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PROLOCALISATIONS OF HOMOLOGICAL CATEGORIES

F. BORCEUX, M. M. CLEMENTINO, M. GRAN AND L. SOUSA

Abstract: A prolocalisation of an homological (resp. semi-abelian) category is a
regular full reflective subcategory, whose reflection preserves short exact sequences.
We study the closure operator and the torsion theory associated with such a situa-
tion. We pay special attention to the fibered, the epireflective and the monoreflective
cases. We give examples in algebra, topos theory, functional analysis.

Introduction
In an abelian category C, hereditary torsion theories are in bijection with

universal closure operators and, when the category C is a Grothendieck one,
these are further in bijection with the localisations of C (see [21]). This last
point is important since a localisation of an abelian category is again abelian.

Since some years, the notion of semi-abelian category imposed itself as an
elegant and powerful “non-commutative” substitute for the notion of abelian
category (see [26]) and more recently, it has been observed that the weaker
notion of homological category is still sufficient to force the validity of all
diagram lemmas of homological algebra (see [6]).

Torsion theories and closure operators in semi-abelian and homological
categories have already been studied by various authors (see [13], [24], [17],
[27]), but to our best knowledge, the possible link with an adequate notion
of localisation remains to be investigated. This is one of the purposes of the
present paper.

It is immediate to observe that a localisation of a semi-abelian (resp. ho-
mological) category is again semi-abelian (resp. homological). But in the
semi-abelian context, the notion of localisation may not be the most ade-
quate one. Let us recall that a reflection of a category with finite limits is
a localisation when it preserves finite limits. In the abelian context, this is
equivalent to simply preserving monomorphisms, or to preserving short exact
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sequences, or to preserving left exact sequences, and so on. But in the semi-
abelian case, all these properties are no longer equivalent, so that deciding
what a “semi-abelian localisation” is, should be considered very seriously.

To give evidence of the pertinence of this question, we recall first a known
result in the case of groups . . . the somehow basic “prototype” of a semi-
abelian category. The category Gp of groups does not have any non-trivial
localisation! But of course, the category Gp of groups admits plenty of in-
teresting full reflective semi-abelian subcategories: for example, the category
Ab of abelian groups and all its well-known localisations.

The first step of our study is to characterise those full reflective subcate-
gories of a Barr-regular (resp. exact) category (see [3]) which are still Barr-
regular (resp. exact). In both cases, this reduces to the preservation of some
finite limits by the reflection: conditions which are of course valid in the case
of a localisation. We call such a reflection proregular (resp. proexact).

Let us recall that an homological category is a Barr-regular category with a
zero-object and satisfying the split short five lemma. A semi-abelian category
is a Barr-exact homological category with binary coproducts; this forces the
existence of all finite colimits. A reflective subcategory of an homological
(resp. semi-abelian) category is still homological (resp. semi-abelian) if and
only if the reflection is proregular (resp. proexact).

We are then ready to handle the main notion of this paper: we call pro-
localisation of an homological category, a full reflective subcategory whose
reflection is proregular and preserves short exact sequences. A prolocalisa-
tion of an homological (resp. semi-abelian) category is still homological (resp.
semi-abelian).

A prolocalisation of an homological category C – as every reflection – in-
duces a factorisation system (E ,M) on C. We call stable a monomorphism
whose both parts of its (E ,M)-factorisation are still monomorphisms. We
show that every prolocalisation of an homological category C induces a clo-
sure operator on stable subobjects in C. This closure operator respects the
normality of subobjects and induces further a torsion theory in C. But more
importantly, when considered on stable subobjects and not just on normal
ones, this closure operator is sufficient to characterise the original prolocali-
sation.

A special case of interest is given by the fibered prolocalisations of an ho-
mological category: the reflection functor of the prolocalisation is a fibration
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(see [8], [13]). This additional property turns out, in the context of prolo-
calisations, to be equivalent to what is called a semi-left-exact reflection in
[16]: another generalisation of the notion of localisation. We characterise the
fibered prolocalisations in terms of stability properties of the class E , gener-
alising so the fact that having a localisation is equivalent to the stability of
E under all pullbacks.

We devote a special attention to the case of epireflections (as usual, in
the context of regular categories, we mean that the unit of the adjunction
is a regular epimorphism). An epireflection of an homological category is a
fibered prolocalisation as soon as it preserves short exact sequences. We char-
acterise the closure operators, the torsion theories and the radical functors
corresponding to epireflective prolocalisations of semi-abelian categories.

We consider also the special case of monoreflections. We prove that for a
prolocalisation, being monoreflective is equivalent to each dense monomor-
phism being an epimorphism. We show also that the objects in the reflection
coincide with the absolutely closed objects.

We provide finally various examples of prolocalisations. The category of
Boolean rings is a prolocalisation of the category of commutative von Neu-
mann regular rings. Every arithmetical semi-abelian category is a prolocal-
isation of its category of equivalence relations. Examples are also provided
in the case of the dual of the category of pointed objects of a topos and in
the context of C∗-algebras. We observe that many of these examples involve
arithmetical semi-abelian categories. And of course, all well-known examples
of localisations of abelian or semi-abelian categories fit into our context.

1. A quick review of known results
Every full reflective subcategory ι, λ : L qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q C, λ a ι, is entirely characterised
by a factorisation system (E ,M) on C (see [16]): E is the class of those
morphisms inverted by λ while m ∈ M when e ⊥ m for every morphism
e ∈ E (let us recall that e ⊥ m means that given a commutative square
m ◦ f = g ◦ e, there exists a unique diagonal d yielding m ◦ d = g, d ◦ e = f).
One of the striking properties of such a factorisation system is precisely that
every morphism f ∈ C factors uniquely (up to isomorphism) as f = m ◦ e
with m ∈M and e ∈ E . The class M is stable under limits and composition
and contains all the morphisms of L. The class E is stable under colimits
and if two sides of a commutative triangle lie in E , so does the third side.
And so on.
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When C has finite limits, λ preserves them precisely when the class E
is stable under arbitrary pullbacks (see [22]). Such a situation is called a
localisation. That notion is very important since being abelian, a topos,
regular, exact, homological, semi-abelian, and so on, are notions preserved
under localisation. In the abelian case, being a localisation is also equivalent
to λ preserving monomorphisms, or kernels, or short exact sequences.

When the class E is only stable under pullbacks along morphisms in M,
the reflection is called semi-left-exact (see [16]); in that case, a morphism
f : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq B belongs to the class M precisely when it is the pullback of ιλ(f)

along the unit ηB of the adjunction. And when each inverse image of a unit
ηB still lies in E , the reflection is called unit-stable: a property stronger than
semi-left-exactness.

Let us now recall that a category C with a zero object is Bourn-protomodular
(see [9]) when the split short five lemma holds, that is, given a diagram where
all squares commute

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq K qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
k A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq s

q
Q qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0

α

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

β

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

γ

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
l B qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq t

p
P qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0

and q ◦ s = id, p ◦ t = id, k = Ker q, l = Ker p, if α and γ are isomorphisms,
β is an isomorphism as well.

A category C is homological (see [6]) when it has a zero object, is Barr-
regular (see [3]) and protomodular. A Barr-exact homological category with
binary coproducts is called semi-abelian (see [26]). In both cases a sequence
of morphisms

A f
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq B g

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq C

is called exact when the image of f coincides with the kernel of g. In an ho-
mological category, all the classical diagram lemmas of homological algebra
hold true (see [10]); every normal monomorphism (= kernel of a morphism)
has a cokernel; being a monomorphism is equivalent to having a zero ker-
nel (see [9]). In the semi-abelian case, all finite colimits exist, as well as
a notion of semi-direct product (see [14]); moreover, the image of a normal
monomorphism along a regular epimorphism is still a normal monomorphism
(see [26]).

And rather trivially:
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Proposition 1. Let ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C be a full reflective subcategory, where C
has a zero object and is protomodular. Then L has a zero object and is
protomodular as well. ¤

2. Localisations of the category of groups
The following result, which can already be found in [4], seems to have been

overlooked by many authors interested in localisation theory. We give here
a direct proof.

Proposition 2. The only localisations of the category Gp of groups are the
trivial ones: (0) and Gp.

Proof : Consider a localisation ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq

Gp of the category Gp of groups.
Our Theorem 34 proves that this localisation is entirely determined by those
monomorphisms s such that λ(s) is an isomorphism.

Given a group G, the family of all morphisms f : Z qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq G constitutes a
strongly epimorphic family: that is, a subobject s : S qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq G is an isomorphism
if and only if all the morphisms f factor through it. Strongly epimorphic
families are preserved by every reflection, thus the family of all morphisms
λ(f) is strongly epimorphic in L.

Notice now that λ(s) is an isomorphism if and only if each λ
(
f−1(s)

)
is an

isomorphism. The condition is indeed necessary since λ preserves pullbacks.
It is also sufficient because, if each λ

(
f−1(s)

)
is an isomorphism, then each

λ(f) factors through λ(s) and thus λ(s) is an isomorphism.
So a localisation of the category Gp of groups is entirely determined by

those subobjects s : S qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Z such that λ(s) is an isomorphism. In particular,

the identity on Gp is the localisation such that Z Z is the only subgroup of
Z mapped by λ on an isomorphism, while the inclusion of the zero category
in Gp is the localisation for which all subgroups S qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Z are inverted by λ.
We must thus prove that if some proper inclusion s : S qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Z is inverted by λ,
then all inclusions s′ : S ′ qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Z are inverted by λ.
Now each subgroup of Z has the form nZ qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Z for some integer n. But if
nZ qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Z, with n 6= 1, is mapped by λ on an isomorphism, so is the coproduct
of this monomorphism with itself, which is the subgroup

< xn, yn > qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq < x, y >

where < x, y > indicates the free group on the two generators x, y, while
< xn, yn > indicates the subgroup generated by xn and yn. Again, since λ is
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a localisation, the pullback of this subobject along the morphism

f : Z qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq < x, y >, m 7→ (xy)m

is inverted by λ. But this pullback is the zero subgroup (0) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Z. Thus

(0) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq Z is mapped by λ on (0) (0), which forces the same conclusion for

every subgroup S qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Z, simply because λ preserves monomorphisms. ¤

3. Proregular and proexact reflections
In this section we first investigate the very general question: when is a full

reflective subcategory of a Barr-regular (resp. exact) category again Barr-
regular (resp. exact)? (see [3]). It is well-know that the reflection being
a localisation is a sufficient condition, but this assumption is definitely too
strong. For example, it is proved in [29] that a semi-left-exact reflection (see
[16] or our section 1) of a regular category is still regular. But this condition
is not yet necessary.

Proposition 3. Let ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q C be a full reflective subcategory of a Barr-
regular category C. For a morphism f : L qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq M of L, the following conditions

are equivalent:

(1) f is a regular epimorphism in L;
(2) if f = s ◦ p is the image factorisation of f in C, then λ(s) is an

isomorphism.

Proof : (1⇒2). Write (u, v) for the kernel pair of f in L, thus also in C. Since
f is a regular epimorphism in L, f = Coeq(u, v) in L. The construction of the
image of f in the regular category C yields p = Coeq(u, v) in C. Thus in L,
λ(p) = Coeq(u, v). But f = λ(s)◦λ(p), proving that λ(s) is an isomorphism,
by uniqueness of the coequaliser.

(2⇒1). Since p is a regular epimorphism in C, λ(p) is a regular epimorphism
in L. But f = λ(s) ◦ λ(p) and since λ(s) is an isomorphism, f ∼= λ(p) is a
regular epimorphism. ¤

Theorem 4. Let ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C be a full reflective subcategory of a Barr-regular
category C. The following conditions are equivalent:

(1) L is Barr-regular;
(2) λ preserves the pullbacks of the form
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A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

a L

g

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

f

B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

b M

where f ∈ L and b is the image in C of a morphism of L.

Proof : (1⇒2). Consider a pullback as in condition 2, where h = b ◦ p is the
image factorisation of a morphism h ∈ L. Write η : idC ⇒ ιλ for the unit of
the adjunction. We have b = λ(b) ◦ ηB and λ(p) = ηB ◦ p; in particular, ηB is
a monomorphism since so is b. Consider further the following pullbacks:

J qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

p′
A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
t K qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

u L

k

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

(1) g

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

(2) h

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

(3)
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqq

q

f

N qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqp B qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq ηB
λ(B) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

λ(b) M

Since L, M , N and λ(B) are in L, K and J are in L as well.
The pullback (3) is preserved by λ, since it is a pullback in L. On the other

hand p is a regular epimorphism in C, thus λ(p) = ηB ◦ p is a regular epimor-
phism in L. Since L is regular by assumption, t◦ p′ is a regular epimorphism
in L. By Proposition 3, λ(t) is an isomorphism; and of course λ(ηB) is an
isomorphism; so trivially, λ transforms the square (2) in a pullback. Thus λ
preserves both pullbacks (2) and (3) and therefore also the pullback of the
statement.

(2⇒1). Consider a regular epimorphism m : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq M in L and its image

factorisation m = b ◦ p in C. Consider further the two pullbacks (4) and (5)

K qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

q
A

² ¯
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

h

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

a N

k

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

(4) g

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

(5)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

f

L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqp B

± °
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq

m

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

b M

where f ∈ L; in particular, K ∈ L. By assumption, the pullback (5) is
preserved by λ and by Proposition 3, λ(b) is an isomorphism. Therefore λ(a)
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is an isomorphism as well and, again by Proposition 3, the pullback h = a◦ q
of m along f is a regular epimorphism in L. ¤

Definition 5. A reflection of a regular category satisfying the conditions of
Theorem 4 is called proregular.

By Theorem 4 and Proposition 1, we have thus:

Corollary 6. Let ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q C be a full reflective subcategory of an homolog-
ical category C. The category L is homological if and only if the reflection is
proregular. ¤

Let us recall (see [3]) that a Barr-exact sequence in a regular category is a
triple (u, v, q) where q = Coeq(u, v) and (u, v) is the kernel pair of q.

Theorem 7. Let ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q C be a full reflective subcategory of a Barr-exact
category C. The following conditions are equivalent:

(1) L is Barr-exact;
(2) λ is proregular and preserves the Barr-exact sequences of the form

M
u

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq

v L q
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq A

where M and L are objects in L;
(3) λ is proregular and given a Barr-exact sequence as in condition 2, the

unit ηA : A qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq ιλ(A) of the adjunction is a monomorphism.

Proof : Notice that a reflection preserves coequalizers, thus condition 2 re-
duces to the preservation of the kernel pair of q.

(1⇒2). With the notation of condition 2, we have λ(q) = Coeq(u, v) since
λ preserves colimits. But since ι preserves and reflects limits, u, v : M qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L
is an equivalence relation in L because it is so in C. And since L is exact,
(u, v) =

(
λ(u), λ(v)

)
is the kernel pair of λ(q).

(2⇒3). Factoring ηA through its image ηA = sA ◦ pA, we have now the
following situation in C

M qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
u

v
L qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

q
A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

pA
B

@
@

@
@@qqqqqqqqqqq

qqqqqqq
qqqqqqqqqqqqqqqqqq

λ(q)
ηA

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

¡
¡

¡
¡¡

qqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqq

sA

λ(A)
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where (u, v) is the kernel pair of λ(q) = sA ◦ pA ◦ q. Since sA is a monomor-
phism, (u, v) is also the kernel pair of the regular epimorphism pA ◦ q. Thus
pA ◦ q ∼= Coeq(u, v) = q so that pA is an isomorphism. Thus ηA

∼= sA is a
monomorphism.

(3⇒1). Using the same diagram, when ηA is a monomorphism, the kernel
pair of λ(q) is the same as that of q, which is (u, v). ¤

Definition 8. A reflection of an exact category satisfying the conditions of
Theorem 7 is called proexact.

By Theorem 7 and Proposition 1, we conclude that

Corollary 9. Let ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C be a full reflective subcategory of a semi-abelian
category C. The category L is semi-abelian if and only if the reflection is
proexact. ¤

Example 10. Every localisation of a regular (resp. exact) category is proreg-
ular (resp. proexact).

Proof : Proregularity and proexactness mean the preservation of some finite
limits, while the localisation case assumes the preservation of all finite limits.

¤
As most authors do, by an epireflection ι, λ : L qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C of a regular category
C we mean a full reflective subcategory whose unit ηA : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq ιλ(A) of the

adjunction is a regular epimorphism for each A ∈ C.

Example 11. Every epireflection ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C of a regular category C is
proregular.

Proof : By regularity of C, (ι, λ) being an epireflection is equivalent to L
being stable in C for subobjects (see [5], Vol.1̃). The pullback of condition 2
in Theorem 4 is thus entirely in L and therefore is mapped on itself by λ. ¤

Let us recall some other piece of terminology borrowed from universal al-
gebra:

Definition 12. By a Birkhoff subcategory of a regular category is meant an
epireflective subcategory which is closed under regular quotients.

Example 13. An epireflection ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C of an exact category C is proexact
if and only if L is a Birkhoff subcategory of C.
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Proof : When L is stable in C under regular quotients, the exact sequence of
condition 2 in Theorem 7 lies entirely in L, thus is mapped on itself by λ.

Conversely assume that L is exact. Consider a regular epimorphism
q : L qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A in C, with L ∈ L. The product L × L is still in L, thus also, by

epireflectiveness, the kernel pair M of q. By Theorem 7 we get a monomor-
phism ηA : A qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq ιλ(A), thus again A ∈ L by epireflectiveness. ¤

Finally, let us recall that in an homological category, being a right exact
sequence

A f
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq B g

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq C qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0

is no longer a pure colimit condition – namely, g = Coker f as in the abelian
case – but forces also f to be a proper morphism, that is, the image of f is
a normal monomorphism.

Definition 14. A full reflective subcategory ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C of an homological
category C is right exact when it is proregular and λ preserves right exact
sequences.

And trivially, since a reflection preserves cokernels:

Proposition 15. A proregular reflection ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C of an homological cat-
egory C is right exact if and only if λ preserves proper morphisms. ¤

4. The prolocalisations
We want here to investigate – in the homological and semi-abelian cases

– those reflections which preserve short exact sequences. Let us observe at
once that:

Lemma 16. Let ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C be a proregular reflection of an homological
category C. The following conditions are equivalent:

(1) λ preserves short exact sequences;
(2) λ preserves the kernels of regular epimorphisms;
(3) λ preserves normal monomorphisms.

Proof : L is homological by Corollary 6. The result holds because λ preserves
cokernels and in homological categories, every normal monomorphism is the
kernel of its cokernel. ¤
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Definition 17. A prolocalisation of an homological category C is a full re-
flective subcategory ι, λ : L qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q C whose reflection λ is proregular and preserves
short exact sequences.

Proposition 18. Let ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q C be a prolocalisation of an homological cat-
egory C. Then L is homological and the reflection is right exact.

Proof : L is homological by Corollary 6. The reflection preserves regular epi-
morphisms and normal monomorphisms, thus preserves proper morphisms;
one concludes by Proposition 15. ¤

Proposition 19. Let ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C be a prolocalisation of an homological
category C. The reflection λ preserves finite products, pullbacks along regular
epimorphisms and Barr-exact sequences.

Proof : Consider the following commutative diagram in C, where the horizon-
tal sequences are exact.

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq S qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
s A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

q
Q qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0

α

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

(1) β

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

(2) γ

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

(Diagram A)

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq T qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
t B qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

p
P qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0

The reflection λ transforms this in a diagram in L which is still commutative,
with exact horizontal sequences.

In homological categories, the square (2) is a pullback if and only if α is
an isomorphism (see [6], 4.2). This last condition is trivially preserved by λ,
which thus preserves pullbacks along regular epimorphisms.

The zero object is trivially preserved by λ, while the product of two objects
is their pullback over 0. But every morphism to 0 is a split, thus regular
epimorphism. One concludes by the first part of the proof.

Finally λ preserves coequalizers and, again by the first part of the proof, the
kernel pair of a regular epimorphism. Thus λ preserves Barr-exact sequences.

¤
In the semi-abelian case, additional properties are valid. First of all:

Proposition 20. A prolocalisation of a semi-abelian category is again semi-
abelian.

Proof : This follows from Corollary 6 and Theorem 7, via Proposition 19. ¤
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Proposition 21. Let ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C be a prolocalisation of a semi-abelian cat-
egory C. The reflection λ preserves finite intersections of normal subobjects.

Proof : Let us refer again to (Diagram A). In homological categories, the
square (1) is a pullback if and only if γ is a monomorphism (see again [6], 4.2).
When β is a normal monomorphism and C is semi-abelian, then γ – the image
of β along the regular epimorphism p – is again a normal monomorphism.
This proves the result since normal monomorphisms are preserved by λ (see
Lemma 16). ¤

Let us emphasise the following situation, which in the abelian case is equiv-
alent to being a localisation:

Proposition 22. Let ι, λ : L qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C be a prolocalisation of an homological cat-
egory C. The following conditions are equivalent:

(1) λ preserves monomorphisms;
(2) λ preserves image factorisations;
(3) λ preserves kernels;
(4) λ preserves left exact sequences;
(5) λ preserves exact sequences;
(6) λ preserves inverse images of normal monomorphisms;
(7) λ preserves kernel pairs.

Proof : (1⇒2) because λ preserves regular epimorphisms. (2⇒3) because the
kernel of a morphism is the same as the kernel of the epi-part of its image
factorisation and this last kernel is preserved by λ. (3⇒1) because in an
homological category, a monomorphism is characterised by having a zero-
kernel. And trivially (3⇔4) since a sequence

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq K k
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A f

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B

is left exact when k = Ker f . (5⇔2, 3) since preserving an exact sequence
reduces to preserving kernels and images.

(1⇒6) since considering again (Diagram A), the square (1) is a pullback if
and only if γ is a monomorphism. (6⇒3) because the kernel of a morphism
is its pullback over zero, and every morphism with domain 0 is a normal
monomorphism.

(7⇒1) because being a monomorphism is characterised by the equality
of the two projections of its kernel pair. (1⇒7) because given a morphism
f : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq B in C and its image factorisation f = s ◦ p, the pullback of f with
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itself can then be computed in four steps. The first step is the pullback of
s with itself, which simply yields identities because s is a monomorphism.
Since the reflection preserves monomorphisms by assumption, this pullback is
trivially preserved. All other partial pullbacks involve regular epimorphisms,
thus are preserved as well, by Proposition 19. ¤

Definition 23. A prolocalisation of an homological category is exact when
it satisfies the conditions of Proposition 22.

5. The associated closure operator
In this section, we consider a prolocalisation ι, λ : L qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C of an homological
category C. We write η : idC ⇒ ιλ for the unit of the adjunction and (E ,M)
for the corresponding factorisation system. We shall freely use that notation
without recalling it any more.

Proposition 24. Let ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C be a prolocalisation of an homological cat-
egory. The class E of the corresponding factorisation system is stable under
pullbacks along regular epimorphisms.

Proof : This follows at once from Proposition 19. ¤

Definition 25. Let ι, λ : L qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C be a prolocalisation of an homological cate-
gory C.

• A monomorphism is stable (with respect to the factorisation system)
when both parts of its (E ,M)-factorisation s = s◦s̃ are still monomor-
phisms.

• The closure of the stable monomorphism s : S qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A is the M-part

s : S qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A of its (E ,M)-factorisation.

It should be noticed that the composite of two stable (resp. normal) mono-
morphisms has a priori no reason to be still stable (resp. normal). Thus the
situation of Definition 25 (resp. Proposition 28) escapes the context of the
classical closure operators studied in [19]. Nevertheless it makes perfect sense
to define:

Definition 26. Let ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C be a prolocalisation of an homological cate-
gory C. Given a stable subobject s : S qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq A and its closure s : S qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq A:

(1) the subobject s : S qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq A is dense when s : S qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq A is an isomorphism,
that is, when s ∈ E;
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(2) the subobject s : S qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq A is closed when s̃ : S qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq S is an isomorphism,
that is, when s ∈M.

Proposition 27. Let ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C be a prolocalisation of an homological cat-
egory C. Given a stable subobject s : S qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq A and its closure s : S qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq A:

(1) s̃ : S qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq S is stable and dense;

(2) s : S qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A is stable and closed.

Proof : Given a stable monomorphism s and its (E ,M)-factorisation s = s◦s̃,
the (E ,M)-factorisations of s and s̃ are respectively s ◦ id and id ◦ s̃. ¤

The following result recaptures a well-known construction of the closure in
the case of a localisation.

Proposition 28. Let ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C be a prolocalisation of an homological cat-
egory C.

(1) Every normal monomorphism is stable and its closure is still normal.
(2) The closure of a normal monomorphism s : S qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq A is the pullback of
the monomorphism ιλ(s) along the unit ηA : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq ιλ(A) of the adjunc-

tion.

Proof : If s is a normal monomorphism, the prolocalisation axiom implies
that λ(s) is a normal monomorphism. Thus the pullback of ιλ(s) along ηA

is a normal monomorphism as well: let us denote it at once by s. Consider
then the following diagram

S p p p p p p p p p p p p p p p p p p p p p qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
s̃

HHHHHHHHHHqqqqqqqqqqqqq
qqqqq
qqqqqqqqqqqqqqqqqq

ηS
A
A
A
A
A
A
A
A
A
A

qqqqqqqqqqqqq
qqqqq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqq
qqqqq
qqqqqqqqqqqqqqqqqq

s S qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
n ιλ(S)

s
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

ιλ(s) (Diagram B)

A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqηA
ιλ(A)

where the square is a pullback. The well-known properties of the factorisation
system imply that ιλ(s) ∈ M, as a morphism of L, and therefore s ∈ M,
as pullback of a morphism in M. Next since ηS is mapped by λ on an
isomorphism, n is mapped by λ on a regular epimorphism. But λ(n) is also a
monomorphism because so is λ(ηA ◦ s): indeed λ(ηA) is an isomorphism and
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since s is normal, λ(s) is a monomorphism as well. So λ(n) is an isomorphism
and both ηS and n are in E , proving that s̃ ∈ E . In particular s = s ◦ s̃ is the
(E ,M)-factorisation of s. Thus s is stable and its closure s is still normal.
¤

And in the case of an exact prolocalisation (see definition 23):

Proposition 29. Let ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C be an exact prolocalisation of an homolog-
ical category C.

(1) Every monomorphism is stable.
(2) The closure of a monomorphism s : S qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A is the pullback of ιλ(s)
along the unit ηA : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq ιλ(A) of the adjunction, as in (Diagram B).

Proof : The proof of Proposition 28 applies as such, simply omitting every-
where the word “normal”. ¤

Let us now exhibit some basic properties of the closure operator.

Proposition 30. Let ι, λ : L qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C be a prolocalisation of an homological cat-
egory C. If S ⊆ A, T ⊆ A are stable subobjects and f : B qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A is a morphism

in C:

(1) S ⊆ S;

(2) S = S;
(3) S ⊆ T ⇒ S ⊆ T ;
(4) when f is a regular epimorphism, f−1(S) = f−1(S).

When s : s qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A is a normal monomorphism and f is arbitrary,

(5) f−1(S) ⊆ f−1(S).

Moreover, in the semi-abelian case, for normal subobjects S ⊆ A, T ⊆ A and
a regular epimorphism g : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq C:

(6) S ∩ T = S ∩ T ;
(7) g

(
S
) ⊆ g(S).

Proof : (1) holds by definition and (2) follows from Proposition 27. (3) follows
at once from the uniqueness of the (E ,M)-factorisation of s, which forces the
(E ,M)-factorisation of S ⊆ T to be simply S. (4) holds by Proposition 24
and the fact that morphisms in M are stable under pullbacks. (5) makes
sense because the pullback f−1(s) of a normal monomorphism is normal and
thus stable, by Proposition 28; the proof reduces then to a simple chase based
on (Diagram B).
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In the semi-abelian case, (6) follows from Proposition 21. To prove (7),
observe that when S ⊆ A is normal, so is its image g(S) ⊆ C under the
regular epimorphism g (see [6]). Then S ⊆ g−1g(S) and thus, by assertion 3,
S ⊆ g−1g(S). ¤

Let us recall another well-known notion (see for example [13]).

Definition 31. A torsion theory on an homological category C consists in giv-
ing two full replete subcategories T (the torsion objects) and F (the torsion-
free objects) of C, with the two properties:

• every arrow T qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq F with T ∈ T and F ∈ F is the zero arrow;
• for every object A in C there exists a (necessarily unique) short exact

sequence
0 qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq T qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq F qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0

with T ∈ T and F ∈ F .

The torsion theory is called N -hereditary for a class N of monomorphisms
when T is closed under N -subobjects.

Example 32. Every prolocalisation of an homological category C induces a
torsion theory on C.

Proof : By Proposition 30 we get on normal monomorphisms what is called
in [13] a weakly hereditary closure operator ; the result follows then from
Theorem 4.15 of that paper. The class T is that of objects in which 0 is
dense, while F is the class of those objects in which 0 is closed. ¤

In [13] it is proved that torsion theories in an homological category are
in bijection with fibered epireflections (see our definition 35). It should be
underlined that in general, such an epireflection is by no means a prolocali-
sation. Our Theorem 42 will investigate further this question.

Our main concern in this section is to show that the closure operator in-
duced by a prolocalisation characterises entirely that prolocalisation.

Lemma 33. Consider a prolocalisation ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C of an homological cate-
gory C. A monomorphism s : S qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A in C is dense stable if and only if λ(s)
is an isomorphism.

Proof : By definition of the closure operator, a dense stable monomorphism
s is isomorphic to the E-part of its (E ,M)-factorisation, thus λ(s) is an
isomorphism. Conversely if λ(s) is an isomorphism, we have s ∈ E and thus
its (E ,M)−factorisation is idA ◦ s. ¤
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Theorem 34. Let ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C be a prolocalisation of an homological category
C. The full subcategory L is that of those objects of C orthogonal to the dense
stable monomorphisms.

Proof : It is well-known that each object L in L is orthogonal to every mor-
phism e : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq B ∈ E : that is, given f : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq L there exists a unique g : B qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq L

such that g ◦ e = f . In particular, L is orthogonal to each dense stable
monomorphism (see Lemma 33).

Conversely, it is well-know also that being in L is equivalent to being
orthogonal to ηA : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq ιλ(A), the unit of the adjunction, for each A ∈ C.

Let us consider the following diagram

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

0κ(A)
κ(A) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

kA A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

ηA ιλ(A)

f

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

HHHHHHHHHHqqqqqqqqqqqqq
qqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqq
qqqqq
qqqqqqqqqqqqqqqqqq

pA

ppppppppppppppppppppppppppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqq

h qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq

sA

L pppppppppppppppppppppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq g

SA

where ηA = sA ◦ pA is the image factorisation of ηA and kA = Ker pA.
Since λ(ηA) is an isomorphism, the regular epimorphism λ(pA) is also a

monomorphism, thus an isomorphism. Thus λ(sA) is an isomorphism as
well, proving that sA is a dense stable monomorphism (Lemma 33).

On the other hand the prolocalisation λ preserves the short exact se-
quence (kA, pA). Thus λ(kA) = Ker λ(pA) and since λ(pA) is an isomorphism,
λ
(
κ(A)

) ∼= 0. This proves that λ(0κ(A)) is an isomorphism, thus 0κ(A) is a
dense stable monomorphism (Lemma 33).

Now consider an object L ∈ C orthogonal to every dense stable monomor-
phism and a morphism f : A qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq L. Since f ◦ kA ◦ 0κ(A) = 0 = 0 ◦ 0κ(A),

we obtain f ◦ kA = 0 by the uniqueness part of the orthogonality condition
0κ(A) ⊥ L. But pA = Coker Ker pA = Coker kA, from which there is a unique
factorisation g : SA qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq L such that g ◦ pA = f . The orthogonality condition

sA ⊥ L forces finally the existence of a unique morphism h : ιλ(A) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L such
that h ◦ sA = g. ¤

When the unit ηA of the adjunction is proper for every A ∈ C (i.e. its image
is a normal monomorphism), the proof of Theorem 34 shows at once that L ∈
L is equivalent to L being orthogonal to every dense normal monomorphism:
indeed sA, and of course 0κ(A), are now normal monomorphisms. Then the
closure operator on normal subobjects suffices already to characterise the
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reflection. This is in particular the case for epireflective prolocalisations,
since then the image of ηA is an isomorphism.

6. Fibered prolocalisations
The following notion is borrowed from [8] and [13].

Definition 35. A prolocalisation ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C of an homological category C
is fibered when the functor λ : C qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq L is a fibration (see [5], vol. 2).

Observe first that, still writing (E ,M) for the corresponding factorisation
system:

Proposition 36. Let ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C be a prolocalisation of an homological cat-
egory C. The following conditions are equivalent:

(1) the functor λ is a fibration;
(2) the pullback of a unit ηA of the adjunction along a morphism f ∈ L

is again a unit;
(3) the class E is stable under pullbacks along morphisms f ∈M;
(4) the functor λ is semi-left-exact in the sense of [16].

In these conditions, a morphism m belongs to the class M if and only if the
following square is a pullback:

C qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
m A

ηC

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

ηA

ιλ(C) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

ιλ(m)
ιλ(A)

Proof : (1⇒2). The object A ∈ C is in the fibre over L ∈ L when L ∼= λ(A).
Consider f : M qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq L in L and the corresponding Cartesian morphism g. We

have thus λ(g) = f ; in particular, the rectangle in the following diagram is
commutative and we are going to prove that it is a pullback.
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C p p p p p p p p p p p p p p p p p p p p p qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
h

PPPPPPPPPPPPPPPPqqqqqqqqqqqqq
qqqqq
qqqqqqqqqqqqqqqqqq

m
A
A
A
A
A
A
A
A
A
AAqqqqqqqqqqqqq

qqqqq
qqqqqqqqqqqqqqqqqq

n B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

g
A

²

±qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq

ηC

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

ηB

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

ηA

ιλ(B) ∼= M qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

f ∼= ιλ(g)
L ∼= ιλ(A)

¡
¡

¡
¡¡

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ιλ(h) ∼= s

³³³³³³³³³³³³³³³³qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ιλ(m)

ιλ(C)

Given f ◦ n = ηA ◦m in C, n factors uniquely through ηC via a morphism s.
From the equalities

ιλ(m) ◦ ηC = ηA ◦m = f ◦ n = f ◦ s ◦ ηC

we deduce f ◦s = ιλ(m). Since g is Cartesian over f , this forces the existence
of a unique h such that λ(h) = s and g◦h = m. But λ(h) = s is equivalent to
ηB ◦h = n, the second condition needed to have a pullback. Indeed λ(h) = s
forces the equality

ηB ◦ h = ιλ(h) ◦ ηC = s ◦ ηC = n.

Conversely ηB ◦ h = n implies

ιλ(h) ◦ ηC = ηB ◦ h = n = s ◦ ηC

from which ιλ(h) ∼= s.
(2⇒1). Conversely when the square is a pullback and m is such that ιλ(m)

factors as f ◦ s, simply put n = s ◦ ηC to get the expected factorisation h.
Under assumptions 1, 2, let us now deduce the characterisation of the

morphisms in M. When the square of the statement is a pullback, ιλ(m) ∈
M as a morphism in L and m ∈ M as pullback of a morphism in M.
Conversely when m ∈ M, choose s = idιλ(C) in the diagram of this proof.
Then h ∈ E since so do ηC and ηB. But h ∈M because g ◦h = m ∈M with
g ∈ M as well (see [16]). Thus h is an isomorphism and the square of the
statement is a pullback.

(2⇒3). Consider the following diagram, with e ∈ E and m ∈M.
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D qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqu B

² ¯
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

ηD

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqηB
ιλ(B)

v

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

m

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

ιλ(m)

C qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
e A

± °
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq

ηC

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

ηA ιλ(A)

The right hand square is a pullback, by the characterisation of morphisms
in M and the left hand square is a pullback by definition. Since the bottom
composite is in E , it is isomorphic to ηC . But by condition 2 of the statement,
the upper composite is then isomorphic to ηD. Since ηB and ηD are in E , we
obtain u ∈ E .

(3⇒2) is obvious since every morphism of L is in M.
(3 ⇔ 4) is just the definition of a semi-left-exact reflection (see [16]). ¤
The fibered case reinforces the role of stable monomorphisms (see Defini-

tion 25):

Proposition 37. Consider a fibered prolocalisation ι, λ : L qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C of an homo-
logical category. For a monomorphism s : S qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A in C, the following condi-
tions are equivalent:

(1) s is stable;
(2) λ(s) is a monomorphism.

Moreover, the closure of a stable monomorphism is computed via the pullback
in (Diagram B).

Proof : Let us write s = s◦ s̃ for the (E ,M)-factorisation of an arbitrary mor-
phism s. In any case, λ(s̃) is an isomorphism. Thus λ(s) is a monomorphism
if and only if λ(s) is a monomorphism.

Since s ∈M, by fiberedness the following square is a pullback (see Propo-
sition 36):

S qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

ηS ιλ(S)

s

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

ιλ(s)

A qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqqηA
ιλ(A)
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When s is a stable monomorphism, s is a monomorphism; by protomodular-
ity, pullbacks reflect monomorphisms (see [9]), thus ιλ(s) is a monomorphism
as well. The converse is trivial.

The proof of Proposition 28 applies as such to prove the last assertion:
simply omit everywhere the word “normal”. ¤

Our following result underlines further the important role of proper mor-
phisms in the semi-abelian case.

Proposition 38. Consider a proregular reflection ι, λ : L qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C of a semi-
abelian category C. The following conditions are equivalent:

(1) the class E is stable under pullbacks along the morphisms of L, while
the class of normal monomorphisms in E is stable under pullbacks
along proper morphisms;

(2) the reflection is a fibered prolocalisation.

Proof : As usual we call dense a monomorphism belonging to the class E .
(1⇒2). Consider a short exact sequence (s, q) in C, the morphism ιλ(q)

and its kernel l in L. Let us pay attention: of course λ(q) is a regular
epimorphism in L, but ιλ(q) has no reason to be still a regular epimorphism
in C. We consider further the commutative square on the right and the
corresponding vertical factorisation on the left.

0 qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq S qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
s A qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

q
Q qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq 0

n

pppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

ηA

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

ηQ

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

l
ιλ(A) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

ιλ(q)
ιλ(Q)

It suffices to prove that n ∈ E : indeed since L ∈ L, this will prove that
L ∼= ιλ(S) and finally l ∼= ιλ(s). So in L we shall have the short exact
sequence

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq λ(S) λ(s)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq λ(A) λ(q)

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq λ(Q) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0

as expected, because λ(q) is a regular epimorphism in L.
Let us now consider the pullback P of l and ηA and the corresponding

factorisation m:
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S p p p p p p p p p p p p p p p p p p p p p qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

m

HHHHHHHHHHqqqqqqqqqqqqq
qqqqq
qqqqqqqqqqqqqqqqqq

s
A
A
A
A
A
A
A
A
A
AAqqqqqqqqqqqqq

qqqqq
qqqqqqqqqqqqqqqqqq

n P qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

t A

r

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

ηA

L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

l
ιλ(A)

We have l ∈ L and ηA ∈ E , thus by assumption we get r ∈ E . So to prove
that n ∈ E , it suffices to prove that m ∈ E . Notice at once that since
l = Ker ιλ(q) and the square is a pullback, then t = Ker

(
ιλ(q) ◦ ηA

)
. Notice

also that m = Ker (q ◦ t) since s = Ker q.
To prove that m ∈ E , we observe first that by assumption, the following

pullback

κ(Q) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

kQ
Q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

ηQ

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq ιλ(Q)

is preserved by λ: indeed, ηQ ∈ E while the bottom morphism is in L. In
other words, λ preserves the kernel of ηQ and since λ(ηQ) is an isomorphism,
its kernel is 0. This proves that the monomorphism 0 qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq κ(Q) is inverted by
λ, thus lies in E .

Next the epimorphism q induces trivially a factorisation q′ in the following
diagram of short exact sequences

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq P qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

t A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

ιλ(q) ◦ ηAιλ(Q) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0

q′
pppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

(1) q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

(2)

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq κ(Q) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

kQ
Q qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqηQ
ιλ(Q) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0

Since the right hand vertical morphism is a monomorphism, the square (1)
is a pullback. Since q is a regular epimorphism, q′ is a regular epimorphism
as well. Moreover, still because the square (1) is a pullback, we get the
isomorphism Ker q′ ∼= Ker q ∼= S.
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We have thus obtained the following pullback square

S qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0

m
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

P qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

q′
κ(Q)

where the right hand vertical arrow is a dense monomorphism and – of course
– a normal one. Since q′ is a regular epimorphism, m ∈ E by assumption.

Conversely, suppose that we have a fibered prolocalisation. By Proposi-
tion 36, the class E is stable under pullbacks along the morphisms of L. By
Proposition 19, the class of dense normal monomorphisms is closed under
pullbacks along regular epimorphisms and by Proposition 21, it is also closed
under pullbacks along normal monomorphisms. ¤

7. The case of epireflections
We recall that we define an epireflection of a regular category as one having

regular epimorphic units.

Proposition 39. Every epireflective prolocalisation ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C of an homo-
logical category C has stable units in the sense of [16] and in particular, is
fibered.

Proof : The reflection λ preserves pullbacks along regular epimorphisms (see
Proposition 19). Since the unit ηA of the adjunction is a regular epimorphism
mapped by λ on an isomorphism, so is thus the pullback of ηA along an
arbitrary morphism. This means that the reflection has stable units in the
sense of [16]; in particular condition 2 in Proposition 36 is satisfied. ¤

Definition 40. Let C be a semi-abelian category.

• A radical is a normal subfunctor κ : C qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq C of the identity functor
satisfying, for every A ∈ C, the property κ

(
A/κ(A)

)
= 0. We write

kA : κ(A) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A for the canonical normal inclusion.

• A radical κ is exact when the functor κ : C qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq C preserves short exact
sequences.

Proposition 41. Every exact radical κ on a semi-abelian category is idem-
potent.
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Proof : Indeed, applying κ to the short exact sequence

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq κ(A) kA qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A qA qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A/κ(A) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0

yields

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq κ
(
κ(A)

) κ(kA)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq κ(A) κ(qA)

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0. ¤
Given a semi-abelian category C, we write N for the class of normal

monomorphisms and use accordingly Definition 31. We refer also to Defi-
nition 12. Given a normal subobject s : S qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A, and a regular epimorphism
q : A qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq Q, we write q(S) for the regular image of S along q.

Theorem 42. Let C be a semi-abelian category. There are bijections between:

(1) the epireflective prolocalisations ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C of C;
(2) the torsion-free Birkhoff subcategories L of C, for an N -hereditary

torsion theory (T ,L);
(3) the closure operators on normal subobjects satisfying the properties:

(a) S ⊆ S;

(b) S = S;
(c) S ⊆ T implies S ⊆ T ;
(d) f−1(S) = f−1(S) for a proper arrow f ;
(e) f−1(S) ⊆ f−1(S) for an arbitrary arrow f ;
(f) f(S) = f(S) for a regular epimorphism f ;

(4) the exact radicals κ on C.

Proof : It is shown in [13] that there are bijections between:

(2”) the Birkhoff subcategories of a semi-abelian category C;
(3”) the closure operators on normal subobjects satisfying the properties

(a), (b), (c), (d’), (e), (f), where (d’) is condition (d) restricted to
the case of a regular epimorphism f ;

(4”) the idempotent radicals in C preserving regular epimorphisms.

The bijections that we shall establish are just restrictions of those above.
More precisely, we are going to show that for an epireflection λ : C qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq L of

a semi-abelian category, the following conditions are equivalent, which will
immediately give the result:

(1’) the epireflection λ preserves short exact sequences;
(2’) the epireflective subcategory L is Birkhoff and N -hereditary torsion-

free;
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(3’) the corresponding closure operator satisfies axiom (d);
(4’) the corresponding radical is exact.

(1’⇒2’). Of course, condition (1’) implies that λ preserves normal monomor-
phisms. Let us first prove that L is Birkhoff in C. Let q : L qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq Q be a regular

epimorphism in C, with L in L. Since L is an epireflective subcategory of C,
it is closed in C under subobjects, so that the kernel S of q belongs to L as
well. We obtain then a commutative diagram of short exact sequences:

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq S qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
s L qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

q
Q qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0

ηS

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

∼= ηL

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

∼= ηQ

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq ιλ(S) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

ιλ(s)
ιλ(L) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

ιλ(q)
ιλ(Q) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0

where the vertical arrows are the various components of the unit η of the ad-
junction. Indeed, λ preserves the top exact sequence, while ι preserves further
the kernel λ(s) = Ker λ(q); but since ηQ and q are regular epimorphisms in
C, so is ιλ(q) and thus it is the cokernel of its kernel ιλ(s). This proves that
the bottom line is exact in C. The fact that the unit ηS is an isomorphism
implies that the right hand square is a pullback, because the category C is
semi-abelian. Since in C pullbacks reflect monomorphisms, it follows that
the regular epimorphism ηQ is a monomorphism, hence an isomorphism, so
that Q ∈ L.

Let us prove that L is a torsion-free subcategory of C. Given A ∈ C, con-
sider the canonical exact sequence (kA, ηA) obtained by taking the kernel of
the unit of the adjunction. Since λ preserves short exact sequences, applying
the functor ιλ : C qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq C yields the following canonical commutative diagram

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq κ(A) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

kA A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

ηA ιλ(A) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0

ηκ(A)

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

ηA

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq ιλ
(
κ(A)

)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

ιλ(kA)
ιλ(A) ιλ(A) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0

Since the lower row is left exact, it follows that ιλ
(
κ(A)

)
= 0. Thus

λ
(
κ(A)

)
= 0 for all A ∈ C, proving that L is a torsion-free subcategory

in C.
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The induced torsion theory (L, T ) is N -hereditary. Indeed given a normal
monomorphism s : S qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq T , with T in the torsion subcategory T , its reflection
λ(s) : λ(S) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0 is a normal monomorphism, thus λ(S) ∼= 0.
(2’⇒3’). First, let us prove that under assumption (2’), λ(s) is a monomor-

phism for every normal monomorphism s : S qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A.

Consider for this the following diagram of short exact sequences

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq κ(S) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

kS S qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

ηS ιλ(S) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0

κ(s)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

(1) s
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

ιλ(s)

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq κ(A) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

kA
A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqηA
ιλ(A) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0

and, computing the pullback P of kA and s, the other diagram

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq P qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
t S qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

q
S/P qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0

s′
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

(2) s
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

pppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
q

m

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq κ(A) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

kA
A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqηA
ιλ(A) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0

Since the square (2) is a pullback and s is a normal monomorphism, s′ is a
normal monomorphism as well. But κ(A) ∈ T , thus by hereditarity, P ∈ T .
Again since (2) is a pullback, m is a monomorphism and thus S/P ∈ L, by
epireflectiveness. By the uniqueness of the exact sequence in definition 31, the
two upper exact sequences are isomorphic, thus finally also the two diagrams.
So ιλ(s) ∼= m is a monomorphism and the square (1) is a pullback.

To show that axiom (d) holds, it is enough to show that f−1(S) = f−1
(
S
)

for f : B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A a normal monomorphism; indeed by axiom (d’), we already
know that the same equality holds when f is a regular epimorphism. It is
proved in [13] that under the bijections involved here, the closure of a normal
subobject s : S qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A is the pullback of the kernel kA/S of the unit ηA/S along
the quotient map qA : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A/S. So, let f be a normal monomorphism and

consider the following diagram, where thus the front and the back faces are
pullbacks.
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f−1(S) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

pB κ
(
B/f−1(S)

)
ppppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqq

p ¡
¡

¡¡qqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqq

κ(g)

S qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

pA

f−1(s)

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

κ(A/S)

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

kB/f−1(S)

f−1(S) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

f−1(s)

s

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

B qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

qB

kA/S

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

B/f−1(S)
¡

¡
¡¡

qqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqq

¡
¡

¡¡

qqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqq

f
¡

¡
¡¡

qqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqq

g

S qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

s A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qA A/S

We are going to prove that the left hand vertical square is a pullback. First
remark that C semi-abelian implies that the induced arrow g is a monomor-
phism because the left hand horizontal square is a pullback by construction
(see [10]). On the other hand, since f is a normal monomorphism, so is g
because in a semi-abelian category, the regular image of a normal monomor-
phism is normal (see [26]). As already observed, the right hand vertical
square is then a pullback as well. By associativity of pullbacks one concludes
that the left hand vertical square is a pullback, and f−1(S) = f−1(S) as
desired.

(3’⇒4’). Given a short exact sequence

0 qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq S s
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq A q

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq Q qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq 0

one considers the canonical commutative diagram

0 0 0ppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

ppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0S = κ(S) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

kS S qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

ηS ιλ(S) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0

κ(s)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

s
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

ιλ(s)

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0A = κ(A) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

kA A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

ηA ιλ(A) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0

κ(q)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

q
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

ιλ(q)

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0Q = κ(Q) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

kQ
Q qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

ηQ
ιλ(Q) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0ppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

ppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

0 0 0
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where 0X indicates the closure of 0 in X.
Condition (d) implies that s−1

(
0A

)
= 0S: in other words, the upper left

square is a pullback. Accordingly, the arrow ιλ(s) is a monomorphism in
C, thus a normal one as the image of the normal monomorphism s along
the regular epimorphism ηA in the semi-abelian category C. Thus ιλ(s) =
Ker Coker ιλ(s). But the bijections established in [13] and recalled at the
beginning of this proof tell us in particular that L is Birkhoff in C. Therefore
Coker ιλ(s) ∈ L and thus is the cokernel of λ(s) in L. But trivially, λ(q) =
Coker λ(s) in L. So ιλ(q) = Coker ιλ(s) in C and the right hand vertical
sequence is exact. The (3 × 3)-Lemma (see [10]) now implies that the left
hand vertical sequence is exact as well.

(4’⇒1’). When κ is an exact radical, for any exact sequence

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq S s
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0

the left hand and the central vertical sequences in the diagram above are
exact. Consequently, the right hand vertical sequence is exact as well, again
by the (3× 3)-Lemma. ¤

8. The case of monoreflections
We are now interested in a prolocalisation ι, λ : L qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C of an homological
category C, whose unit ηA : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq ιλ(A) is a monomorphism in each compo-

nent. Our Example 67 is of that nature.

Theorem 43. Consider a prolocalisation ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C of an homological cat-
egory C. The following conditions are equivalent:

(1) the prolocalisation is monoreflective;
(2) every dense stable monomorphism is an epimorphism.

In particular, the unit of the adjunction is both a monomorphism and an
epimorphism.

Proof : (1⇒2). Consider a dense stable monomorphism s : S qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq A. Given

f, g : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B such that f ◦ s = g ◦ s, we get λ(f) = λ(g) since λ(s) is an
isomorphism. Then

ηB ◦ f = ιλ(f) ◦ ηA = ιλ(g) ◦ ηA = ηB ◦ g

and thus f = g since ηB is a monomorphism.



PROLOCALISATIONS OF HOMOLOGICAL CATEGORIES 29

(2⇒1). Given an object A ∈ C, consider the image factorisation ηA =
sA ◦ pA of the unit. Consider further the kernel kA of pA, yielding thus the
short exact sequence

0 qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq κ(A) kA qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq A pA qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq SA qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq 0.

This short exact sequence is preserved by λ. But λ(pA) is an isomorphism,
as observed in the proof of Theorem 34. Thus λ

(
κ(A)

)
= 0, proving that the

monomorphism 0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq κ(A) is dense. By assumption, this monomorphism is an

epimorphism and since it admits trivially a retraction, it is an isomorphism.
But since C is homological, κ(A) ∼= 0 implies that pA is a monomorphism.
Therefore pA is an isomorphism and ηA

∼= sA is a monomorphism.
The unit of the adjunction is an E-morphism for the corresponding factori-

sation system (E ,M). Thus it is a dense stable monomorphism and therefore
an epimorphism, as soon as it is a monomorphism. ¤

We exhibit now an interesting relation with another known notion.

Definition 44. Consider a prolocalisation ι, λ : L qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C of an homological cat-
egory C. An object S ∈ C is absolutely closed when every stable monomor-
phism with domain S is closed.

As far as we know, the concept of “absolutely closed object” has been
introduced in [25] and used later by various authors; see for example [18] and
[31].

Proposition 45. Consider a monoreflective prolocalisation ι, λ : L qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq C of an
homological category C. Then L is (up to an equivalence) the full subcategory
of absolutely closed objects.

Proof : Assume that S is absolutely closed. The unit ηS : S qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq ιλ(S) is a dense

stable monomorphism, but is also closed by assumption on S; therefore it is
an isomorphism.

Conversely consider a stable subobject s : S qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A with S ∈ L; we must

prove that s ∈M (see definition 26). Given s ◦ f = g ◦ e with e ∈ E

X qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
e Y

f

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

pppppppppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqq

t
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

g

S qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq s A qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq ηA
ιλ(A)
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we have ηA ◦ s ∈ L thus ηA ◦ s ∈M. This implies the existence of a unique t
such that t ◦ e = f and ηA ◦ s ◦ t = ηA ◦ g. Since ηA is a monomorphism, the
second equality is equivalent to s ◦ t = g, proving that s ∈M. ¤

9. Algebraic examples
Of course, in view of Proposition 2, one would like to know if the category

of groups admits non trivial prolocalisations: this remains an open problem.
But there are many other interesting examples.

Given a ring R, the category Alg(R) of R-algebras without necessarily a
unit is semi-abelian because the corresponding theory contains a group op-
eration (see [15]); Alg(R) is not abelian since it is not additive. Nevertheless,
most examples of localisations in module theory carry over rather trivially
to the case of algebras. Just to underline this fact, let us observe the result
in the case which is at the origin of the name localisation.

Example 46. Let p be a prime ideal in a ring R with unit. Consider the
corresponding localised ring Rp. The funtors

U : Alg(Rp) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Alg(R), U(A) = A, −⊗R Rp : Alg(R) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Alg(Rp)

constitute a localisation between the corresponding categories of algebras.

Proof : It is well-known that we obtain a localisation

U : Mod(Rp) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Mod(R), U(A) = A, −⊗R Rp : Mod(R) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Mod(Rp)

for the corresponding categories of modules. This adjunction restricts to
the categories of algebras: given an R-algebra A, it suffices to provide the
tensor product A⊗R Rp with the multiplication induced by (a⊗r)·(a′⊗r′) =
(a·a′) ⊗ (r·r′). This is still a localisation since finite limits of algebras are
computed as for modules (that is, as in the category of sets). ¤

Here is another general result of interest. We recall that a monomorphism
in an algebraic variety is pure (see [2]) when it is a filtered colimit of monomor-
phisms admitting a retraction. Notice that the retractions are not requested
to be compatible, so that a pure monomorphism does not have a retraction
in general. See [7] for examples of varieties where all monomorphisms are
pure.

Proposition 47. Let C be a semi-abelian algebraic variety and L ⊆ C a sub-
variety. When every normal monomorphism in C is pure, L is an epireflective
prolocalisation of C.
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Proof : A subvariety L is obtained by adding axioms to the algebraic theory
defining C: thus L is epireflective and Birkhoff (see definition 12) in C.

A normal monomorphism s : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq B in C is pure, thus is a filtered colimit of

monomorphisms sj : Aj qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Bj admitting a retraction. Of course each ιλ(sj)

has a retraction, thus is a monomorphism. Therefore ιλ(s) is a filtered colimit
of monomorphisms and so is a monomorphism.

The monomorphism ιλ(s) is the image of the normal monomorphism s
along the regular epimorphism ηB (the unit of the adjunction), thus it is a
normal monomorphism in C, because C is semi-abelian (see [6]).

But then ιλ(s) = Ker Coker ιλ(s) in C, with Coker ιλ(s) ∈ L because L is
Birkhoff in C. Thus λ(s) is indeed a kernel in L and the reflection λ preserves
normal monomorphisms. One concludes by Proposition 16. ¤

A ring is von Neumann regular (see [32]) when for every element x there ex-
ists an element x′ such that x·x′ ·x = x. Putting x∗ = x′·x·x′ on obtains both
x · x∗·x = x and x∗·x·x∗ = x∗. In the commutative case, a straightforward
computation shows that an element x∗ with these two properties is necessar-
ily unique. Thus the theory of commutative von Neumann regular rings is
the algebraic theory obtained from that of rings by adding an operation ( )∗

satisfying the two axioms above. The uniqueness of x∗ implies also that ev-
ery ring homomorphism commutes with the ( )∗ operation. We write VNReg
for the category of commutative von Neumann regular rings, not necessarily
with unit. This is a semi-abelian category, since the theory is equipped with
a group operation. Furthermore, it is an arithmetical category, as proved in
[6], Example 2.9.15.

Lemma 48. In the category VNReg of von Neumann regular rings, every
normal monomorphism is pure.

Proof : Let R ∈ VNReg. For every element a ∈ R, the element ea = a·a∗
satisfies ea = ea·ea, ea = e∗a and a·ea = a. So a belongs to the principal ideal
R·ea and this ideal is a retract of R: the retraction is simply the multiplication
by ea.

Given two elements a, b in R, the element e = ea + eb − ea·eb has the
properties e·e = e, e = e∗, a·e = a, b·e = b. This implies at once R·ea+R·eb =
R·e, proving that the family of principal ideals of the form R·e, with e = e·e
and e∗ = e is a filtered family of retracts of R. And as we have seen, every
element a ∈ R belongs to such an ideal. ¤
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Let us now denote by Boole the variety of Boolean rings: this is the sub-
variety of the category of rings determined by the identity: x·x = x. In
particular x = x·x·x, so that every Boolean ring is von Neumann regular,
with x∗ = x.

In view of Proposition 47 and Lemma 48, we obtain at once:

Example 49. The subvariety Boole of Boolean rings is a prolocalisation of
the variety VNReg of von Neumann regular rings. ¤

It remains an open question to determine whether Boole is a localisation
of VNReg.

10. Examples in terms of colimits
A whole bunch of examples is based on the following trivial fact:

Lemma 50. Let D be a small category and A a D-cocomplete category. When
D is connected, we obtain a full reflective subcategory

∆: A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq [D,A], colim : [D,A] qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A, colim a ∆

where ∆(A) is the constant functor on A and colim F is the colimit object of
F . Moreover when A is homological (resp. semi-abelian), so is the functor
category [D,A].

Proof : The adjunction is just rephrasing the definition of a colimit. The
functor ∆ is full and faithful as soon as D is connected.

In a category [D,A] of functors, all ingredients appearing in the definitions
of an homological or a semi-abelian category are pointwise notions, so that
[D,A] is homological (resp. semi-abelian) as soon as A is homological (resp.
semi-abelian). ¤

The first type of colimit that we consider is (see [28], [1]):

Definition 51. A category D is sifted when D-colimits commute in Set with
finite products.

In particular, the commutation with the terminal object forces a sifted
category to be connected. More precisely, a category is sifted when, for
every pair of objects, the corresponding category of cospans is connected
(see [28] and [1]).
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Example 52. Let T be a semi-abelian algebraic theory (see [15]) and D a
small sifted category. The reflection

∆: SetT qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq [D, SetT], colim : [D, SetT] qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq SetT, colim a ∆

is semi-left-exact and right exact.

Proof : In an algebraic variety, sifted colimits are computed as in the category
of sets and so in particular, are universal. Thus in the following pullback
square, where F, G ∈ [D, SetT

]
and A ∈ SetT:

G qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

F qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq ∆ colim(F )

we have also A ∼= ∆ colim G. This means that the reflection has stable units
in the sense of [16], a property stronger than semi-left-exactness.

To prove the right exactness, we must show that a D-colimit of proper
morphisms is still proper (see Proposition 15). Since a colimit of regular
epimorphisms is a regular epimorphism, it suffices to prove that a D-colimit
of normal monomorphisms is a proper morphism. Considering as well the
cokernels of these normal monomorphisms, we start thus with a D-colimit of
short exact sequences

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Si
si qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Ai

qi qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Qi qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0

and consider its colimit

S s
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Q qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0.

Of course q = Coker s and it remains to prove that Im s = Ker q, that is, every
element a ∈ A such that q(a) = 0 has the form s(x) for some x ∈ S; this is
so when a is the equivalence class of some element al ∈ Al which belongs to
Sl.

The element a is the equivalence class of some element ai in some Ai. Since
qi(ai) is identified with 0 in the colimit Q, there exists a zigzag of arrows and
elements bj in the diagram of the Qj’s which connects qi(ai) and 0.

If the zigzag starts with a morphism i qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq j, we can simply replace ai ∈ Ai

by its image aj ∈ Aj and it suffices now to prove that aj is equivalent to
some element in some Sj′.
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If the zigzag starts with a morphism j qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq i, consider the element bj ∈ Qj

of the zigzag which is mapped on bi = qi(ai). By surjectivity of qj, we can
choose aj ∈ Aj such that qj(aj) = bj. Write a′i for the image of aj in Ai.
Then qi(ai) = qi(a′i).

Let us recall that the semi-abelian theory T contains a unique constant 0,
a certain number n of binary operations αi and a (n + 1)-ary operation β
such that

α1(t, t) = 0, . . . , αn(t, t) = 0 β
(
α1(r, s), . . . , αn(r, s), s

)
= r

(see [15]). Thus qi

(
αm(ai, a

′
i)
)

= 0 for each index m, proving that αm(ai, a
′
i) ∈

Si for each m. And since

ai = β
(
α1(ai, a

′
i), . . . , αn(ai, a

′
i), a

′
i

)

with each αm(ai, a
′
i) in Si, we shall get that ai is equivalent to some element

in some Si′ as soon as a′i does. But for that, it suffices to prove that aj itself
is equivalent to some element in some Sj′.

Repeating these two steps along each leg of the zigzag, we reach the level l
where the zigzag of elements becomes 0; and then the corresponding element
al is in Sl = Ker sl. ¤

The second type of colimits that we consider is:

Definition 53. A category D is called profiltered when it is connected and
every span can be completed in a commutative square.

Of course filtered categories are profiltered. In fact it is trivial to observe
that

Lemma 54. A category D is profiltered if and only if

(1) D is non-empty;
(2) there exists a cospan on every pair of objects;
(3) given two arrows u, v : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq B, there are arrows x,y such that x ◦ u =
y ◦ v. ¤

In other words, a profiltered category is filtered as soon as in condition 3 of
Lemma 54, one can choose x = y. The interest of profiltered colimits is the
fact that they are computed in the category of sets via the same well-known
process as filtered colimits:
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Lemma 55. Let (Ai)i∈D be a profiltered diagram of sets. The colimit
colimi∈D Ai is the quotient of the coproduct qi∈DAi by the equivalence re-
lation which identifies two elements ai ∈ Ai, aj ∈ Aj when there exists a
cospan on i, j along which ai and aj are already identified.

Proof : The profilteredness axiom forces the transitivity of the relation in the
statement. ¤

Example 56. The monoid (N, +), viewed as a category with a single object,
is profiltered but not filtered.

Proof : Of course given u, v ∈ N, there are x, y ∈ N such that x + u = y + v;
but when u 6= v, it is impossible to choose x = y. ¤

We can then reinforce our Example 52:

Example 57. Let T be a semi-abelian algebraic theory (see [15]) and D a
small sifted and profiltered category. The reflection

∆: SetT qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq [D, SetT], colim : [D, SetT] qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq SetT, colim a ∆

is an exact fibered prolocalisation.

Proof : We observe first that aD-colimit of monomorphisms is still a monomor-
phism. Choose thus a D-diagram of monomorphisms si : Si qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Ai and their
colimit s : S qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A. Consider x ∈ S such that s(x) = 0; by semi-abelianess, it

suffices to prove that x = 0. But x is the equivalence class of some xi ∈ Si.
Since si(xi) is identified with 0 in the colimit, it is already identified with 0
at some further level Aj of the diagram (see Lemma 55). But then the image
xj of xi at the level j is mapped on 0 by the monomorphism sj, thus xj = 0
and x = 0 as required.

Going back to the proof of Example 52, we have now that s is a monomor-
phism with Im s = Ker q, that is, s = Ker q. So the reflection is a prolocal-
isation (see Lemma 16). By Proposition 22, the prolocalisation is exact.
¤

Of course when D is filtered, the situation of the previous example becomes
a localisation, since finite limits in SetT commute with filtered colimits. It
remains an open problem to determine whether a sifted profiltered category
is filtered.

Our next example is of rather different nature, even if it looks similar to
the previous ones.
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It is known that coequalizers of reflexive pairs are sifted colimits (see [1]),
thus in particular quotients by equivalence relations are sifted colimits. But
these colimits are not profiltered and do not in general give rise to prolocal-
isations. For example, in the abelian case, the reflexive pair given by the
discrete equivalence relation on an object A is a (normal) subobject of the
one given by the indiscrete relation: and of course the factorisation A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0

between the corresponding quotients is by no means a (normal) monomor-
phism. Thus the colimit functor does not preserve (normal) monomorphisms.

But given a category C with finite limits, write now Eq(C) for the category
• whose objects are the pairs (A,R), where A ∈ C and R is an equiva-

lence relation on A;
• whose morphisms f : (A,R) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq (B, S) are the morphisms f : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq B

in C such that f × f restricts as a morphism from R to S.
In the presence of a zero object, the kernel of f in Eq(C) is its kernel in C pro-
vided with the restriction of R. This is a striking difference with considering
equivalence relations as (particular) reflexive pairs.

Example 58. Let C be an arithmetical semi-abelian category (see [30]). Con-
sider

∆: C qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq Eq(C), χ : Eq(C) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq C
where ∆(A) is A provided with its diagonal, while χ(A,R) is the quotient
of A by the equivalence relation R. This is an epireflective prolocalisation
between semi-abelian categories, but not a localisation.

Proof : In [12], it is proved that a category C is exact protomodular if and
only if the category Grpd(C) of internal groupoids in C is so.

In [30] it is proved that an exact Malt’sev category C is arithmetical (i.e. the
lattices of equivalence relations are distributive) if and only if every groupoid
is an equivalence relation, that is, Grpd(C) ∼= Eq(C).

Thus for a semi-abelian (in particular, Malt’sev) and arithmetical category
C, Eq(C) ∼= Grpd(C) is semi-abelian as well.

The conclusion follows easily. The functor χ is trivially left adjoint to
∆ and the unit of the adjunction is a regular epimorphism (the quotient
map). Given a normal monomorphism f : (A,R) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq (B, S), the factorisation
f : A/R qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq B/S is still a monomorphism, because by normality R = S ∩

(A × A). But f is then the image of the normal monomorphism f along
the regular epimorphism A qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq A/R; since C is semi-abelian, f is a normal

monomorphism as well (see [6]).
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To observe that we do not have a localisation, it suffices to prove that
χ does not preserve monomorphisms. Indeed, (A, ∆A) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq (A,A × A) is a
monomorphism mapped by χ on A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0. ¤

Remark 59. The notions of “prolocalisation” and of “Mono-hereditary tor-
sion theory”, for the class Mono of all monomorphisms, are independent of
each other.

Proof : On one hand, we consider the example of Mono-hereditary torsion
theory given in Section 5 of [13]. It is the one induced by the epireflection

ι : Eq(C) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq Grpd(C), σ : Grpd(C) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq Eq(C), σ a ι

where C is semi-abelian, Grpd(C) is the category of internal groupoids in C
and σ is the “support” functor: with a groupoid is associated the equivalence
relation on its object of objects, which identifies two connected objects. This
is not a prolocalisation, since Eq(C) is generally not closed under regular
quotients in Grpd(C) . . . unless C is arithmetical (see [11]).

On the other hand, the prolocalisation of Example 58 does not yield a
Mono-hereditary torsion theory. Indeed the torsion part T is given by the
indiscrete equivalence relations, and this category is not closed in Eq(C) under
subobjects. ¤

11. Some topos theoretic examples
It is known (see [6]) that the dual of the category of pointed objects of

a topos is semi-abelian. For simplicity, we work directly in the category of
pointed objects and exhibit a co-prolocalisation.

Consider a topos E and write E∗ for his category of pointed objects. Write
further Eσ

∗ for the category of pointed objects of E provided with an endomor-
phism which respects the base point. This is a category of diagrams in E∗,
thus finite limits and finite colimits in Eσ

∗ are computed as in E∗. Therefore
the dual of Eσ

∗ is still semi-abelian, since so is the dual of E∗.
There is an obvious full and faithful inclusion

ι : E∗ qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Eσ
∗ , (A, ∗) 7→ (A, ∗, idA).

This inclusion admits a right adjoint which, in the internal logic of the topos
E , is simply given by

Fix : Eσ
∗ qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq E∗, (A, ∗, σ) 7→ ({a ∈ A|σ(a) = a}, ∗).
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Example 60. Given a topos E, the functors

ιop : (E∗)op
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq (Eσ

∗ )op, Fixop : (Eσ
∗ )op

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq (E∗)op

constitute an epireflective prolocalisation between semi-abelian categories. This
prolocalisation is not a localisation.

Proof : We must prove that the functor Fix preserves normal epimorphisms.
But f : (A, ∗) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq (B, ∗) is a normal epimorphism in E∗ precisely when, in the

internal language of the topos, it is surjective and
(
f(a) = f(a′)

)
⇒

(
a = a′ or f(a) = ∗ = f(a′)

)
.

But we have already noticed that finite colimits in Eσ
∗ are computed as in E .

Thus

f : (A, ∗, σ) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq (B, ∗, τ)

is a normal epimorphism in Eσ
∗ precisely when f is a normal epimorphism in

E∗. We must prove that also Fix(f) is a normal epimorphism in E∗.
Given a fixed point b = τ(b) ∈ B, we have b = f(a) for some a ∈ A. But

f
(
σ(a)

)
= τ

(
f(a)

)
= τ(b) = b = f(a)

from which we deduce, since f is a normal epimorphism in E∗,
σ(a) = a or f

(
σ(a)

)
= ∗ = f(a).

In the first case we get at once b = f(a) with a = σ(a) a fixed point; in the
second case we deduce b = f(a) = ∗ = f(∗) with of course ∗ ∈ A a fixed
point. Thus in both cases, we have proved that b is the image of a fixed point
of A, proving that Fix(f) is surjective.

It remains to verify that the epimorphism Fix(f) is normal, that is, it
identifies two points when they are equal or both mapped on the base point:
this is trivial since Fix(f) is the restriction of f , which has that property.

This co-prolocalisation is not a co-localisation, because it does not preserve
epimorphisms. For example take A = 1 q 1 q 1 and B = 1 q 1, with each
time the first term as base point. On A, choose the endomorphism σ which
interchanges the last two terms and, on B, choose τ to be the identity. The
morphism f : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq B which identifies the last two terms is an epimorphism

in Setσ
∗ , but Fix(f) is the first inclusion 1 qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq 1 q 1, which is not surjective.
¤
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Notice that Example 60 enters the considerations of the previous section,
since Eσ

∗ is equivalent to the functor category
[
(N, +), Eop

∗
]
, with (N, +) the

profiltered category of Example 56, which is also the free monoid on one
generator. Identifying idA and σ is indeed equivalent to identifying idA and
all the powers of σ, thus applying the colimit functor. In the case of the
topos of sets, we have a much more general result:

Example 61. Let Setop
∗ be the dual of the category of pointed sets (which is

semi-abelian: see [6]). For every profiltered category D, the reflection

∆: Setop
∗ qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq [D, Setop

∗ ], colim : [D, Setop
∗ ] qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Setop

∗ , colim a ∆

is a prolocalisation.

Proof : Again for the sake of clarity, we work in the category of pointed sets,
proving thus that the limit functor

∆: Set∗ qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq [D, Set∗], lim : [D, Set∗] qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Set∗, ∆ a lim

yields a co-prolocalisation when D is a small co-profiltered category. By
Lemma 16, we must prove that a D-limit p : A qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq B of normal epimorphisms

(pD : AD qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq BD)D∈D in Set∗ is still a normal epimorphism.

First, we prove that p is surjective. Consider a compatible family of ele-
ments (bD ∈ BD)D∈D, that is, an element b of the limit B. If b is the base
point, it is the image of the base point of A.

Next, for each bD which is not the base point, then bD = pD(aD) for a
unique element aD ∈ AD, by normality of pD. The uniqueness condition
forces at once the sub-family of all these aD to be compatible along all the
morphisms of D connecting two such levels. And of course if this situation
holds for each D ∈ D, we get so an element a ∈ A such that p(a) = b.

Suppose now that b is not the base point, thus some bD̃ is not the base
point, while some bD is the base point. By Lemma 54 there exists a span

D f ′
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq D′ f̃
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq D̃

in D. Since bD̃ is not the base point, bD′ is not the base point. So there
exists always f ′ : D′

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq D in D such that bD′ is not the base point and we
know already that bD′ = pD′(aD′) for a unique aD′ ∈ AD′. Define aD to
be the image of aD′ along f ′; by naturality, aD is mapped by pD on the
base point. This definition is independent of the choice of (D′, f ′), since
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by co-profilteredness, given another choice (D′′, f ′′), the span (f, f ′) can be
completed in a commutative square. Thus p is surjective.

To prove the normality of p, choose two compatible families (aD)D∈D and
(a′D)D∈D in A which are identified by p. For each D ∈ D, we get pD(aD) =
pD(a′D). If this is the base point of BD for each D, we are done. And if
pD(aD) = pD(a′D) is not the base point for some fixed D ∈ D, we must
prove that aD̃ = a′

D̃
for all D̃ ∈ D. But if aD̃ 6= a′

D̃
for some D̃, choose a

span (f ′, f̃) as above. Then of course aD′ 6= a′D′ since the images along f̃
are distinct. Thus pD′(aD′) = pD′(a′D′) is the base point of BD′. Taking the
image along f ′, we get that pD(aD) = pD(a′D) is the base point of BD, which
is a contradiction. ¤

A special case of interest is worth being individualised:

Example 62. Consider the poset (N,≤) viewed as a profiltered category and
the corresponding prolocalisation

∆: Setop
∗ qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

[
(N,≤), Setop

∗
]
, colim :

[
(N,≤), Setop

∗
]

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Setop
∗ .

Of course (N,≤) is filtered, but the corresponding prolocalisation is neither a
localisation, nor an epireflection nor a monoreflection.

Proof : Notice that the projections of a limit over (N,≥) in Set∗ are generally
not injective nor surjective, thus the prolocalisation of the statement (see
Example 61)is neither epireflective nor monoreflective.

To show that the prolocalisation is not a localisation, it suffices to show
that it does not preserve monomorphisms. So we must prove that in Set∗, a
(N,≥)-limit of surjections is no longer surjective. Simply define pn to be

pn : An = N qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq {0, 1, . . . , n} = Bn

where

• on both sides, 0 is the base point;
• the restriction mapping An+1 qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq An is the identity;

• the restriction mapping Bn+1 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Bn is the one identifying n + 1 and
n;

• pn(m) = min{n,m}.
In lim Bn we have the compatible sequence (n)n∈N while in lim An all com-
patible sequences are constant; thus none of them can be mapped on (n)n∈N
by lim pn. ¤
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Coming back to Example 60 in the case of the topos of sets, we observed
already that Setσ

∗ is equivalent to the category of pointed objects of the topos
of (N, +)-sets. The following generalisation holds and can be internalised in
a Boolean topos.

Example 63. Let M be a monoid. The dual of the category of pointed sets
is an epireflective prolocalisation of the dual of the category of pointed M-
sets. Both categories are semi-abelian and the reflection is generally not a
localisation.

Proof : Let us work with pointed sets and M -sets, not the dual categories.
With the pointed set (A, ∗) is associated the pointed M -set (A, ∗, π) where
all elements of A are fixed: m·a = a for all m ∈ M and a ∈ A. With a
pointed M -set (A, ∗, χ) is associated the subobject Fix(A, ∗, χ) ⊆ (A, ∗) of
fixed points. Routine verifications show that this yields a co-reflection.

The category of pointed M -sets is a functor category of pointed sets, thus
its dual is semi-abelian and normal epimorphisms of pointed M -sets are those
morphisms which are normal epimorphisms of pointed sets. Given a normal
epimorphism f : (A, ∗, χ) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq (B, ∗, ξ), we prove first that Fix(f) is still sur-

jective. Of course ∗ = f(∗). Next if b 6= ∗ ∈ B is a fixed point, there is a ∈ A
such that f(a) = b. (In opposition to the case of Example 60, notice that
we use here the fact that {∗} is a complemented subobject of B). Then for
every m ∈ M ,

f(m·a) = m·f(a) = m·b = b = f(a)

proving by normality of f that m·a = a, because b 6= ∗. Thus a ∈ Fix(A, ∗, χ)
as expected. One concludes as in Example 60. ¤

12. Homological categories of monomorphisms
This section will, among other interesting things, allow us to construct an

example of a monoreflective prolocalisation.
Let C be an homological category, and D a small category. We denote

by MonoD(C) the full subcategory of the homological category [D, C] whose
objects are the functors F : D qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq C with the property that, for every d : i qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq j

in D, the arrow F (d) : F (i) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq F (j) is a monomorphism in C.

Lemma 64. Let C be an homological category, D a small category. Then
MonoD(C) is an homological category and the inclusion U : MonoD(C) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq [D, C]
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preserves finite limits and regular epimorphisms thus, in particular, short ex-
act sequences.

Proof : It is easy to see that MonoD(C) is closed under finite limits in the
homological category of functors [D, C]. This implies that the full inclusion
U : MonoD(C) qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq [D, C] preserves and reflects finite limits and, of course, iso-
morphisms. The protomodularity of [D, C] can so be lifted to MonoD(C).

Now let us show that the category MonoD(C) is regular. Consider the
regular epi–mono-factorisation f = s ◦ p in [D, C] of an arrow f : F ⇒ G of
MonoD(C). The image object is still in MonoD(C): indeed, the commutativity
of the diagram

F (i) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

pi H(i) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

si G(i)

F (d)
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqq

q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

H(d)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

G(d)

F (j) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqpj
H(j) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq sj
G(j)

for every d : i qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq j in D, tells us at once that H(d) is a monomorphism. This
yields thus a regular epi–mono-factorisation of F in MonoD(C) and proves at
the same time that the inclusion U preserves regular epimorphisms. Since
these factorisations are pullback stable, MonoD(C) is regular and thus homo-
logical. ¤

Remark 65. When C is semi-abelian, it is not true in general that the cat-
egory MonoD(C) is semi-abelian.

Proof : Consider the category D = {• → •} and C = Ab, the category of
abelian groups. Then the category MonoD(C) is the category of monomor-
phisms of abelian groups. This category is well-known to be regular, but it
is not Barr-exact since this would imply that Ab is arithmetical (see [11]). ¤

Proposition 66. Let C be an homological category admitting D-colimits, for
some small category D. Assume that ∆, colim : C qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq

[D, C] is a prolocalisa-
tion. Then the restriction

∆, colim : C qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq

MonoD(C)

is still a prolocalisation.
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Proof : To prove this result, it suffices to know that the full inclusion
U : MonoD(C) qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq [D, C] preserves normal monomorphisms, which is attested
by Proposition 64. ¤

Example 67. By Proposition 66, the prolocalisation of Example 62 restricts
as a prolocalisation

∆: Setop
∗ qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq Mono(N,≤)(Setop

∗ ), colim : Mono(N,≤)(Setop
∗ ) qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq Setop

∗ .

This prolocalisation is monoreflective and is not a localisation.

Proof : Working again in Set∗ instead of its dual, the counit of the adjunc-
tion, given by the projections

(
ηi : limi∈NAi qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Ai

)
i∈N of the limit, is now

surjective in each component; thus the prolocalisation of the statement is
monoreflective. Indeed, given an element xj ∈ Aj for some fixed index j, it is
easy to extend it to a compatible family (xi ∈ Ai)i∈N, that is, an element of
limi∈NAi. For i ≥ j simply choose the restriction of xj in Ai. And since the
restriction aj : Aj+1 qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Aj is surjective, choose for xj+1 ∈ Aj+1 an element

mapped on xj and repeat the process inductively.
The counter-example in Example 62 applies to conclude that we still do

not have a localisation. ¤

13. Examples in functional analysis
In [23] it is proved that the category C∗-Alg of commutative C∗-algebras

without necessarily a unit is semi-abelian. But these C∗-algebra have never-
theless a so-called approximate unit (see [20]):

In a C∗-algebra A, there exists a net (εω)ω∈Ω of elements such
that
for every element a ∈ A, one has a = limω∈Ω εω·a.

The existence of approximate units forces in particular the following known
property (see [20]):

Lemma 68. In the category C∗-Alg of commutative C∗-algebras, the com-
posite of two normal monomorphisms is still a normal monomorphism.

Proof : A normal monomorphism in C∗-Alg is exactly a closed ideal. Consider
thus the composite I qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq J qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A of two normal monomorphisms. Since I is

closed in J which is itself closed in A, then I is closed in A.
Next choose elements i ∈ I and a ∈ A and write (εω)ω∈Ω for an approximate

unit of J . Since i ∈ J and J is an ideal of A, we get a·i ∈ J and thus
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a·i = limω∈Ω εω·a·i. Since J is an ideal of A, we have also εω·a ∈ J and since
I is an ideal in J , this forces εω·a·i ∈ I for each ω ∈ Ω. Since I is closed in
A, a·i = limω∈Ω εω·a·i ∈ I. ¤

Let us now consider the category C∗-Algσ of C∗-algebras provided with
an endomorphism σ, and the morphisms of C∗-algebras commuting with
the given endomorphisms. In other words, C∗-Algσ is the functor category[
(N, +),C∗-Alg

]
(see Example 56), which is thus semi-abelian since so is

C∗-Alg. Keeping in mind Lemma 50, let us now prove that:

Example 69. The functors

∆: C∗-Alg qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq C∗-Algσ ∼= [
(N, +),C∗-Alg

]
,

colim : C∗-Algσ ∼= [
(N, +),C∗-Alg

]
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq C∗-Alg

constitute an epireflective prolocalisation between semi-abelian categories.

Proof : Let us consider a normal monomorphism s : (A, σ) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq (B, τ) in C∗-Algσ.
This is simply a normal monomorphism in C∗-Alg such that σ is the restric-
tion of τ . We consider the coequalizers p of (σ, idA) and q of (τ, idB): we must
prove that the corresponding factorisation t is a normal monomorphism in
C∗-Alg.

A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
σ

idA

A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

p
P

s
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

s
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

pppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

t

B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
τ

idB

B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

q
Q

If we prove that t is injective, it will be a normal monomorphism as image of
the normal monomorphism s along the regular epimorphism q in the semi-
abelian category C∗-Alg.

The coequalizer p of σ and idA is the quotient by the smallest closed ideal
I of A which contains all the elements of the form σ(a)− a, for all elements
a ∈ A. Analogously the coequalizer q of τ and idB is the smallest closed ideal
of B containing the elements of the form τ(b) − b with b ∈ B. Considering
the diagram of short exact sequences

0 qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq I qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

i A qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

p
P qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq 0

r
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

(∗) s
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

pppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

t

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq J qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

j B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqq Q qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0
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t will be a monomorphism as soon as the square (*) is a pullback.
Trivially, I ⊆ J∩A and it remains to prove that J∩A ⊆ I. Write J ′ for the

ideal generated by all the elements of the form τ(b) − b: it suffices to prove
that J ′ ∩ A ⊆ I. Indeed if J ′ ∩ A ⊆ I and x ∈ J ∩ A, write x = limn∈N xn,
with xn ∈ J ′. Writing (εω)ω∈Ω for an approximate unit of A, we have further
x = limω∈Ω εω·x. This yields

x = lim
ω∈Ω

εω·x = lim
ω∈Ω

(
εω· lim

n∈N
xn

)
= lim

ω∈Ω
lim
n∈N

εω·xn.

Since εω ∈ A and xn ∈ J ′, we have εω·xn ∈ J ′ ∩ A ⊆ I, thus the limit lies
still in the closed ideal I.

To prove that J ′ ∩ A ⊆ I, consider an element x ∈ J ′ ∩ A. As an element
of J , it has the form

x =
m∑

n=1

b′n·
(
τ(bn)− bn

)
, b′n, bn ∈ B.

We get further, since x ∈ A

x = lim
ω∈Ω

εω·x = lim
ω∈Ω

εω·
(

m∑
n=1

b′n·
(
τ(bn)− bn

))
= lim

ω∈Ω

m∑
n=1

(
εω·b′n·τ(bn)−εω·b′n·bn

)
.

To prove that this limit is in the closed ideal I, it suffices to prove that each
term appearing in this limit is in I. But since σ is the restriction of τ on A,
we have

εω·b′n·τ(bn)− εω·b′n·bn =
(
εω·b′n − τ(εω·b′n)

)
τ(bn) +

(
τ(εω·b′n·bn)− εω·b′n·bn

)

=
(
εω·b′n − σ(εω·b′n)

)
τ(bn) +

(
σ(εω·b′n·bn)− εω·b′n·bn

)
.

This last expression lies in I since so does every element of the form σ(a)−a,
with a ∈ A, while I is an ideal in B, by Lemma 68.

And the unit p = η(A,σ) of the adjunction is a regular epimorphism for each
(A, σ) ∈ C∗-Algσ. ¤

A careful analysis of the proof of Example 69 shows that the conclusion
still holds true when C∗-Algσ is replaced by some adequate full subcategory
of it: for example, that of pairs (A, σ) for an idempotent σ (i.e. σ2 = σ) or
an involutive one (i.e. σ2 = idA).
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