*-LIE-TYPE MAPS ON ALTERNATIVE *-ALGEBRAS

ALINE JAQUELINE DE OLIVEIRA ANDRADE, ELISABETE BARREIRO, AND BRUNO LEONARDO MACEDO FERREIRA

Abstract

Let \mathfrak{A} and \mathfrak{A}^{\prime} be two alternative $*$-algebras with identities $1_{\mathfrak{A}}$ and $1_{\mathfrak{A}^{\prime}}$, respectively, and e_{1} and $e_{2}=1_{\mathfrak{A}}-e_{1}$ nontrivial symmetric idempotents in \mathfrak{A}. In this paper we study the characterization of multiplicative $*$-Lie-type maps. As application, we get a result on alternative W^{*}-algebras. Keywords: alternative $*$-algebra, alternative W^{*}-algebras. 2020 MSC: 17D05; 16W20.

1. Introduction and Preliminaries

The study of additivity of maps have received a fair amount of attention of mathematicians. The first quite surprising result is due to Martindale who established a condition on a ring such that multiplicative bijective maps are all additive [17]. Besides, over the years several works have been published considering different types of associative and non-associative algebras among them we can mention [3, 8, ,9, 10, 11, 12, 13]. In order to add new ingredients to the study of additivity of maps, many researches have devoted themselves to the investigation of two new products, presented by Brešar and Fošner in [2, 14], where the definition is as follows: for $a, b \in R$, where R is a $*$-ring, we denote by $\{a, b\}_{*}=a b+b a^{*}$ and $[a, b]_{*}=a b-b a^{*}$ the $*$-Jordan product and the $*$-Lie product, respectively. In [5], the authors proved that a map φ between two factor von Newmann algebras is a $*$-ring isomorphism if and only if $\varphi\left(\{a, b\}_{*}\right)=\{\varphi(a), \varphi(b)\}_{*}$. In [7], Ferreira and Costa extended these new products and defined two other types of applications, named multiplicative $*$-Jordan n-map and multiplicative $*$-Lie n-map and used it to impose condition such that a map between C^{*}-algebras is a $*$-ring isomorphism.

With this picture in mind, in this article we will discuss when a multiplicative $*$-Lie n map is a $*$-isomorphism in the case of alternative $*$-algebras and, just as it was done in [6], we provide an application on alternative W^{*}-algebras. Throughout the paper, the ground field is assumed to be the field of complex numbers.

Let \mathfrak{A} and \mathfrak{A}^{\prime} be two algebras with identities $1_{\mathfrak{A}}$ and $1_{\mathfrak{A}^{\prime}}$, respectively, and $\varphi: \mathfrak{A} \rightarrow \mathfrak{A}^{\prime}$ a map. We have the following concepts:
i. φ preserves product if $\varphi(a b)=\varphi(a) \varphi(b)$, for all elements $a, b \in \mathfrak{A}$;
ii. φ preserves Lie product if $\varphi(a b-b a)=\varphi(a) \varphi(b)-\varphi(b) \varphi(a)$, for any $a, b \in \mathfrak{A}$;
iii. φ is additive if $\varphi(a+b)=\varphi(a)+\varphi(b)$, for any $a, b \in \mathfrak{A}$;
iv. φ is isomorphism if φ is a bijection additive that preserves products and scalar multiplication;
v. φ is unital if $\varphi\left(1_{\mathfrak{A}}\right)=1_{\mathfrak{A}^{\prime}}$.

[^0]An algebra \mathfrak{A} is called $*$-algebra if \mathfrak{A} is endowed with a involution. By involution, we mean a mapping $*: \mathfrak{A} \rightarrow \mathfrak{A}$ such that $(x+y)^{*}=x^{*}+y^{*},\left(x^{*}\right)^{*}=x$ and $(x y)^{*}=y^{*} x^{*}$ for all $x, y \in \mathfrak{A}$. An element $s \in \mathfrak{A}$ satisfying $s^{*}=s$ is called symmetric element of \mathfrak{A}.

Let \mathfrak{A} and \mathfrak{A}^{\prime} be two $*$-algebras and $\varphi: \mathfrak{A} \rightarrow \mathfrak{A}^{\prime}$ a map. We have the following definitions:
i. φ preserves involution if $\varphi\left(a^{*}\right)=\varphi(a)^{*}$, for all elements $a \in \mathfrak{A}$;
ii. φ is $*$-isomorphism if φ is an isomorphism that preserves involution;
iii. φ is $*$-additive if it preserves involution and it is additive.

Definition 1.1 (To see [7]). Consider a $*$-algebra \mathfrak{A}, we denote $\left[x_{1}, x_{2}\right]_{*}=x_{1} x_{2}-x_{2} x_{1}^{*}$, for all $x_{1}, x_{2} \in \mathfrak{A}$ and the sequence of polynomials,

$$
p_{1_{*}}(x)=x \text { and } p_{n_{*}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left[p_{(n-1)_{*}}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right), x_{n}\right]_{*}
$$

for all integers $n \geq 2$ and $x_{1}, \ldots, x_{n} \in \mathfrak{A}$.
Thus, $p_{2_{*}}\left(x_{1}, x_{2}\right)=\left[x_{1}, x_{2}\right]_{*}=x_{1} x_{2}-x_{2} x_{1}^{*}$, for all $x_{1}, x_{2} \in \mathfrak{A}, p_{3_{*}}\left(x_{1}, x_{2}, x_{3}\right)=$ $\left[\left[x_{1}, x_{2}\right]_{*}, x_{3}\right]_{*}$, for all $x_{1}, x_{2}, x_{3} \in \mathfrak{A}$, etc. Note that $p_{2_{*}}$ is the product introduced by Brešar and Fošner [2, 14]. Then, using the nomenclature introduced in [7] we have a new class of maps (not necessarily additive).

Definition 1.2. Consider two $*$-algebras \mathfrak{A} and \mathfrak{A}^{\prime}. A map $\varphi: \mathfrak{A} \longrightarrow \mathfrak{A}^{\prime}$ is multiplicative *-Lie n-map if

$$
\varphi\left(p_{n_{*}}\left(x_{1}, x_{2}, \ldots, x_{j}, \ldots, x_{n}\right)\right)=p_{n_{*}}\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right), \ldots, \varphi\left(x_{j}\right), \ldots, \varphi\left(x_{n}\right)\right)
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in \mathfrak{A}$, where $n \geq 2$ is an integer. Multiplicative $*$-Lie 2 -map, $*$-Lie 3 -map and $*$-Lie n-map are collectively referred to as multiplicative $*$-Lie-type maps.

An algebra \mathfrak{A} (not necessarily associative or commutative) is called alternative algebra if it satisfies the identities $a^{2} b=a(a b)$ and $b a^{2}=(b a) a$, for all elements $a, b \in \mathfrak{A}$. One easily sees that any associative algebra is an alternative algebra. An alternative algebra \mathfrak{A} is called prime if for any elements $a, b \in \mathfrak{A}$ satisfying the condition $a \mathfrak{A} b=0$, then either $a=0$ or $b=0$.

We consider an alternative algebra \mathfrak{A} with identity $1_{\mathfrak{A}}$. Fix a nontrivial idempotent element $e_{1} \in \mathfrak{A}$ and denote $e_{2}=1_{\mathfrak{A}}-e_{1}$. It is easy to see that $\left(e_{k} a\right) e_{j}=e_{k}\left(a e_{j}\right)(k, j=$ $1,2)$ for all $a \in \mathfrak{A}$. Then \mathfrak{A} has a Peirce decomposition

$$
\mathfrak{A}=\mathfrak{A}_{11} \oplus \mathfrak{A}_{12} \oplus \mathfrak{A}_{21} \oplus \mathfrak{A}_{22},
$$

where $\mathfrak{A}_{k j}:=e_{k} \mathfrak{A} e_{j}(k, j=1,2)$ (see [15]), satisfying the following multiplicative relations:
(i) $\mathfrak{A}_{k j} \mathfrak{A}_{j l} \subseteq \mathfrak{A}_{k l}(k, j, l=1,2)$;
(ii) $\mathfrak{A}_{k j} \mathfrak{A}_{k j} \subseteq \mathfrak{A}_{j k}(k, j=1,2)$;
(iii) $\mathfrak{A}_{k j} \mathfrak{A}_{m l}=\{0\}$, if $j \neq m$ and $(k, j) \neq(m, l),(k, j, m, l=1,2)$;
(iv) $x_{k j}^{2}=0$, for all $x_{k j} \in \mathfrak{A}_{k j}(k, j=1,2 ; k \neq j)$.

2. MAIN THEOREM

In the following we shall prove a part of the main result of this paper.
Theorem 2.1. Let \mathfrak{A} and \mathfrak{A}^{\prime} be two alternative $*$-algebras with identities $1_{\mathfrak{A}}$ and $1_{\mathfrak{A} \prime}$, respectively, and e_{1} and $e_{2}=1_{\mathfrak{A}}-e_{1}$ nontrivial symmetric idempotents in \mathfrak{A}. Suppose that \mathfrak{A} satisfies

$$
\begin{equation*}
\left(e_{j} \mathfrak{A}\right) x=\{0\} \text { for any } j \in\{1,2\} \quad \text { implies } \quad x=0 \tag{1}
\end{equation*}
$$

Suppose also that $\varphi: \mathfrak{A} \rightarrow \mathfrak{A}^{\prime}$ is a multiplication bijective unital map which satisfies

$$
\begin{equation*}
\varphi\left(p_{n_{*}}(a, b, \xi, \ldots, \xi)\right)=p_{n_{*}}(\varphi(a), \varphi(b), \varphi(\xi), \ldots, \varphi(\xi)), \tag{2}
\end{equation*}
$$

for all $a, b \in \mathfrak{A}$ and $\xi \in\left\{e_{1}, e_{2}, 1_{\mathfrak{A}}\right\}$. Then φ is $*$-additive.
The following claims and lemmas have the same hypotheses as the Theorem 2.1 and we need them to prove the $*$-additivity of φ.
Claim 2.1. $*\left(\mathfrak{A}_{k j}\right) \subset \mathfrak{A}_{j k}$, for $j, k \in\{1,2\}$.
Proof. If $a_{k j} \in \mathfrak{A}_{k j}$ then

$$
a_{k j}^{*}=\left(e_{k} a_{k j} e_{j}\right)^{*}=\left(e_{j}\right)^{*}\left(a_{k j}\right)^{*}\left(e_{k}\right)^{*}=e_{j}\left(a_{k j}\right)^{*} e_{k} \in \mathfrak{A}_{j k}
$$

It is easy to check the following result (see [6]).
Claim 2.2. Let x, y, h in \mathfrak{A} such that $\varphi(h)=\varphi(x)+\varphi(y)$. Then, given $z \in \mathfrak{A}$,

$$
\varphi\left(p_{n_{*}}(h, z, \xi, \ldots, \xi)\right)=\varphi\left(p_{n_{*}}(x, z, \xi, \ldots, \xi)\right)+\varphi\left(p_{n_{*}}(y, z, \xi, \ldots, \xi)\right)
$$

and

$$
\varphi\left(p_{n_{*}}(z, h, \xi, \ldots, \xi)\right)=\varphi\left(p_{n_{*}}(z, x, \xi, \ldots, \xi)\right)+\varphi\left(p_{n_{*}}(z, y, \xi, \ldots \xi)\right)
$$

for $\xi \in\left\{e_{1}, e_{2}, 1_{\mathfrak{A}}\right\}$.
Claim 2.3. $\varphi(0)=0$.
Proof. Since φ is surjective, there exists $x \in \mathfrak{A}$ such that $\varphi(x)=0$. Then,

$$
\begin{aligned}
\varphi(0) & =\varphi\left(p_{n_{*}}\left(0, x, 1_{\mathfrak{A}}, \ldots, 1_{\mathfrak{A}}\right)\right)=p_{n_{*}}\left(\varphi(0), \varphi(x), \varphi\left(1_{\mathfrak{A}}\right), \ldots, \varphi\left(1_{\mathfrak{A}}\right)\right) \\
& =p_{n_{*}}\left(\varphi(0), 0, \varphi\left(1_{\mathfrak{A}}\right), \ldots, \varphi\left(1_{\mathfrak{A}}\right)\right)=0
\end{aligned}
$$

The next results aim to show the additivity of φ.
Lemma 2.1. For any $a_{11} \in \mathfrak{A}_{11}$ and $b_{22} \in \mathfrak{A}_{22}$, we have

$$
\varphi\left(a_{11}+b_{22}\right)=\varphi\left(a_{11}\right)+\varphi\left(b_{22}\right)
$$

Proof. Since φ is surjective, given $\varphi\left(a_{11}\right)+\varphi\left(b_{22}\right) \in \mathfrak{A}^{\prime}$ there exists $h \in \mathfrak{A}$ such that $\varphi(h)=\varphi\left(a_{11}\right)+\varphi\left(b_{22}\right)$. We may write $h=h_{11}+h_{12}+h_{21}+h_{22}$, with $h_{j k} \in \mathfrak{A}_{j k}(k, j=$ 1, 2). Besides, by Claims 2.2 and 2.3

$$
\varphi\left(p_{n_{*}}\left(e_{1}, h, e_{1}, \ldots, e_{1}\right)\right)=\varphi\left(p_{n_{*}}\left(e_{1}, a_{11}, e_{1}, \ldots, e_{1}\right)\right)+\varphi\left(p_{n_{*}}\left(e_{1}, b_{22}, e_{1}, \ldots, e_{1}\right)\right)
$$

that is,

$$
\varphi\left(-h_{21}+h_{21}^{*}\right)=\varphi(0)+\varphi(0)=0
$$

Then, by injectivity of $\varphi,-h_{21}+h_{21}^{*}=0$. Thus $h_{21}=0$. Moreover,

$$
\varphi\left(p_{n_{*}}\left(e_{2}, h, e_{2}, \ldots, e_{2}\right)\right)=\varphi\left(p_{n_{*}}\left(e_{2}, a_{11}, e_{2}, \ldots, e_{2}\right)\right)+\varphi\left(p_{n_{*}}\left(e_{2}, b_{22}, e_{2}, \ldots, e_{2}\right)\right)
$$

that is,

$$
\varphi\left(-h_{12}+h_{12}^{*}\right)=0
$$

Again, by injectivity of φ we conclude that $h_{12}=0$.
Furthermore, given $d_{21} \in \mathfrak{A}_{21}$,
$\varphi\left(p_{n_{*}}\left(d_{21}, h, e_{1}, \ldots, e_{1}\right)\right)=\varphi\left(p_{n_{*}}\left(d_{21}, a_{11}, e_{1}, \ldots, e_{1}\right)\right)+\varphi\left(p_{n_{*}}\left(d_{21}, b_{22}, e_{1}, \ldots, e_{1}\right)\right)$, that is,

$$
\varphi\left(d_{21} h_{11}-\left(d_{21} h_{11}\right)^{*}\right)=\varphi\left(d_{21} a_{11}-\left(d_{21} a_{11}\right)^{*}\right)
$$

Then we conclude, by injectivity of φ, that $d_{21} h_{11}-\left(d_{21} h_{11}\right)^{*}=d_{21} a_{11}-\left(d_{21} a_{11}\right)^{*}$, that is, $d_{21}\left(h_{11}-a_{11}\right)=0$. Even more, $\left(e_{2} \mathfrak{A}\right)\left(h_{11}-a_{11}\right)=0$, which implies that $h_{11}=a_{11}$ by Condition (1) of Theorem 2.1

Finally, given $d_{12} \in \mathfrak{A}_{12}$, a similar calculation gives us $h_{22}=b_{22}$. Therefore $h=$ $a_{11}+b_{22}$.

Lemma 2.2. For any $a_{12} \in \mathfrak{A}_{12}$ and $b_{21} \in \mathfrak{A}_{21}$, we have $\varphi\left(a_{12}+b_{21}\right)=\varphi\left(a_{12}\right)+\varphi\left(b_{21}\right)$.
Proof. Since φ is surjective, given $\varphi\left(a_{12}\right)+\varphi\left(b_{21}\right) \in \mathfrak{A}^{\prime}$ there exists $h \in \mathfrak{A}$ such that $\varphi(h)=\varphi\left(a_{12}\right)+\varphi\left(b_{21}\right)$. We may write $h=h_{11}+h_{12}+h_{21}+h_{22}$, with $h_{j k} \in \mathfrak{A}_{j k}(k, j=$ 1,2). Now, by Claims 2.2 and 2.3

$$
\varphi\left(p_{n_{*}}\left(e_{1}, h, e_{1}, \ldots, e_{1}\right)\right)=\varphi\left(p_{n_{*}}\left(e_{1}, a_{12}, e_{1}, \ldots, e_{1}\right)\right)+\varphi\left(p_{n_{*}}\left(e_{1}, b_{21}, e_{1}, \ldots, e_{1}\right)\right)
$$

that is,

$$
\varphi\left(-h_{21}+h_{21}^{*}\right)=\varphi\left(-b_{21}+b_{21}^{*}\right)
$$

Then, by injectivity of $\varphi,-h_{21}+h_{21}^{*}=-b_{21}+b_{21}^{*}$. Thus $h_{21}=b_{21}$. Moreover,

$$
\varphi\left(p_{n_{*}}\left(e_{2}, h, e_{2}, \ldots, e_{2}\right)\right)=\varphi\left(p_{n_{*}}\left(e_{2}, a_{12}, e_{2}, \ldots, e_{2}\right)\right)+\varphi\left(p_{n_{*}}\left(e_{2}, b_{21}, e_{2}, \ldots, e_{2}\right)\right),
$$

that is,

$$
\varphi\left(-h_{12}+h_{12}^{*}\right)=\varphi\left(-a_{12}+a_{12}^{*}\right) .
$$

Again, by injectivity of φ we conclude that $h_{12}=a_{12}$.
Furthermore, given $d_{21} \in \mathfrak{A}_{21}$,

$$
\begin{aligned}
\varphi\left(d_{21} h_{11}-\left(d_{21} h_{11}\right)^{*}\right) & =\varphi\left(p_{n_{*}}\left(d_{21}, h, e_{1}, \ldots, e_{1}\right)\right) \\
& =\varphi\left(p_{n_{*}}\left(d_{21}, a_{12}, e_{1}, \ldots, e_{1}\right)\right)+\varphi\left(p_{n_{*}}\left(d_{21}, b_{21}, e_{1}, \ldots, e_{1}\right)\right)=0 .
\end{aligned}
$$

Then we conclude, by injectivity of φ, that $d_{21} h_{11}-\left(d_{21} h_{11}\right)^{*}=0$, that is, $d_{21} h_{11}=0$. Even more, $\left(e_{2} \mathfrak{A}\right) h_{11}=0$, which implies that $h_{11}=0$ by Condition (1) of Theorem 2.1

Finally, given $d_{12} \in \mathfrak{A}_{12}$, a similar calculation gives us $h_{22}=0$. Therefore, we conclude that $h=a_{12}+b_{21}$.

Lemma 2.3. For any $a_{11} \in \mathfrak{A}_{11}, b_{12} \in \mathfrak{A}_{12}, c_{21} \in \mathfrak{A}_{21}$ and $d_{22} \in \mathfrak{A}_{22}$ we have

$$
\varphi\left(a_{11}+b_{12}+c_{21}+d_{22}\right)=\varphi\left(a_{11}\right)+\varphi\left(b_{12}\right)+\varphi\left(c_{21}\right)+\varphi\left(d_{22}\right)
$$

Proof. Since φ is surjective, given $\varphi\left(a_{11}\right)+\varphi\left(b_{12}\right)+\varphi\left(c_{21}\right)+\varphi\left(d_{22}\right) \in \mathfrak{A}^{\prime}$ there exists $h \in \mathfrak{A}$ such that $\varphi(h)=\varphi\left(a_{11}\right)+\varphi\left(b_{12}\right)+\varphi\left(c_{21}\right)+\varphi\left(d_{22}\right)$. We may write $h=$ $h_{11}+h_{12}+h_{21}+h_{22}$, with $h_{j k} \in \mathfrak{A}_{j k}(k, j=1,2)$. Applying Lemmas 2.1 and 2.2 we have

$$
\varphi(h)=\varphi\left(a_{11}\right)+\varphi\left(b_{12}\right)+\varphi\left(c_{21}\right)+\varphi\left(d_{22}\right)=\varphi\left(a_{11}+d_{22}\right)+\varphi\left(b_{12}+c_{21}\right) .
$$

Now, observing that $p_{n_{*}}\left(e_{1}, a_{11}+d_{22}, e_{1}, \ldots, e_{1}\right)=0=p_{n_{*}}\left(e_{1}, b_{12}, e_{1}, \ldots, e_{1}\right)$ and by Claims 2.2 and 2.3 we obtain

$$
\begin{aligned}
& \varphi\left(p_{n_{*}}\left(e_{1}, h, e_{1}, \ldots, e_{1}\right)\right) \\
& =\varphi\left(p_{n_{*}}\left(e_{1}, a_{11}+d_{22}, e_{1}, \ldots, e_{1}\right)\right)+\varphi\left(p_{n_{*}}\left(e_{1}, b_{12}+c_{21}, e_{1}, \ldots, e_{1}\right)\right) \\
& =\varphi\left(p_{n_{*}}\left(e_{1}, c_{21}, e_{1}, \ldots, e_{1}\right)\right)
\end{aligned}
$$

that is,

$$
\varphi\left(-h_{21}+h_{21}^{*}\right)=\varphi\left(-c_{21}+c_{21}^{*}\right) .
$$

Then, by injectivity of $\varphi,-h_{21}+h_{21}^{*}=-c_{21}+c_{21}^{*}$. Thus $h_{21}=c_{21}$.

In a similar way, using e_{2} rather than e_{1} in the previous calculation, we conclude that $h_{12}=b_{12}$. Also, given $x_{21} \in \mathfrak{A}_{21}$,

$$
\begin{aligned}
& \varphi\left(p_{n_{*}}\left(x_{21}, h, e_{1}, \ldots, e_{1}\right)\right) \\
& =\varphi\left(p_{n_{*}}\left(x_{21}, a_{11}+d_{22}, \ldots, e_{1}\right)\right)+\varphi\left(p_{n_{*}}\left(x_{21}, b_{12}+c_{21}, e_{1}, \ldots, e_{1}\right)\right) \\
& =\varphi\left(p_{n_{*}}\left(x_{21}, a_{11}, e_{1}, \ldots, e_{1}\right)\right)
\end{aligned}
$$

since $p_{n_{*}}\left(x_{21}, b_{12}+c_{21}, e_{1}, \ldots, e_{1}\right)=0=p_{n_{*}}\left(x_{21}, d_{22}, \ldots, e_{1}\right)$. Again, by injectivity of φ we conclude, by following the same strategy as in the proof of Lemma 2.1, that $h_{11}=a_{11}$. Now, using e_{2} rather than e_{1} and x_{12} rather than x_{21} in the previous calculation we obtain $h_{22}=d_{22}$. Therefore, $h=a_{11}+b_{12}+c_{21}+d_{22}$.

Lemma 2.4. For any $a_{j k}, b_{j k} \in \mathfrak{A}_{j k}$, with $j \neq k$, we have $\varphi\left(a_{j k}+b_{j k}\right)=\varphi\left(a_{j k}\right)+$ $\varphi\left(b_{j k}\right)$.

Proof. We shall prove the case $j=1$ and $k=2$. The other case is done in a similar way. Since φ is surjective, given $\varphi\left(a_{12}\right)+\varphi\left(b_{12}\right) \in \mathfrak{A}^{\prime}$ and $\varphi\left(-a_{12}^{*}\right)+\varphi\left(-b_{12}^{*}\right)$ there exist $h \in \mathfrak{A}$ and $t \in \mathfrak{A}$ such that $\varphi(h)=\varphi\left(a_{12}\right)+\varphi\left(b_{12}\right)$ and $\varphi(t)=\varphi\left(-a_{12}^{*}\right)+\varphi\left(-b_{12}^{*}\right)$. We may write $h=h_{11}+h_{12}+h_{21}+h_{22}$ and $t=t_{11}+t_{12}+t_{21}+t_{22}$, with $h_{j k}, t_{j k} \in$ $\mathfrak{A}_{j k}(k, j=1,2)$.

First we show that $h \in \mathfrak{A}_{12}$. By Claim 2.2 we get

$$
\begin{aligned}
\varphi\left(-h_{21}+h_{21}^{*}\right) & =\varphi\left(p_{n_{*}}\left(e_{1}, h, e_{1}, \ldots, e_{1}\right)\right) \\
& =\varphi\left(p_{n_{*}}\left(e_{1}, a_{12}, e_{1}, \ldots, e_{1}\right)\right)+\varphi\left(p_{n_{*}}\left(e_{1}, b_{12}, e_{1}, \ldots, e_{1}\right)\right)=0
\end{aligned}
$$

Then, by injectivity of φ we obtain $h_{21}=0$. Also, given $d_{12} \in \mathfrak{A}_{12}$,

$$
\begin{aligned}
\varphi\left(d_{12} h_{22}-\left(d_{12} h_{22}\right)^{*}\right) & =\varphi\left(p_{n_{*}}\left(d_{12}, h, e_{2}, \ldots, e_{2}\right)\right) \\
& =\varphi\left(p_{n_{*}}\left(d_{12}, a_{12}, e_{2}, \ldots, e_{2}\right)\right)+\varphi\left(p_{n_{*}}\left(d_{12}, b_{12}, e_{2}, \ldots, e_{2}\right)\right)=0
\end{aligned}
$$

that is, $d_{12} h_{22}=0$, which implies that $h_{22}=0$ by Condition (1) of Theorem 2.1 Now, using $d_{21} \in \mathfrak{A}_{21}$ rather than d_{12} in the previous calculation, we conclude that $h_{11}=0$. Therefore, $h=h_{12} \in \mathfrak{A}_{12}$.

In a similar way, we obtain $t=t_{21} \in \mathfrak{A}_{21}$. Finally, by Lemma 2.3

$$
\begin{aligned}
\varphi\left(a_{12}+b_{12}-a_{12}^{*}-b_{12}^{*}\right) & =\varphi\left(p_{n_{*}}\left(e_{1}+a_{12}, e_{2}+b_{12}, e_{2}, \ldots, e_{2}\right)\right) \\
& =p_{n_{*}}\left(\varphi\left(e_{1}+a_{12}\right), \varphi\left(e_{2}+b_{12}\right), \varphi\left(e_{2}\right), \ldots, \varphi\left(e_{2}\right)\right) \\
& =p_{n_{*}}\left(\varphi\left(e_{1}\right), \varphi\left(e_{2}\right), \varphi\left(e_{2}\right), \ldots, \varphi\left(e_{2}\right)\right) \\
& +p_{n_{*}}\left(\varphi\left(e_{1}\right), \varphi\left(b_{12}\right), \varphi\left(e_{2}\right), \ldots, \varphi\left(e_{2}\right)\right) \\
& +p_{n_{*}}\left(\varphi\left(a_{12}\right), \varphi\left(e_{2}\right), \varphi\left(e_{2}\right), \ldots, \varphi\left(e_{2}\right)\right) \\
& +p_{n_{*}}\left(\varphi\left(a_{12}\right), \varphi\left(b_{12}\right), \varphi\left(e_{2}\right), \ldots, \varphi\left(e_{2}\right)\right) \\
& =\varphi\left(p_{n_{*}}\left(e_{1}, e_{2}, e_{2}, \ldots, e_{2}\right)\right) \\
& +\varphi\left(p_{n_{*}}\left(e_{1}, b_{12}, e_{2}, \ldots, e_{2}\right)\right) \\
& +\varphi\left(p_{n_{*}}\left(a_{12}, e_{2}, e_{2}, \ldots, e_{2}\right)\right) \\
& +\varphi\left(p_{n_{*}}\left(a_{12}, b_{12}, e_{2}, \ldots, e_{2}\right)\right) \\
& =\varphi\left(a_{12}-a_{12}^{*}\right)+\varphi\left(b_{12}-b_{12}^{*}\right) \\
& =\varphi\left(a_{12}\right)+\varphi\left(b_{12}\right)+\varphi\left(-a_{12}^{*}\right)+\varphi\left(-b_{12}^{*}\right) \\
& =\varphi\left(h_{12}\right)+\varphi\left(t_{21}\right)=\varphi\left(h_{12}+t_{21}\right)
\end{aligned}
$$

Since φ is injective, we have $a_{12}+b_{12}-a_{12}^{*}-b_{12}^{*}=h_{12}+t_{21}$, this is, $h=h_{12}=$ $a_{12}+b_{12}$.

Lemma 2.5. For any $a_{j j}, b_{j j} \in \mathfrak{A}_{j j}$, with $j \in\{1,2\}$, we have $\varphi\left(a_{j j}+b_{j j}\right)=\varphi\left(a_{j j}\right)+$ $\varphi\left(b_{j j}\right)$.

Proof. We shall prove the case $j=1$, since the other case is done in a similar way. Since φ is surjective, given $\varphi\left(a_{11}\right)+\varphi\left(b_{11}\right) \in \mathfrak{A}^{\prime}$ there exists $h \in \mathfrak{A}$ such that $\varphi(h)=$ $\varphi\left(a_{11}\right)+\varphi\left(b_{11}\right)$. We may write $h=h_{11}+h_{12}+h_{21}+h_{22}$, with $h_{j k} \in \mathfrak{A}_{j k}(k, j=1,2)$. Now, by Claim 2.2

$$
\begin{aligned}
\varphi\left(-h_{21}+h_{21}^{*}\right) & =\varphi\left(p_{n_{*}}\left(e_{1}, h, e_{1}, \ldots, e_{1}\right)\right) \\
& =\varphi\left(p_{n_{*}}\left(e_{1}, a_{11}, e_{1}, \ldots, e_{1}\right)\right)+\varphi\left(p_{n_{*}}\left(e_{1}, b_{11}, e_{1}, \ldots, e_{1}\right)\right)=0
\end{aligned}
$$

Then, by injectivity of φ we obtain $h_{21}=0$. Also,

$$
\begin{aligned}
\varphi\left(-h_{12}+h_{12}^{*}\right) & =\varphi\left(p_{n_{*}}\left(e_{2}, h, e_{2}, \ldots, e_{2}\right)\right) \\
& =\varphi\left(p_{n_{*}}\left(e_{2}, a_{11}, e_{2}, \ldots, e_{2}\right)\right)+\varphi\left(p_{n_{*}}\left(e_{2}, b_{11}, e_{2}, \ldots, e_{2}\right)\right)=0
\end{aligned}
$$

that is, $h_{12}=0$ by injectivity of φ. Moreover, given $d_{12} \in \mathfrak{A}_{12}$,

$$
\begin{aligned}
\varphi\left(d_{12} h_{22}-\left(d_{12} h_{22}\right)^{*}\right) & =\varphi\left(p_{n_{*}}\left(d_{12}, h, e_{2}, \ldots, e_{2}\right)\right) \\
& =\varphi\left(p_{n_{*}}\left(d_{12}, a_{11}, e_{2}, \ldots, e_{2}\right)\right)+\varphi\left(p_{n_{*}}\left(d_{12}, b_{11}, e_{2}, \ldots, e_{2}\right)\right) \\
& =0
\end{aligned}
$$

Then, by injectivity of $\varphi, d_{12} h_{22}=0$, which implies that $h_{22}=0$ by Condition (1) of Theorem[2.1 Finally, given $d_{21} \in \mathfrak{A}_{21}$, by Lemmas 2.3 and 2.4 we have

$$
\begin{aligned}
\varphi\left(d_{21} h_{11}-\left(d_{21} h_{11}\right)^{*}\right) & =\varphi\left(p_{n_{*}}\left(d_{21}, h, e_{1}, \ldots, e_{1}\right)\right) \\
& =\varphi\left(p_{n_{*}}\left(d_{21}, a_{11}, e_{1}, \ldots, e_{1}\right)\right)+\varphi\left(p_{n_{*}}\left(d_{21}, b_{11}, e_{1}, \ldots, e_{1}\right)\right) \\
& =\varphi\left(d_{21} a_{11}-\left(d_{21} a_{11}\right)^{*}\right)+\varphi\left(d_{21} b_{11}-\left(d_{21} b_{11}\right)^{*}\right) \\
& =\varphi\left(d_{21} a_{11}\right)+\varphi\left(-\left(d_{21} a_{11}\right)^{*}\right)+\varphi\left(d_{21} b_{11}\right)+\varphi\left(-\left(d_{21} b_{11}\right)^{*}\right) \\
& =\varphi\left(d_{21} a_{11}+d_{21} b_{11}\right)+\varphi\left(-\left(d_{21} a_{11}\right)^{*}-\left(d_{21} b_{11}\right)^{*}\right) \\
& =\varphi\left(d_{21}\left(a_{11}+b_{11}\right)-\left(a_{11}^{*}+b_{11}^{*}\right) d_{21}^{*}\right),
\end{aligned}
$$

that is, $d_{21} h_{11}-\left(d_{21} h_{11}\right)^{*}=d_{21}\left(a_{11}+b_{11}\right)-\left(a_{11}^{*}+b_{11}^{*}\right) d_{21}^{*}$, by injectivity of φ. Thus, $d_{21}\left(h_{11}-\left(a_{11}+b_{11}\right)\right)=0$, which implies that $h_{11}=a_{11}+b_{11}$ by Condition (1) of Theorem 2.1

Proof of Theorem 2.1. Now using Lemmas 2.3, 2.4 and 2.5 is easy see that φ is additive. Besides, using additivity of φ and since φ is unital, we have for $a \in \mathfrak{A}$,

$$
\begin{aligned}
2^{n-2}\left(\varphi(a)-\varphi(a)^{*}\right) & =p_{n_{*}}\left(\varphi(a), 1_{\mathfrak{A}}, \ldots, 1_{\mathfrak{A}}\right)=p_{n_{*}}\left(\varphi(a), \varphi\left(1_{\mathfrak{A}}\right), \ldots, \varphi\left(1_{\mathfrak{A}}\right)\right) \\
& =\varphi\left(p_{n_{*}}\left(a, 1_{\mathfrak{A}}, \ldots, 1_{\mathfrak{A}}\right)\right)=\varphi\left(2^{n-2}\left(a-a^{*}\right)\right) \\
& =2^{n-2} \varphi\left(a-a^{*}\right)=2^{n-2}\left(\varphi(a)-\varphi\left(a^{*}\right)\right)
\end{aligned}
$$

then $\varphi\left(a^{*}\right)=\varphi(a)^{*}$ and we conclude that φ preserves involution.
Remark 2.1. Observe that the Theorem 2.1 holds for any field of characteristic different of 2. In the proof the Theorem 2.1] we established the additivity of φ without using the unital assumption of φ.

Theorem 2.2. Let \mathfrak{A} and \mathfrak{A}^{\prime} be two alternative $*$-algebras with identities $1_{\mathfrak{A}}$ and $1_{\mathfrak{A}^{\prime}}$, respectively, and e_{1} and $e_{2}=1_{\mathfrak{A}}-e_{1}$ nontrivial symmetric idempotents in \mathfrak{A}. Let φ : $\mathfrak{A} \rightarrow \mathfrak{A}^{\prime}$ be a complex scalar multiplication bijective unital map. Suppose that \mathfrak{A} satisfies the conditions of the Theorem 2.1 namely,

$$
\begin{gathered}
\left(e_{j} \mathfrak{A}\right) x=\{0\} \text { for any } j \in\{1,2\} \quad \text { implies } \quad x=0 \\
\varphi\left(p_{n_{*}}(a, b, \xi, \ldots, \xi)\right)=p_{n_{*}}(\varphi(a), \varphi(b), \varphi(\xi), \ldots, \varphi(\xi))
\end{gathered}
$$

for all $a, b \in \mathfrak{A}$ and $\xi \in\left\{e_{1}, e_{2}, 1_{\mathfrak{A}}\right\}$.
Even more, if \mathfrak{A}^{\prime} satisfies the condition

$$
\begin{equation*}
\left(\varphi\left(e_{j}\right) \mathfrak{A}^{\prime}\right) y=\{0\} \text { for any } j \in\{1,2\} \text { implies } y=0 \tag{3}
\end{equation*}
$$

then φ is $*$-isomorphism.
With this hypothesis and Theorem 2.1 we have already proved that φ is $*$-additive. It remains for us to show that φ preserves product. In order to do that we will prove some more lemmas. Firstly, we observe that,

Claim 2.4. $q_{j}=\varphi\left(e_{j}\right)$ is an idempotent in \mathfrak{A}^{\prime}, for $j \in\{1,2\}$.
Proof. Since φ is a complex scalar multiplication, it follows that

$$
\begin{aligned}
2^{n-1} i q_{j} & =2^{n-1} i \varphi\left(e_{j}\right)=\varphi\left(2^{n-1} i e_{j}\right)=\varphi\left(p_{n_{*}}\left(i e_{j}, e_{j}, 1_{\mathfrak{A}}, \ldots, 1_{\mathfrak{A}}\right)\right) \\
& =p_{n_{*}}\left(i \varphi\left(e_{j}\right), \varphi\left(e_{j}\right), \varphi\left(1_{\mathfrak{A}}\right), \ldots, \varphi\left(1_{\mathfrak{A}}\right)\right) \\
& \left.=p_{n_{*}}\left(i \varphi\left(e_{j}\right), \varphi\left(e_{j}\right), 1_{\mathfrak{A}^{\prime}}, \ldots, 1_{\mathfrak{A}^{\prime}}\right)\right)=2^{n-1} i \varphi\left(e_{j}\right)^{2}=2^{n-1} i q_{j}{ }^{2}
\end{aligned}
$$

Then we can conclude that $q_{j}=q_{j}{ }^{2}$. Moreover, since e_{j} is a idempotent in \mathfrak{A} we have that $p_{n_{*}}\left(e_{j}, 1_{\mathfrak{A}}, \ldots, 1_{\mathfrak{A}}\right)=0$. Besides,

$$
0=\varphi(0)=\varphi\left(p_{n_{*}}\left(e_{j}, 1_{\mathfrak{A}}, \ldots, 1_{\mathfrak{A}}\right)\right)=p_{n_{*}}\left(q_{j}, 1_{\mathfrak{A}^{\prime}}, \ldots, 1_{\mathfrak{A}^{\prime}}\right)
$$

Thus, $q_{j}-q_{j}{ }^{*}=0$, that is, $q_{j}=q_{j}{ }^{*}$.
Lemma 2.6. For any $a \in \mathfrak{A}, \varphi\left(e_{j} a\right)=\varphi\left(e_{j}\right) \varphi(a)$ and $\varphi\left(a e_{j}\right)=\varphi(a) \varphi\left(e_{j}\right)$, with $j \in\{1,2\}$.

Proof. Firstly, observe that

$$
p_{n_{*}}\left(i a, e_{j}, 1_{\mathfrak{A}}, \ldots, 1_{\mathfrak{A}}\right)=2^{n-2} i\left(a e_{j}+e_{j} a^{*}\right)
$$

and

$$
p_{n_{*}}\left(a, e_{j}, 1_{\mathfrak{A}}, \ldots, 1_{\mathfrak{A}}\right)=2^{n-2}\left(a e_{j}-e_{j} a^{*}\right)
$$

Still, by Condition (2) of Theorem 2.1 and $*$-additivity of φ,

$$
\begin{aligned}
\varphi\left(2^{n-2} i\left(a e_{j}+e_{j} a^{*}\right)\right) & =\varphi\left(p_{n_{*}}\left(i a, e_{j}, 1_{\mathfrak{A}}, \ldots, 1_{\mathfrak{A}}\right)\right)=p_{n_{*}}\left(\varphi(i a), \varphi\left(e_{j}\right), 1_{\mathfrak{A}^{\prime}}, \ldots, 1_{\mathfrak{A}^{\prime}}\right) \\
& =2^{n-2} i\left(\varphi(a) \varphi\left(e_{j}\right)+\varphi\left(e_{j}\right) \varphi(a)^{*}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi\left(2^{n-2}\left(a e_{j}-e_{j} a^{*}\right)\right) & =\varphi\left(p_{n_{*}}\left(a, e_{j}, 1_{\mathfrak{A}}, \ldots, 1_{\mathfrak{A}}\right)\right)=p_{n_{*}}\left(\varphi(a), \varphi\left(e_{j}\right), 1_{\mathfrak{A}}, \ldots, 1_{\mathfrak{A}}\right) \\
& =2^{n-2}\left(\varphi(a) \varphi\left(e_{j}\right)-\varphi\left(e_{j}\right) \varphi(a)^{*}\right)
\end{aligned}
$$

Now, since φ is $*$-additive, multiplying the second equality by i and adding these two equations we obtain $\varphi\left(a e_{j}\right)=\varphi(a) \varphi\left(e_{j}\right)$. The second statement is obtained in a similar way.

Consider the Peirce decomposition of \mathfrak{A}^{\prime} with respect to idempotents $q_{j}=\varphi\left(e_{j}\right)$ of \mathfrak{A}^{\prime} (with $j \in\{1,2\}$) given by $\mathfrak{A}^{\prime}=\mathfrak{A}_{11}^{\prime} \oplus \mathfrak{A}_{12}^{\prime} \oplus \mathfrak{A}_{21}^{\prime} \oplus \mathfrak{A}_{22}^{\prime}$, where $\mathfrak{A}_{k j}^{\prime}:=q_{k} \mathfrak{A}^{\prime} q_{j}$ for $k, j \in\{1,2\}$.
Lemma 2.7. $\varphi\left(\mathfrak{A}_{j k}\right) \subset \mathfrak{A}_{j k}^{\prime}$, for $j, k \in\{1,2\}$.
Proof. Given $x \in \mathfrak{A}_{j k}$, we have $x=e_{j} x e_{k}$ and then, by Lemma 2.6

$$
\varphi(x)=\varphi\left(e_{j}\right) \varphi\left(x e_{k}\right)=\varphi\left(e_{j}\right) \varphi(x) \varphi\left(e_{k}\right) \in \mathfrak{A}_{j k}^{\prime}
$$

Lemma 2.8. For $j \neq k$, we have:

- If $a_{j k} \in \mathfrak{A}_{j k}$ and $b_{k k} \in \mathfrak{A}_{k k}$ then $\varphi\left(a_{j k} b_{k k}\right)=\varphi\left(a_{j k}\right) \varphi\left(b_{k k}\right)$;
- If $a_{j k} \in \mathfrak{A}_{j k}$ and $b_{j k} \in \mathfrak{A}_{j k}$ then $\varphi\left(a_{j k} b_{j k}\right)=\varphi\left(a_{j k}\right) \varphi\left(b_{j k}\right)$;
- If $a_{j j} \in \mathfrak{A}_{j j}$ and $b_{j k} \in \mathfrak{A}_{j k}$ then $\varphi\left(a_{j j} b_{j k}\right)=\varphi\left(a_{j j}\right) \varphi\left(b_{j k}\right)$;
- If $a_{j k} \in \mathfrak{A}_{j k}$ and $b_{k j} \in \mathfrak{A}_{k j}$ then $\varphi\left(a_{j k} b_{k j}\right)=\varphi\left(a_{j k}\right) \varphi\left(b_{k j}\right)$.

Proof. In order to prove the first statement, on the one hand, by Lemma 2.7

$$
\begin{aligned}
\varphi\left(a_{j k} b_{k k}\right)-\varphi\left(a_{j k} b_{k k}\right)^{*} & =\varphi\left(a_{j k} b_{k k}-\left(a_{j k} b_{k k}\right)^{*}\right)=\varphi\left(p_{n_{*}}\left(a_{j k}, b_{k k}, e_{k}, \ldots, e_{k}\right)\right) \\
& =p_{n_{*}}\left(\varphi\left(a_{j k}\right), \varphi\left(b_{k k}\right), q_{k}, \ldots, q_{k}\right) \\
& =\varphi\left(a_{j k}\right) \varphi\left(b_{k k}\right)-\left(\varphi\left(a_{j k}\right) \varphi\left(b_{k k}\right)\right)^{*}
\end{aligned}
$$

and then $\varphi\left(a_{j k} b_{k k}\right)=\varphi\left(a_{j k}\right) \varphi\left(b_{k k}\right)$.
Now to prove the second statement, we have

$$
\begin{aligned}
\varphi\left(a_{j k} b_{j k}\right) & -\varphi\left(a_{j k} b_{j k}\right)^{*}-2^{n-3} \varphi\left(b_{j k} a_{j k}\right)^{*}+2^{n-3} \varphi\left(b_{j k} a_{j k}^{*}\right)^{*} \\
& \left.=\varphi\left(a_{j k} b_{j k}\right)-\left(a_{j k} b_{j k}\right)^{*}-2^{n-3}\left(b_{j k} a_{j k}\right)^{*}+2^{n-3}\left(b_{j k} a_{j k}^{*}\right)^{*}\right) \\
& =\varphi\left(p_{n_{*}}\left(a_{j k}, b_{j k}, e_{j}, \ldots, e_{j}\right)\right)=p_{n_{*}}\left(\varphi\left(a_{j k}\right), \varphi\left(b_{j k}\right), q_{j}, \ldots, q_{j}\right) \\
& =\varphi\left(a_{j k}\right) \varphi\left(b_{j k}\right)-\varphi\left(a_{j k}\right)^{*} \varphi\left(b_{j k}\right)^{*} \\
& -2^{n-3} \varphi\left(b_{j k}\right)^{*} \varphi\left(a_{j k}\right)^{*}+2^{n-3} \varphi\left(b_{j k}\right)^{*} \varphi\left(a_{j k}^{*}\right)^{*}
\end{aligned}
$$

and then $\varphi\left(a_{j k} b_{j k}\right)=\varphi\left(a_{j k}\right) \varphi\left(b_{j k}\right)$.
The others statements are proved in a similar way.
Since alternative algebras are flexible, we have

$$
\left(x_{k j}, a_{j j}, b_{j j}\right)+\left(b_{j j}, a_{j j}, x_{k j}\right)=0
$$

for all $x_{k j} \in \mathfrak{A}_{k j}, a_{j j}, b_{j j} \in \mathfrak{A}_{j j}$, for $k, j \in\{1,2\}$.
Lemma 2.9. If $a_{j j}, b_{j j} \in \mathfrak{A}_{j j}$, with $j \in\{1,2\}$, then $\varphi\left(a_{j j} b_{j j}\right)=\varphi\left(a_{j j}\right) \varphi\left(b_{j j}\right)$.
Proof. Let $x_{k j}$ be an element of $\mathfrak{A}_{k j}$, with $j \neq k$. Using Lemma 2.8 we obtain

$$
\begin{aligned}
\varphi\left(x_{k j}\right) \varphi\left(a_{j j} b_{j j}\right) & =\varphi\left(x_{k j} a_{j j} b_{j j}\right)=\varphi\left(\left(x_{k j} a_{j j}\right) b_{j j}\right) \\
& =\left(\varphi\left(x_{k j}\right) \varphi\left(a_{j j}\right)\right) \varphi\left(b_{j j}\right)=\varphi\left(x_{k j}\right)\left(\varphi\left(a_{j j}\right) \varphi\left(b_{j j}\right)\right)
\end{aligned}
$$

that is,

$$
\varphi\left(x_{k j}\right)\left(\varphi\left(a_{j j} b_{j j}\right)-\varphi\left(a_{j j}\right) \varphi\left(b_{j j}\right)\right)=0
$$

Now, by Lemma2.7, $\varphi\left(x_{k j}\right) \in \mathfrak{A}_{k j}^{\prime}$ as well as $\varphi\left(a_{j j} b_{j j}\right)$ and $\varphi\left(a_{j j}\right) \varphi\left(b_{j j}\right) \in \mathfrak{A}_{j j}^{\prime}$. Then, $\left(\varphi\left(e_{k}\right) \mathfrak{A}^{\prime}\right)\left(\varphi\left(a_{j j} b_{j j}\right)-\varphi\left(a_{j j}\right) \varphi\left(b_{j j}\right)\right)=0$, which implies that $\varphi\left(a_{j j} b_{j j}\right)=\varphi\left(a_{j j}\right) \varphi\left(b_{j j}\right)$ by Condition (3) of Theorem 2.2.

Proof of Theorem 2.2. By additivity of φ and Lemmas 2.8 and 2.9. it follows that $\varphi(a b)=$ $\varphi(a) \varphi(b)$, for all $a, b \in \mathfrak{A}$, this is, φ preserves product as required.

3. Corollaries

Now we present some consequences of our main results.
Corollary 3.1. Let \mathfrak{A} and \mathfrak{A}^{\prime} be two alternative $*$-algebras with identities $1_{\mathfrak{A}}$ and $1_{\mathfrak{A}}$, respectively, and e_{1} and $e_{2}=1_{\mathfrak{A}}-e_{1}$ nontrivial symmetric idempotents in \mathfrak{A}. Let φ : $\mathfrak{A} \rightarrow \mathfrak{A}^{\prime}$ be a complex scalar multiplication bijective unital map. Suppose that \mathfrak{A} satisfies

$$
\left(e_{j} \mathfrak{A}\right) x=\{0\} \text { for any } j \in\{1,2\} \text { implies } x=0 .
$$

Even more, suppose that \mathfrak{A}^{\prime} satisfies

$$
\left(\varphi\left(e_{j}\right) \mathfrak{A}^{\prime}\right) y=\{0\} \text { for any } j \in\{1,2\} \text { implies } y=0
$$

In this conditions, $\varphi: \mathfrak{A} \rightarrow \mathfrak{A}^{\prime}$ is a multiplicative $*$-Lie n-map if and only if φ is $*$ isomorphism.

It is easy to see that any prime alternative algebra satisfy Conditions (1) and (3), so we have the following result:

Corollary 3.2. Let \mathfrak{A} and \mathfrak{A}^{\prime} be two prime alternative $*$-algebras with identities $1_{\mathfrak{A}}$ and $1_{\mathfrak{A}^{\prime}}$, respectively, and e_{1} and $e_{2}=1_{\mathfrak{A}}-e_{1}$ nontrivial symmetric idempotents in \mathfrak{A}. In this condition, a complex scalar multiplication $\varphi: \mathfrak{A} \rightarrow \mathfrak{A}^{\prime}$ is a bijective unital multiplicative *-Lie n-map if and only if φ is $*$-isomorphism.

To finish we will give an application of the Corollary 3.2. A complete normed alternative complex $*$-algebra A is called an alternative C^{*}-algebra if it satisfies the condition: $\left\|a^{*} a\right\|=\|a\|^{2}$, for all elements $a \in A$. Alternative C^{*}-algebras are non-associative generalizations of C^{*}-algebras and appear in various areas in Mathematics (see more details in the references [18] and [19]). An alternative C^{*}-algebra A is called an alternative W^{*} algebra if it is a dual Banach space and a prime alternative W^{*}-algebra is called alternative W^{*}-factor. It is well known that non-zero alternative W^{*}-algebras are unital.

Corollary 3.3. Let \mathfrak{A} and \mathfrak{A}^{\prime} be two alternative W^{*}-factors. In this condition, a complex scalar multiplication $\varphi: \mathfrak{A} \rightarrow \mathfrak{A}^{\prime}$ is a bijective unital multiplicative $*$-Lie n-map if and only if φ is *-isomorphism.

REFERENCES

[1] Z. Bai and S. Du, Strong commutativity preserving maps on rings, Rocky Mountain J. Math. 44 (2014), no. 3, 733-742.
[2] M. Brešar and M. Fošner, On rings with involution equipped with some new product, Publ. Math. Debrecen 57 (2000), no. 1-2, 121-134.
[3] Q. Chen and C. Li, Additivity of Lie multiplicative mappings on rings, Adv. in Math.(China), 46 (2017), no. 1, 82-90.
[4] J.Cui and C. Li, Maps preserving product $X Y-Y X^{*}$ on factor von Neumann algebras, Linear Algebra Appl. 431, (2009), no. 5-7, 833-842.
[5] X. Fang, C. Li and F. Lu, Nonlinear mappings preserving product $X Y+Y X^{*}$ on factor von Neumann algebras, Linear Algebra Appl. 438, (2013), no. 5, 2339-2345.
[6] B. L. M. Ferreira and B. T. Costa, *-Jordan-type maps on C^{*}-algebras, Comm. Algebra, online version, DOI: 10.1080/00927872.2021.1937636, 2021.
[7] B. L. M. Ferreira and B. T. Costa, *-Lie-Jordan-type maps on C^{*}-algebras, Bull. Iranian Math. Soc., online version, https://doi.org/10.1007/s41980-021-00609-4, 2021.
[8] B. L. M. Ferreira, Multiplicative maps on triangular n-matrix rings, International Journal of Mathematics, Game Theory and Algebra, 23, p. 1-14, 2014.
[9] J. C. M. Ferreira and B. L. M. Ferreira, Additivity of n-multiplicative maps on alternative rings, Comm. in Algebra 44 (2016), no. 4, 1557-1568
[10] R. N. Ferreira and B. L. M. Ferreira, Jordan triple derivation on alternative rings, Proyecciones 37 (2018), no. 1, 171-180.
[11] B. L. M. Ferreira, J. C. M. Ferreira, H. Guzzo Jr., Jordan maps on alternatives algebras, JP J. Algebra Number Theory Appl. 31 (2013), no. 2, 129-142.
[12] B. L. M. Ferreira, J. C. M. Ferreira, H. Guzzo Jr., Jordan triple elementary maps on alternative rings, Extracta Math. 29 (2014), no. 1-2, 1-18.
[13] B. L. M. Ferreira and H. Guzzo Jr., Lie maps on alternative rings, Boll. Unione Mat. Ital., 13 (2020), 181-192.
[14] M. Fošner, Prime rings with involution equipped with some new product, Southeast Asian Bull. Math. 26 (2002), no. 1, 27-31.
[15] I. R. Hentzel, E. Kleinfeld, H. F. Smith, Alternative rings with idempotent, J. Algebra 64 (1980), no. 2, 325-335.
[16] W. S. Martindale III, Lie isomorphisms of operator algebras Pacific J. Math 38 (1971), 717-735.
[17] W. S. Martindale III, When are multiplicative mappings additive? Proc. Amer. Math. Soc. 21 (1969), 695698.
[18] García M. C., Palacios Á. R., Non-associative normed algebras. Vol. 1. The Vidav-Palmer and GelfandNaimark theorems. Encyclopedia of Mathematics and its Applications, 154. Cambridge University Press, Cambridge, 2014. xxii+712 pp.
[19] García M. C., Palacios Á. R., Non-associative normed algebras. Vol. 2. Representation theory and the Zel'manov approach. Encyclopedia of Mathematics and its Applications, 167. Cambridge University Press, Cambridge, 2018. xxvii+729 pp.

Aline Jaqueline de Oliveira Andrade, Federal University of ABC, dos Estados Avenue, 5001, 09210-580, SANTO ANDRÉ, BRAZIL, E-mail: aline.jaqueline@ufabc.edu.br

Elisabete Barreiro, University of Coimbra, CMUC, Department of Mathematics, Apartado 3008 EC SANTA CRUZ 3001 - 501 Coimbra, Portugal, E-mail: mefb@mat . uc. pt

Bruno Leonardo Macedo Ferreira, Federal University of Technology, Avenida Profes-
SORA LAURA PACHECO BAStOS, 800, 85053-510, GUARAPUAVA, BRAZIL, E-mail: brunolmfalg@gmail.com

[^0]: The first author was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)-Finance 001. The second author was supported by the Centre for Mathematics of the University of Coimbra - UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES.

