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A B S T R A C T   

Organismal aging is impacted by the deterioration of tissue turnover mechanisms due, in part, to the decline in 
stem cell function. This decline can be related to mitochondrial dysfunction and underlying energetic defects 
that, in concert, help drive biological aging. Thus, mitochondria have been described as a potential interven-
tional target to hinder the loss of stem cell robustness, and subsequently, decrease tissue turnover decline and 
age-associated pathologies. In this review, we focused our analysis on the most recent literature on mitochondria 
and stem cell aging and discuss the potential benefits of targeting mitochondria in preventing stem cell 
dysfunction and thus influencing aging.   

1. Introduction 

1.1. Stem cells and aging 

Aging is a natural, dynamic, and multi-factorial process character-
ized by a progressive decline in tissue integrity and function that, ulti-
mately, enhances vulnerability toward diseases (i.e., cardiovascular and 
neurodegenerative diseases, diabetes, cancer, etc.). At the cellular and 
molecular levels, genomic instability, telomere shortening, epigenetic 
changes, nuclear and mitochondrial DNA damage, mitochondrial 
dysfunction, and cellular senescence, are some of the most well- 
described and intricately correlated factors involved in the biological 
process of cellular aging (Belsky et al., 2018; Grigoryan et al., 2018; 
López-Otín et al., 2013; Vizioli et al., 2020). However, chronic inflam-
mation and stem cell exhaustion are viewed as particularly relevant in 
the context of senescence in aging tissues (Lee and Yu, 2020). 

Adult stem cells (ASCs), or tissue-specific stem cells, constitute a rare 
population that resides in most organs in an undifferentiated state. Their 
main property is the ability to differentiate into mature cells of the 
native tissue and thus replace injured and aged cells throughout the 
lifespan of the organism, all the while perpetuating themselves through 
self-renewal. Small pools of ASCs have been identified in the adult 
human organism, including muscle (satellite cells), intestinal, skin, 
neural (NSCs), hematopoietic (HSCs) stem cells as well as mesenchymal 
stem cells (MSCs). In this review we will focus on the latter. 

MSCs are adult stem cells that reside in multiple tissues, including 
the bone marrow, umbilical cord, adipose tissue, skin, and lungs 
(Meirelles et al., 2006). In addition to their already widespread distri-
bution, these cells are also not exclusively dedicated to maintaining the 
homeostasis of their native tissue, on account of being able to migrate 
into injured tissues throughout the body and differentiate and/or pro-
vide some paracrine benefits (Jeschke et al., 2019; Liu et al., 2014). 
Unlike other stem cells, MSCs have been presented as useful tools in 
regenerative medicine, as, besides less stringent ethical concerns, they 
commit to several cell lineages (bone, cartilage, adipose tissue, muscle, 
tendon, and neuronal cells), and control disease-associated mechanisms, 
including apoptosis, inhibition of inflammation and activation of 
tissue-resident stem cells (Han et al., 2019; Wu et al., 2020; Uccelli et al., 
2008). 

1.2. Stem cell aging 

Like most adult cells, aging ASCs undergo adverse physiological, 
molecular, and functional transformations, due to the accumulation of 
genetic and epigenetic changes which can include telomere shortening, 
loss of proteostasis, and growth arrest (Bonab et al., 2006; López-Otín 
et al., 2013; Neri and Borzì, 2020). Consequently, these cells will exhibit 
defective immunomodulatory and migratory capacity, changes in their 
secretory profile, in addition to reduced self-renewal, differentiation, 
and proliferation, as well as reduced DNA synthesis and repair efficiency 
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(Goodell and Rando, 2015). These modifications, in turn, compromise 
the functional competence and dwindle stem cell niche and stem cell 
reserve (López-Otín et al., 2013; Neri and Borzì, 2020; Sun et al., 2021). 
However, cellular changes are not restricted to the nucleus, and mito-
chondria play a crucial role in the functional degeneration of ASCs with 
aging (Wan and Finkel, 2020). 

1.3. Mitochondria and stem cell aging 

Mitochondria are major regulators of stem cell self-renewal, multi-
lineage differentiation, and fate determination (Ito and Ito, 2016; Cor-
reia et al., 2022). Defects in the oxidative phosphorylation system 
compromise the biosynthesis of intermediates for cell growth and 
intensify the production of oxygen-free radicals that harm nuclear and 
mitochondrial DNA (mtDNA) and drive mitochondrial dysfunction (Kim 
et al., 2018a, 2018b, 2018c; Vizioli et al., 2020). Mitochondrial 
dysfunction - and underlying energetic defects – in turn, mediates 
cellular decline that drives biological aging. As a result, senescent ASCs 
display malfunctioning mitochondria, with altered structures dynamics 
and activity (Kim et al., 2018a, 2018b, 2018c; Vizioli et al., 2020; von 
Zglinicki et al., 2021). 

Although some mitochondrial proteins are encoded by nuclear 
genes, mitochondria also possess their own genome (mtDNA), respon-
sible for encoding 13 proteins involved in oxidative phosphorylation 
(OXPHOS) (Kim et al., 2018a, 2018b, 2018c; von Zglinicki et al., 2021). 
Due to its location, close to the electron transport chain (ETC), and lack 
of protective packaging or repair mechanisms, mtDNA is particularly 
sensitive to oxidative damage and reactive oxygen species (ROS) 
(Schuliga et al., 2018). Therefore, alterations in the methylation pat-
terns and mutations in the mtDNA in aging can compromise mito-
chondrial membrane potential, energy metabolism, and mitochondria 
regulatory pathways (Kornicka et al., 2017). A study carried by Sun et al. 
(2022) revealed that, in aged MSCs, energy metabolism and mitochon-
drial genes were downregulated. Another study showed that improving 
mitochondrial function (through photobiomodulation) could rejuvenate 
these cells (Eroglu et al., 2021). 

Mitochondrial dysfunction during the aging process can also occur 
through the DNA damage response (DDR), by means of telomere- 
dependent or independent DNA damage. DDR activates the complex I 
of the mammalian target of rapamycin (mTORC1), triggering mito-
chondrial biogenesis (increased mitochondrial mass) and a senescent 
phenotype through PGC-1β activation (Gureev et al., 2019; Kim et al., 
2018a, 2018b, 2018c; Rath et al., 2021; Vizioli et al., 2020). The 
competitive binding, and subsequent phosphorylation, of p53 by both 
mTOR complexes (mTORC1 and mTORC2) have also been recently 
linked to the activation of senescence pathways and to the inhibition of 
autophagy/mitophagy (Vizioli et al., 2020; von Zglinicki et al., 2021). 
Loss of mitochondrial membrane potential (MMP) caused by proton 
leak, a decrease in oxidative phosphorylation and ATP production, as 
well as elevated ROS generation are also important hallmarks of mito-
chondrial dysfunction in senescent cells (Kim et al., 2018a, 2018b, 
2018c; von Zglinicki et al., 2021). High levels of ROS accelerate telo-
mere shortening, thus further enhancing DNA damage and the 
DDR-dependent activation of senescent pathways, exacerbating stem 
cell and tissue aging in a vicious cycle (Ogrodnik et al., 2017; Rath et al., 
2021). 

In sum, the accumulation of mtDNA damage and ROS in aging MSCs 
promotes mitochondrial dysfunction and fragmentation, that exacer-
bates the senescent phenotype and negatively impacts MSC differenti-
ation potential and thus translational relevance (Han et al., 2019; Liu 
et al., 2020). 

1.4. How aged ASCs contribute to aging 

The number of stem cells gradually declines with successive repli-
cation and age and the accumulation of aged stem cells negatively 

impacts neighboring cells, by promoting paracrine senescence that in-
duces inflammation (Cárdenes et al., 2018). This contributes to the 
deterioration of tissue turnover mechanisms that can culminate in 
age-related diseases (Sharpless and DePinho, 2007). Therefore, the 
maintenance of resilient ASC populations is a feature of healthy aging, 
whilst ASC senescence represents a major risk factor for the already 
reduced number of existing stem cells in the adult organism. In fact, 
some animal species, such as planarians, can regenerate their whole 
body, mainly due to a large population (30 %) of ASCs whose ability to 
regenerate greatly restricts aging (Iglesias et al., 2019). 

2. Targeting aging using MSCs 

An increasing number of studies, some later developed into clinical 
trials, emphasize the potential importance of stem cells, and MSCs in 
particular, as anti-aging agents, particularly in terms of reducing 
inflammation and maintaining mitochondrial health (Table 1). A clin-
ical trial on frailty syndrome (mediated by increased inflammation and 
stem cell depletion) has revealed notable improvements in physical 
performance and inflammatory biomarkers after allogenic stem cell 
infusion (Tompkins et al., 2017). Another study showed that 
adipose-derived MSCs postponed the aging process of a POLG progeroid 
mouse model by promoting abnormal mitochondrial clearance 
(mitophagy) that contributed to metabolic homeostasis, and reduced 
ROS levels in the organism (Lv et al., 2021). Likewise, umbilical cord 
MSC-conditioned medium has been considered a promising tool for skin 
anti-photoaging (Zou et al., 2022). 

The anti-aging properties of MSCs have already been extensively 
described in several review papers (see Zarei and Abbaszadeh, 2019; Lee 
and Yu, 2020; Boulestreau et al., 2020 for a few examples), and so, this 
review aims to 1) summarize current MSC anti-aging strategies that 
modulate mitochondrial function in the target tissue; and 2) describe 
current novel studies that target MSC mitochondria as a global 
anti-aging strategy (Fig. 1). Table 1 summarizes MSC anti-aging strate-
gies through regulating mitochondrial function in the target tissue, 
either by directly modulating tissue mitochondria in situ or by trans-
ferring healthy MSC mitochondria to the target tissue. 

2.1. MSC anti-aging strategies to rejuvenate dysfunctional aged stem cells 
through mitochondria 

New strategies have emerged with the purpose of targeting mito-
chondrial rejuvenating strategies as a way of deterring MSC aging and 
preserving tissue turnover. As previously stated, mitochondrial 
dysfunction influences each of the hallmarks of aging in a bidirectional 
way (Berry and Kaeberlein, 2021). Accordingly, each of these hallmarks 
have been the focus of multiple anti-aging research studies that aspire to 
rescue stem cell function. We will describe current studies that target 
MSC mitochondria as a global anti-aging treatment (Fig. 2). 

2.1.1. Tackling oxygen free radicals 
ROS are considered one of the main contributing factors to adult 

stem cell aging (Harman, 1972). Most ROS form as a by-product of 
mitochondrial respiration and can be ascribed to, at least, seven 
different mitochondrial sites, with complexes I and III being the most 
susceptible to electron leakage, and thus the most extensively studied. 
During OXPHOS highly reactive molecules, such as the superoxide anion 
(O2

− •), hydrogen peroxide (H2O2), and the hydroxyl radical (•OH), are 
formed, and will cause damage to a range of cellular constituents - 
including lipids, proteins, and nucleic acids – contributing to accelerated 
aging. As such, it is pivotal to create an effective oxidative defense. One 
example of such defense emerges with the importance of the stem cell 
niche is determining MSC metabolic state. Stem cells mostly rely on 
anaerobic glycolysis, over mitochondrial OXPHOS, to meet energetic 
requirements and avoid ROS production; thus, promoting a hypoxic 
environment can protect the cells against oxidative damage (Moniz 
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et al., 2022). However, although antioxidants have been shown to also 
benefit the lifespan of small animal models and metabolically compro-
mised animals, its effectiveness in terms of extending the lifespan of 
bigger organisms, such as humans, has yet to be demonstrated (Bhullar 
and Hubbard, 2015). 

Sirt3, a mitochondrial matrix deacetylase, was shown to attenuate 
ROS-induced injury and inhibit MSC senescence by upregulating man-
ganese superoxide dismutase (SOD2), the principal antioxidant mole-
cule that scavenges mitochondrial superoxide (Ma et al., 2020). These 
effects were dependent on the translocation of the Forkhead box O3a 
(FOXO3a) to the nucleus, following Sirt3 deacetylation, and the conse-
quent activation of catalase (CAT) and SOD2 genes. Alternatively, CAT 

and SOD2 inhibition was shown to block the anti-aging effect of Sirt3 
transfection in human MSCs (hMSCs) collected from old donors (Zhang 
et al., 2020). By contrast, Sirt3 overexpression in aged hMSCs enhanced 
the survival rate after cell infusion into the heart (via FOXO3a-CAT and 
SOD2 pathway), and improved cardiac function and angiogenesis, thus 
decreasing infarct size, collagen content and expression levels of matrix 
metalloproteinase 2 (MMP2) and MMP9 upon myocardial infarction 
(Zhang et al., 2020). FOXO activity is positively regulated by AMPK - 
which is sensitive to AMP/ATP ratio and function to restore energy 
levels - and negatively regulated by PI3K-AKT signaling. 

Another recent approach to tackle free radicals in this context is the 
combination of resveratrol (a Sirtuin 1 activator, see below) and 5- 

Table 1 
MSCs studies in anti-aging strategies focusing on mitochondria manipulation or transfer.  

Purpose Model In vitro/in vivo Study findings Source 

Explore the effect of menstrual blood-derived 
mesenchymal stem cells (MenSCs) and their 
mitochondria on ovarian function in aged mice 

Ovaries of aged mice 
treated with MenSCs or 
their mitochondria 

in vivo “Mitochondrial-related genes were enriched in aged ovaries 
in both treatments; - follicular state was improved” 

(Zhang 
et al., 2022) 

Evaluate aging parameters after MSC infusion Aged C57BL/6 mice in vivo “Mouse hair became shiny and dense, and the symptoms of 
bladder overactivity were relieved; - histopathological 
changes in skin, bladder, liver, and lung were apparently 
improved” 

(Liu et al., 
2022) 

Evaluate the effect of MSCs co-culture in senescent 
cells 

IMR-90 senescent cells in vitro “Expression of inflammatory agent IL6 was decreased; - the 
expression of growth factors was increased; - the number of 
mitochondria and the telomere length were increased with 
MSC treatment” 

(Liu et al., 
2022) 

Evaluate the effect of MSCs infusion in muscle 
performance 

Senescence-accelerated 
mouse prone 10 
(SAMP10) mice 

in vivo “UC-MSC treatment ameliorated muscle mass loss and 
improved physical performance; - improved muscle 
mitochondrial biogenesis (mediated by AMPK-PGC1-α 
axis); mitigated aged muscle inflammation which was 
translated into an improvement in sarcopenia-related 
skeletal muscle atrophy and dysfunction.” 

(Piao et al., 
2022) 

Injection of MSCs to treat pelvic organ prolapse 
(POP) 

Rat model of POP in vivo “MSCs downregulated Mfn2 expression and increased the 
expression of procollagen1A1/1A2/3A1 in the uterosacral 
ligament of POP rats” 

(Wang 
et al., 2022) 

Evaluate the effect of H2O2-primed pericyte-derived 
EVs in disused muscles of old mice 

Aged muscle mice in vivo “Pericytes-derived EVs recovered skeletal muscle fiber size 
and extracellular matrix remodeling in aged mice after 
skeletal muscle disuse.” 

(Wu et al., 
2022) 

Explore ovarian function after MSC infusion Rat model of premature 
ovarian insufficiency 
(POI) 

in vivo and in 
vitro 

“hUCMSCs restored the ovarian function; - apoptosis of 
theca interstitial cells was reduced through regulating 
NR4A1-mediated mitochondrial mechanisms” 

(Luo et al., 
2022) 

Evaluate allogeneic stem cell therapy in a DNA 
polymerase gamma (POLG) knockin mice (with 
mitochondrial dysfunction) 

Progeria animal model in vivo “Adipose-MSCs therapy can improve alopecia and kyphosis 
by promoting mitophagy; allogeneic stem cell therapy can 
improve aging-related symbols and phenotypes through 
mitochondrial quality control” 

(Lv et al., 
2021) 

Evaluate anti-aging effect of ADSC in a co-culture 
system with MEFs (mouse embryonic fibroblast 
cells) 

MSCs isolated from the 
adipose tissues of C57BL/ 
6 mice 

in vitro “Replicative senescence of MEFs was postponed by 
promoting mitophagy, which eliminated intracellular ROS 
and improved the quality of mitochondria; - metabolic 
homeostasis was transformed from catabolism to 
anabolism” 

(Lv et al., 
2021) 

Explore healthy mitochondria transfer from fetal to 
adult MSCs to reverse aging by using an 
automated optical tweezer-based 
micromanipulation system 

Fetal and adult MSCs in vitro “Increase the antiaging and metabolic gene expression in 
the adult MSC - mitochondrial transfer from young cells 
could contribute 
to cell proliferation and metabolic rejuvenation” 

(Shakoor 
et al., 2021) 

Evaluate the effect of MSC administration in ovarian 
reserve 

Age-related diminished 
ovarian reserve (AR- 
DOR) 

in vivo “Ovarian function, the number of follicles and the quality of 
oocytes were improved; - apoptosis of granulosa and 
stromal cells was repressed; - Ampk, FoxO3a signaling and 
Sod2 were increased” 

(Liu et al., 
2021) 

Evaluate ovarian function after MSC infusion Natural aged mice and 
rhesus monkeys 

in vivo “Increased follicle number, improved oocyte quality, 
enhanced ovarian mitochondrial function, inhibited cell 
apoptosis; - in non-human primates the number of follicles 
were higher than in control, aged, group” 

(Wang 
et al., 2021) 

Administration of ghrelin-preconditioned human 
MSCs or in combination with nicotinamide- 
mononucleotide (NMN) in aged hearts 

Aged heart rats subjected 
to IR injury 

in vivo “Reduced infarct size and cardiotroponin release of aged 
myocardium, and improved cardiac function; - restored IR- 
induced mitochondrial reactive oxygen species and 
membrane potential depolarization and enhanced ATP 
production; - increased autophagy” 

(Sun et al., 
2021) 

Evaluate the effect of pigallocatechin-3-gallate 
preconditioned adipose-derived stem cells 
injected into 20-month-old Wistar rats 

Aging rat brain in vivo “Enhanced cell survival via the p-Akt pathway and 
improved mitochondrial biogenesis via the SIRT-1 
pathway; - increased neurotrophic factor and the 
antioxidant activity” 

(Hsieh 
et al., 2020) 

Evaluate the skin rejuvenating effect of hMSC- 
conditioned media in combination with 
niacinamide after laser therapy 

Human randomized 
controlled Trial 

“Reduced wrinkles and hyperpigmentation in the 
aging skin” 

(Lee and 
Yu, 2020)  
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azacitidine, that were described to significantly reverse senescence in 
MSCs, by increasing mitophagy through upregulation of proteins 
implicated in mitochondrial quality control, namely Pink and Parkin 
(Kornicka et al., 2019). While mitophagy – the process by which 
damaged mitochondria are recycled – is reported to be pro-longevity, 
mitochondrial fragmentation – that also involves fission – has been 

linked to aging (Amartuvshin et al., 2020). It remains to be determined 
in which context fission represents a pro-aging or pro-longevity process. 
For instance, in aged Drosophila ovarian germline stem cells a shift of 
mitochondrial dynamics toward fusion, by Drp-1 deletion, prevented 
cell loss (Amartuvshin et al., 2020). Alternatively, a study carried out in 
C. elegans, revealed that a specific balance in mitochondrial dynamics 
(driven by both fusion and fission processes), and network remodeling 
coordination that are required to the pro-longevity action promoted by 
AMPK and dietary restriction (Weir et al., 2017). Moreover, authors 
reported that aged flies fed with rapamycin, known to stimulate the 
clearing of dysfunctional mitochondria (via inhibition of mTORC1), also 
prevented cell loss (Amartuvshin et al., 2020). In accordance, 
mitochondrial-derived peptide MOTS-c, an AMPK activator, enhanced 
the quality of aged MSCs, reduced the aged phenotype by activating 
AMPK and inhibiting mTORC1, and enhanced mitochondrial homeo-
stasis by decreasing oxygen consumption rates, ROS levels and lipid 
synthesis (Yu et al., 2021). 

2.1.2. Targeting sirtuins 
The Sirtuin protein family consists of seven members allocated to 

distinct subcellular sites. Each sirtuin (NAD+-dependent class III histone 
deacetylases) plays a key role in stem cell function particularly due to its 
importance in metabolism and due to its deacetylase activity. In addi-
tion, sirtuins interact with some of the most important molecules in 
aging: AMPK, mTOR, FOXO and insulin/IGF-1 signaling (Zhao et al., 
2020). Complementarily, some authors consider Sirt1 and Sirt3 as key 
contributors for the health benefits associated with caloric restriction. 

NAD+, a sirtuin activator, is a relatively dynamic and abundant 
element in most cells, implicated in more than 500 metabolic reaction 
and its levels have been shown to decline with age. In accordance 
boosting NAD+ improves mitochondrial function and decreases DNA 
damage (Rajman et al., 2018). During low cellular energy conditions, 
NAD+ acts by activating sirtuins to induce the re-establishment of en-
ergy homeostasis. As Nampt is involved in NAD+ biosynthesis, it also 
indirectly modulates Sirt1 deacetylase activity. The decrease in the 
abundance of acetylated (inhibited) PGC-1α, a regulator of mitochon-
drial biogenesis, is one of the most relevant targets of Sirt1. Its reac-
tivation through the PGC-1α/AMPK signaling pathway is responsible for 
maintaining metabolic homeostasis by preventing oxidative stress and 
for abolishing senescence-induced MSC dysfunction (Li et al., 2018). For 
these reasons, compounds that activate sirtuins and improve mito-
chondrial biogenesis have been valued as promising anti-aging factors. 
In this context, it has been shown that miR-34a expression levels posi-
tively correlate with aging in several human and rodent aged organs 
(including the lung, heart, liver, kidney, and brain), and its 
pro-senescent role has been linked to mitochondrial dysfunction and 
Sirt1 repression (Zhang et al., 2015). Overexpression of miR-34a in 
young MSCs induced a senescent-like phenotype that could be rescued 
by Nampt restoration (Pi et al., 2021). Inhibition of miR-34a, in turn, 
improved proliferation in aged MSCs, suppressed cellular senescence 
markers (P53, P21, and P16) and enhanced anti-senescence markers 
(SIRT1, HTERT and CD44) (Mokhberian et al., 2020). Nampt was also 
identified as a direct target gene of miR-34a, as miR-34a led to a drop in 
Nampt expression levels, lowered the NAD+/NADH ratio, and decreased 
Sirt1 activity in naturally aged and senescent MSCs (Pi et al., 2021). 
Another Sirt1 activator, the SRT1720, was found to protect aged MSCs 
from apoptosis, to influence their engraftment into an infarcted 
nonhuman primate heart, and elevate mitochondrial respiratory ca-
pacity, mitochondrial membrane potential and mitochondrial biogen-
esis (Zeng et al., 2021). 

Sirt3 primarily localizes in the mitochondria, where it influences 
mtROS scavenging and mtROS homeostasis, via SOD2 deacetylation. 
Sirt3 is downregulated in in vitro aged MSCs, and a wound-healing assay 
carried out in mice revealed that its activation, triggered by EphB2/Nrf- 
2 signaling, delayed the progression of MSC senescence while enhancing 
its therapeutic function (Jung et al., 2017). Additionally, Sirt3 was 

Fig. 1. Targeting aging through MSCs. A) Anti-aging strategies that modulate 
mitochondrial function in the target tissue; B) Therapies targeting dysfunctional 
mitochondria of aged MSCs as a global anti-aging treatment. 

Fig. 2. Signaling pathways targeted by anti-aging strategies through mito-
chondria. The activation of AMPK and Sirt1 as well as the inhibition of mTOR 
signaling influence mitochondrial dynamics and promote mitochondrial 
biogenesis (through PGC1α) and homeostasis. The activation of AMPK by 
NAD+, increased AMP/ATP ratio, molecules such as MOTS-c and metformin as 
well as nutritional based interventions, improve mitochondrial homeostasis and 
inhibit mTOR. Sirtuin 1 (Sirt1) activation, by molecules such as resveratrol or 
by the inhibition of miR34a, can activate AMPK and inhibit mTOR. The inhi-
bition of mTOR, by rapamycin for example, will promote dysfunctional mito-
chondrial clearing, activate autophagic processes, impede the activation of 
senescence pathways, etc. Abbreviations: AMP-activated protein kinase 
(AMPK), Sirtuin 1 (Sirt1), mammalian target of rapamycin (mTOR), Peroxisome 
proliferator-activated receptor-gamma coactivator (PGC)-1alpha, Nicotinamide 
adenine dinucleotide (NAD+), Adenosine monophosphate/Adenosine triphos-
phate (AMP/ATP). 
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found to target SOD2, IDH2, SDHA, NDUFA9, and GLUD1 (Ahn et al., 
2008; Finley et al., 2011; Someya et al., 2010); mitochondrial meta-
bolism and stress-controlling genes involved in mitochondrial quality 
control processes, which include restoration/degradation of misfolded 
proteins and regulation of mitochondrial dynamics (mitophagy and 
mitochondrial biogenesis). Sirt3 overexpression also discontinued 
senescence signals, restored mitochondrial oxidative stress, and enabled 
differentiation, in other stem cell models, after treatment with the 
pro-aging molecule tert-butyl hydroperoxide (tBHP) (Santos et al., 
2022). 

2.1.3. Targeting the UPRmt system 
The accumulation of misfolded proteins within mitochondria, as a 

result of a lack of coordination between mitochondria and nucleus- 
encoded genes, triggers the activation of a stress pathway, known as 
the mitochondrial unfolded protein response (UPRmt), that ensures 
correct mitochondrial proteostasis (Shpilka et al., 2018). As a result, the 
activation of UPRmt, at least to some extent, has also emerged as a key 
player in the aging process. The knockdown of the mitochondrial ribo-
somal protein S5 (Mrps5) in nematode worms and mice was shown to 
induce a dyscoordination between mitochondria and nuclear encoded 
mitochondrial proteins, resulting in a decrease in mitochondrial respi-
ration, activation of the UPRmt, and increased longevity (Houtkooper 
et al., 2013). A similar molecular mechanism, based on mitonuclear 
imbalance and UPRmt activation, was triggered by rapamycin and 
resveratrol (Houtkooper et al., 2013). In aged mouse muscle stem cells 
(MuSC) the UPRmt pathway was confirmed to be restored by raising the 
concentration of NAD+ (Zhang et al., 2016). As previously stated, the 
content of NAD+ is critical for mitochondrial function and Nampt 
overexpression, a key protein in the NAD+-Sirt1 axis, was able to 
attenuate senescence-associated phenotype in aged rats and 
late-passaged MSCs (Ma et al., 2017), whereas its absence enhanced 
senescence by depleting NAD+ levels and attenuating Sirt1 activity 
(Wang and Finkel, 2020). In addition, multiple precursors of NAD+ have 
been confirmed to delay the onset of senescence. Zhang et al., showed 
that the NAD+ precursor nicotinamide riboside (NR – a form of vitamin 
B3 naturally found in milk) was able to rejuvenate aged mice MuSCs, 
prevent MuSC senescence in a mouse model of muscular dystrophy, and 
delay senescence in NSCs and melanocyte SCs, thereby increasing mouse 
longevity (Zhang et al., 2016). Those studies, also corroborated in 
several other stem cell lineages (Mohrin et al., 2015; Rajman et al., 
2018; Schöndorf et al., 2018), have established the importance of 
UPRmt-mediated mitochondrial checkpoints in aging, but also the 
importance of nutritional based interventions (Lin et al., 2021). In this 
context, there is growing evidence that there is a link between aging and 
the mild stimulation of pathways that perceive adversity (such as the 
UPRmt system), thereby creating an emerging interest in fasting/caloric 
restriction diets (Colman et al., 2009; Hegab et al., 2019). 

2.1.4. Mitochondrial transfer in aging 
MSCs are known to spontaneously donate healthy mitochondria to 

neighboring cells that exhibit mitochondrial dysfunction, as a means of 
improving OXPHOS and ATP production. The process behind organelle 
biogenesis and donation can be attributed to the uptake of dysfunctional 
mitochondria released by the damaged cells, or to environmental 
stressors such as ROS and inflammatory mediators, whereas its transport 
has been ascribed either to the formation of tunneling nanotubes (TNTs) 
or by microvesicle transport (Gomzikova et al., 2021; Liu et al., 2014). 
Alternatively, artificial delivery can be accomplished by transplanting 
mitochondria-rich MSCs to a damaged site (passive horizontal transfer), 
or by supplementing the cell with previously isolated mitochondria 
(Chang et al., 2019; Gomzikova et al., 2021; Kim et al., 2018a, 2018b, 
2018c; Kitani et al., 2014; Shakoor et al., 2021). Mitochondrial delivery 
systems can vary greatly between studies and target cells: the organelle 
can be microinjected into single cells (Shakoor et al., 2021), centrifuged 
or incubated with the recipient cell (Kim et al., 2018a, 2018b, 2018c; 

Kitani et al., 2014), transferred via peptide-mediated delivery or intro-
duced with the help of magnetic particles (Macheiner et al., 2016), and 
even relocated using an automated optical tweezer-based micromanip-
ulation system (Shakoor et al., 2021). 

Direct and indirect mitochondrial transplantation procedures have 
been at the center of recent studies focusing on the repair of damaged 
tissues, from the treatment of acute lung injury (Islam et al., 2012; 
Morrison et al., 2017), ischemia/reperfusion lesions in ischemic heart 
disease (Han et al., 2016), to spinal cord injury (Gollihue et al., 2018). 
Some authors even report the possibility of increasing oocyte compe-
tence through mitochondrial transfer (Ferreira et al., 2021). Concomi-
tantly, this procedure has been considered a plausible anti-aging 
approach, with the potential of decreasing age-related mitochondrial 
dysfunction in MSCs and promoting tissue turnover. In fact, a recent 
study by Guo et al. has revealed that autologous mitochondrial transfer 
could prevent the loss of therapeutic properties of bone marrow MSCs 
(BM-MSCs) with age, by upregulating OXPHOS and ATP production and 
subsequently, increasing proliferation, osteogenesis, and bone healing 
(Guo et al., 2020). Shakoor and colleagues have also demonstrated that, 
by transferring healthy mitochondria from fetal MSCs, they could 
restore the bioenergetic function of aged adult MSCs to a fetal-like state, 
thereby rejuvenating the aged phenotype (Shakoor et al., 2021). 
Accordingly, future research into this phenomenon might improve the 
success rate and efficiency of stem cell-based therapies. 

3. Concluding remarks 

Stem cells enable the adult organism to regenerate in a daily basis 
and are essential to safeguard us from the aging process. Therefore, anti- 
aging treatments are required to increase stem cells in number, quality, 
and regenerative potential. Moreover, obtaining a deeper understanding 
of the drivers of aging will also allow us to treat multiple diseases 
correlated with the aging process (cardiovascular and neurodegenera-
tive diseases, diabetes, cancer, osteoporosis, etc). 

Collectively, available findings suggest that mild cellular stress, (e.g., 
prompted by slight ROS production and lack of proteostasis) could be 
beneficial towards promoting healthy aging, by mobilizing mitochon-
drial quality control mechanisms and stimulating mitonuclear commu-
nication. Restoring the vitality and function of cells through 
mitochondria modulation have had considerable interest, and recent 
findings in animal models have prompted a notable enthusiasm in the 
field. Nonetheless, mitochondria as disease driver must be explored in 
the human organism to tackle organismal specificities that could help to 
devise new therapeutic approaches (Fig. 3). 

3.1. Future perspectives 

More than 1000 MSC-focused clinical trials have been registered. 
Since these cells physiologically support the regeneration of multiple 
tissues, the development of promising cellular therapies can be envi-
sioned, although the applicability of this approach in different circum-
stances remains to be fully established. Despite their availability 
throughout the organism, however, MSCs have a limited expansion ca-
pacity and suffer premature aging in vitro, hindering their therapeutic 
benefit. This is a particular point of interest that could increase appli-
cability and is worthy of pursuit. 

Reversing MSC aging by protecting against DNA damage can be a 
challenging affair, but chemical manipulation of DNA through epige-
netics, which is directly influenced by the metabolic state of the cell, 
appear to be a promising solution to this dilemma and might serve as 
novel pharmacological target. Multiple molecules targeting mitochon-
dria are currently being evaluated under clinical trials and are expected 
to provide a beneficial effect on human aging. Joining these two ap-
proaches (MSCs and mitochondrial function) might provide a stimulus 
for future studies on the identification and safety-testing of molecules in 
a broader sample population, and we anticipate that the development of 

A. Branco et al.                                                                                                                                                                                                                                 



European Journal of Cell Biology 102 (2023) 151289

6

therapies focused either on the recovery of mitochondrial function or on 
the transfer of healthy mitochondria into damaged aged tissues, may be 
an important strategy in increasing tissue resilience and MSC function in 
aging. 
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Cárdenes, N., Álvarez, D., Sellarés, J., Peng, Y., Corey, C., Wecht, S., Nouraie, S.M., 
Shanker, S., Sembrat, J., Bueno, M., Shiva, S., Mora, A.L., Rojas, M., 2018. 
Senescence of bone marrow-derived mesenchymal stem cells from patients with 
idiopathic pulmonary fibrosis. Stem Cell Res. Ther. 9, 257. https://doi.org/10.1186/ 
s13287-018-0970-6. 

Chang, J.-C., Chang, H.-S., Wu, Y.-C., Cheng, W.-L., Lin, T.-T., Chang, H.-J., Kuo, S.-J., 
Chen, S.-T., Liu, C.-S., 2019. Mitochondrial transplantation regulates antitumour 
activity, chemoresistance and mitochondrial dynamics in breast cancer. J. Exp. Clin. 
Cancer Res. 38, 30. https://doi.org/10.1186/s13046-019-1028-z. 

Colman, R.J., Anderson, R.M., Johnson, S.C., Kastman, E.K., Kosmatka, K.J., Beasley, T. 
M., Allison, D.B., Cruzen, C., Simmons, H.A., Kemnitz, J.W., Weindruch, R., 2009. 
Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 
325, 201–204. https://doi.org/10.1126/science.1173635. 

Fig. 3. Schematic representation of key mitochondrial regulators that influence aging of MSCs. Reactive oxygen species, sirtuins, the mitochondrial unfolded protein 
response (mtUPR) and mitochondrial transfer have been highlighted as mitochondrial anti-aging approaches to tackle MSC aging. 

A. Branco et al.                                                                                                                                                                                                                                 

https://doi.org/10.1073/pnas.0803790105
https://doi.org/10.1073/pnas.0803790105
https://doi.org/10.1111/acel.13191
https://doi.org/10.1111/acel.13191
https://doi.org/10.1093/aje/kwx346
https://doi.org/10.1093/aje/kwx346
https://doi.org/10.1007/s11357-021-00365-7
https://doi.org/10.1007/s11357-021-00365-7
https://doi.org/10.1016/j.bbadis.2015.01.012
https://doi.org/10.1016/j.bbadis.2015.01.012
https://doi.org/10.1186/1471-2121-7-14
https://doi.org/10.3389/fcell.2020.00107
https://doi.org/10.1186/s13287-018-0970-6
https://doi.org/10.1186/s13287-018-0970-6
https://doi.org/10.1186/s13046-019-1028-z
https://doi.org/10.1126/science.1173635


European Journal of Cell Biology 102 (2023) 151289

7

Correia, B., Sousa, M.I., Branco, A.F., Rodrigues, A.S., Ramalho-Santos, J., 2022. Leucine 
and arginine availability modulate mouse embryonic stem cell proliferation and 
metabolism. Int. J. Mol. Sci. 23, 14286. https://doi.org/10.3390/ijms232214286. 

Eroglu, B., Genova, E., Zhang, Q., Su, Y., Shi, X., Isales, C., Eroglu, A., 2021. 
Photobiomodulation has rejuvenating effects on aged bone marrow mesenchymal 
stem cells. Sci. Rep. 11, 13067. https://doi.org/10.1038/s41598-021-92584-3. 

Ferreira, A.F., Soares, M., Reis, S.A., Ramalho-Santos, J., Sousa, A.P., Almeida-Santos, T., 
2021. Does supplementation with mitochondria improve oocyte competence? A 
systematic review. Reproduction 161, 269–287. https://doi.org/10.1530/REP-20- 
0351. 

Finley, L.W., Haas, W., Desquiret-Dumas, V., Wallace, D.C., Procaccio, V., Gygi, S.P., 
Haigis, M.C., 2011. Succinate dehydrogenase is a direct target of sirtuin 3 
deacetylase activity. PLoS One 6 (8), e23295. https://doi.org/10.1371/journal. 
pone.0023295. 

Gollihue, J.L., Patel, S.P., Eldahan, K.C., Cox, D.H., Donahue, R.R., Taylor, B.K., 
Sullivan, P.G., Rabchevsky, A.G., 2018. Effects of mitochondrial transplantation on 
bioenergetics, cellular incorporation, and functional recovery after spinal cord 
injury. J. Neurotrauma 35, 1800–1818. https://doi.org/10.1089/neu.2017.5605. 

Gomzikova, M.O., James, V., Rizvanov, A.A., 2021. Mitochondria donation by 
mesenchymal stem cells: current understanding and mitochondria transplantation 
strategies. Front. Cell Dev. Biol. 9. 

Goodell, M., Rando, T., 2015. Stem cells and healthy aging. J. Sci. 1199–1204 (350 
6265). 〈https://www.science.org/doi/abs/10.1126/science.aab3388〉. 

Grigoryan, A., Guidi, N., Senger, K., Liehr, T., Soller, K., Marka, G., Vollmer, A., 
Markaki, Y., Leonhardt, H., Buske, C., Lipka, D.B., Plass, C., Zheng, Y., Mulaw, M.A., 
Geiger, H., Florian, M.C., 2018. LaminA/C regulates epigenetic and chromatin 
architecture changes upon aging of hematopoietic stem cells. Genome Biol. 19, 189. 
https://doi.org/10.1186/s13059-018-1557-3. 

Guo, Y., Chi, X., Wang, Y., Heng, B.C., Wei, Y., Zhang, X., Zhao, H., Yin, Y., Deng, X., 
2020. Mitochondria transfer enhances proliferation, migration, and osteogenic 
differentiation of bone marrow mesenchymal stem cell and promotes bone defect 
healing. Stem Cell Res. Ther. 11, 245. https://doi.org/10.1186/s13287-020-01704- 
9. 

Gureev, A.P., Shaforostova, E.A., Popov, V.N., 2019. Regulation of mitochondrial 
biogenesis as a way for active longevity: interaction between the Nrf2 and PGC-1α 
signaling pathways. Front. Genet. 10. 

Han, H., Hu, J., Yan, Q., Zhu, J., Zhu, Z., Chen, Y., Sun, J., Zhang, R., 2016. Bone 
marrow‑derived mesenchymal stem cells rescue injured H9c2 cells via transferring 
intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/ 
reperfusion model. Mol. Med. Rep. 13, 1517–1524. https://doi.org/10.3892/ 
mmr.2015.4726. 

Han, Yu, Li, X., Zhang, Y., Han, Yuping, Chang, F., Ding, J., 2019. Mesenchymal stem 
cells for regenerative medicine. Cells 8, 886. https://doi.org/10.3390/cells8080886. 

Harman, D., 1972. The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 20, 
145–147. https://doi.org/10.1111/j.1532-5415.1972.tb00787.x. 

Hegab, A.E., Ozaki, M., Meligy, F.Y., Nishino, M., Kagawa, S., Ishii, M., Betsuyaku, T., 
2019. Calorie restriction enhances adult mouse lung stem cells function and reverses 
several ageing-induced changes. J. Tissue Eng. Regen. Med. 13, 295–308. https:// 
doi.org/10.1002/term.2792. 

Houtkooper, R.H., Mouchiroud, L., Ryu, D., Moullan, N., Katsyuba, E., Knott, G., 
Williams, R.W., Auwerx, J., 2013. Mitonuclear protein imbalance as a conserved 
longevity mechanism. Nature 497, 451–457. https://doi.org/10.1038/nature12188. 

Hsieh, D.J., Marte, L., Kuo, W.W., Ju, D.T., Chen, W.S., Kuo, C.H., Day, C.H., 
Mahalakshmi, B., Liao, P.H., Huang, C.Y., 2020. Epigallocatechin-3-gallate 
preconditioned adipose-derived stem cells confer neuroprotection in aging rat brain. 
Int. J. Med. Sci. 17 (13), 1916–1926. https://doi.org/10.7150/ijms.46696. 

Iglesias, M., Felix, D.A., Gutiérrez-Gutiérrez, Ó., Miguel-Bonet, M., del, M.D., Sahu, S., 
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