*-LIE-TYPE MAPS ON ALTERNATIVE *-ALGEBRAS

ALINE JAQUELINE DE OLIVEIRA ANDRADE, ELISABETE BARREIRO, AND BRUNO LEONARDO MACEDO FERREIRA

ABSTRACT. Let \mathfrak{A} and \mathfrak{A}' be two alternative *-algebras with identities $1_{\mathfrak{A}}$ and $1_{\mathfrak{A}'}$, respectively, and e_1 and $e_2 = 1_{\mathfrak{A}} - e_1$ nontrivial symmetric idempotents in \mathfrak{A} . In this paper we study the characterization of multiplicative *-Lie-type maps. As application, we get a result on alternative W^* -algebras.

Keywords: alternative *-algebra, alternative *W**-algebras. 2020 MSC: 17D05; 16W20.

1. INTRODUCTION AND PRELIMINARIES

The study of additivity of maps have received a fair amount of attention of mathematicians. The first quite surprising result is due to Martindale who established a condition on a ring such that multiplicative bijective maps are all additive [17]. Besides, over the years several works have been published considering different types of associative and non-associative algebras among them we can mention [3, 8, 9, 10, 11, 12, 13]. In order to add new ingredients to the study of additivity of maps, many researches have devoted themselves to the investigation of two new products, presented by Brešar and Fošner in [2, 14], where the definition is as follows: for $a, b \in R$, where R is a *-ring, we denote by $\{a, b\}_* = ab + ba^*$ and $[a, b]_* = ab - ba^*$ the *-Jordan product and the *-Lie product, respectively. In [5], the authors proved that a map φ between two factor von Newmann algebras is a *-ring isomorphism if and only if $\varphi(\{a, b\}_*) = \{\varphi(a), \varphi(b)\}_*$. In [7], Ferreira and Costa extended these new products and defined two other types of applications, named multiplicative *-Jordan n-map and multiplicative *-Lie n-map and used it to impose condition such that a map between C^* -algebras is a *-ring isomorphism.

With this picture in mind, in this article we will discuss when a multiplicative *-Lie nmap is a *-isomorphism in the case of alternative *-algebras and, just as it was done in [6],
we provide an application on alternative W^* -algebras. Throughout the paper, the ground
field is assumed to be the field of complex numbers.

Let \mathfrak{A} and \mathfrak{A}' be two algebras with identities $1_{\mathfrak{A}}$ and $1_{\mathfrak{A}'}$, respectively, and $\varphi : \mathfrak{A} \to \mathfrak{A}'$ a map. We have the following concepts:

- i. φ preserves product if $\varphi(ab) = \varphi(a)\varphi(b)$, for all elements $a, b \in \mathfrak{A}$;
- ii. φ preserves Lie product if $\varphi(ab ba) = \varphi(a)\varphi(b) \varphi(b)\varphi(a)$, for any $a, b \in \mathfrak{A}$;
- iii. φ is *additive* if $\varphi(a+b) = \varphi(a) + \varphi(b)$, for any $a, b \in \mathfrak{A}$;
- iv. φ is *isomorphism* if φ is a bijection additive that preserves products and scalar multiplication;
- v. φ is unital if $\varphi(1_{\mathfrak{A}}) = 1_{\mathfrak{A}'}$.

The first author was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)-Finance 001. The second author was supported by the Centre for Mathematics of the University of Coimbra - UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES.

An algebra \mathfrak{A} is called *-*algebra* if \mathfrak{A} is endowed with a involution. By involution, we mean a mapping $* : \mathfrak{A} \to \mathfrak{A}$ such that $(x + y)^* = x^* + y^*$, $(x^*)^* = x$ and $(xy)^* = y^*x^*$ for all $x, y \in \mathfrak{A}$. An element $s \in \mathfrak{A}$ satisfying $s^* = s$ is called *symmetric element* of \mathfrak{A} .

Let \mathfrak{A} and \mathfrak{A}' be two *-algebras and $\varphi : \mathfrak{A} \to \mathfrak{A}'$ a map. We have the following definitions:

- i. φ preserves involution if $\varphi(a^*) = \varphi(a)^*$, for all elements $a \in \mathfrak{A}$;
- ii. φ is *-*isomorphism* if φ is an isomorphism that preserves involution;
- iii. φ is *-*additive* if it preserves involution and it is additive.

Definition 1.1 (To see [7]). Consider a *-algebra \mathfrak{A} , we denote $[x_1, x_2]_* = x_1x_2 - x_2x_1^*$, for all $x_1, x_2 \in \mathfrak{A}$ and the sequence of polynomials,

$$p_{1_*}(x) = x$$
 and $p_{n_*}(x_1, x_2, \dots, x_n) = |p_{(n-1)_*}(x_1, x_2, \dots, x_{n-1}), x_n|_*$

for all integers $n \geq 2$ and $x_1, \ldots, x_n \in \mathfrak{A}$.

Thus, $p_{2_*}(x_1, x_2) = [x_1, x_2]_* = x_1x_2 - x_2x_1^*$, for all $x_1, x_2 \in \mathfrak{A}$, $p_{3_*}(x_1, x_2, x_3) = [[x_1, x_2]_*, x_3]_*$, for all $x_1, x_2, x_3 \in \mathfrak{A}$, etc. Note that p_{2_*} is the product introduced by Brešar and Fošner [2, 14]. Then, using the nomenclature introduced in [7] we have a new class of maps (not necessarily additive).

Definition 1.2. Consider two *-algebras \mathfrak{A} and \mathfrak{A}' . A map $\varphi : \mathfrak{A} \longrightarrow \mathfrak{A}'$ is *multiplicative* *-*Lie n-map* if

$$\varphi(p_{n_*}(x_1, x_2, \dots, x_j, \dots, x_n)) = p_{n_*}(\varphi(x_1), \varphi(x_2), \dots, \varphi(x_j), \dots, \varphi(x_n)),$$

for all $x_1, x_2, \ldots, x_n \in \mathfrak{A}$, where $n \ge 2$ is an integer. Multiplicative *-Lie 2-map, *-Lie 3-map and *-Lie *n*-map are collectively referred to as *multiplicative* *-*Lie-type maps*.

An algebra \mathfrak{A} (not necessarily associative or commutative) is called *alternative algebra* if it satisfies the identities $a^2b = a(ab)$ and $ba^2 = (ba)a$, for all elements $a, b \in \mathfrak{A}$. One easily sees that any associative algebra is an alternative algebra. An alternative algebra \mathfrak{A} is called *prime* if for any elements $a, b \in \mathfrak{A}$ satisfying the condition $a\mathfrak{A} b = 0$, then either a = 0 or b = 0.

We consider an alternative algebra \mathfrak{A} with identity $1_{\mathfrak{A}}$. Fix a nontrivial idempotent element $e_1 \in \mathfrak{A}$ and denote $e_2 = 1_{\mathfrak{A}} - e_1$. It is easy to see that $(e_k a)e_j = e_k(ae_j)$ (k, j = 1, 2) for all $a \in \mathfrak{A}$. Then \mathfrak{A} has a Peirce decomposition

$$\mathfrak{A}=\mathfrak{A}_{11}\oplus\mathfrak{A}_{12}\oplus\mathfrak{A}_{21}\oplus\mathfrak{A}_{22},$$

where $\mathfrak{A}_{kj} := e_k \mathfrak{A} e_j$ (k, j = 1, 2) (see [15]), satisfying the following multiplicative relations:

(i) $\mathfrak{A}_{kj}\mathfrak{A}_{jl} \subseteq \mathfrak{A}_{kl} (k, j, l = 1, 2);$ (ii) $\mathfrak{A}_{kj}\mathfrak{A}_{kj} \subseteq \mathfrak{A}_{jk} (k, j = 1, 2);$ (iii) $\mathfrak{A}_{kj}\mathfrak{A}_{ml} = \{0\}, \text{ if } j \neq m \text{ and } (k, j) \neq (m, l), (k, j, m, l = 1, 2);$ (iv) $x_{kj}^2 = 0, \text{ for all } x_{kj} \in \mathfrak{A}_{kj} (k, j = 1, 2; k \neq j).$

2. MAIN THEOREM

In the following we shall prove a part of the main result of this paper.

Theorem 2.1. Let \mathfrak{A} and \mathfrak{A}' be two alternative *-algebras with identities $1_{\mathfrak{A}}$ and $1_{\mathfrak{A}'}$, respectively, and e_1 and $e_2 = 1_{\mathfrak{A}} - e_1$ nontrivial symmetric idempotents in \mathfrak{A} . Suppose that \mathfrak{A} satisfies

(1)
$$(e_j \mathfrak{A}) x = \{0\} \text{ for any } j \in \{1, 2\} \text{ implies } x = 0$$

Suppose also that $\varphi : \mathfrak{A} \to \mathfrak{A}'$ is a multiplication bijective unital map which satisfies

(2)
$$\varphi(p_{n_*}(a,b,\xi,\ldots,\xi)) = p_{n_*}(\varphi(a),\varphi(b),\varphi(\xi),\ldots,\varphi(\xi)),$$

for all $a, b \in \mathfrak{A}$ and $\xi \in \{e_1, e_2, 1_{\mathfrak{A}}\}$. Then φ is *-additive.

The following claims and lemmas have the same hypotheses as the Theorem 2.1 and we need them to prove the *-additivity of φ .

Claim 2.1. $*(\mathfrak{A}_{kj}) \subset \mathfrak{A}_{jk}$, for $j, k \in \{1, 2\}$.

Proof. If $a_{kj} \in \mathfrak{A}_{kj}$ then

$$a_{kj}^* = (e_k a_{kj} e_j)^* = (e_j)^* (a_{kj})^* (e_k)^* = e_j (a_{kj})^* e_k \in \mathfrak{A}_{jk}.$$

It is easy to check the following result (see [6]).

Claim 2.2. Let
$$x, y, h$$
 in \mathfrak{A} such that $\varphi(h) = \varphi(x) + \varphi(y)$. Then, given $z \in \mathfrak{A}$,

$$\varphi(p_{n_*}(h, z, \xi, \dots, \xi)) = \varphi(p_{n_*}(x, z, \xi, \dots, \xi)) + \varphi(p_{n_*}(y, z, \xi, \dots, \xi))$$

and

$$\varphi(p_{n_*}(z,h,\xi,\ldots,\xi)) = \varphi(p_{n_*}(z,x,\xi,\ldots,\xi)) + \varphi(p_{n_*}(z,y,\xi,\ldots,\xi))$$
for $\xi \in \{e_1, e_2, 1_{\mathfrak{A}}\}.$

Claim 2.3. $\varphi(0) = 0$.

Proof. Since φ is surjective, there exists $x \in \mathfrak{A}$ such that $\varphi(x) = 0$. Then,

$$\begin{split} \varphi(0) &= \varphi(p_{n_*}(0, x, \mathbf{1}_{\mathfrak{A}}, \dots, \mathbf{1}_{\mathfrak{A}})) = p_{n_*}(\varphi(0), \varphi(x), \varphi(\mathbf{1}_{\mathfrak{A}}), \dots, \varphi(\mathbf{1}_{\mathfrak{A}})) \\ &= p_{n_*}(\varphi(0), 0, \varphi(\mathbf{1}_{\mathfrak{A}}), \dots, \varphi(\mathbf{1}_{\mathfrak{A}})) = 0. \end{split}$$

The next results aim to show the additivity of φ .

Lemma 2.1. For any $a_{11} \in \mathfrak{A}_{11}$ and $b_{22} \in \mathfrak{A}_{22}$, we have

$$\varphi(a_{11} + b_{22}) = \varphi(a_{11}) + \varphi(b_{22}).$$

Proof. Since φ is surjective, given $\varphi(a_{11}) + \varphi(b_{22}) \in \mathfrak{A}'$ there exists $h \in \mathfrak{A}$ such that $\varphi(h) = \varphi(a_{11}) + \varphi(b_{22})$. We may write $h = h_{11} + h_{12} + h_{21} + h_{22}$, with $h_{jk} \in \mathfrak{A}_{jk}$ (k, j = 1, 2). Besides, by Claims 2.2 and 2.3

$$\varphi(p_{n_*}(e_1, h, e_1, \dots, e_1)) = \varphi(p_{n_*}(e_1, a_{11}, e_1, \dots, e_1)) + \varphi(p_{n_*}(e_1, b_{22}, e_1, \dots, e_1)),$$

that is,

$$\varphi(-h_{21} + h_{21}^*) = \varphi(0) + \varphi(0) = 0.$$

Then, by injectivity of φ , $-h_{21} + h_{21}^* = 0$. Thus $h_{21} = 0$. Moreover,

 $\varphi(p_{n_*}(e_2, h, e_2, \dots, e_2)) = \varphi(p_{n_*}(e_2, a_{11}, e_2, \dots, e_2)) + \varphi(p_{n_*}(e_2, b_{22}, e_2, \dots, e_2)),$ that is,

 $\varphi(-h_{12} + h_{12}^*) = 0.$

Again, by injectivity of φ we conclude that $h_{12} = 0$. Furthermore, given $d_{21} \in \mathfrak{A}_{21}$,

 $\varphi(p_{n_*}(d_{21}, h, e_1, \dots, e_1)) = \varphi(p_{n_*}(d_{21}, a_{11}, e_1, \dots, e_1)) + \varphi(p_{n_*}(d_{21}, b_{22}, e_1, \dots, e_1)),$ that is,

$$\varphi(d_{21}h_{11} - (d_{21}h_{11})^*) = \varphi(d_{21}a_{11} - (d_{21}a_{11})^*).$$

Then we conclude, by injectivity of φ , that $d_{21}h_{11} - (d_{21}h_{11})^* = d_{21}a_{11} - (d_{21}a_{11})^*$, that is, $d_{21}(h_{11} - a_{11}) = 0$. Even more, $(e_2\mathfrak{A})(h_{11} - a_{11}) = 0$, which implies that $h_{11} = a_{11}$ by Condition (1) of Theorem 2.1.

Finally, given $d_{12} \in \mathfrak{A}_{12}$, a similar calculation gives us $h_{22} = b_{22}$. Therefore $h = a_{11} + b_{22}$.

Lemma 2.2. For any $a_{12} \in \mathfrak{A}_{12}$ and $b_{21} \in \mathfrak{A}_{21}$, we have $\varphi(a_{12}+b_{21}) = \varphi(a_{12})+\varphi(b_{21})$.

Proof. Since φ is surjective, given $\varphi(a_{12}) + \varphi(b_{21}) \in \mathfrak{A}'$ there exists $h \in \mathfrak{A}$ such that $\varphi(h) = \varphi(a_{12}) + \varphi(b_{21})$. We may write $h = h_{11} + h_{12} + h_{21} + h_{22}$, with $h_{jk} \in \mathfrak{A}_{jk}$ (k, j = 1, 2). Now, by Claims 2.2 and 2.3

 $\varphi(p_{n_*}(e_1, h, e_1, \dots, e_1)) = \varphi(p_{n_*}(e_1, a_{12}, e_1, \dots, e_1)) + \varphi(p_{n_*}(e_1, b_{21}, e_1, \dots, e_1)),$

that is,

$$\varphi(-h_{21} + h_{21}^*) = \varphi(-b_{21} + b_{21}^*)$$

Then, by injectivity of φ , $-h_{21} + h_{21}^* = -b_{21} + b_{21}^*$. Thus $h_{21} = b_{21}$. Moreover,

$$\varphi(p_{n_*}(e_2, h, e_2, \dots, e_2)) = \varphi(p_{n_*}(e_2, a_{12}, e_2, \dots, e_2)) + \varphi(p_{n_*}(e_2, b_{21}, e_2, \dots, e_2)),$$

that is,

$$\varphi(-h_{12} + h_{12}^*) = \varphi(-a_{12} + a_{12}^*).$$

Again, by injectivity of φ we conclude that $h_{12} = a_{12}$. Furthermore, given $d_{21} \in \mathfrak{A}_{21}$,

$$\varphi(d_{21}h_{11} - (d_{21}h_{11})^*) = \varphi(p_{n_*}(d_{21}, h, e_1, \dots, e_1))$$

$$=\varphi(p_{n_*}(d_{21}, a_{12}, e_1, \dots, e_1)) + \varphi(p_{n_*}(d_{21}, b_{21}, e_1, \dots, e_1)) = 0$$

Then we conclude, by injectivity of φ , that $d_{21}h_{11} - (d_{21}h_{11})^* = 0$, that is, $d_{21}h_{11} = 0$. Even more, $(e_2\mathfrak{A})h_{11} = 0$, which implies that $h_{11} = 0$ by Condition (1) of Theorem 2.1.

Finally, given $d_{12} \in \mathfrak{A}_{12}$, a similar calculation gives us $h_{22} = 0$. Therefore, we conclude that $h = a_{12} + b_{21}$.

Lemma 2.3. For any $a_{11} \in \mathfrak{A}_{11}$, $b_{12} \in \mathfrak{A}_{12}$, $c_{21} \in \mathfrak{A}_{21}$ and $d_{22} \in \mathfrak{A}_{22}$ we have

$$\varphi(a_{11} + b_{12} + c_{21} + d_{22}) = \varphi(a_{11}) + \varphi(b_{12}) + \varphi(c_{21}) + \varphi(d_{22})$$

Proof. Since φ is surjective, given $\varphi(a_{11}) + \varphi(b_{12}) + \varphi(c_{21}) + \varphi(d_{22}) \in \mathfrak{A}'$ there exists $h \in \mathfrak{A}$ such that $\varphi(h) = \varphi(a_{11}) + \varphi(b_{12}) + \varphi(c_{21}) + \varphi(d_{22})$. We may write $h = h_{11} + h_{12} + h_{21} + h_{22}$, with $h_{jk} \in \mathfrak{A}_{jk}$ (k, j = 1, 2). Applying Lemmas 2.1 and 2.2 we have

$$\varphi(h) = \varphi(a_{11}) + \varphi(b_{12}) + \varphi(c_{21}) + \varphi(d_{22}) = \varphi(a_{11} + d_{22}) + \varphi(b_{12} + c_{21})$$

Now, observing that $p_{n_*}(e_1, a_{11} + d_{22}, e_1, \dots, e_1) = 0 = p_{n_*}(e_1, b_{12}, e_1, \dots, e_1)$ and by Claims 2.2 and 2.3 we obtain

$$\begin{aligned} \varphi(p_{n_*}(e_1, h, e_1, \dots, e_1)) \\ &= \varphi(p_{n_*}(e_1, a_{11} + d_{22}, e_1, \dots, e_1)) + \varphi(p_{n_*}(e_1, b_{12} + c_{21}, e_1, \dots, e_1)) \\ &= \varphi(p_{n_*}(e_1, c_{21}, e_1, \dots, e_1)), \end{aligned}$$

that is,

$$\varphi(-h_{21}+h_{21}^*)=\varphi(-c_{21}+c_{21}^*).$$

Then, by injectivity of φ , $-h_{21} + h_{21}^* = -c_{21} + c_{21}^*$. Thus $h_{21} = c_{21}$.

In a similar way, using e_2 rather than e_1 in the previous calculation, we conclude that $h_{12} = b_{12}$. Also, given $x_{21} \in \mathfrak{A}_{21}$,

$$\begin{aligned} \varphi(p_{n_*}(x_{21}, h, e_1, \dots, e_1)) \\ &= \varphi(p_{n_*}(x_{21}, a_{11} + d_{22}, \dots, e_1)) + \varphi(p_{n_*}(x_{21}, b_{12} + c_{21}, e_1, \dots, e_1)) \\ &= \varphi(p_{n_*}(x_{21}, a_{11}, e_1, \dots, e_1)), \end{aligned}$$

since $p_{n_*}(x_{21}, b_{12} + c_{21}, e_1, \dots, e_1) = 0 = p_{n_*}(x_{21}, d_{22}, \dots, e_1)$. Again, by injectivity of φ we conclude, by following the same strategy as in the proof of Lemma 2.1, that $h_{11} = a_{11}$. Now, using e_2 rather than e_1 and x_{12} rather than x_{21} in the previous calculation we obtain $h_{22} = d_{22}$. Therefore, $h = a_{11} + b_{12} + c_{21} + d_{22}$.

Lemma 2.4. For any $a_{jk}, b_{jk} \in \mathfrak{A}_{jk}$, with $j \neq k$, we have $\varphi(a_{jk} + b_{jk}) = \varphi(a_{jk}) + \varphi(b_{jk})$.

Proof. We shall prove the case j = 1 and k = 2. The other case is done in a similar way. Since φ is surjective, given $\varphi(a_{12}) + \varphi(b_{12}) \in \mathfrak{A}'$ and $\varphi(-a_{12}^*) + \varphi(-b_{12}^*)$ there exist $h \in \mathfrak{A}$ and $t \in \mathfrak{A}$ such that $\varphi(h) = \varphi(a_{12}) + \varphi(b_{12})$ and $\varphi(t) = \varphi(-a_{12}^*) + \varphi(-b_{12}^*)$. We may write $h = h_{11} + h_{12} + h_{21} + h_{22}$ and $t = t_{11} + t_{12} + t_{21} + t_{22}$, with $h_{jk}, t_{jk} \in \mathfrak{A}_{jk}$ (k, j = 1, 2).

First we show that $h \in \mathfrak{A}_{12}$. By Claim 2.2 we get

$$\varphi(-h_{21} + h_{21}^*) = \varphi(p_{n_*}(e_1, h, e_1, \dots, e_1))$$

= $\varphi(p_{n_*}(e_1, a_{12}, e_1, \dots, e_1)) + \varphi(p_{n_*}(e_1, b_{12}, e_1, \dots, e_1)) = 0.$

Then, by injectivity of φ we obtain $h_{21} = 0$. Also, given $d_{12} \in \mathfrak{A}_{12}$,

$$\varphi(d_{12}h_{22} - (d_{12}h_{22})^*) = \varphi(p_{n_*}(d_{12}, h, e_2, \dots, e_2))$$

= $\varphi(p_{n_*}(d_{12}, a_{12}, e_2, \dots, e_2)) + \varphi(p_{n_*}(d_{12}, b_{12}, e_2, \dots, e_2)) = 0$

that is, $d_{12}h_{22} = 0$, which implies that $h_{22} = 0$ by Condition (1) of Theorem 2.1. Now, using $d_{21} \in \mathfrak{A}_{21}$ rather than d_{12} in the previous calculation, we conclude that $h_{11} = 0$. Therefore, $h = h_{12} \in \mathfrak{A}_{12}$.

In a similar way, we obtain $t = t_{21} \in \mathfrak{A}_{21}$. Finally, by Lemma 2.3

$$\begin{split} \varphi(a_{12} + b_{12} - a_{12}^* - b_{12}^*) &= \varphi(p_{n_*}(e_1 + a_{12}, e_2 + b_{12}, e_2, \dots, e_2)) \\ &= p_{n_*}(\varphi(e_1 + a_{12}), \varphi(e_2 + b_{12}), \varphi(e_2), \dots, \varphi(e_2)) \\ &= p_{n_*}(\varphi(e_1), \varphi(e_2), \varphi(e_2), \dots, \varphi(e_2)) \\ &+ p_{n_*}(\varphi(e_1), \varphi(b_{12}), \varphi(e_2), \dots, \varphi(e_2)) \\ &+ p_{n_*}(\varphi(a_{12}), \varphi(e_2), \varphi(e_2), \dots, \varphi(e_2)) \\ &= \varphi(p_{n_*}(e_1, e_2, e_2, \dots, e_2)) \\ &+ \varphi(p_{n_*}(a_{12}, e_2, e_2, \dots, e_2)) \\ &+ \varphi(p_{n_*}(a_{12}, b_{12}, e_2, \dots, e_2)) \\ &+ \varphi(p_{n_*}(a_{12}, b_{12}, e_2, \dots, e_2)) \\ &= \varphi(a_{12} - a_{12}^*) + \varphi(b_{12} - b_{12}^*) \\ &= \varphi(a_{12}) + \varphi(b_{12}) + \varphi(-a_{12}^*) + \varphi(-b_{12}^*) \\ &= \varphi(h_{12}) + \varphi(t_{21}) = \varphi(h_{12} + t_{21}). \end{split}$$

Since φ is injective, we have $a_{12} + b_{12} - a_{12}^* - b_{12}^* = h_{12} + t_{21}$, this is, $h = h_{12} = a_{12} + b_{12}$.

Lemma 2.5. For any $a_{jj}, b_{jj} \in \mathfrak{A}_{jj}$, with $j \in \{1, 2\}$, we have $\varphi(a_{jj} + b_{jj}) = \varphi(a_{jj}) + \varphi(b_{jj})$.

Proof. We shall prove the case j = 1, since the other case is done in a similar way. Since φ is surjective, given $\varphi(a_{11}) + \varphi(b_{11}) \in \mathfrak{A}'$ there exists $h \in \mathfrak{A}$ such that $\varphi(h) = \varphi(a_{11}) + \varphi(b_{11})$. We may write $h = h_{11} + h_{12} + h_{21} + h_{22}$, with $h_{jk} \in \mathfrak{A}_{jk}$ (k, j = 1, 2). Now, by Claim 2.2

$$\varphi(-h_{21} + h_{21}^*) = \varphi(p_{n_*}(e_1, h, e_1, \dots, e_1))$$

= $\varphi(p_{n_*}(e_1, a_{11}, e_1, \dots, e_1)) + \varphi(p_{n_*}(e_1, b_{11}, e_1, \dots, e_1)) = 0.$

Then, by injectivity of φ we obtain $h_{21} = 0$. Also,

$$\varphi(-h_{12} + h_{12}^*) = \varphi(p_{n_*}(e_2, h, e_2, \dots, e_2))$$

= $\varphi(p_{n_*}(e_2, a_{11}, e_2, \dots, e_2)) + \varphi(p_{n_*}(e_2, b_{11}, e_2, \dots, e_2)) = 0,$

that is, $h_{12} = 0$ by injectivity of φ . Moreover, given $d_{12} \in \mathfrak{A}_{12}$,

$$\varphi(d_{12}h_{22} - (d_{12}h_{22})^*) = \varphi(p_{n_*}(d_{12}, h, e_2, \dots, e_2))$$

= $\varphi(p_{n_*}(d_{12}, a_{11}, e_2, \dots, e_2)) + \varphi(p_{n_*}(d_{12}, b_{11}, e_2, \dots, e_2))$
= 0.

Then, by injectivity of φ , $d_{12}h_{22} = 0$, which implies that $h_{22} = 0$ by Condition (1) of Theorem 2.1. Finally, given $d_{21} \in \mathfrak{A}_{21}$, by Lemmas 2.3 and 2.4 we have

$$\begin{aligned} \varphi(d_{21}h_{11} - (d_{21}h_{11})^*) &= \varphi(p_{n_*}(d_{21}, h, e_1, \dots, e_1)) \\ &= \varphi(p_{n_*}(d_{21}, a_{11}, e_1, \dots, e_1)) + \varphi(p_{n_*}(d_{21}, b_{11}, e_1, \dots, e_1)) \\ &= \varphi(d_{21}a_{11} - (d_{21}a_{11})^*) + \varphi(d_{21}b_{11} - (d_{21}b_{11})^*) \\ &= \varphi(d_{21}a_{11}) + \varphi(-(d_{21}a_{11})^*) + \varphi(d_{21}b_{11}) + \varphi(-(d_{21}b_{11})^*) \\ &= \varphi(d_{21}a_{11} + d_{21}b_{11}) + \varphi(-(d_{21}a_{11})^* - (d_{21}b_{11})^*) \\ &= \varphi(d_{21}(a_{11} + b_{11}) - (a_{11}^* + b_{11}^*)d_{21}^*), \end{aligned}$$

that is, $d_{21}h_{11} - (d_{21}h_{11})^* = d_{21}(a_{11} + b_{11}) - (a_{11}^* + b_{11}^*)d_{21}^*$, by injectivity of φ . Thus, $d_{21}(h_{11} - (a_{11} + b_{11})) = 0$, which implies that $h_{11} = a_{11} + b_{11}$ by Condition (1) of Theorem 2.1.

Proof of Theorem 2.1. Now using Lemmas 2.3, 2.4 and 2.5 is easy see that φ is additive. Besides, using additivity of φ and since φ is unital, we have for $a \in \mathfrak{A}$,

$$2^{n-2}(\varphi(a) - \varphi(a)^*) = p_{n_*}(\varphi(a), 1_{\mathfrak{A}'}, \dots, 1_{\mathfrak{A}'}) = p_{n_*}(\varphi(a), \varphi(1_{\mathfrak{A}}), \dots, \varphi(1_{\mathfrak{A}}))$$
$$= \varphi(p_{n_*}(a, 1_{\mathfrak{A}}, \dots, 1_{\mathfrak{A}})) = \varphi(2^{n-2}(a - a^*))$$
$$= 2^{n-2}\varphi(a - a^*) = 2^{n-2}(\varphi(a) - \varphi(a^*)),$$

then $\varphi(a^*) = \varphi(a)^*$ and we conclude that φ preserves involution.

0

Remark 2.1. Observe that the Theorem 2.1 holds for any field of characteristic different of 2. In the proof the Theorem 2.1 we established the additivity of φ without using the unital assumption of φ .

Theorem 2.2. Let \mathfrak{A} and \mathfrak{A}' be two alternative *-algebras with identities $1_{\mathfrak{A}}$ and $1_{\mathfrak{A}'}$, respectively, and e_1 and $e_2 = 1_{\mathfrak{A}} - e_1$ nontrivial symmetric idempotents in \mathfrak{A} . Let φ : $\mathfrak{A} \to \mathfrak{A}'$ be a complex scalar multiplication bijective unital map. Suppose that \mathfrak{A} satisfies the conditions of the Theorem 2.1, namely,

$$(e_j\mathfrak{A})x = \{0\}$$
 for any $j \in \{1, 2\}$ implies $x = 0$,

 $\varphi(p_{n_*}(a, b, \xi, \dots, \xi)) = p_{n_*}(\varphi(a), \varphi(b), \varphi(\xi), \dots, \varphi(\xi)),$

for all $a, b \in \mathfrak{A}$ and $\xi \in \{e_1, e_2, 1_{\mathfrak{A}}\}.$

Even more, if \mathfrak{A}' satisfies the condition

(3)
$$(\varphi(e_j)\mathfrak{A}')y = \{0\} \text{ for any } j \in \{1,2\} \text{ implies } y = 0,$$

then φ is *-isomorphism.

With this hypothesis and Theorem 2.1 we have already proved that φ is *-additive. It remains for us to show that φ preserves product. In order to do that we will prove some more lemmas. Firstly, we observe that,

Claim 2.4. $q_j = \varphi(e_j)$ is an idempotent in \mathfrak{A}' , for $j \in \{1, 2\}$.

Proof. Since φ is a complex scalar multiplication, it follows that

$$2^{n-1}i q_j = 2^{n-1}i\varphi(e_j) = \varphi(2^{n-1}ie_j) = \varphi(p_{n_*}(ie_j, e_j, 1_{\mathfrak{A}}, \dots, 1_{\mathfrak{A}}))$$

= $p_{n_*}(i\varphi(e_j), \varphi(e_j), \varphi(1_{\mathfrak{A}}), \dots, \varphi(1_{\mathfrak{A}}))$
= $p_{n_*}(i\varphi(e_j), \varphi(e_j), 1_{\mathfrak{A}'}, \dots, 1_{\mathfrak{A}'})) = 2^{n-1}i\varphi(e_j)^2 = 2^{n-1}i q_j^2.$

Then we can conclude that $q_j = q_j^2$. Moreover, since e_j is a idempotent in \mathfrak{A} we have that $p_{n_*}(e_j, 1_{\mathfrak{A}}, \ldots, 1_{\mathfrak{A}}) = 0$. Besides,

$$0 = \varphi(0) = \varphi(p_{n_*}(e_j, 1_{\mathfrak{A}}, \dots, 1_{\mathfrak{A}})) = p_{n_*}(q_j, 1_{\mathfrak{A}'}, \dots, 1_{\mathfrak{A}'}).$$

Thus, $q_j - q_j^* = 0$, that is, $q_j = q_j^*$.

Lemma 2.6. For any $a \in \mathfrak{A}$, $\varphi(e_j a) = \varphi(e_j)\varphi(a)$ and $\varphi(ae_j) = \varphi(a)\varphi(e_j)$, with $j \in \{1, 2\}$.

Proof. Firstly, observe that

$$p_{n_*}(ia, e_j, 1_{\mathfrak{A}}, \dots, 1_{\mathfrak{A}}) = 2^{n-2}i(ae_j + e_ja^*)$$

and

$$p_{n_*}(a, e_j, 1_{\mathfrak{A}}, \dots, 1_{\mathfrak{A}}) = 2^{n-2}(ae_j - e_ja^*).$$

Still, by Condition (2) of Theorem 2.1 and *-additivity of φ ,

$$\varphi(2^{n-2}i(ae_j + e_ja^*)) = \varphi(p_{n_*}(ia, e_j, 1_\mathfrak{A}, \dots, 1_\mathfrak{A})) = p_{n_*}(\varphi(ia), \varphi(e_j), 1_{\mathfrak{A}'}, \dots, 1_{\mathfrak{A}'})$$
$$= 2^{n-2}i(\varphi(a)\varphi(e_j) + \varphi(e_j)\varphi(a)^*)$$

and

$$\begin{aligned} \varphi(2^{n-2}(ae_j - e_j a^*)) &= \varphi(p_{n_*}(a, e_j, 1_{\mathfrak{A}}, \dots, 1_{\mathfrak{A}})) = p_{n_*}(\varphi(a), \varphi(e_j), 1_{\mathfrak{A}'}, \dots, 1_{\mathfrak{A}'}) \\ &= 2^{n-2}(\varphi(a)\varphi(e_j) - \varphi(e_j)\varphi(a)^*). \end{aligned}$$

Now, since φ is *-additive, multiplying the second equality by *i* and adding these two equations we obtain $\varphi(ae_j) = \varphi(a)\varphi(e_j)$. The second statement is obtained in a similar way.

Consider the Peirce decomposition of \mathfrak{A}' with respect to idempotents $q_j = \varphi(e_j)$ of \mathfrak{A}' (with $j \in \{1, 2\}$) given by $\mathfrak{A}' = \mathfrak{A}'_{11} \oplus \mathfrak{A}'_{12} \oplus \mathfrak{A}'_{21} \oplus \mathfrak{A}'_{22}$, where $\mathfrak{A}'_{kj} := q_k \mathfrak{A}' q_j$ for $k, j \in \{1, 2\}$.

Lemma 2.7. $\varphi(\mathfrak{A}_{jk}) \subset \mathfrak{A}'_{jk}$, for $j, k \in \{1, 2\}$.

Proof. Given $x \in \mathfrak{A}_{jk}$, we have $x = e_j x e_k$ and then, by Lemma 2.6,

$$\varphi(x) = \varphi(e_j)\varphi(xe_k) = \varphi(e_j)\varphi(x)\varphi(e_k) \in \mathfrak{A}'_{jk}.$$

Lemma 2.8. For $j \neq k$, we have:

- If $a_{jk} \in \mathfrak{A}_{jk}$ and $b_{kk} \in \mathfrak{A}_{kk}$ then $\varphi(a_{jk}b_{kk}) = \varphi(a_{jk})\varphi(b_{kk})$;
- If $a_{jk} \in \mathfrak{A}_{jk}$ and $b_{jk} \in \mathfrak{A}_{jk}$ then $\varphi(a_{jk}b_{jk}) = \varphi(a_{jk})\varphi(b_{jk})$;
- If $a_{jj} \in \mathfrak{A}_{jj}$ and $b_{jk} \in \mathfrak{A}_{jk}$ then $\varphi(a_{jj}b_{jk}) = \varphi(a_{jj})\varphi(b_{jk})$;
- If $a_{jk} \in \mathfrak{A}_{jk}$ and $b_{kj} \in \mathfrak{A}_{kj}$ then $\varphi(a_{jk}b_{kj}) = \varphi(a_{jk})\varphi(b_{kj})$.

Proof. In order to prove the first statement, on the one hand, by Lemma 2.7

$$\varphi(a_{jk}b_{kk}) - \varphi(a_{jk}b_{kk})^* = \varphi(a_{jk}b_{kk} - (a_{jk}b_{kk})^*) = \varphi(p_{n_*}(a_{jk}, b_{kk}, e_k, \dots, e_k))$$
$$= p_{n_*}(\varphi(a_{jk}), \varphi(b_{kk}), q_k, \dots, q_k)$$
$$= \varphi(a_{jk})\varphi(b_{kk}) - (\varphi(a_{jk})\varphi(b_{kk}))^*$$

and then $\varphi(a_{jk}b_{kk}) = \varphi(a_{jk})\varphi(b_{kk}).$

Now to prove the second statement, we have

$$\begin{aligned} \varphi(a_{jk}b_{jk}) &- \varphi(a_{jk}b_{jk})^* - 2^{n-3}\varphi(b_{jk}a_{jk})^* + 2^{n-3}\varphi(b_{jk}a_{jk}^*)^* \\ &= \varphi(a_{jk}b_{jk}) - (a_{jk}b_{jk})^* - 2^{n-3}(b_{jk}a_{jk})^* + 2^{n-3}(b_{jk}a_{jk}^*)^*) \\ &= \varphi(p_{n_*}(a_{jk}, b_{jk}, e_j, \dots, e_j)) = p_{n_*}(\varphi(a_{jk}), \varphi(b_{jk}), q_j, \dots, q_j) \\ &= \varphi(a_{jk})\varphi(b_{jk}) - \varphi(a_{jk})^*\varphi(b_{jk})^* \\ &- 2^{n-3}\varphi(b_{jk})^*\varphi(a_{jk})^* + 2^{n-3}\varphi(b_{jk})^*\varphi(a_{jk}^*)^* \end{aligned}$$

and then $\varphi(a_{jk}b_{jk}) = \varphi(a_{jk})\varphi(b_{jk}).$

$$(x_{kj}, a_{jj}, b_{jj}) + (b_{jj}, a_{jj}, x_{kj}) = 0,$$

for all $x_{kj} \in \mathfrak{A}_{kj}, a_{jj}, b_{jj} \in \mathfrak{A}_{jj}$, for $k, j \in \{1, 2\}$.

Since alternative algebras are flexible, we have

The others statements are proved in a similar way.

Lemma 2.9. If $a_{jj}, b_{jj} \in \mathfrak{A}_{jj}$, with $j \in \{1, 2\}$, then $\varphi(a_{jj}b_{jj}) = \varphi(a_{jj})\varphi(b_{jj})$.

Proof. Let x_{kj} be an element of \mathfrak{A}_{kj} , with $j \neq k$. Using Lemma 2.8 we obtain

$$\begin{aligned} \varphi(x_{kj})\varphi(a_{jj}b_{jj}) &= \varphi(x_{kj}a_{jj}b_{jj}) = \varphi((x_{kj}a_{jj})b_{jj}) \\ &= (\varphi(x_{kj})\varphi(a_{jj}))\varphi(b_{jj}) = \varphi(x_{kj})(\varphi(a_{jj})\varphi(b_{jj})) \end{aligned}$$

that is,

$$\varphi(x_{kj})(\varphi(a_{jj}b_{jj}) - \varphi(a_{jj})\varphi(b_{jj})) = 0.$$

Now, by Lemma 2.7, $\varphi(x_{kj}) \in \mathfrak{A}'_{kj}$ as well as $\varphi(a_{jj}b_{jj})$ and $\varphi(a_{jj})\varphi(b_{jj}) \in \mathfrak{A}'_{jj}$. Then, $(\varphi(e_k)\mathfrak{A}')(\varphi(a_{jj}b_{jj}) - \varphi(a_{jj})\varphi(b_{jj})) = 0$, which implies that $\varphi(a_{jj}b_{jj}) = \varphi(a_{jj})\varphi(b_{jj})$ by Condition (3) of Theorem 2.2.

Proof of Theorem 2.2. By additivity of φ and Lemmas 2.8 and 2.9, it follows that $\varphi(ab) = \varphi(a)\varphi(b)$, for all $a, b \in \mathfrak{A}$, this is, φ preserves product as required.

3. COROLLARIES

Now we present some consequences of our main results.

Corollary 3.1. Let \mathfrak{A} and \mathfrak{A}' be two alternative *-algebras with identities $1_{\mathfrak{A}}$ and $1_{\mathfrak{A}'}$, respectively, and e_1 and $e_2 = 1_{\mathfrak{A}} - e_1$ nontrivial symmetric idempotents in \mathfrak{A} . Let φ : $\mathfrak{A} \to \mathfrak{A}'$ be a complex scalar multiplication bijective unital map. Suppose that \mathfrak{A} satisfies

 $(e_j\mathfrak{A})x = \{0\}$ for any $j \in \{1, 2\}$ implies x = 0.

Even more, suppose that \mathfrak{A}' *satisfies*

$$(\varphi(e_j)\mathfrak{A}')y = \{0\}$$
 for any $j \in \{1,2\}$ implies $y = 0$.

In this conditions, $\varphi : \mathfrak{A} \to \mathfrak{A}'$ is a multiplicative *-Lie n-map if and only if φ is *isomorphism.

It is easy to see that any prime alternative algebra satisfy Conditions (1) and (3), so we have the following result:

Corollary 3.2. Let \mathfrak{A} and \mathfrak{A}' be two prime alternative *-algebras with identities $1_{\mathfrak{A}}$ and $1_{\mathfrak{A}'}$, respectively, and e_1 and $e_2 = 1_{\mathfrak{A}} - e_1$ nontrivial symmetric idempotents in \mathfrak{A} . In this condition, a complex scalar multiplication $\varphi : \mathfrak{A} \to \mathfrak{A}'$ is a bijective unital multiplicative *-Lie n-map if and only if φ is *-isomorphism.

To finish we will give an application of the Corollary 3.2. A complete normed alternative complex *-algebra A is called an *alternative* C^* -algebra if it satisfies the condition: $||a^*a|| = ||a||^2$, for all elements $a \in A$. Alternative C^* -algebras are non-associative generalizations of C^* -algebras and appear in various areas in Mathematics (see more details in the references [18] and [19]). An alternative C^* -algebra A is called an *alternative* W^* -algebra if it is a dual Banach space and a prime alternative W^* -algebra is called *alternative* W^* -algebra are unital.

Corollary 3.3. Let \mathfrak{A} and \mathfrak{A}' be two alternative W^* -factors. In this condition, a complex scalar multiplication $\varphi : \mathfrak{A} \to \mathfrak{A}'$ is a bijective unital multiplicative *-Lie n-map if and only if φ is *-isomorphism.

REFERENCES

- [1] Z. Bai and S. Du, *Strong commutativity preserving maps on rings*, Rocky Mountain J. Math. **44** (2014), no. 3, 733-742.
- [2] M. Brešar and M. Fošner, On rings with involution equipped with some new product, Publ. Math. Debrecen 57 (2000), no. 1-2, 121-134.
- [3] Q. Chen and C. Li, Additivity of Lie multiplicative mappings on rings, Adv. in Math.(China), 46 (2017), no. 1, 82-90.
- [4] J.Cui and C. Li, Maps preserving product XY YX* on factor von Neumann algebras, Linear Algebra Appl. 431, (2009), no. 5-7, 833-842.
- [5] X. Fang, C. Li and F. Lu, Nonlinear mappings preserving product XY + YX* on factor von Neumann algebras, Linear Algebra Appl. 438, (2013), no. 5, 2339-2345.
- [6] B. L. M. Ferreira and B. T. Costa, *-Jordan-type maps on C*-algebras, Comm. Algebra, online version, DOI: 10.1080/00927872.2021.1937636, 2021.
- [7] B. L. M. Ferreira and B. T. Costa, *-*Lie-Jordan-type maps on C**-algebras, Bull. Iranian Math. Soc., online version, https://doi.org/10.1007/s41980-021-00609-4, 2021.
- [8] B. L. M. Ferreira, *Multiplicative maps on triangular n-matrix rings*, International Journal of Mathematics, Game Theory and Algebra, 23, p. 1-14, 2014.

- [9] J. C. M. Ferreira and B. L. M. Ferreira, Additivity of n-multiplicative maps on alternative rings, Comm. in Algebra 44 (2016), no. 4, 1557-1568
- [10] R. N. Ferreira and B. L. M. Ferreira, Jordan triple derivation on alternative rings, Proyecciones 37 (2018), no. 1, 171-180.
- [11] B. L. M. Ferreira, J. C. M. Ferreira, H. Guzzo Jr., Jordan maps on alternatives algebras, JP J. Algebra Number Theory Appl. 31 (2013), no. 2, 129-142.
- [12] B. L. M. Ferreira, J. C. M. Ferreira, H. Guzzo Jr., Jordan triple elementary maps on alternative rings, Extracta Math. 29 (2014), no. 1-2, 1-18.
- [13] B. L. M. Ferreira and H. Guzzo Jr., *Lie maps on alternative rings*, Boll. Unione Mat. Ital., **13** (2020), 181-192.
- [14] M. Fošner, Prime rings with involution equipped with some new product, Southeast Asian Bull. Math. 26 (2002), no. 1, 27-31.
- [15] I. R. Hentzel, E. Kleinfeld, H. F. Smith, Alternative rings with idempotent, J. Algebra 64 (1980), no. 2, 325-335.
- [16] W. S. Martindale III, Lie isomorphisms of operator algebras Pacific J. Math 38 (1971), 717-735.
- [17] W. S. Martindale III, When are multiplicative mappings additive? Proc. Amer. Math. Soc. 21 (1969), 695-698.
- [18] García M. C., Palacios Á. R., Non-associative normed algebras. Vol. 1. The Vidav-Palmer and Gelfand-Naimark theorems. Encyclopedia of Mathematics and its Applications, 154. Cambridge University Press, Cambridge, 2014. xxii+712 pp.
- [19] García M. C., Palacios Á. R., Non-associative normed algebras. Vol. 2. Representation theory and the Zel'manov approach. Encyclopedia of Mathematics and its Applications, 167. Cambridge University Press, Cambridge, 2018. xxvii+729 pp.

ALINE JAQUELINE DE OLIVEIRA ANDRADE, FEDERAL UNIVERSITY OF ABC, DOS ESTADOS AVENUE, 5001, 09210-580, SANTO ANDRÉ, BRAZIL, *E-mail*: aline.jaqueline@ufabc.edu.br

ELISABETE BARREIRO, UNIVERSITY OF COIMBRA, CMUC, DEPARTMENT OF MATHEMATICS, APARTADO 3008 EC SANTA CRUZ 3001 – 501 COIMBRA, PORTUGAL, *E-mail*: mefb@mat.uc.pt

BRUNO LEONARDO MACEDO FERREIRA, FEDERAL UNIVERSITY OF TECHNOLOGY, AVENIDA PROFES-SORA LAURA PACHECO BASTOS, 800, 85053-510, GUARAPUAVA, BRAZIL, *E-mail*: brunolmfalg@gmail.com