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Abstract
In this article we review known results on parameterized linear codes over graphs, 
introduced by Rentería et al. (Finite Fields Appl 17(1):81–104, 2011) . Very little is 
known about their basic parameters and invariants. We review in detail the param‑
eters dimension, regularity and minimum distance. As regards the parameter dimen-
sion, we explore the connection to Eulerian ideals in the ternary case and we give 
new combinatorial formulas.
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1  Introduction

A parameterized code over a graph is a linear code obtained by evaluating forms of 
fixed degree on a set of points obtained from the graph, in projective space over a 
finite field. They were introduced by Rentería et al. in [13] and, with some excep‑
tions, their study is wide open. In this article we will touch upon the basic param‑
eters and invariants of these codes, reviewing known results. Section 2 concerns the 
parameter dimension and focuses on the case of ternary linear codes, by exploring 
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the relation with Eulerian ideals. Theorem 2.7, which gives a combinatorial formula 
for the dimension of parameterized code over a graph in the ternary case, and Theo‑
rem 2.8, which gives this formula explicitly in the case of an even cycle, are both 
new. Section 3 is dedicated to the invariant regularity and Sect. 4 to the parameter 
minimum distance.

Let G be a simple graph. We assume that VG = {1, 2,… , n} and we denote 
s = |EG| , which we always assume positive. We also fix a choice of ordering of 
the edges, e1,… , es . Take K to be a field and consider the two polynomial rings 
K[x1,… , xn] and K[t1,… , ts] . (It is convenient to identify EG with the set {t1,… , ts} . 
Thus we may refer to the monomial obtained by multiplying a given set of edges.) 
Defining a homorphism of polynomial rings � ∶ K[t1,… , ts] → K[x1,… , xn] by

if and only if tk is the edge {i, j} , we obtain a rational map of ℙn−1 to ℙs−1 , which, 
when restricted to the projective torus

is a morphism. We denote the image of � n−1 by this morphism by X. This set is then 
a subset (and, moreover, subgroup) of the corresponding projective torus in ℙs−1 . 
The set X is called the projective algebraic toric set parameterized by the edges of 
G. Assume K is finite. Then X is also finite and the number of its elements can be 
determined as a function of G (see Theorem 1.1, below). At this point, let us denote 
this number by m and let X = {P1,… ,Pm} correspond to a choice of ordering. Let 
d ≥ 0 . Then, the parameterized code of order d  over G, denoted by CX(d) ⊆ Km , is 
the image of the space of homogeneous polynomials in t1,… , ts , of degree d, by the 
map defined by

for every f ∈ K[t1,… , ts]d and where f0 = td
1
.

A graph gives a sequence of linear codes:

all of which are subspaces of Km . The list of dimensions of the codes in this 
sequence starts with 1 and is stricly increasing until it reaches m. (We will explain 
this in more detail in Sect. 2). From a coding theory point of view, the degree at 
which the dimension of CX(d) reaches m is an important parameter of this construc‑
tion. We call it the index of regularity (or, simply the regularity) for reasons we will 
explain later. Other important invariants of the codes include their minimum dis-
tances, which is the minimum number of nonzero components of a vector over all 
non-zero vectors in the code, and their length (the number of components of a vec‑
tor); which in this construction is m, common to all codes in the sequence. Given 
that CX(d) are constructed from G, the expectation is that all of these invariants are 
in some way related to invariants of the graph. For a general graph, not much is 

tk ↦ xixj

𝕋
n−1 = {(x1,… , xn) ∈ ℙ

n−1 ∶ xi ≠ 0, for all i},

(1.1)f →

(
f (P1)

f0(P1)
,… ,

f (Pm)

f0(Pm)

)
∈ Km,

CX(0),CX(1),… ,CX(d),…
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known about the dimension and minimum distance of these codes. There has, how‑
ever, been significant progress on the computation of the index of regularity and we 
will postpone a detailed account to Sect.  3. As for the parameter length, denoted 
above by m = |X| , a formula, holding for any graph, was given in [11]. To state this 
result, let us denote the number of connected components of G by b0(G) and let q 
denote the cardinality of the field.

Theorem 1.1  If G is a bipartite graph then

If G is non-bipartite then

where � is the number of non-bipartite components.

Proof  See [11, Theorem 3.2]. 	�  ◻

2 � Dimension

From now on, let us denote S = K[t1,… , ts] and let I(X) ⊆ S be the homogeneous 
vanishing ideal of {P1,… ,Pm} . Then S∕I(X)d ≃ CX(d) and therefore the dimen‑
sion of CX(d) , as d ≥ 0 , coincides with the Hilbert function of the module S/I(X). 
Since I(X) is the vanishing ideal of a set of points in projective space, we know 
that the Hilbert function of S/I(X), and hence dimCX(d) , is strictly increasing 
until it reaches a constant value equal to the number of points of X.

Denote the projective torus 𝕋 s−1 ⊆ ℙ
s−1 by �  . As X ⊆ �  we get

From the point of view of the Hilbert Function, the easiest case is when X coincides 
with the projective torus 𝕋 = 𝕋

s−1 ⊆ ℙ
s−1 and, hence, I(X) is a complete intersec‑

tion. We may use the Hilbert series of S∕I(� ) to obtain

(see [1, 4, 14] for details). According to [14, Theorem 4.4], X = �  is the only case 
in which I(X) is a complete intersection. Note that the formula of Theorem 1.1 gives 
X = �  if G is a tree or, more generally, a forest, or when G is a unicyclic graph with 
a unique odd cycle. On the opposite end of the class of bipartite graphs are the com‑
plete bipartite graphs Ka,b . In this case I(X) is far from being a complete intersection, 
but the dimension function of CX(d) is known. To state it, let k(s, d, q) be the sum‑
mation on the right of (2.2). Then,

|X| = (q − 1)n−b0(G)−1.

|X| =
{(

1

2

)�−1
(q − 1)n−b0(G)+�−1 if qis odd,

(q − 1)n−b0(G)+�−1 if q is even,

(2.1)I(� ) = (t
q−1

1
− tq−1

s
,… , t

q−1

s−1
− tq−1

s
) ⊆ I(X).

(2.2)dimC
�
(d) =

∑
j≥0(−1)

j

�
s − 1

j

��
s − 1 + d − (q − 1)j

s − 1

�
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(see [3, Theorem 5.2]). To our knowledge, these are the only two instances in which 
a formula for the dimension function of parameterized codes is known.

2.1 � Dimension in the case of ternary codes

When K = ℤ∕3 , the situation is bettered by the recent results on the Eulerian ideal 
of G. This ideal, defined in [12], is the pre-image of the ideal

by the map � , defined at the begining of Sect.  1. By [12, Proposition 2.9], when 
K = ℤ∕3 , the ideal I(X) and the Eulerian ideal are the same. A set of generators 
which is, moreover, a Gröbner basis, is available from [8]. To state the result let us 
fix some notation. Given � = (�1,… , �s) ∈ ℕ

s let us denote t�1
1
⋯ t

�s
s  by t� . We say 

that t� − t
� is an Eulerian binomial if t� and t� are relatively prime, square-free, of 

the same degree, and the edges with index set supp(𝛼) ⊔ supp(𝛽) ⊆ {1,… , s} induce 
a subgraph of G with vertices of even degree; i.e., an Eulerian subgraph. We denote 
by E the (finite) set of all Eulerian binomials and by T = {t2

i
− t2

j
∶ 1 ≤ i, j ≤ s}.

Theorem 2.1  Let K = ℤ∕3 . The set of homogeneous binomials T ∪ E is a Gröbner 
basis of I(X) with respect to the graded reverse lexicographic order in S.

Proof  See [8, Theorem 3.3]. 	�  ◻

In particular, I(X) is generated in degree ≥ 2 . As

we deduce that dimCX(0) = 1 and dimCX(1) = s , regardless of G. This holds also 
for any parameterized code over a graph, over any finite field.

A technique that has always proved useful when trying to link the combinatorics 
of G with the algebra of S/I(X), is to take an Artinian quotient of this graded ring. 
This is specially easy to produce since any monomial in S is S/I(X)-regular. (Indeed 
since X is a subset of the projective torus 𝕋 ⊆ ℙ

s−1 , a monomial does not vanish at 
any point of X.) To study the dimension function of the codes the correct Artinian 
quotient is S∕(I(X), t2

s
) , where ts is the last edge of the graph.

Definition 2.2  Given d ≥ 0 , let Bd be the set of monomials of degree d that are 
not divisible by any leading term of a polynomial in (I(X), t2

s
) , with respect to the 

graded reverse lexicographic order in S. Extend the notation Bd to negative d by set‑
ting Bd = � and denote the cardinality of Bd by �(d).

Since, for every i = 1,… , s , t2
i
 is a leading term of an element of (I(X), t2

s
) a 

monomial in Bd is necessarily square-free. In particular, Bd is surely empty as soon 

dimCX(d) = k(a, d, q) k(b, d, q)

(x2
i
− x2

j
∶ 1 ≤ i, j ≤ n) ⊆ K[x1,… , xn]

dimCX(d) = dimK(S∕I(X))d ,
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as d > s . As (I(X), t2
s
) is generated in degrees ≥ 2 , we deduce that B0 = {1} and 

B1 = {t1,… , ts} . As we show below, the elements of Bd , correspond to special sets 
of edges of the graph. Before, let us reveal the connection with the dimension func‑
tion of the family of codes CX(d) , g ≥ 0.

Proposition 2.3  Let K = ℤ∕3 and d ≥ 0 . Then

Proof  Let us use induction on d. It is clear that the formula holds for d = 0 and 
d = 1 . Assume d > 1 . Since t2

s
 is S/I(X)-regular, the short exact sequence

gives dimCX(d) = dimCX(d − 2) + dimK(S∕(I(X), t
2
s
))d . By Macaulay’s Theo‑

rem, the cosets with representatives in Bd form a K-basis of the vector space of 
(S∕(I(X), t2

s
))d . In other words, �(d) = dimK(S∕(I(X), t

2
s
))d . Hence the formula fol‑

lows by induction. 	�  ◻

The key to get a combinatorial formula for dimCX(d) is then the combinato‑
rial characterization of the elements of Bd . For this, we need a Gröbner basis of 
(I(X), t2

s
) , which is easily obtained from that of I(X).

Proposition 2.4  Let K = ℤ∕3 . The set T ∪ E ∪ {t2
s
} is a Gröbner basis of (I(X), t2

s
) 

with respect to the graded reverse lexicographic order in S.

Proof  Since t2
s
 and the leading term of any binomial in T ∪ E are coprime, their 

S-polynomial reduces to zero. Since T ∪ E is a Gröbner basis, the S-polynomials of 
all pairs of elements of T ∪ E also reduce to zero. 	�  ◻

Let us now introduce the combinatorics.

Definition 2.5  [8, Definition  4.4] J ⊆ EG is called a parity join if and only if 
|J ∩ EC| ≤ |EC|

2
 , for every Eulerian subgraph of C ⊂ G with an even number of edges.

The terminology of parity join comes from the relation with T-joins of cardinality 
of fixed parity, as explained in [8]. A parity join need not use half the edges of every 
Eulerian subgraph. When it does use half the edges of a given Eulerian subgraph, 
these need not include the last edge.

Definition 2.6  Given d ≥ 0 , let Jd denote the set of parity joins, J ⊆ EG , of car‑
dinality d, that contain the last edge of every Eulerian subgraph C ⊆ G for which 
|J ∩ EC| = |EC|

2
 . Let us also extend this notation by setting Jd = � , for all d < 0.

The proof of the next result is an adaptation of the ideas of [8]. There, the 
approach privileges fixed parity T-joins.

dimCX(d) =
∑

i≥0 �(d − 2i).

(2.3)0 → S∕I(X)[−2]
⋅t2
s

⟶S∕I(X) → S∕(I(X), t2
s
) → 0
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Theorem 2.7  Let K = ℤ∕3 . The map Bd → Jd given by

is well-defined and a bijection. In particular,

Proof  As t� ∈ Bd is square-free, {ei ∶ i ∈ supp(�)} is a set of d edges. Let C ⊆ G be 
any Eulerian subgraph with an even number of edges. Assume

Let t� be the product of the first |EC|
2

 edges in J(t� ) ∩ EC and let t� be the product of 
the remaining edges of C. Then t� − t

� is an Eulerian binomial and, as t� is divisible 
by the last edge of J(t� ) ∩ EC , its leading term is t� . But then t� divides t� ∈ Bd , and 
this is a contradiction. Hence

We deduce that {ei ∶ i ∈ supp(�)} is a parity join. Additionally, if

but {ei ∶ i ∈ supp(�)} does not contain the last edge of C, the same argument leads 
to a contradiction. Hence the map is well-defined.

It is clearly an injective map. To prove surjectivity, let J ∈ Jd , let t� be the prod‑
uct of the edges in J and let us show that t� ∈ Bd . Clearly deg(t� ) = |J| = d , so that 
all we need to show is that t� is not divisible by any leading term of (I(X), t2

s
) . Since 

T ∪ E ∪ {t2
s
} is a Gröbner basis for this ideal (Proposition 2.4) it is enough to check 

that t� is not divisible by the leading term of any element of T ∪ E ∪ {t2
s
} . Since t� 

is square-free, t2
i
∤ t� , for all i = 1,… , s . Let g = t

� − t
� ∈ E , with lt(g) = t

� (with‑
out loss of generality). Let C ⊆ G be the corresponding Eulerian subgraph, i.e., the 
graph induced by {ei ∶ i ∈ supp(𝛼)} ⊔ {ej ∶ j ∈ supp(𝛽)} ⊆ EG . With a view to a 
contradiction, suppose that t� ∣ t� . Then, as J is a parity join,

which implies that J ∩ EC = {ei ∶ i ∈ supp(�)} . But if J ∈ Jd then J must contain 
the last edge of C which means that t� is divisible by this edge. But this is a contra‑
diction since we are assuming that lt(g) = t

� . Hence t� ∤ t� , for the leading term of 
any element of E . We conclude that t� ∈ Bd and hence the map is also surjective. 
This bijection yields |Bd| = |Jd| and the formula for dimCX(d) follows from Propo‑
sition 2.3. 	�  ◻

t
�
↦ {ei ∶ i ∈ supp(�)}

dimCX(d) =
∑

i≥0 �Jd−2i�.

|J(t𝛾 ) ∩ EC| >
|EC|
2

.

|J(t� ) ∩ EC| ≤
|EC|
2

.

|J(t� ) ∩ EC| = |EC|
2

|J ∩ EC| = |EC|
2
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Let us illustrate the applications of this result by considering the case when 
G has no Eulerian subgraphs with an even number of edges. Note that, by Theo‑
rem 2.1, E = � so that

is a complete intersection and the dimension of CX(d) is given by (2.2), with q = 3 . 
If G possesses no Eulerian subgraphs with even number of edges then every subset 
of edges is a parity join, hence

Then, by Theorem 2.7,

To see that this amounts to the same as (2.2) with q = 3 , let us manipulate the 
Hilbert series of S/I(X), as in [14], but aiming at our formula. Since the ideal 
I(X) ⊆ K[t1,… , ts] is a complete intersection of s − 1 forms of degree two, the Hil‑
bert series of S/I(X) is

Equating the coefficient of Td,

We end this section by applying Theorem 2.7 to the case of an even cycle.

Theorem 2.8  Let K = ℤ∕3 and let G = C2� be a cycle of length s = 2� . Then

Proof  Given that a parity join in G is simply a subset of d ≤ � edges, we get 
J
�+i = � , for all i > 0 . Also, an element in J

�
 must contain the edge ts and so 

|J
�
| =

(
s − 1

� − 1

)
 . For 0 ≤ d ≤ � − 1 , the elements of Jd are the sets of d edges of 

G, without any condition. Thus |Jd| =
(

s

d

)
 . Using Theorem 2.7, if 0 ≤ d ≤ � − 1,

I(X) = (T) = (t2
1
− t2

s
,… , t2

s−1
− t2

s
)

Jd = {J ⊆ EG ∶ |J| = d}.

dimCX(d) =
∑k

i≥0

�
s

d − 2i

�
.

(1 − T2)s−1

(1 − T)s
=

(1 + T)s

1 − T2
= (1 + T)s

∑
i≥0

T2i.

dimCX(d) = dimK S∕I(X) =
∑

i≥0

�
s

d − 2i

�
.

dimCX(d) =

⎧⎪⎨⎪⎩

2s−2, if d ≥ � − 1,

∑
i≥0

�
s

d − 2i

�
, if 0 ≤ d ≤ � − 2.

dimCX(d) =
∑

i≥0 �Jd−2i� = ∑
i≥0

�
s

d − 2i

�
.
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The sum of all binomial coefficients of lower indices of the same parity is 
well-known:

Since s = 2� and hence 
(

s

� − 1 − 2i

)
=

(
s

� + 1 + 2i

)
 we deduce that 

dimCX(� − 1) = 2s−2 . If d = � , using Pascal’s identity and the same kind of argu‑
ment as above,

Finally, if d > � , given that |J
�+i| = 0 , for all i > 0 and given the formula of Theo‑

rem 2.7, we deduce that dimCX(d) is equal to either 
∑

i≥0 �J�−2i� or to 
∑

i≥0 �J�−1−2i� , 
both of which are equal to 2s−2 . 	�  ◻

3 � Regularity

Since I(X) is the vanishing ideal of a set of m points in projective space, the Hilbert 
polynomial of S/I(X) is constant and equal to m. In other words, there exists r such 
that

for all d ≥ r . (From the coding theory point of view, this is where Cd(X) becomes 
a trivial linear code.) The least r in these conditions is called the index of regular-
ity of S/I(X). Since any monomial is S/I(X) regular, this module is 1-dimensional 
and Cohen–Macaulay. Hence the index of regularity coincides with the Castel‑
nuovo–Mumford regularity of S/I(X). From now on we will refer to this integer sim‑
ply by the regularity of S/I(X) and we will denote it by regS∕I(X) . The next table 
summarizes the early known results regarding this invariant.

In Table  1, Kn denotes a complete graph on n > 3 vertices. The value for the 
regularity was given in [6, Remark 3]. In the case of the complete bipartite graph, 
the regularity was obtained in [3, Corollary  5.4] and the case of an even cycle, 
G = C2� , in [11, Theorem 6.2]. The value of regularity for a complete multipartite 
graph on n = a1 +⋯ + ar vertices, denoted here by G = Ka1,…,ar

 , was given in [10, 
Theorem 4.3].

∑
i≥0

�
s

� − 1 − 2i

�
+
∑

i≥0

�
s

� + 1 + 2i

�
= 2s−1.

dimCX(�) =
∑

i≥1

�
s

� − 2i

�
+

�
s − 1

� − 1

�

=
∑

i≥1

�
s − 1

� − 1 − 2i

�
+
∑

i≥1

�
s − 1

� − 2i

�
+

�
s − 1

� − 1

�

=
∑

i≥1

�
s − 1

� − 1 − 2i

�
+

�
s − 1

� − 1

�
+
∑

i≥1

�
s − 1

� − 1 + 2i

�

= 2s−2.

dimCd(X) = m ⟺ Cd(X) = Km,
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3.1 � Parallel compositions

A graph is a parallel composition of paths if there exist path graphs P1,P2,… ,Pr 
such that G is obained by identifying all the first end-points of the paths into a 
single vertex and all of the second end-points of the paths into another vertex. We 
have used first and second for the sake of clarity; we do not fix any orientation on 
the paths. Figure 1 illstrates this definiton.

A parallel composition of paths may be bipartite or non-bipartite. The bipartite 
case is when the lengths of Pi have the same parity. The value of the regularity of 
S/I(X) for a graph of this type was computed in [7].

Theorem 3.1  [7, Theorems 1.1 and 1.2] Let G be parallel composition of paths of 
lengths k1,… , kr , with r ≥ 2 . If G is bipartite then

If G is non-bipartite then, assuming without loss of generality that k1,… , k
�
 are 

even and k
�+1,… , kr are odd,

regS∕I(X) =

�
(⌊ k1

2
⌋ +⋯ + ⌊ kr

2
⌋)(q − 2), if kiare odd,

(
k1

2
+⋯ +

kr

2
− 1)(q − 2), if kiare even.

regS∕I(X) =

⎧
⎪⎪⎨⎪⎪⎩

(k1 + k2 − 1)(q − 2), if𝓁 = 1, r = 2,

(k1 + ⌊ k2

2
⌋ +⋯ + ⌊ kr

2
⌋)(q − 2), if𝓁 = 1, r > 2,

(
k1

2
+⋯ +

k
𝓁

2
+ k

𝓁+1)(q − 2), if𝓁 > 1, r = 𝓁 + 1,

(
k1

2
+⋯ +

k
𝓁

2
+ ⌊ k

𝓁+1

2
⌋ +⋯ + ⌊ kr

2
⌋)(q − 2), if𝓁 > 1, r > 𝓁 + 1.

Table 1   Known values of 
regS∕I(X)

regS∕I(X)

X = �
s−1 (s − 1)(q − 2)

G = Ka,b (max{a, b} − 1)(q − 2)

G = Kn, n>3 ⌈(n − 1)(q − 2)∕2⌉
G = C2� (� − 1)(q − 2)

G = Ka1,…,ar
, r>2 max{a1(q − 2),… , ar(q − 2), ⌈(n − 1)(q − 2)∕2⌉}

Fig. 1   The parallel composition 
of paths P1,P2,… ,P

r
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3.2 � Nested ear decompositions

We say that G is endowed with an open ear decomposition if there exist subgraphs 
E1,… ,Er , with E1 a cycle and E2,… ,Er paths such that, for each i = 2,… , r , the 
end-points of Ei are distinct and belong to E1 ∪⋯ ∪ Er−1 , while all other vertices 
do not. The subgraphs E1,… ,Er are called the ears of the decomposition. Given 
i = 2,… , r , we say that Ei determines a nest interval if both its end-points belong 
to the same Ej , for some j < i and, in this case, we define the corresponding nest 
interval to be the sub-path of Ej determined by the two end-points of Ei . (If j = 1 , 
we take any of the two sub-paths.) In [2], Eppstein defines the notion of nested 
ear decomposition by requiring that, in addition to the original assumptions, all 
Ei , for i = 2,… , r determine a nest interval and, for any two nest intervals con‑
tained in a same ear Ej , either they are disjoint or one is contained in the other.

Theorem 3.2  [9, Theorem 4.4] Assume G is bipartite and that E1,… ,Er is a nested 
ear decomposition of G with � ears of even length. Then

Note that, in particular, it follows that the number of even length ears in any 
nested ear decomposition of a graph is constant. In the proof of Theorem 3.2, it is 
necessary to relax the definition of nested ear decomposition and, as a result, this 
theorem holds for a more general notion of ear decomposition called weak nested 
ear decomposition.

Any parallel composition of paths P1,… ,Pr is endowed with a nested ear 
decomposition, simply by setting E1 equal to P1 ∪ P2 and, if r > 2 , by setting 
Ei = Pi+1 , for all i = 2,… , r − 1 . If the lengths of Pi are all even, then � , with 
respect to the ear decomposition we have defined, is equal to r − 1 . As

we get:

which agrees with Theorem 3.1. If the lengths of the paths are all odd, the same can 
be verified.

3.3 � Regularity in the case of ternary codes

If K = ℤ∕3 then, as
mentioned above, the vanishing ideal I(X) coincides with the Eulerian ideal 

defined over ℤ∕3.

regS∕I(X) =
|VG|+�−3

2
(q − 2).

�VG� = (
∑r

i=1
ki) − r + 2

regS∕I(X) =
|VG|+�−3

2
(q − 2) = (

k1

2
+⋯ +

kr

2
− 1)(q − 2),
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Theorem 3.3  [8, Theorem 4.13] Let K = ℤ∕3 and G be any graph. Then regS∕I(X) 
is equal to the maximum cardinality of a parity join minus 1.

We end this section with a purely combinatorial result on the maximal cardinality 
of a parity join, which is straightforward by combining the previous theorem with 
the formulas for the regularity given before, with q = 3.

Proposition 3.4  Denote by Kn a complete graph on n vertices, Ka,b a complete 
bipartite graph on n = a + b vertices, Ka1,…,ar

 a complete multipartite graph on 
n = a1 +⋯ + ar vertices, where r > 2 , Pc(k1,… , kr) the parallel composition of r 
paths of lengths k1,… , kr , and denote by �(G) the maximal cardinality of a parity 
join. Let H be any bipartite graph with a nested ear decomposition having � even 
length ears. The following holds: 

�(G)

G = Ka,b max{a, b};
G = Kn, n>3 ⌈ n−1

2
⌉ + 1;

G = K�1,…,�r max{�1,… , �r , ⌈ n−1

2
⌉} + 1;

G = Pc(k1,… , kr) and ki even k1

2
+⋯ +

kr

2
;

G = Pc(k1,… , kr) and ki odd ⌊ k1

2
⌋ +⋯ + ⌊ kr

2
⌋ + 1;

G = H |VG|+�−1
2

.

4 � Minimum distance

We recall that the minimum distance �X(d) of the code CX(d) ⊆ Km is defined as 
follows

where ‖a‖ = �{i ∶ ai ≠ 0}� . Clearly 1 ≤ �d ≤ m . The Singleton Bound (see 
[15], p.41) tells us that

Since for d ≥ reg S/I(X), dim CX(d) = |X| , we have �X(d) = 1 , for d ≥ reg S/I(X). 
Moreover, the minimum distance is strictly decreasing until it reaches 1 ([13, 16]):

The minimum distance is a very difficult parameter to calculate. In the case of 
evaluation codes, this calculation corresponds to counting zeros of homogeneous 

�X(d) = min { ‖a‖, a = (a1,… , am) ∈ CX(d), a ≠ 0 },

�X(d) ≤ |X| − dim CX(d) + 1.

{
𝛿X(d) > 1 ⇒ 𝛿X(d) > 𝛿X(d + 1)

𝛿X(d) = 1 ⇒ 𝛿X(d + 1) = 1
.



317

1 3

São Paulo Journal of Mathematical Sciences (2023) 17:306–319	

polynomials. The next theorem is one of the few cases where we have an explicit 
formula for the minimum distance.

Theorem  4.1  [14, Theorem  3.4] When X = �  , the projective torus in ℙs−1 , and 
d ≥ 1 , the minimum distance of CX(d) is given by

where k and � are the unique integers such that k ≥ 0 , 1 ≤ � ≤ q − 2 and 
d = k(q − 2) + �.

Recall that we say that a linear code is maximum distance separable (MDS) 
if equality holds in the Singleton Bound. By the theorem above (see also [4]), if 
X = �  is the projective torus in ℙ1 and d ≥ 1 , then CX(d) is an MDS code and its 
minimum distance is given by

As we have seen in Sect. 2, if G is a connected graph and X is the projective alge‑
braic toric set parameterized by the edges of G, then X = �  if and only if G is a 
tree or G is a unicyclic graph with a unique odd cycle. If G is a forest, we also have 
X = �  . Hence, for these graphs, �X(d) is known.

In the case G is a complete bipartite graph, the minimum distance of CX(d) 
is also known; it can be obtained from Theorem 4.1 together with the following 
result:

Theorem 4.2  [3, Theorem 5.5] Let G = Ka,b be the complete bipartite graph with 
a + b vertices, let X be the projective algebraic toric set parameterized by the edges 
of G, and let X1 and X2 be the projective tori in ℙa−1 and  ℙb−1 respectively. Then

Example 4.3  Let G = K2,3 be the complete bipartite graph with 2+3 vertices, let X be 
the projective algebraic toric set parameterized by the edges of G, and let X1 and X2 
be the projective tori in ℙ1 and  ℙ2 respectively. For q = 5 and d = 3,

and therefore, by Theorem  4.2, �X(3) = 4 . This shows that CX(3) is not an MDS 
code, since the Singleton bound in this case is

For the general case of a connected bipartite graph, the following bounds hold:

�X(d) =

{
(q − 1)s−(k+2)(q − 1 − �) if d ≤ (q − 2)(s − 1) − 1

1 if d ≥ (q − 2)(s − 1)

�X(d) =

{
q − 1 − d if d ≤ q − 3

1 if d ≥ q − 2
.

�X(d) = �X1
(d)�X2

(d) .

�X1
(3) = 1 �X2

(3) = 4 ,

�X(3) ≤ 64 − 40 + 1 = 25 .
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Theorem 4.4  Let G = Ka,b be a connected bipartite graph with a + b vertices, and 
let X be the projective algebraic toric set parameterized by the edges of G. If X1 , X2 
and X3 are the projective tori in ℙa−1 ,  ℙb−1 and  ℙa+b−2 respectively, then

These bounds can be explained using Lemma  4.5 below, knowing that a con‑
nected bipartite graph, G, contains a spanning tree and is contained in a complete 
bipartite graph with the same partition as G.

Lemma 4.5  [17, Lemma 3.5] Suppose G is a subgraph of G′ , and X and X′ are the 
projective algebraic toric sets parameterized by the respective edges. If |X| = |X�| , 
then

Example 4.6  If G is an hexagon (n = s = 6) and X is the projective algebraic toric set 
parameterized by the edges of G, the bounds of Theorem 4.4 for q = 5 and d = 1 are

This is a better result than the Singleton bound, which in this case is

We end by stating a result for a connected non-bipartite graph (see [5, 6]).

Theorem 4.7  [5, Corollary 3.12] Let G be a connected non-bipartite graph and let 
X be the projective algebraic toric set parameterized by the edges of G. If X′ is the 
projective torus in ℙ|VG|−1 , then
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