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Abstract: BiFeO3 fibers were prepared by the Laser Floating Zone (LFZ) technique using different
growth speeds. The structural characterization of the samples was undertaken using X-ray diffraction
(XRD) and Raman spectroscopy, the morphological characterization by scanning electron microscopy
(SEM), and the electrical characterization by impedance spectroscopy. The XRD patterns showed that
BiFeO3 was the major phase in all the samples. Fibers grown at 10 mm/h showed more promising
structural and morphological properties. The dielectric characterization revealed that all samples
have at least one dielectric relaxation phenomenon that is thermally activated. It was also verified
that the dielectric constant is higher at a growth pull rate speed of 10 mm/h.
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1. Introduction

Multiferroic materials are a special class of solid-state compounds in which two
or all three of the ferroic properties, ferroelectricity, ferromagnetism, and ferroelasticity,
coexist [1,2]. These materials are considered scientifically and technologically fascinating,
not only for their ability to display multiple order states but also for the cross-coupling
effects that can occur between the order states [2]. Moreover, there are only a few materials
that have two or more ferroic properties; therefore, multiferroic materials are rare [3]. The
scarce existence of multiferroics and their potential applications in small, multifunctional,
low-power consumption, and environmentally friendly devices make this field of research
challenging and justifies the attention given to its development [4,5].

Bismuth ferrite, BiFeO3, has a perovskite structure and is one of the rare multifer-
roics in which ferroelectricity and magnetism coexist at room temperature. BiFeO3 has a
ferroelectric phase transition Curie temperature, TC, of 1103 K and a G-type antiferromag-
netic phase transition Neel temperature, TN, of 643 K. Due to the high TC and TN, well
above room temperature, BiFeO3 is considered the most promising and widely known
multiferroic material [4–6].

Since it was first synthesized in 1957, BiFeO3 has become one of the most studied
multiferroic ceramic materials. However, it is still challenging to synthesize a single-phase
BiFeO3 ceramic, with the authors suggesting different reasons for the appearance of the
secondary phases [5,7]. They describe BiFeO3 as being metastable, off-stoichiometric,
having a low peritectic decomposition temperature, or having its formation affected by
Bi2O3 evaporation [8–10].

To successfully synthesize single-phase BiFeO3, extensive variation in preparation
methods and sintering conditions (temperature, time, and atmosphere) has been applied [7].
BiFeO3 ceramics fabricated by the conventional solid-state reaction have been reported to
show a leaky polarization–electric field (P–E) loop or a very low polarization value due
to the formation of secondary phases and ionic defects. The single-phase BiFeO3 ceramic,
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produced by wet chemical processes such as sol–gel, co-precipitation, and hydrothermal
methods, has shown high dielectric losses, low resistivity, or a leaky P–E hysteresis loop [10].

The main objective of this work is the processing and characterization of BiFeO3 fibers.
These fibers were obtained by the Laser Floating Zone (LFZ) technique, exploring different
growth speeds in order to decrease the secondary phases.

The LFZ technique is a well-known method that enables the production of high-quality
crystalline materials in a simple, fast, and crucible-free manner with low consumption of
precursor materials [11].

2. Materials and Methods
2.1. Fiber Fabrication

The BiFeO3 fibers were grown by the LFZ technique, using rod precursors for both
feed and seed materials prepared by cold extrusion. These rods were obtained by mixing
the base powders with polyvinyl alcohol (0.1 g/mL, Merck, Rahway, NJ, USA) to obtain a
slurry that was further extruded into cylindrical rods with diameters of 1.75 mm. These
rods were allowed to dry in an oven at 50 ◦C for 1 day. The base powders were prepared
by a solid-state reaction using high-purity Bi2O3 (Aldrich, St. Louis, MO, USA) and Fe2O3
(Merck) as precursors. Stoichiometric amounts of the powders were mixed in a planetary
ball system (Pulverisette 7—Fritsch, Idar-Oberstein, Germany), using an agate vessel of
80 mL and agate balls with a total volume of 5.400 cm3, in a two-cycle process of 60 min at
350 rpm.

The LFZ equipment comprises a 200 W CO2 laser (Spectron—λ = 10.6 µm) coupled to
a reflective optical setup producing a circular crown-shaped laser beam in order to obtain a
floating zone configuration with uniform radial heating. Fibers with diameters in the range
of 1.5–2 mm and 20–30 mm in length were grown at 5, 10, 25, 50, 100, and 200 mm/h in air
at atmospheric pressure.

An advantage of this technique is the possibility of growing materials with preferential
alignment of crystals at relatively high speeds, since one of its characteristics is that the
temperature gradient in the melt zone is more accentuated than any other technique. On
the other hand, if the power of the laser beam is excessive, there may be an excess of liquid
in the molten zone. As a result, the growth stops being uniform, the surface tension is
altered, and there may be an interruption of the growth process in the liquid/solid zone.
Evaporation of some components can also occur due to the fact that the laser power is fully
directed to a small region [12].

2.2. Structural, Morphological, and Electrical Measurements

The structural characterization was performed using X-ray diffraction (XRD). The
pattern data were obtained on a PANalytical X’Pert PRO diffractometer (CuK α radiation,
in the 2θ angle range of 10–60◦. Comparing the interplanar distance, dhkl, and the intensities
of the reflections with the data catalogued in the JCPDS (Joint Committee on Powder
Diffraction Standards) database, it was possible to identify the crystalline phases present in
the samples.

For Raman spectroscopy, the Jobin Yvon—Horiba HR 8000 UV spectrometer was used,
coupled to a laser with a 532 nm excitation beam and an objective of 50×.

Fiber microstructure and phase development were characterized by scanning elec-
tron microscopy (SEM), using a VEGA 3 TESCAN microscope, and by energy dispersive
spectroscopy (EDS), using a BRUCKER detector, on polished surfaces of transversal and
longitudinal fiber sections.

For the dielectric characterization, the fibers were polished up to a maximum thickness
of 0.5 mm. The electrodes were made by covering the opposite sides of the samples with
silver conductive paste. This analysis was made in the temperature range of 100 and 380 K,
using a nitrogen bath cryostat setup. During the measurements, the samples were kept
in a helium atmosphere to avoid moisture and minimize thermal gradients [13–15]. The
measurements were made with a Network Analyzer, Agilent 4294, operating between
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100 Hz and 1 MHz in the Cp-Rp configuration (capacitance in parallel with resistance). The
temperature of the samples was controlled by an Oxford Research IT-C4.

The real and complex parts of the permittivity were calculated using the relations (1)
and (2). [16]:

ε′ =
d
S

Cp

ε0
(1)

ε′′ =
d
S

1
ωRpε0

(2)

where Cp is the measured capacitance, Rp is the resistance, ω is the angular frequency,
d is the sample thickness, S is the electrode area, and ε0 is the vacuum permittivity
(8.8542 × 10−12 F/m).

In 1972, Macedo et al. [17] presented the complex modulus representation M*(ω),
which is defined as the inverse of the complex permittivity (M* = 1/ε*). In general, for a
pure conduction process, a relaxation peak would be observed in the frequency spectra
of the imaginary component M′′ and no peak would arise in the corresponding plot of
ε′′. Though, for a dielectric relaxation process, a relaxation peak appears in both the
M* and ε* representations. Comparisons of the ε* and M* representations have been
used to distinguish localized dielectric relaxation processes from long-range conductivity.
Macedo et al. introduced this formalism to study space charge relaxation phenomena;
however, the M* formalism is now widely used to analyze ionic conductivities and is
useful to understand the bulk responses of materials, as electrode polarization effects are
minimized and the effect of conductivity can be highly suppressed [18].

Physically, the electric modulus corresponds to the relaxation of the electric field in
the material when the electric displacement remains constant, so the electric modulus
represents the real dielectric relaxation process [19].

The complex modulus can be quantified using the following formula [18]:

M∗ = M′ + jM′′ (3)

where M′ and M′′ are the real and imaginary components of the complex modulus, respectively.
The activation energy, Ea, can be evaluated by plotting the frequency corresponding to

M′′ maximum against reciprocal temperature and fitting the data to the Arrhenius law [20]:

fm = f0exp
(
− Ea

kBT

)
(4)

where fm is the frequency at the relaxation peak, f 0 is a pre-exponential factor, Ea is the
activation energy, kB is the Boltzmann constant, and T is the absolute temperature.

3. Results

Figure 1 depicts the room temperature XRD fiber patterns grown by the LFZ technique
with a different growth rate, and the results show that all samples have three crystalline
phases: BiFeO3, Bi25FeO40, and Fe2O3.

Due to the multiphase nature of the fibers grown by LFZ, several fibers were processed
with a wide range of growth rates, from 5 mm/h up to 200 mm/h, in order to reduce
secondary phases, in particular the Bi25FeO40 phase, and thereby increase the amount of the
desired phase, the BiFeO3. However, the analysis of the relative intensity of the diffraction
peaks shows that the relative amount of each phase is almost constant for the fibers grown
at a speed superior to 10 mm/h.

To substantiate this interpretation, the chemical composition of the prepared samples
was estimated by Rietveld’s refinement method using Profex [21]. Figure 2a shows the
measured and calculated spectra for the sample grown at 10 mm/h, and Figure 2b presents
the evolution of the percentage, in volume, of the identified phases with the increase in the
growth speed.
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The Rietveld fitting parameters, presented in Table 1, show the good quality of the
fitting [22,23] and the consistency of the presented results.

Table 1. Rietveld fitting parameters.

5 mm/h 10 mm/h 25 mm/h 50 mm/h 100 mm/h 200 mm/h

Rwp 4.88 6.88 4.91 5.84 4.70 4.90
Rexp 3.08 2.85 2.27 3.29 3.09 3.03
χ2 2.51 5.83 4.68 3.15 2.31 2.62

The results further show that these BiFeO3 fibers are always the main phase, with
Bi25FeO40 and Fe2O3 as secondary phases. However, despite the growth speed of 5 mm/h
allowing the reduction in Bi25FeO40 content, there was an increase in the Fe2O3 phase.
Thus, this sample has the same crystal phases as the remaining fibers, with Bi25FeO40 being
a minority.
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Due to these results, the fibers grown at slower pull rates, 5, 10, and 25 mm/h, were
studied in more detail since they presented a more marked change in the relative amount
of the identified crystallographic phases, with the fibers grown at 50, 100, and 200 mm/h
showing a composition very similar to the 25 mm/h fiber.

To complement the structural characterization of the selected fibers, their transverse
and longitudinal sections were analyzed by Raman spectroscopy. Figure 3a shows the
Raman spectra of the transverse cross-section of the fibers grown at 5, 10, and 25 mm/h,
since the samples grown at 50, 100, and 200 mm/h are, according to the XRD results, very
similar to the one grown at 25 mm/h.
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The location of the peaks in the fibers grown at 25 and 10 mm/h is analogous; however,
narrower and more intense bands are observable in the 10 mm/h fiber. This result is
consistent with what would be expected since the fibers grown at 10 mm/h are more
crystalline because the solidification process was slower. In the fiber grown at 5 mm/h,
there is not only a decrease in the intensity and an increase in the half width of the peaks
that are shared with the previously analyzed fibers, but also the absence of some peaks,
namely the ones centered at 371 and 523 cm−1, and the presence of new peaks, like the
ones at 301 and 622 cm−1.

Figure 3b shows the spectrum performed on the longitudinal cross-section of the
5 mm/h fiber. The comparison of these results with the Raman spectrum of Fe2O3 [24]
shows that this phase is predominant in this fiber, corroborating the XRD data.

According to the literature, the rhombohedral structure R3c of BiFeO3 gives rise
to thirteen Raman active modes: four A1 and nine E [25]. In Table 1, the Raman shifts
experimentally obtained for the selected fibers are featured. In accordance with the group
theory, of these thirteen modes, four belong to the A1 modes (136, 174, 224, and 418 cm−1)
and nine correspond to the E modes (129, 260, 278, 301, 350, 371, 438, 523, and 622 cm−1).
Table 2 also shows the results obtained by Rao et al. [25].

Parejón et al. [26] analyzed nanoparticles of pure BiFeO3, prepared by a mechanochem-
ical process, and identified three bands belonging to the A1 modes (170, 225, and 415 cm−1)
and seven bands corresponding to the E modes (263, 293, 355, 372, 472, 525, and 618 cm−1).
Yuan et al. [27] observed eleven modes in Raman BiFeO3 films prepared by a rapid liquid-
phase sintering method, consisting of four A1 modes (126, 166, 213, and 425 cm−1) and six
E modes (112, 260, 340, 367, 477, 531, and 600 cm−1). In the fibers of the presented work,
there is a band at 129 cm−1, which is confirmed by Rao et al. [25] as belonging to the active
mode E1 for polycrystalline BiFeO3 synthesized by the solid-state reaction method. The
slight difference in some of the positions of the bands observed by different researchers can
be attributed to the sample preparation method and form.
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Table 2. Identification of the Raman modes assigned to the BiFeO3 phase.

Vibrational
Modes

25 mm/h
(cm−1)

10 mm/h
(cm−1)

5 mm/h
(cm−1)

Rao et al. [22]
(cm−1)

E - 129 - 129
A1-1 136 - 146 139
A1-2 174 173 173 172
A1-3 224 220 228 231

E 264 260 255 261
E 278 278 - 276
E - - 301 303
E 350 - - 346
E 371 372 - 369

A1-4 - - 418 432
E - 438 - 480
E 523 523 - 524
E - - 622 -

The comparison of the published values with the experimental results shows that
practically all the active modes are present in the fibers grown by LFZ at 25 and 10 mm/h.
Among the nine E modes, the mode at ~278 cm−1 is associated with covalent bonds Bi-O,
which are the cause of ferroelectric distortion. The Bi atoms actively participate in the lower
frequency modes (<167 cm−1), while the Fe atoms are mainly involved in modes between
152 and 261 cm−1, but also contribute to some of the high-frequency modes. Finally, the
movement of the oxygen atoms predominates in the modes above 262 cm−1 [25–28].

Figure 4 shows typical SEM micrographs of the fibers grown at 5, 10, and 25 mm/h.
The images were taken on the longitudinal section of the fibers (Figure 4a,d,g) and in
the transverse cross-section (Figure 4b,c,e,f,h,i) obtained after polishing the fibers. The
micrographs also show the growth direction of the fibers, which is represented by an
arrow placed in the images corresponding to the longitudinal section. The images obtained
are consistent with the analyses carried out previously since they reveal a polyphasic
character, with BiFeO3 being the major phase (darker phase) and Bi25FeO40 being the main
secondary phase (lighter phase), for samples 25 and 10 mm/h. This identification was
based on the elemental quantification measurements made by EDS and is in accordance
with reference [29], since the less refractory phases are the bismuth-richer phases that
correspond to the lighter phases in SEM micrographs. In the present study, Bi25FeO40 is the
less refractory phase.

Analyzing the images of the transverse cross-section of the 25 mm/h and the 10 mm/h
fibers, particularly the enlarged images, it is seen that the lighter phase appears mainly in
the grain boundaries of the darker phase, allowing a better definition of these borders. These
enlarged images show a homogeneous microstructure, characterized by cell morphology,
revealing that the BiFeO3 crystals have preferential growth along the fiber axis. However,
Figure 4b,e shows that this homogeneity is not extensible to the periphery of the fibers,
where a darker area is visible and can be ascribed to the Fe2O3 phase. These results are
consistent with the literature since the most refractory phase, the bismuth-free phase,
would be expected to crystallize preferentially on the edges of the fiber, where the cooling
is faster [29].

By decreasing the growth speed to 5 mm/h (Figure 4g–i), the fiber ceases to present
crystals with well-defined morphology and is notorious for a certain microstructural
disorganization. Measurements of elemental quantification by EDS identified the dark
phase as being Fe2O3 and the lighter one as BiFeO3. With Bi25FeO40 being a minor phase,
it was not identifiable in these micrographs. Again, these results are consistent with the
characterization techniques mentioned above and confirm the presence of large amounts of
Fe2O3 in fibers with lower growth speeds. This output is visible in the transverse cross-
section of the 5 mm/h fiber and can be the result of some loss of bismuth by volatilization. In
fact, with a growth rate that low, the time that the material is fused at elevated temperatures
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is too long, which may lead to the volatilization of the bismuth since its melting temperature
is extremely low when compared with iron oxide.
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Figure 5 shows the dielectric constant, ε′, as a function of frequency at three different
temperatures for the fibers grown at 5, 10, 25, and 200 mm/h. The results show that, in
general, ε′ increases with the temperature, with the fiber grown at 10 mm/h showing higher
dielectric constant values in the frequency range and temperatures analyzed.
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According to [30], the ε′ of BiFeO3, prepared by the solid-state method, measured
at room temperature and at a frequency of 100 kHz, is approximately 80. In the present
study, the obtained values are significantly higher, and this difference can be related to
the existence of a preferential direction for the BiFeO3 crystals growth (along the fiber
axis), thereby maximizing the dielectric response. However, other aspects must be taken
into consideration, such as the existence of the secondary phases, Bi25FeO40 and Fe2O3.
Therefore, for the dielectric response, factors such as electrode-sample interfaces and the
interfaces between phases must be considered.

Since the amount of Fe2O3, which has, at room temperature and at 100 kHz, a dielectric
constant of 1.3 [31], is reduced when compared to the BiFeO3 and Bi25FeO40 phases, it is
reasonable to assume that its contribution to the dielectric response in the sample grown at
10 mm/h is secondary. Moreover, from the morphological analysis, it is suggested that the
dipoles formed between the BiFeO3 and Bi25FeO40 interfaces, due to their higher amount
in this fiber, are the main reason for the high ε′ value.

The presence of the Bi25FeO40 phase also gives rise to the formation of oxygen gaps
and the multiplicity of Fe ions (Fe2+ and Fe3+), increasing the conductivity [32]. This
increase is clearly visible in the tangent losses depicted in Figure 6, which are the maximum
for the sample grown at 10 mm/h.
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Plotting the imaginary part of the dielectric modulus, M′′, as a function of frequency
for all growth speeds, it is observed that dielectric relaxation phenomena exist. In all the
samples and in all the observed relaxation processes, the peak shifts to a higher frequency
with the increase in temperature, indicating that the response of the dipoles to the external
electric field becomes easier at higher temperatures.

Figure 7 shows the variation of the imaginary part of the modulus with frequency for
the fibers grown at 5, 10, 25, and 200 mm/h.

It is interesting to note that in the sample at 5 mm/h, where the Fe2O3 content is
higher, three relaxation processes are visible. The inset of Figure 7a highlights the two
relaxation phenomena that occur at higher temperatures. On the other hand, the samples
grown at 10 and 25 mm/h, where the chemical content is very similar, show two relaxations
in the measurement window. In the 10 mm/h sample, the second relaxation occurs at
high temperatures and high frequencies. In the case of the 25 mm/h fiber, the inset
of Figure 7c highlights the relaxation visible at low frequencies and high temperatures.
Finally, the sample at 200 mm/h, where the Bi25FeO40 content is higher, shows a relaxation
phenomenon in the measurement window.

By examining the variation in the peak corresponding to M′′ maximum as a function of
inverse temperature (Figure 8), it appears that this follows the Arrhenius law, Equation (4),
allowing the estimation of the activation energy for each relaxation phenomenon.
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Table 3 shows the activation energy values, distinguishing them according to the
frequency region and temperature of occurrence in the case of multiple phenomena.
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Table 3. Activation energy values of the relaxation phenomena identified (LT—Low temperature;
HT—High temperature; LF—Low frequency; HF—High frequency).

5 mm/h 10 mm/h 25 mm/h 200 mm/h

Activation
energy (kJ/mol)

LT/HF
15.75 LT/LF

5.74
LT/HF
11.54

62.91
HT/LF
13.41

HT/HF
14.76

HT/LF
24.19HT/HF

12.54

Despite the similar chemical composition of the fibers grown at 10, 25, and 200 mm/h,
the increase in the growth speed is not irrelevant to the values estimated for the activation
energy. The lower activation energy for the relaxation mechanisms of the 10 mm/h sample
can be related to the higher amount, when compared to the other samples, of interfaces
between the BiFeO3 and Bi25FeO40.

The activation energies of samples grown at 50 mm/h and 100 mm/h were calculated,
showing values similar to the sample activation energy of the 200 mm/h fiber.

4. Conclusions

BiFeO3-based fibers were prepared through the LFZ technique at different growth
speeds (5, 10, 25, 50, 100, and 200 mm/h). The XRD results show that all samples are
polyphasic, with BiFeO3 always being the main phase. Therefore, the speeds that have
been shown to be the most promising were the ones grown at 10 and 25 mm/h. These
fibers are very similar; however, there are narrower and more intense bands in the Raman
spectrum of the 10 mm/h fiber and a higher content of the BiFeO3 phase, as confirmed by
the Rietveld analysis. The fiber grown at 5 mm/h reveals a differentiated behavior due to
the higher content of the Fe2O3 phase.

The images obtained by scanning electron microscopy are consistent with the structural
analyses since they show a polyphasic character. Comparing the image of the transversal
cross-section of the 25 mm/h fiber with the one grown at 10 mm/h, it can be seen that
the Bi25FeO40 phase appears mainly in the grain boundaries, allowing a greater definition
of these boundaries. Decreasing the growth speed to 5 mm/h, the BiFeO3 phase ceases
to present crystals with a well-defined morphology, and there is a noticeable microstruc-
tural disorganization. Additionally, in this sample, Bi25FeO40 was not visible since it is a
minor phase.

The results of the dielectric analysis show that the fiber with a higher content of BiFeO3,
the 10 mm/h sample, showed a higher dielectric constant, regardless of temperature and
frequency. The loss tangent was also higher for this sample. For all growth velocities, the
existence of multiple dielectric relaxation phenomena was observed. The fibers grown
at 10 and 25 mm/h showed two relaxations, with the activation energy increasing with
the increase in temperature for which the phenomenon was observable. This analogous
behavior was expected due to the structural and morphological similarity. The sample
grown at 5 mm/h showed an extra relaxation process that can be attributed to the higher
content of Fe2O3 when compared to the remaining samples. Contrary, the sample grown
at 200 mm/h presented one relaxation phenomenon in the measurement window, with
activation energy considerably higher. This different behavior can be attributed to the
higher content of the Bi25FeO40 phase.
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