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Abstract: The influence of oligosaccharides (α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin), and
a polysaccharide, sodium hyaluronate (NaHy), on the diffusion of aqueous solutions of cobalt and
chromium chlorides has been investigated. Cobalt and chromium are constituents of metal alloys
for biomedical use, including dental prostheses. Thus, the release of these ions in the human body
can lead to harmful biological effects. The interaction of metal ions with saccharides might have
information on the role of mouthwashes in preventing these effects. This interaction has been assessed
by measuring multicomponent intermolecular diffusion coefficients at 298.15 K. It has been found
that β-cyclodextrin has the highest interaction towards cobalt and chromium ions. This work will
contribute to unveiling the mechanisms responsible for transport by diffusion in aqueous solutions,
and, therefore, mitigating the potential toxicity inherent to those metal ions.

Keywords: cobalt; chromium; Co-Cr alloys; cyclodextrins; hyaluronic acid; diffusion coefficient;
Taylor dispersion; transport properties

1. Introduction

The toxicity of heavy metals is an issue of growing concern in the scientific community.
Although some of these metals such as cobalt (Co) and chromium (Cr) are essential nutri-
ents, used in various biochemical and physiological functions [1] at high doses, regardless
of their different oxidation states, they exhibit high toxicity [2].

Heavy metal-induced toxicity and carcinogenicity involve many mechanistic aspects,
some of which are not clearly elucidated [1,3]. Human exposure to cobalt and chromium
can occur for a short time or by prolonged exposure through inhalation, ingestion, or skin
contact [4,5]. In human primary cells and experimental systems, cobalt metal seems to
induce oxidative stress, chronic inflammation, changes in cell proliferation and death [6];
cobalt metal has also recently been classified as a C1B, M2, and R1B substance by the
EU REACH Regulation, which has a significant and a direct impact on the application of
Co-Cr biomedical alloys [7,8], despite the fact that metal cobalt presents physicochemical
properties different from Co- based biomedical alloys [9].

It also should be stressed that chromium in its +6 oxidation state is also classified as
human carcinogenic by the International Agency for Research on Cancer (IARC) [10]. It
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should be stressed that this oxidation state is in equilibrium with chromium in the trivalent
state, coexisting both in vivo [8,11]. Nevertheless, a recent in vitro study by Bellouard et al.
showed that Cr3+ has cytotoxic effects on human HepaRG hepatocyte cells, even in low
concentrations, similar to the concentrations found in prosthesis-wearing patients [3].

Co-Cr biomedical alloys are composed of approximately 60% and 30% of cobalt
and chromium, respectively. These alloys have been the material of choice for fixed and
removable dental prostheses, and are also used in orthodontic components [7,8]; although
these oral devices are not implanted in the body, when located in the oral cavity, they are
subject to corrosion phenomena and mechanical wear, with the release of the corresponding
metallic ions in the oral environment [12–15].

With the high concern about chromium and cobalt [7,8,13,16], in this study, we intend
to investigate the interaction between the following metal ions and saccharides frequently
used in the pharmaceutical industry: cyclodextrins and hyaluronic acid. It should be
stressed that metal salt solutions were used in previous studies of cytotoxicity of dental
alloys, as reported elsewhere [17,18].

Cyclodextrins (CDs) are defined as cyclic oligomers, composed of glucopyranose
units linked to each other, giving the molecule a truncated cone conformation with a hy-
drophilic outer surface and a hydrophobic inner cavity [19,20]. The most common CDs
are α, β, and γ cyclodextrins with 6, 7 and 8 units, respectively [19]. The hydrophobic
cavity allows CDs to form inclusion complexes [21] with hydrophobic molecules by the
process of molecular complexation [19,22], and act as a molecular carrier [20]. Addition-
ally, it is known that cyclodextrins can also form adducts with inorganic salts and are
able to complex with cations, in particular, metal ions with high stability constants (i.e.,
10 mol−1 dm3 < K < 1000 mol−1 dm3) [23–27]. Due to this property, CDs offer a wide range
of benefits in many industries (pharmaceutical, cosmetics, textile, food industry, etc.) [28].

Hyaluronic acid (HA) is a macromolecular mucopolysaccharide, composed of molecules
of D-glucuronic acid and N-acetylglucosamine united by glycosides links [29]. HA has
diagnostic and therapeutic potential, acting as a combinative agent with the encapsulation
of different drugs and biomolecules or in the form of a nanocarrier [30].

Either cyclodextrins or hyaluronic acid are also present in some mouthwash formula-
tions; CDs have solubilizing and anti-odor properties [31], while HA has anti-inflammatory
and antioxidant properties [20,32,33], and act to prevent dental plaque and demineraliza-
tion [31]. Additionally, cyclodextrins (in particular, β-cyclodextrin) are part of mouthwash
formulations due to their recognized anti-viral properties [34,35].

By using a simple and reliable method, based on the evaluation of ternary interdiffu-
sion diffusion coefficients obtained by using a Taylor dispersion technique, the interaction
between cobalt and chromium salts and α-, β-, γ-cyclodextrins and sodium hyaluronate
was evaluated. This represents the first step in understanding how the carrier carbohy-
drate molecules can most efficiently be used, e.g., in the formulations of mouthwashes, for
reducing toxicological effects in organisms.

2. Materials and Methods
2.1. Materials

Table 1 describes all the reagents used as received in the present work, including
cobalt chloride, chromium chloride, α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin, and
sodium hyaluronate. All chemicals were used without further purification.

All solutions were prepared using ultrapure water (Millipore, Germany, Milli-Q
Advantage A10, specific resistance = 1.82 × 105 Ω m, at 298.15 K). The weighing was
performed using a Radwag AS 220C2 balance (Radwag, Radom, Poland), with an accuracy
of ±0.0001 g. The concentrations of cyclodextrins were computed by correcting their
water content.
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Table 1. Description of materials.

Chemical Name Source CAS Number Mass Fraction Purity 1

Cobalt(II) chloride
hexahydrate Panreac 7791-13-1 >0.98

Chromium (III)
chloride hexahydrate Sigma-Aldrich 10060-12-5 >0.98

Sodium hyaluronate 2
Contipro Ltd. (Dolní

Dobrouč, Czech
Republic)

9067-32-7

α-Cyclodextrin Sigma-Aldrich 10016-20-3
β-Cyclodextrin 3 Sigma-Aldrich 7585-39-9 >0.97
γ-Cyclodextrin Sigma-Aldrich 17465-86-0

H2O
Millipore-Q water

(ρ = 1.82 × 105 Ω m at
298.15 K)

7732-18-5

1 Values provided by the suppliers. 2 In this work, we used two samples of NaHy with different molecular weights
(i.e., Mw = 124 kDa and 243 kDa). 3 β-Cyclodextrin with water mass fraction 0.131.

2.2. Experimental Techniques
2.2.1. pH Measurements

The pH values were obtained using a Radiometer PHM 240 pH meter (Radiometer,
Copenhagen, Denmark) coupled to a pH conjugate electrode (Ingold U457-K7). The pH
measurements were obtained in recently prepared solutions, at 298.15 K, and after previous
calibration of the electrode using, for this purpose, pH 4, 7 and 10 buffer solutions. The
measurement sensitivity was greater than 98.7% and zero pH was equal to 6.11 ± 0.03.

2.2.2. Taylor Dispersion Technique

The Taylor diffusion technique allows the measurement of diffusion coefficients in
multicomponent systems and, as the name implies, is based on the work carried out by G.I.
Taylor in the 1950s of the last century, being profusely described in the literature [36–39].
A summary of the most relevant issues related to the technique will be described in the
following section. As a common feature of all chromatographic-based techniques, a disperse
profile is obtained by injecting a volume equal to 0.063 mL of solution, at the beginning
of the experiment, into a Teflon tube with a length and internal diameter of 3048.0 (±0.1)
cm and 0.06440 ± (0.00006) cm, respectively, where a solution of defined concentration
and composition flows in laminar flow. All equipment is thermostated at a temperature
of 298.15 (±0.01) K. The dispersion obtained in the sequence of different flows, of the
different species, is registered using a differential refractometer (Waters model 2410). This
equipment measures the electric potential as a function of time, V(t), by coupling a digital
voltmeter (Agilent 34401 A).

The dispersion profiles for these ternary solutions {CoCl2 (or CrCl3) + cyclodextrins (or
sodium hyaluronate)} were analyzed by fitting the Equation (1) to the obtained dispersion
profile [40–42].

V(t) = V0 + V1 + Vmax(tR/t)1/2

[
W1exp

(
−12D1(t − tR)

2

r2t

)
+ (1 − W1)exp

(
−12D2(t − tR)

2

r2

)]
(1)

In Equation (1), Vmax is the dispersion peak height, V0 and V1 are the baseline voltage
and baseline slope, respectively, W1 is the normalized pre-exponential factor, D1 and D2
are the eigenvalues of the ternary diffusion coefficient matrix, r is the internal radius of the
dispersion tube and tR is the mean sample retention time.

The values of the tracer diffusion coefficients, DT, for NaHy in aqueous solutions
of cobalt chloride and chromium chloride were also measured. For these pseudo-binary
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systems, CoCl2(1)/NaHy(2) and CrCl3(1)/NaHy(2), the previous dispersion equation
(Equation (1)) can be simplified, and can be described as

V(t) = V0 + V1t + Vmax(tR/t)1/2exp

(
−12DT(t − tR)

2

r2t

)
(2)

In fact, these systems can be considered as pseudo-binary, considering that the concen-
tration of the salt under study (component 1) is significantly higher than the concentration
of NaHy (component 2), ensuring the occurrence of tracer diffusion of the latter and the
concentrations of CoCl2 (or CrCl3) in the injection and carrier solutions can be assumed
as equal.

More details on how the binary and ternary diffusion coefficients can be calculated
can be found in the following references [43–45].

3. Results

pH measurements were taken for the solutions containing cobalt chloride and chromium
chloride, at 0.010 M, without and with cyclodextrins (α-CD, β-CD or γ-CD) or NaHy, to
assess the state of metal ion species (Table 2). It can be observed that for the Co(II)-
containing solutions, the pH is lower than ca. 6 and for Cr(III), the solutions have a pH
lower than 4. At these pH values, we can say that the cobalt ion species are essentially in a
non-hydrolyzed form [46]. Concerning the Cr3+ ions, the presence of hydrolyzed species
cannot be ruled out.

Table 2. pH measurements for 0.010 M CoCl2 or CrCl3 solutions without and with cyclodextrins
(CDs) 0.005 M or sodium hyaluronate, NaHy 0.1% (w/v).

Aqueous System pH Aqueous System pH

CoCl2 5.59 CrCl3 3.45
CoCl2/α-CD 5.67 CrCl3/α-CD 3.25
CoCl2/β-CD 5.92 CrCl3/β-CD 3.20
CoCl2/γ-CD 5.75 CrCl3/γ-CD 3.15
NaHy 1 6.09 CrCl3/NaHy 1 3.90
NaHy 2 6.45 CrCl3/NaHy 2 3.80
CoCl2/NaHy 1 5.46
CoCl2/NaHy 2 5.30

1 Mw(NaHy) =124 kDa. 2 Mw(NaHy) =234 kDa.

Tables 3 and 4 summarize the mean values of the Dik diffusion coefficients for the
solutions of different compositions and concentrations for six aqueous systems, involving
two salts (CoCl2 and CrCl3) and three cyclodextrins (α-CD, β-CD and γ-CD). The values
were calculated by fitting Equation (1) to dispersion curves; the number of replicas is
always greater than four. The main diffusion coefficients (D11 and D22) have an uncertainty
value smaller than (±0.015 × 10−9 m2 s−1), whilst the cross-diffusion coefficients (D12 and
D21) have an uncertainty value smaller than (±0.030 × 10−9 m2 s−1).

At the limiting situations of X1 = 0 and X1 = 1, the values of D11 correspond to
the tracer diffusion coefficient of CoCl2 (or CrCl3) in CDs and the binary mutual dif-
fusion coefficient of aqueous CoCl2 (or CrCl3) at 0.001 and 0.01 M, respectively. Re-
garding these latter values for D11, a good agreement is observed between them and
the binary diffusion coefficient values reported in previous works [47,48]. For example,
for aqueous CrCl3 solutions at 0.01 M, the deviations are equal to or less than 0.8% be-
tween the binary value D = 1.170 × 10−9 m2 s−1 [47] and the D11 values shown in Table 3
(D11 = 1.172 × 10−9 m2 s−1, D11 = 1.180 × 10−9 m2 s−1 and D11 = 1.160 × 10−9 m2 s−1).
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Table 3. Ternary diffusion coefficients (D11, D12, D21, D22
1 of aqueous CrCl3(C1) + CDs (C2) solutions.

C1
2 C2

2 X1 D11 ± SD
3 D12 ± SD

3 D21 ± SD
3 D22 ± SD

3

CrCl3 (C1) + α-CD (C2) solutions

0.001 0.000 1.000 1.267 ± 0.010 −0.013 ± 0.004 −0.019 ± 0.015 0.467 ± 0.020
0.000 0.010 0.000 1.285 ± 0.010 −0.007 ± 0.004 −0.030 ± 0.015 0.470 ± 0.015
0.010 0.000 1.000 1.172 ± 0.019 −0.016 ± 0.009 0.014 ± 0.004 0.499 ± 0.021

CrCl3 (C1) + β-CD (C2) solutions

0.001 0.000 1.000 1.210 ± 0.020 −0.183 ± 0.020 −0.020 ± 0.010 0.408 ± 0.007
0.000 0.007 0.000 1.270 ± 0.020 −0.023 ± 0.014 −0.070 ± 0.010 0.401 ± 0.010
0.007 0.000 1.000 1.180 ± 0.020 −0.092 ± 0.020 −0.025 ± 0.010 0.418 ± 0.005

CrCl3 (C1) + γ-CD (C2) solutions

0.001 0.000 1.000 1.232 ± 0.014 −0.019 ± 0.012 0.019 ± 0.010 0.458 ± 0.001
0.000 0.010 0.000 1.242 ± 0.011 −0.007 ± 0.010 0.019 ± 0.010 0.450 ± 0.001
0.010 0.000 1.000 1.160 ± 0.017 −0.020 ± 0.008 0.009 ± 0.003 0.460 ± 0.002

1 Averaged result for n = 8 experiments. 2 C1 and C2 in mol dm−3. 3 Dij ± SD in 10−9 m2 s−1, and at T = 298.15 K.

Table 4. Ternary diffusion coefficients (D11, D12, D21, D22) 1 of aqueous CoCl2(C1) + CDs (C2) solutions.

C1
2 C2

2 X1 D11 ± SD
3 D12 ± SD

3 D21 ± SD
3 D22 ± SD

3

CoCl2 (C1) + α-CD (C2) solutions

0.001 0.000 1.000 1.201 ± 0.010 −0.070 ± 0.024 −0.010 ± 0.020 0.471 ± 0.026
0.000 0.010 0.000 1.300 ± 0.007 −0.010 ± 0.018 0.008 ± 0.0001 0.469 ± 0.014
0.010 0.000 1.000 1.258 ± 0.007 −0.030 ± 0.018 0.0001 ± 0.0001 0.479 ± 0.034

CoCl2 (C1) + β-CD (C2) solutions

0.001 0.000 1.000 1.219 ± 0.021 −0.268 ± 0.024 0.010 ± 0.010 0.435 ± 0.010
0.000 0.007 0.000 1.268 ± 0.020 −0.015 ± 0.013 −0.040 ± 0.010 0.438 ± 0.016
0.007 0.000 1.000 1.235 ± 0.021 −0.190 ± 0.014 +0.002 ± 0.010 0.435 ± 0.029

CoCl2 (C1) + γ-CD (C2) solutions

0.001 0.000 1.000 1.260 ± 0.010 −0.030 ± 0.043 −0.010 ± 0.010 0.479 ± 0.019
0.000 0.010 0.000 1.289 ± 0.015 −0.011 ± 0.013 −0.010 ± 0.010 0.440 ± 0.020
0.010 0.000 1.000 1.256 ± 0.004 −0.040 ± 0.016 +0.003 ± 0.002 0.480 ± 0.023

1 Averaged result for n = 8 experiments. 2 C1 and C2 in mol dm−3. 3 Dij ± SD in 10−9 m2 s−1, and at T = 298.15 K.

Tables 5 and 6 show the average values of the binary and ternary diffusion coefficients
of NaHy in different aqueous solutions containing CoCl2 (or CrCl3) at the following two
different concentrations: 0.001 and 0.010 M. These values were calculated from, at least,
six independent measurements. Once the high viscosity of sodium hyaluronate strongly
affects the measurement of the diffusion coefficients, these measurements were only carried
out at tracer concentrations (Section 2.2.2). While the main diffusion coefficients D11 and
D22 were generally reproducible within ± (0.020 × 10−9 m2 s−1), the cross-coefficients were
in general reproducible within about ± (0.040 × 10−9 m2 s−1).

From Table 6, we can observe that whereas the limiting values for cross-coefficients
D21 at the infinitesimal concentration are practically zero, within the experimental error,
the cross-coefficients D12 differ from zero. In the other words, D12 < 0 indicates that the
gradient in the concentration of NaHy produces counter-current coupled flows of CoCl2
and CrCl3.
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Table 5. Tracer diffusion coefficients, appD0
T, for NaHy 1 in aqueous solutions of CoCl2 and CrCl3 at

0.001 and 0.010 M, and T = 298.15 K.

Aqueous System appD0
T ± SD/(10−9 m2 s−1) 1 (∆appD0

T/D0)% 4

CoCl2 (0.001 M) 0.081 ± 0.008 2 −86
CoCl2 (0.001 M) 0.082 ± 0.006 3 −85
CoCl2 (0.010 M) 0.296 ± 0.030 2 −49
CoCl2 (0.010 M) 0.312 ± 0.020 3 −44
CrCl3 (0.001 M) 0.092 ± 0.010 2 −84
CrCl3 (0.001 M) 0.099 ± 0.025 3 −82
CrCl3 (0.010 M) 0.192 ± 0.009 2 −67
CrCl3 (0.010 M) 0.125 ± 0.010 3 −78

1 Averaged result for n = 8 experiments. 2 M(NaHy) = 124 kDa. 3 M(NaHy) = 234 kDa. 4 DL = 0.583 × 10−9 m2 s−1

and DL = 0.562 ×10−9 m2 s−1 for Mw(NaHy) =124 kDa and Mw(NaHy) = 234 kDa, respectively [47].

Table 6. Tracer ternary diffusion coefficients 1, D11, D12, D21 and D22, for NaHy (component 2) in salt
(component 1) solution, at C2 = 0.001 and 0.010 mol dm−3 and T = 298.15 K.

Salt C1
/(mol dm−3)

D11 ± SD
/(10−9 m2 s−1)

D12 ± SD
/(10−9 m2 s−1)

D21 ± SD
/(10−9 m2 s−1)

D22 ± SD
/(10−9 m2 s−1)

COCl2 0.001 2 1.281 ± 0.025 –0.318 ± 0.030 0.058 ± 0.039 0.162 ± 0.019
0.001 3 1.255 ± 0.010 –0.124 ± 0.030 0.040 ± 0.019 0.065 ± 0.013

COCl2 0.010 2 1.276 ± 0.020 –0.265 ± 0.035 0.008 ± 0.011 0.172 ± 0.013
0.010 3 1.215 ± 0.010 –0.205 ± 0.060 0.010 ± 0.019 0.192 ± 0.013

CrCl3 0.010 2 1.136 ± 0.008 –0.195 ± 0.038 0.012 ± 0.015 0.157 ± 0.010
0.010 3 1.137 ± 0.012 –0.182 ± 0.040 –0.050 ± 0.029 0.302 ± 0.017

1 Averaged result for n = 8 experiments. 2 NaHy 124 kDa. 3 NaHy 234 kDa. ur(c) = 0.02; u(T) = 0.01 K and
u(p) = 2.03 kPa; u and ur represent the standard uncertainty and the relative standard uncertainty, respectively.

4. Discussion

From Tables 2 and 3, it can be observed that the limiting values for the infinitesimal
concentration of cross-coefficients D21 can be considered null, taking into account the
experimental error. This arises, most probably, due to the similarity of the mobilities of CD
free species and eventual aggregates of CoCl2 (or CrCl3) and CDs. However, D12 < 0; that is,
the gradient in the concentration of CD (α-CD, β-CD and γ-CD) produces counter-current
coupled flows of these salts, which are the most significant in highly concentrated solutions
of β-CD. These observations can readily be explained by the following two phenomena:
the hydrolysis of cobalt and chromium ions and association between CoCl2 (or CrCl3)
and these cyclodextrin molecules, leading to the formation of complexes in solution. This
phenomenon will lead to a decrease in free cobalt (or chromium ions), and, consequently,
to compensate for that loss, a counterflow of these salts will occur.

In fact, the diffusion of these salts can be affected by Co(II) and Cr(III) hydrolysis. As
cobalt chloride and chromium chloride aqueous solutions are acidic if unbuffered (Table 2),
when these salts diffuse in water, the hydronium ions produced by hydrolysis of the cobalt
and chromium ions (as shown in Equations (3) and (4)) should diffuse ahead of the less-
mobile cobalt (or chromium ions), producing a counter flow of chloride acid in addition to
the main flow of partially hydrolyzed cobalt chloride (or chromium chloride) [47–49].

Co(H2O)x
n+

(aq) + H2O
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Cr(H2O)x−1(OH)(n−1)+ (aq) + H3O +(aq) (4)

In other words, once the H3O + ion has much higher mobility than Cl− from the
anomalous mechanism for H+ proton transport in water, a strong electric field is generated,
slowing down the H3O + ions driving the large counter-current fluxes of Cr(III) (or Co(II))
species, free or associated with CD molecules and, thus, D12 < 0. Despite the diffusion of
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aqueous cobalt chloride (or chromium chloride) being a ternary process because there is a
small but additional flow of chloride acid, we can consider that if corrections for chloride
acid diffusion are not made, the apparent binary diffusion coefficients of CoCl2 (or CrCl3)
can only be 1–3%, which is too large. Support for this observation is given in the literature
where the negligible effect of the hydrolysis of the beryllium ion on the diffusion of BeSO4
is analyzed [50].

However, for aqueous systems containing CoCl2 (or CrCl3) plus β-CD, the D12 val-
ues are significantly more negative when compared with those obtained for the systems
containing α-CD and γ-CD. The formation of aggregates between Co2+ and Cr3+ ions,
and β-CD molecules can be other phenomenon that also occur, therefore justifying this
difference in thermodynamic behavior between them.

Assuming the formation of a 1:1 supramolecular complex between these cations
(Co2+ and Cr3+) and β-CD (Equations (5) and (6)), and considering the values indicated in
Table 7 for the limiting diffusion coefficients of the free and complexed species, the values
for these binding constants K (Equations (7) and (8)) can be computed [45] and are equal to
40 (±0.9) M−1 and 30 (±0.6) M−1.

Co2+
(aq) + β-CD(aq)
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Table 7. Limiting diffusion coefficients, Ds, of species at T = 298.15 K.

Species Ds/(10−9 m2 s−1)

CrCl3 1.266 1

CoCl2 1.272 2

β-CD 0.400 3

CoCl2-β-CD 0.396 3

CoCl3-β-CD 0.395 3

1 [47]. 2 [48]. 3 D = (D(CoCl2 or CrCl3)
−3 + Dβ-CD

−3) −1/3 [51].

From the values of these constants, we can consider that this interaction between these
species is not negligible, and thus, some amounts of Co(II) (or Cr(III)) and β-CD molecules
can be transported as Co2+-β-CD (or Cr3+-β-CD) complexes. In the range of higher β-CD
concentrations, a high percentage of chromium chloride (or cobalt chloride) is in complexed
form (i.e., associated with cyclodextrin). Consequently, the β-CD concentration gradient
is responsible for a gradient in the opposite direction for the concentration of chromium
(or cobalt) cations. This justifies the occurrence of a countercurrent to the main flow of
chromium chloride and, consequently, the D12 values are negative for these solutions at the
molar faction of salt X1 = 1 (Tables 2 and 3).

In relation to other CDs, at which D12 ≈ 0, the interaction with these metal ions might
be considered negligible. One possible explanation for the anomalous and unexpected
diffusion behavior of β-CD in the presence of these salts may be attributed to its peculiar,
less flexible molecular structure [52] and to the reduced number of hydroxyl groups capable
of establishing hydrogen bonds with surrounding water molecules, as a consequence of
the intramolecular hydrogen bonds between their secondary hydroxyl groups (that is,
between a hydroxyl group at C-2 and a glucose unit and a hydroxyl group at C-2 of another
adjacent glucose unit [53]). The presence of ions Co2+ and Cr3+ in these solutions will
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perturb the dynamic structure of the water molecules surrounding β-CD and the intra
cavity water molecules, as a consequence of the strong electrostatic interactions between
their available hydroxyl groups and these ions, leading to the formation of complexes in
solution, which are expected to demonstrate lower mobility than free species. Support for
this observation is pointed out by Coleman et al. [54], and Poulson et al. [55] when they
verified that multivalent cations lead to a significant alteration in β-cyclodextrin solubility,
in aqueous solutions. This evidence demonstrates that this phenomenon is a result of the
modification of the structure of water and leads to more favorable interactions with the
β-CD supramolecular complexes.

Relative to the effect of the presence of NaHy on the diffusion behavior of CoCl2
(or CrCl3), we can say that this carbohydrate also significantly affects this parameter,
as shown by the D12 < 0 values. (Table 6). This fact is not unexpected, bearing in
mind the different mobilities of the sodium cation and the hyaluronate anions; that is,
λ0 (Na+) = 50.10 × 10−4 Ω−1 m2 mol−1 and λ0 (Hy− monomer) = 40.05 × 10−4 Ω−1 m2

mol−1) [56]. Once the Na+ ion has much higher mobility than Hy−, when there is a gradient
of NaHy in solution, a strong electric field is generated, slowing down the Na+ ions and
driving large counter-current fluxes of Cr3+ (or Co2+) species, free or associated and D12 < 0.

Information about coupled diffusion can be also inferred by the calculated values
of the ratio D12/D22 (Table 8). The higher negative ratio values for CoCl2/NaHy and
CrCl3/NaHy systems, when compared with others, permits us to conclude that one mole
of diffusing NaHy counter-transports up to 2 mol of CoCl2 (or up to 1.2 mol of CrCl3).

Table 8. Estimation of the moles of CoCl2 and CrCl3 transported for each mol of α-CD, β-CD, γ-CD,
and NaHy 0.1%, obtained from Dij data shown in Tables 2 and 3.

[CoCl2]/(M) Aqueous System D12/D22 [CrCl3]/(M) D12/D22

0.001 CoCl2/(α-CD) −0.15 0.001 CrCl3/(α-CD) −0.08
CoCl2/(β-CD) −0.62 CrCl3/(β-CD) −0.45
CoCl2/γ-CD −0.06 CrCl3(γ-CD) −0.02

CoCl2/NaHy 1 −1.96
CoCl2/NaHy 2 −1.91

0.010 CoCl2/(α-CD) −0.12 0.010 CrCl3/(α-CD) −0.03
CoCl2/(β-CD) −0.44 CrCl3/(β-CD) −0.22
CoCl2/γ-CD −0.08 CrCl3/γ-CD −0.04

CoCl2/NaHy 1 −1.54 CrCl3/NaHy 1 −1.24
CoCl2/NaHy 2 −1.07 CrCl3/NaHy 2 −0.60

1 NaHy 124 kDa. 2 NaHy 234 kDa.

5. Conclusions

Sodium hyaluronate and one of the studied cyclodextrins, β-cyclodextrins, present a
greater interaction with cobalt and chromium ions, which is why we consider them to be
the best carrier agents for these metal ions.

D12 negative and K (40 (±0.9) M−1 and 30 (±0.6) M−1) values show that β-CD interacts
with both cobalt and chromium ions. This complexation prevents the occurrence of the
hydrolysis of metal ions. It can be concluded that the interaction of ions with only β-CD
probably arises from the perturbation of the structure of water and leads to less unfavorable
interactions with the β-CD aggregates.

The present work shows that cyclodextrins and hyaluronic acid interact with cobalt
and chromium ions once a significant amount of these salts per each mol of these carbohy-
drates (at most 2 mol of CoCl2 per mol of NaHy) is transported. It can be hypothesized
that the presence of these carbohydrates into mouthwash formulation might mitigate the
toxicity inherent to the presence of metal ions.

We believe that the data obtained can be of great value to the entire scientific and
technological community that works with these metals.
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