associativity constraint on Ma is Φ̃ = (π̃ ⊗ π̃ ⊗ π̃)Φ ∈ Ua⊗
3

[[~]] where
Φ ∈ Ug⊗

3

[[~]] is the one of Mg and the commutativity constraint on Ma is

β̃ = (π̃ ⊗ π̃)β ∈ Ua⊗
2

[[~]] where β ∈ Ug⊗
2

[[~]] is the one of Mg.

3)Let us consider the following functor F̃ : Ma −→ A defined by
F̃(V ) = HomMg

(Ug, π̃∗V ) = F(π̃∗V ) and if f ∈ HomMa
(V, W ), F̃(f) =

π̃∗(f).
The tensor structure on F̃ is introduced in the same way that the one on

F , that is to say, let J̃V W : F̃(V ) ⊗ F̃(W ) −→ F̃(V ⊗ W ) be such that,
if ṽ ∈ F̃(V ), w̃ ∈ F̃(W ), then J̃V W (ṽ ⊗ w̃) : Ug −→ π̃∗(V ⊗ W ) is the
composition

J̃V W (ṽ ⊗ w̃) =(ṽ ⊗ w̃) ◦ (φ−1 ⊗ φ−1) ◦ Φ−1
1,2,34 ◦ (1 ⊗ Φ2,3,4)◦

◦ (1 ⊗ (σ ◦ e
~

2Ω) ⊗ 1) ◦ (1 ⊗ Φ−1
2,3,4) ◦ Φ1,2,34 ◦ (i+ ⊗ i−) ◦ φ.

Proposition 2.17. J̃ is a tensor structure on the functor F̃ .

The general reconstruction theorem [13] (chapter 9) can be considered in
the present setting, obtaining in this way [9] a quasitriangular Hopf algebra
(End(F̃), ·, ∆̌, Š, Ř).

Proposition 2.18. There exists an algebra isomorphism Λ̃ : Ua[[~]] −→
End(F̃), between the topological usual associative algebra Ua[[~]] and End(F̃).

This isomorphism Λ̃ allows us to define on the algebra Ua[[~]] the pull-back
of the quasitriangular Hopf algebra structure on End(F̃): (Ua[[~]], ·, ∆̃, S̃, R̃).

Theorem 2.19. Suppose that (a, [, ]a, εa = dcr1) is a quasitriangular Lie bial-
gebra. Let g = g+⊕g∗+ be the classical double of the Lie bialgebra (g+, [, ]g+, ε)
and let (Ug[[~]], ·, ∆, S, R) be the quasitriangular Hopf QUE algebra obtained
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by Etingof-Kazhdan quantization (theorem 2.15). Then, we have

∆̃(a) = J̃−1
r1

· ∆a(a) · J̃r1
, where J̃r1

= (π̃ ⊗ π̃) J, R̃ = (π̃ ⊗ π̃) R,

S̃(a) = Q̃−1 · Sa(a) · Q̃, where Q̃ =
∑

Sa(pi) · qi, J̃r1
=

∑

pi ⊗ qi, a ∈ Ua,

where π̃ = π ◦ (1 ⊕ χr1
) and ∆a, Sa are the usual ones on Ua.

(Ua[[~]], ·, ∆̃, S̃, R̃) is a quasitriangular Hopf QUE algebra and a quantiza-
tion, [7, 9], of the quasitriangular Lie bialgebra (a, [, ]a, εa = dcr1).

Remark 2.20. J̃r1
satisfies the relation

Φ̃1,2,3 · (∆a ⊗ 1)J̃r1
· (J̃r1

⊗ 1) = (1 ⊗ ∆a)J̃r1
· (1 ⊗ J̃r1

).

3. Quantization of nondegenerate triangular Lie bialge-

bras

Let (a, [, ]a, εa = dcr1) be a nondegenerate triangular Lie bialgebra. In this
case r1 ∈ ∧2(a) and det(r1) 6= 0. So, as vector spaces we have

g+ = {(1 ⊗ f)r1 | ∀f ∈ a∗} = a = g− = {(f ⊗ 1)r1 | ∀f ∈ a∗}.

Then the classical double of g+ is the classical double of the Lie bialgebra a.
If {ei} is a basis of a and {ei} is the corresponding dual basis, then

(π̃ ⊗ π̃)Ω = (π̃ ⊗ π̃)(r12 + r21) = (r1)12 + (r1)21 = 0.

Proposition 3.1. Given a nondegenerate triangular Lie bialgebra a and a
Drinfeld associator Φ, we have

Φ̃ = (π̃ ⊗ π̃ ⊗ π̃)Φ = 1 ⊗ 1 ⊗ 1, Φ ∈ Ug⊗3[[~]]

R̃ = (π̃ ⊗ π̃)R = (σJ̃−1
r1

) · (1 ⊗ 1) · J̃r1
, J̃r1

∈ Ua⊗2[[~]]

(∆a ⊗ 1)J̃r1
· (J̃r1

⊗ 1) = (1 ⊗ ∆a)J̃r1
· (1 ⊗ J̃r1

)

(J̃r1
is called an invariant star product (ISP) on (a, [, ]a, εa = dcr1) [1, 6, 14,

15, 16]).
The quantization of the above nondegenerate triangular Lie bialgebra is the

triangular Hopf QUE algebra (Ua[[~]], ·, ∆̃, S̃, R̃), denoted by A
a[[~]],J̃−1

r1
, which

is obtained by a twist via J̃−1
r1

from the usual Hopf QUE algebra (Ua[[~]], ·,
∆a, Sa, Ra = 1).

Let Γ be a neighborhood of 0 in IR. Consider a family of elements rt =
r1 + r2t + r3t

2 + · · · ∈ a ∧ a such that, for each t ∈ Γ, rt is a nondegenerate
solution of the CYBE ([rt, rt] = 0). If (a, [, ]a) is a Lie algebra over C, the set
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(a, [, ]a, εa = dcrt) is a nondegenerate triangular Lie bialgebra, for each t ∈ Γ.
The Lie algebra structure on a∗ is defined by

[f1, f2]a∗rt
= (dcrt)

t(f1 ⊗ f2), f1, f2 ∈ a∗.

Let g = a⊕a∗ be the classical double of the Lie bialgebra (a, [, ]a, εa = dcrt),
that we will denote as grt

= a⊕ a∗rt
because the Lie algebra structure of a∗ is

defined as
[ξ, η]a∗rt

= (dcrt)
t(ξ ⊗ η). (10)

We could begin with the Lie algebra defined from a by the extension of
scalars IK −→ IK[[~]] [4, 2]. We prefer here to begin with a convergent series
in a ∧ a, t ∈ Γ, IK = R. When proving, for example, Proposition 3.4 that
follows, we see first both members of the equalities as formal power series
in t and ~. Then put t = ~. The proof doesn’t depend on the field R and
is then true for any IK. We read in [17, 16] Drinfeld Theorem 7 [6] under
this optical. We don’t have today enough arguments to underestimate this
optical. This simple remark is to be joint to the ”universality properties”
of Φ in [7, 8] which are at the basis for the existence of the Quantization
Functor [9, 12]. See also [20].

Lemma 3.2. [19] The element J of theorem 2.15 will be now Jrt
∈ Ug⊗

2

rt
[[~]]

given by

Jrt
= (φ−1⊗φ−1)

(

(Φ−1
t )1,2,34(Φt)2,3,4σ23e

~

2Ω23(Φ−1
t )2,3,4(Φt)1,2,34(i+⊗i−)φ(1)

)

= 1 ⊗ 1 +
1

2
r ~ +

∑

k≥2

(

r
i1j1
t . . . r

il(k)jl(k)

t Qi1,...,il(k),j1,...,jl(k),k

)

~k,

where when an ordered basis is chosen Qi1,...,il(k),j1,...,jl(k),k ∈ Ug⊗Ug is indepen-

dent of rt, but the algebra structure depends on rt, and r =
∑

(ei; 0)⊗ (0; ei).

Applying π̃t ⊗ π̃t to Jrt
, we come to the following:

Proposition 3.3. [19]

J̃Φ
r~

= (J̃rt
)t=~ = ((π̃t ⊗ π̃t)Jrt

)t=~ = 1 ⊗ 1 +
1

2
r1~ +

∞
∑

R=2

(

1

2
rR+

+
∑

i2,j2,...iR,jR

∑

Ai2,j2
(R),...,AiRjR

(R)

(ri2j2
1 )Ai2j2

(R) . . . (riRjR

R−1)
AiRjR

(R) ·

·Hi2,...,iR,j2,...,jR,Ai2j2
(R),...,AiRjR

(R),R

)

~R,
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with Hi2,...,iR,j2,...,jR,Ai2j2
(R),...,AiRjR

(R),R ∈ Ua ⊗ Ua independent of rk and k,

Aiaja
(R) ∈ IN.

Proposition 3.4. [19] Let Φ ∈ T3[[~]] be a Drinfeld associator. Let rt =
r1 + r2 t + r3 t2 + · · · be a nondegenerate solution of the CYBE, for each t.
Let (a, [, ]a, εa = dcrt) be the nondegenerate triangular Lie bialgebra defined

by rt. Let
(

Ua[[~]], ·, ∆̃t, S̃t, R̃t

)

be the quantization obtained in the Etingof-

Kazhdan’s theorem, (proposition 3.1), as the quantization of the above non-
degenerate triangular Lie bialgebra, from the usual Hopf algebra by a twist
via (J̃rt

)−1.
Consider the element J̃Φ

r~
= (J̃rt

)t=~ ∈ Ua[[~]]⊗̂Ua[[~]], then

(a) (∆a ⊗ 1)J̃Φ
r~
· (J̃Φ

r~
⊗ 1) = (1 ⊗ ∆a)J̃

Φ
r~
· (1 ⊗ J̃Φ

r~
);

(b) J̃Φ
r~

= 1 ⊗ 1 + 1
2r1 ~ + 0(~2);

(c) Defining ∆(a) = (J̃Φ
r~

)−1 · ∆a(a) · J̃Φ
r~

, R = (σJ̃Φ
r~

)−1 · (1 ⊗ 1) · J̃Φ
r~

and

S(a) = Q−1 ·Sa(a) ·Q, where Q =
∑

Sa(ai) ·bi, J̃Φ
r~

=
∑

ai⊗bi, ai, bi ∈ Ua[[~]],

the set (Ua[[~]], ·, ∆, S, R) is a triangular Hopf QUE algebra obtained
twisting the usual Hopf algebra (Ua[[~]], ·, ∆a, Sa, Ra = 1) via the element
(J̃Φ

r~
)−1 ∈ Ua[[~]]⊗̂Ua[[~]]. We write it as A

a[[~]],(J̃Φ
r~

)−1.

Let J̃Φ
r′

~

be the star product determined, in the same way, by

r′t = r1 + r2 t + · · · + rk−1 tk−2 + (rk + sk)t
k−1 + . . .

that also verifies r′t ∈ ∧2(a), and r′t is a nondegenerate solution of Yang-
Baxter equation, for each t. Then J̃Φ

r~
and J̃Φ

r′
~

coincide up to order k − 1

and

(J̃Φ
r′

~

)k − (J̃Φ
r~

)k =
1

2
sk.

4. A result on triangular Hopf QUE algebras of the form

Aa[[~]],F−1 and Drinfeld associators

Denote by Aa[[~]],F−1 [7] the triangular Hopf QUE algebra which is a quan-
tization of the nondegenerate triangular Lie bialgebra a and the twist, via
F−1 ∈ Ua ⊗ Ua[[~]], of the usual triangular Hopf QUE algebra Ua[[~]].

Theorem 4.1. [19] Let a be a nondegenerate triangular Lie bialgebra and
Aa[[~]],F−1 a triangular Hopf QUE algebra which is a quantization of this Lie
bialgebra. Then:
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(a) There exist elements r~ = r1 + r2~ + r3~
2 + · · · ∈ ∧2(a)[[~]] and Er~ =

1 + Er~

1 ~ + · · · + Er~

n ~n + · · · ∈ Ua[[~]], such that

F = ∆a((E
r~)−1) · J̃r~

· (Er~ ⊗ Er~),

i.e., F is an invariant star product equivalent to J̃r~
([6, 16]).

(b) In this case the triangular Hopf QUE algebras Aa[[~]],F−1 and A
a[[~]],J̃−1

r~

are isomorphic.

As a consequence, we notice Aa[[~]],F−1

isom
≈ A

a[[~]],(J̃Φ
r~

)−1

isom
≈ A

a[[~]],(J̃Φ′

r′
~

)−1

when two different associators are considered.
Using Knizhnik-Zamolodchikov associator ([7, 8, 19]) we have obtained for

J̃r~
, up to the term of order ~2, exactly the same expression obtained by

Drinfeld ([6] and explicitly written in [21]).

5. Invariant star products on (a, [, ]a, εa = dcr1)
Let Γ be a neighbourhood of 0 in IR. Consider a family of elements rt ∈ a∧a

such that, for each t ∈ Γ, rt is a nondegenerate solution of the CYBE.

Let µrt
: ∧r(a) −→ ∧r(a) be the isomorphism defined by

(

µ−1
rt

(α)
)i1...ir =

(rt)
j1i1 . . . (rt)

jrirαj1...jr

If G is a Lie group with Lie algebra g, the adjoint representation of G

induces a representation on the Chevalley complex H∗(g) that is trivial.
This is one starting point for the proof of next theorem which is similar
for the Etingof-Kazhdan quantization to that for the Drinfeld quantization
of bialgebra a. See also [16, 17] and compare with the proof given there.

Theorem 5.1. Let J̃r~
= (J̃rt

)t=~ and J̃r′
~

= (J̃r′t)t=~ be ISP on the nondege-
nerate triangular Lie bialgebra (a, [, ]a, εa = dcr1) which appear from E-K
quantization. Suppose βt = µrt

(rt) = β1 + β2t + · · · and β ′
t = µr′t(r

′
t) =

β1 + β ′
2t + · · · .

Then, J̃r~
and J̃r′

~
are equivalent ISP if, and only if, βt and β ′

t belong to the

same formal cohomological class. In other words, J̃r~
and J̃r′

~
are equivalent

ISP if, and only if, there exists a formal 1-cochain αt = α1t+α2t
2 + . . . such

that β ′
t = βt + dcαt.

References
[1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Deformation theory

and quantization, Ann. Phys. 111 (1978), 61 – 151.



QUANTIZATION OF NON-DEGENERATE TRIANGULAR LIE BIALGEBRAS 15
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[5] V.G. Drinfeld, Hamiltonian structures on Lie Groups, Lie bialgebras and the geometric mean-

ing of the classical Yang–Baxter equations, Sov. Math. Dokl. 27 (1983), 68 – 71.
[6] , On constant, quasiclassical solutions of the Yang-Baxter equations, Sov. Math. Dokl.

28 (1983), 667 – 671.
[7] , Quasi–Hopf algebras, Leningrad Math. J. 1 (6) (1990), 1419 – 1457.
[8] , On quasitriangular quasi–Hopf algebras and a group closely connected with Gal(Q/Q),

Leningrad Math. J. 2 (4) (1991), 829 – 860.
[9] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica 2 (1)

(1996), 1 – 41.
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