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Simple Summary: The most prevalent and lethal primary brain tumor, glioblastoma multiforme
(GBM), exhibits fast growth and widespread invasion and has a poor prognosis. The recurrence
and mortality rates of GBM patients are still significant due to the intricacy of their molecular pro-
cess. Therefore, screening GBM biomarkers is urgently required to demonstrate the therapy impact
and enhance the prognosis. The findings of this study revealed 11 genes (UBC, HDAC1, CTNNB1,
TRIM28, CSNK2A1, RBBP4, TP53, APP, DAB1, PINK1, and RELN), five miRNAs (has-mir-221-3p,
hsa-mir-30a-5p, hsa-mir-15a-5p, has-mir-130a-3p, and hsa-let-7b-5p), six metabolites (HDL,
N6-acetyl-L-lysine, cholesterol, formate, N, N-dimethylglycine/xylose, and X2. piperidinone), and
15 distinct signaling pathways that are essential for the development of GBM disease. The top genes,
miRNAs, and metabolite signatures identified in this study may be used to develop early diagnosis
procedures and construct individualized therapeutic approaches to GBM.

Abstract: The most aggressive primary malignant brain tumor in adults is glioblastoma (GBM),
which has poor overall survival (OS). There is a high relapse rate among patients with GBM despite
maximally safe surgery, radiation therapy, temozolomide (TMZ), and aggressive treatment. Hence,
there is an urgent and unmet clinical need for new approaches to managing GBM. The current study
identified modules (MYC, EGFR, PIK3CA, SUZ12, and SPRK2) involved in GBM disease through the
NeDRex plugin. Furthermore, hub genes were identified in a comprehensive interaction network
containing 7560 proteins related to GBM disease and 3860 proteins associated with signaling pathways
involved in GBM. By integrating the results of the analyses mentioned above and again performing
centrality analysis, eleven key genes involved in GBM disease were identified. ProteomicsDB and
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Gliovis databases were used for determining the gene expression in normal and tumor brain tissue.
The NetworkAnalyst and the mGWAS-Explorer tools identified miRNAs, SNPs, and metabolites
associated with these 11 genes. Moreover, a literature review of recent studies revealed other
lists of metabolites related to GBM disease. The enrichment analysis of identified genes, miRNAs,
and metabolites associated with GBM disease was performed using ExpressAnalyst, miEAA, and
MetaboAnalyst tools. Further investigation of metabolite roles in GBM was performed using pathway,
joint pathway, and network analyses. The results of this study allowed us to identify 11 genes (UBC,
HDAC1, CTNNB1, TRIM28, CSNK2A1, RBBP4, TP53, APP, DAB1, PINK1, and RELN), five miRNAs
(hsa-mir-221-3p, hsa-mir-30a-5p, hsa-mir-15a-5p, hsa-mir-130a-3p, and hsa-let-7b-5p), six metabolites
(HDL, N6-acetyl-L-lysine, cholesterol, formate, N, N-dimethylglycine/xylose, and X2. piperidinone)
and 15 distinct signaling pathways that play an indispensable role in GBM disease development. The
identified top genes, miRNAs, and metabolite signatures can be targeted to establish early diagnostic
methods and plan personalized GBM treatment strategies.

Keywords: glioblastoma; biomarker selection; metabolomics; pathway analysis; personalized ther-
apy; network analysis; inflammationomics; autophagy

1. Introduction

Glioblastoma (GBM) is the most common high-grade primary malignant brain tumor
with a poor prognosis [1,2]. It is urgently necessary to develop new therapeutic strategies
for GBM with approved treatments due to its poor survival rates [3,4]. Following decades
of basic science investment in GBM, innovative clinical trials currently utilize improved
genetic and epigenetic profiling to treat the disease [5,6]. Proneural, neural, classical,
and mesenchymal are the four molecular subtypes of GBM [7]. The complex genetic
profile of GBM is revealed by multi-omics studies of the Cancer Genome Atlas Research
Network (TCGA), the Chinese Glioma Genome Atlas (CGGA), and other databases. Genetic
alterations, gene transcription, and DNA methylation are molecular markers to determine
prognosis and therapy selection. Molecular subtype signatures with higher resolution are
essential for more effective personalized therapy [8].

A treatment for GBM can be developed if a gene signature can be identified [9]. This
can be useful for diagnosis, treatment, prognosis prediction, and drug development. By
analyzing the differential gene expression of astrocytomas or non-GBM gliomas, the re-
searchers could identify a 33-gene signature of GBM. The 33 discovered signature genes
included the downregulated genes CHST9, CSDC2, ENHO, FERMT1, IGFN1, LINC00836,
MGAT4C, SHANK2, and VIPR2, as well as the overexpressed genes COL6A2, ABCC3,
COL8A1, FAM20A, ADM, CTHRC1, PDPN, IBSP, MIR210HG, GPX8, MYL9, and PDLIM4.
CELLO2GO’s protein functional analysis indicates that these signature genes are impli-
cated in various biological processes. These processes include cell proliferation, adhesion,
signal transduction, and the formation of anatomical structures. Many of these genes were
annotated as being sensitive to stress [10]. Historically, GBMs were considered among
the most heterogeneous tumors due to their diverse cellular organization and histological
appearance. In addition to Telomerase Reverse Transcriptase (TERT) promoter muta-
tions, they commonly carry copy number changes in chromosomes 7 and 10 (+7/−10).
Genetic changes such as amplifying the Epidermal Growth Factor Receptor (EGFR), Platelet-
Derived Growth Factor Receptor Alpha (PDGFRA), and Cyclin-Dependent Kinases 4 and 6
(CDK4/6), deletions or inactivating mutations of TP53, Phosphatase and Tensin Homolog
(PTEN), Neurofibromin 1 (NF1), and CDKN2A/B could induce the variability of tumors
among GBM patients [11].

Besides the crucial role that gene signatures play in GBM pathogenesis, their miRNAs
can also play a pivotal role in the disease. As a result of a comprehensive, integrated analysis
of microarray data, it was possible to differentiate GBM from other CNS malignancies.
A total of 176 samples from 118 individuals diagnosed with GBM were included in the
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study for identifying dysregulated miRNAs. The only associations with GBM were found
for the miRNAs hsa-miR-21-3p, hsa-miR-338-5p, hsa-miR-485-5p, hsa-miR-491-5p, and
hsa-miR-1290. This characteristic was thoroughly described, focusing on tumor invasion,
progression, and patient survival. Therefore, these five naturally occurring molecules
exhibit differential expression in GBM and are proposed as prospective therapeutic targets.
They affect various genes implicated in important signaling pathways, such as MAPK/ERK,
calcium, PI3K/AKT, mTOR, and Wnt [12].

Additionally, the integrating bioinformatics and clinical analyses demonstrated the
potential use of miR-1224-5p, as a prognostic and therapeutic biomarker in GBM [13].
Based on the results of another study, PLK1, CCNA2, CCNB2, and AURKA were selected
as potential diagnostic marker genes based on crosstalk genes in the KEGG, PPI network,
and WGCNA studies. According to the survival study, a low overall survival (OS) rate was
substantially correlated with increased mRNA expression of PLK1, CCNA2, and AURKA.
In particular, it was discovered that hsa-let-7b-5p functions as a key miRNA, controlling
potential glioma-related genes. It was verified that hsa-let-7b-5p could obstruct glioma cell
motility, invasion, and cell cycle [14].

This study contributes to a deeper understanding of the mechanistic basis of GBM
disease. Based on phenotypic insight, transcriptomics, metabolomics, and proteogenomics
are considered multi-omics approaches that contribute to discovering biomarkers for GBM
diagnosis/therapeutics/prognostics. Our findings provide a new point of reference for the
prognostic prediction of GBM and contribute to an in-depth understanding of the molecular
mechanisms in GBM development. Furthermore, these novel signature genes might be
exploited as therapeutic targets for GBM.

2. Materials and Methods
2.1. Data Integration Approaches

In our study, we did not use statistical methods for integrative analysis. This approach
is appropriate when integrating different types of data together and then analyzing them.
As part of the integration process, a sequential approach was first taken to analyze the
protein network of different strategies. A regulatory network was constructed from the
obtained proteins to identify important miRNAs. Following that, metabolic networks were
analyzed separately and in conjunction with the important proteins identified.

Additionally, the type of enrichment method used is specified in the web server
method. Since the approach used in this study was not one of machine learning, inte-
grative statistical methods, variable selection methods (supervised, unsupervised, and
semi-supervised), and Bayesian variable selection were not used. Moreover, stability anal-
ysis of the identified omics features in the current study was not included. Stability and
validity are discussed to assess the reliability of the selected set of features and variables.
One possible measure of stability which can be used in research is the measurement of
the consistency of the obtained features across different data sets and platforms. To select
features, one must consider whether the model is supervised, unsupervised, or semi-
supervised. Since this study did not use supervised, unsupervised, or semi-supervised
methods, the selection of features did not occur, so the stability was checked [15].

2.2. Disease Module Identification

This study found GBM-related disease modules using the NeDRex plugin version 1.0.0
(https://nedrex.net/ (accessed on 13 January 2022)) implemented in the Cytoscape plat-
form (version 3.7.2). This investigation used two different NeDRex algorithms: MuST
(Multi-Steiner trees) and DIAMOnD (DIseAse MOdule Detection). To extract a con-
nected subnetwork engaged in the disease pathways, MuST combines a variety of ap-
proximate Steiner tree calculations that are not all unique [16,17]. Based on the idea that
the connectivity importance for known disease proteins is highly distinctive, the DIA-
MOnD algorithm determines the disease module surrounding a set of known disease
genes or proteins (seeds) [18]. The genes collected from various algorithms were each

https://nedrex.net/
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given special consideration. A summary of the data sources used in this study is pre-
sented in Table 1. Under the heading “Set of genes obtained from the two algorithms of
MuST and DIAMOnD are listed and used in the study” (122 and 305 genes, respectively)
(Supplementary Tables S1 and S2), the genes collected from various algorithms were each
given special consideration. A schematic figure of the bioinformatics approaches designed
in this study is given in Figure 1.

Table 1. Data sources for GBM multi-omics analysis.

Database Name Type of Data Purpose

The Cancer Genome Atlas Research
Network (TCGA) Genomic, Epigenomic, Transcriptomic Investigate the genetic profile and

molecular subtypes of GBM

NeDRex plugin version 1.0.0 Disease Module Detection Find GBM-related disease modules in
the Cytoscape platform

MuST Algorithm Approximate Steiner Tree Calculation Extract a connected subnetwork
engaged in the disease pathways

DIAMOnD Algorithm Disease Module Detection
Determine the disease module

surrounding a set of known disease
genes or proteins

STRING Proteins Protein–protein Interaction Networks

KEGG Proteins Find GBM-related proteins

HMDD miRNAs and proteins GBM-related miRNAs-proteins
Interaction network

GlioVis

Over 6500 tumor samples of approximately
50 expression datasets of a large collection of
brain tumor entities (mostly gliomas), both

adult and pediatric

To analyze the correlation between
identified genes based on the TCGA

database

OSgbm

Transcriptome profiles and clinical information
from The Cancer Genome Atlas (TCGA), Gene

Expression Omnibus (GEO), and Chinese
Glioma Genome Atlas (CGGA).

An online consensus survival analysis
web server
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2.3. GBM-Related Protein–Protein Interaction Network

Several databases, including DisGeNET (https://www.disgenet.org (accessed on
23 April 2021)) [19,20], STRING (https://string-db.org (accessed on 12 August 2021)) [21],
KEGG (https://www.genome.jp/kegg) [22], and the Human microRNA Disease Database
(HMDD) (https://www.cuilab.cn/hmdd (accessed on 27 March 2019)) [23], were used to
identify significant proteins associated with GBM disease. Four keywords and disease IDs
were used to extract data from DisGeNET, including GBM multiforme (C1621958), brain
GBM (C0349543), brain stem GBM (C1332610), and GBM multiforme, somatic (C4016231).
The STRING database was checked using GBM multiforme and brain GBM multiforme
keywords. The KEGG database was used to extract information about the pathways
involved in the development of GBM disease, including glioma (hsa05214 (accessed on
26 September 2006)), the mTOR signaling pathway (hsa04150 (accessed on 16 March 2006)),
the p53 signaling pathway (hsa04115 (accessed on 24 July 2007)), the cell cycle (hsa04110
(accessed on 3 March 2023)), cytokine–cytokine receptor interaction (hsa04060 (accessed
on 21 October 2020)), and the signaling pathways of calcium (hsa04020 (accessed on
18 May 2023)), ErbB (hsa04012 (accessed on 4 April 2007)), and MAPK (hsa04010 (accessed
on 11 April 2023)). The acquired results were combined for network reconstruction in
order to provide a list of 7560 proteins (Supplementary Table S3). In the next step, the
protein–protein interaction network between these 7560 cases was reconstructed using
the GeneMANIA plugin [24] and Cytoscape software (version 3.7.2). The following step
involved a centrality analysis with various characteristics, including degree, closeness,
betweenness, centroid, eigenvector, bridge, and eccentricity [25]. The first 20 proteins
from each centrality with the highest scores were chosen (Supplementary Table S4) and
combined to determine the most important proteins. Consequently, 48 essential proteins
were found and selected for additional examination after processing 7560 initial entries
(Supplementary Table S5).

2.4. Network Reconstruction of GBM-Related Signaling Pathways

A third analysis level was also established to learn about GBM disease and deter-
mine the essential proteins. Two techniques were established: (i) a literature review on
genes associated with epithelial–mesenchymal transition (EMT), cytoskeleton remodel-
ing, autophagy, secretory autophagy, and metabolism; and (ii) compiling the genes from
78 distinct signaling pathways. Table 2 lists the names of these pathways. The data
from steps i and ii were combined in the following step to create a different list of
3860 genes (Supplementary Table S6). In the next step, centrality analysis was per-
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formed similarly to the previous step (Supplementary Table S7), and 20 proteins with
the highest scores from each centrality were selected and combined. After processing
3860 initial entries, 35 essential proteins were discovered and selected for further analysis
(Supplementary Table S8).

Table 2. Data collection using 78 signaling pathways.

1 VEGF signaling pathway-hsa04370 40 TNF signaling pathway-hsa04668

2 PI3K-Akt signaling pathway-hsa04151 41 Citrate cycle (T.C.A. cycle)-hsa00020

3 Ras signaling pathway- hsa04014 42 Glycolysis/Gluconeogenesis-hsa00010

4 TGF-beta signaling pathway-hsa04350 43 Oxidative phosphorylation-hsa00190

5 HIF-1 signaling pathway-hsa04066 44 Starch and sucrose metabolism-hsa00500

6 AMPK signaling pathway-hsa04152 45 Pentose phosphate pathway-hsa00030

7 MAPK signaling pathway-hsa04010 46 Pyruvate metabolism-hsa00620

8 Rap1 signaling pathway-hsa04015 47 Insulin signaling pathway-hsa04910

9 Wnt signaling pathway-hsa04310 48 Lysosome-hsa04142

10 Notch signaling pathway-hsa04330 49 Phospholipase D signaling pathway-hsa04072

11 Hedgehog signaling pathway-hsa04340 50 Mitophagy- hsa04137

12 Hippo signaling pathway-hsa04390 51 Signaling pathways regulating pluripotency of stem cells- hsa04550

13 JAK-STAT signaling pathway-hsa04630 52 Cell adhesion molecules-hsa04514

14 Apelin signaling pathway-hsa04371 53 Cell cycle -hsa04110

15 NF-kappa B signaling pathway-hsa04064 54 ECM-receptor interaction-hsa04512

16 TNF signaling pathway-hsa04668 55 PD-L1 expression and PD-1 checkpoint pathway in cancer- hsa05235

17 FoxO signaling pathway-hsa04068 56 Pathways in cancer-hsa05200

18 Phosphatidylinositol signaling system-hsa04070 57 Transcriptional misregulation in cancer-hsa05202

19 mTOR signaling pathway-hsa04150 58 Central carbon metabolism in cancer-hsa05230

20 p53 signaling pathway-hsa04115 59 IL-17 signaling pathway-hsa04657

21 Apoptosis-hsa04210 60 Necroptosis-hsa04217

22 Ubiquitin-mediated proteolysis-hsa04120 61 Cellular senescence-hsa04218

23 Cell cycle-hsa04110 62 Chemokine signaling pathway-hsa04062

24 Regulation of actin cytoskeleton-hsa04810 63 Transcriptional misregulation in cancer-hsa05202

25 Calcium signaling pathway-hsa04020 64 ECM-receptor interaction-hsa04512

26 T cell receptor signaling pathway-hsa04660 65 Proteoglycans in cancer-hsa05205

27 Focal adhesion-hsa04510 66 Choline metabolism in cancer-hsa05231

28 Adherens junction-hsa04520 67 PD-L1 expression and PD-1 checkpoint pathway in cancer-hsa05235

29 Gap junction-hsa04540 68 Ferroptosis-hsa04216

30 Tight junction-hsa04530 69 Cholesterol metabolism-map04979

31 Arachidonic acid metabolism-hsa00590 70 Lipid and atherosclerosis-map05417

32 Autophagy-hsa04140 71 Fat digestion and absorption-map04975

33 Regulation of lipolysis in adipocytes-hsa04923 72 Vitamin digestion and absorption-map04977

34 Cytokine-cytokine receptor interaction-hsa04060 73 Aldosterone synthesis and secretion-map04925

35 Proteasome- hsa03050 74 Primary bile acid biosynthesis-map00120



Cancers 2023, 15, 3158 7 of 29

Table 2. Cont.

36 B cell receptor signaling pathway-hsa04662 75 Cortisol synthesis and secretion-map04927

37 Complement and coagulation cascades-hsa04610 76 Bile secretion-map04976

38 Toll-like receptor signaling pathway-hsa04620 77 Ovarian steroidogenesis-map04913

39 RIG-I-like receptor signaling pathway-hsa04622 78 Steroid biosynthesis-map00100

2.5. Combining the Findings from the Aforementioned Four Stages of Research and
Integrated Database

The final gene list and gene network for GBM disease were developed by combining
four earlier study methodologies: MuST algorithm (122 genes), DIAMOnD algorithm
(305 genes), glioblastoma-related protein–protein interaction network (48 genes), and the
network analysis of signaling pathways associated with GBM (35 genes). In the end,
351 genes (Supplementary Table S9) were integrated, and a network was reconstructed
using the GeneMANIA plugin and Cytoscape software (version 3.7.2). Similar to the
previous steps, we performed a centrality analysis and selected five proteins with the
highest scores from each centrality (Supplementary Table S10). Using the results of this
stage, 11 essential genes (Table 3) related to GBM disease were identified, and a miRNA-
gene regulatory network was drawn via NetworkAnalyst (https://www.networkanalyst.
ca/ (accessed on 10 August 2020)) [26,27] and miRTarBase v8.0 [28]. An analysis of miRNA
centrality was conducted using NetworkAnalyst based on degree and betweenness. Our
findings indicated that five miRNAs are essential based on the characteristics of the network
based on integration results (Table 4).

Table 3. The identification of eleven critical genes through integrating results and network analysis.
The list of important genes is based on their centrality. Deg: Degree, Bet: Betweenness, Bri: Bridge,
Cent: Centroid, Close: Closeness, and EiVe: EigenVector. “+”: presence; “--”: absence.

Gene
Name Description Deg Bet Bridg Cent Close EiVe

UBC Ubiquitin C [Source: HGNC Symbol; Acc: HGNC:12468 + + -- -- + +

HDAC1 Histone deacetylase 1 [Source: HGNC Symbol; Acc: HGNC:4852 + -- -- -- + +

CTNNB1 Catenin beta 1 [Source: HGNC Symbol; Acc: HGNC:2514 + -- -- -- + +

TRIM28 Tripartite motif-containing 28 [Source: HGNC Symbol; Acc:
HGNC:16384 -- + -- -- + +

CSNK2A1 casein kinase two alpha 1 [Source: HGNC Symbol; Acc: HGNC:2457 -- -- -- -- + +

RBBP4 RB binding protein 4, chromatin remodeling factor [Source: HGNC
Symbol; Acc: HGNC:9887 + -- -- -- -- --

TP53 Tumor protein p53 [Source:HGNC Symbol;Acc:HGNC:11998 + -- -- -- -- --

APP Amyloid beta precursor protein [Source: HGNC Symbol; Acc:
HGNC:620 -- + -- -- -- --

DAB1 DAB1, reelin adaptor protein [Source: HGNC Symbol; Acc: HGNC:2661 -- + -- -- -- --

PINK1 PTEN-induced putative kinase 1 [Source: HGNC Symbol; Acc:
HGNC:14581 -- + -- -- -- --

RELN Reelin literature review + miRNA-gene
regulatory network

https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
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Table 4. Identifying five Key miRNAs by considering two parameters (degree and betweenness
centralities).

Label Degree Betweenness

hsa-mir-221-3p 4 5682.13

hsa-mir-30a-5p 4 2373.43

hsa-mir-15a-5p 3 3710.08

hsa-mir-130a-3p 3 3589.18

hsa-let-7b-5p 2 2523.74

2.6. Study of Eleven Critical Proteins in Normal Brain and Brain Tumor Expression Datasets

To ensure the expression of eleven critical proteins in the normal brain tissue and also
investigate the mRNA expression (Log2) of these genes in eleven different situations (non-
tumor, GBM, wild-type, mutant, primary, secondary, recurrent, classical, mesenchymal,
neural, and proneural), we used ProteomicsDB (https://www.proteomicsdb.org/ (accessed
on 13 September 2019)) [29,30] and Gliovis (http://gliovis.bioinfo.cnio.es (accessed on
31 October 2016)) [31] as unique web-based tools to expeditiously access data related
to brain research, respectively. The Gliovis database can also be used to investigate
gene expression correlations. In ProteomicsDB, transcriptomic data from the Human
Protein Atlas (https://www.proteinatlas.org/ (accessed on 11 April 2016)) [32] and BGEE
(https://bgee.org/ (accessed on 6 July 2016)) [33] can be integrated. At the same time,
raw expression data in the Gliovis database came from various sources: ArrayExpress
(https://www.ebi.ac.uk/arrayexpress/, accessed on 31 October 2016) [34], Gene Expres-
sion Omnibus (http://www.ncbi.nlm.nih.gov/geo/, accessed on 31 October 2016) [35], and
Firebrowse (http://firebrowse.org, accessed on 31 October 2016) [36]. Moreover, by analyz-
ing the TCGA database implemented in Gliovis, we evaluated the expression patterns of the
identified genes, the correlation between them, and their impact on disease development
mechanisms [31]. Furthermore, OSgbm (http://bioinfo.henu.edu.cn/GBM/GBMList.jsp
(accessed on 31 April 2018)) was used to measure survival analysis [37].

2.7. Identification of Significant Metabolites and SNPs That Interact with Eleven Essential Genes

We identified significant SNPs and metabolites, interacting with eleven essential genes
using the mGWAS-Explorer database (https://www.mgwas.ca/ (accessed on
15 July 2022)) [38], a user-friendly web-based tool that connects SNPs, metabolites, genes,
and their known disease relationships using sophisticated network visual analytics. To
identify the role of metabolites in glioma and GBM in greater depth, we extracted the list
of essential metabolites (182 cases) (Supplementary Table S11) from recent studies [39,40].
In the next step, pathway, joint-pathway, and network analyses were performed using
the MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/ (accessed on 30 October 2019))
database [41,42].

2.8. Enrichment Analysis

Gene ontology and pathway enrichment analyses were carried out using the Expres-
sAnalyst (https://www.expressanalyst.ca/ (accessed on 7 May 2022)) [26], microRNA
enrichment analysis and annotation (miEAA)(https://www.ccb.uni-saarland.de/mieaa_
tool/ (accessed on 31 December 2019)) [43,44], and MetaboAnalyst 5.0 (https://www.
metaboanalyst.ca/ (accessed on 30 October 2019)) [41] databases. To better understand the
results, FDR < 0.05 was used to interpret the analysis outcomes.

3. Results
3.1. The Network Obtained from the NeDRex Plugin to Identify Disease Modules

The proteins in GBM were identified by delineating the disease network using the
NeDRex plugin (Figure 2). In the following, step disease modules were determined

https://www.proteomicsdb.org/
http://gliovis.bioinfo.cnio.es
https://www.proteinatlas.org/
https://bgee.org/
https://www.ebi.ac.uk/arrayexpress/
http://www.ncbi.nlm.nih.gov/geo/
http://firebrowse.org
http://bioinfo.henu.edu.cn/GBM/GBMList.jsp
https://www.mgwas.ca/
https://www.metaboanalyst.ca/
https://www.expressanalyst.ca/
https://www.ccb.uni-saarland.de/mieaa_tool/
https://www.ccb.uni-saarland.de/mieaa_tool/
https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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by two distinct algorithms (MuST and DIAMOnD). The MuST algorithm identified five
disease modules around the essential genes MYC, EGFR, PIK3CA, SUZ12, and SPRK2.
IRAK1, PTK2, and BMI1 also represent bridging roles between MYC-EGFR, EGFR-PIK3R1,
and SUZ12-SPRK2, respectively (Figure 3). The DIAMOnD algorithm identified only
one module with a high number of genes (305 genes) compared to the MuST algorithm
(122 genes).
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Figure 3. Modules of disease identified by the MuST algorithm (A) and genes (B) that interconnect
them. Five essential genes were identified: MYC, EGFR, PIK3CA, SUZ12, and SPRK2. Additionally,
IRAK1, PTK2, and BMI1 represent bridging roles between the disease modules.

3.2. miRNA-Gene Regulatory Network Analysis

The interaction network of the eleven essential proteins identified with the corre-
sponding miRNAs is shown in Figure 4. After the centrality analysis, it was inevitable to
investigate the interaction of the five prominent miRNAs (hsa-mir-221-3p, hsa-mir-30a-5p,
hsa-mir-15a-5p, hsa-mir-130a-3p, and hsa-let-7b-5p) with eleven identified genes (Figure 5).
The two miRNAs (hsa-mir-221-3p and hsa-mir-30a-5p) showed a higher degree and be-
tweenness of the centrality levels, and their targets (TP53, CTNNB1, UBC, TRIM28, and
HDAC1) seem to play a more critical role in GBM than others.
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Figure 5. The scheme of the relationship between the five identified miRNAs and their targets.
hsa-mir-221-3p and hsa-mir-30a-5p showed a higher degree and betweenness of the centrality levels.

3.3. Analyzing the Status of Identified Gene Expression in Healthy and Malignant Brain Tissue

Using microarray and RNA-Seq data, transcriptomics results from proteomicsDB
revealed that all eleven identified genes were expressed in healthy brain tissue (Figure 6).
In addition, Gliovis’ findings showed that, except for CSNK2A1, the remaining ten genes
displayed a significant variation between the GBM and the non-tumor condition. Six genes
represent an increased expression in the GBM state, whereas four genes were downreg-
ulated. Furthermore, all eleven specific genes were altered during the primary stage of
the tumor (Table 5). As a consequence of the correlation analysis, ten positive correlations
were found between UBC (APP), HDAC1 (TP53, RBBP4, TRIM28, and CTNNB1), RBBP4
(CTNNB1 and TP53), and TRIM28 (TP53, RBBP4, and CSNK2A1), and eight negative corre-
lations were found between RBBP4 (APP), PINK1 (TRIM28, RBBP4, TP53, and HDAC1),
and DAB1 (UBC, HDAC1, and TP53) (Figure 7). OSgbm survival analysis indicated that
HDAC1 (HR = 1.327, p < 0.029) and RELN (HR = 0.752, p < 0.029) significantly affected over-
all survival. The study’s results demonstrated that HDAC1 and RELN could be considered
diagnostic biomarkers and have prognostic significance for GBM (Figure 8).
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Figure 7. The results of correlation analysis between eleven identified genes. Ten positive correlations
were found between UBC (APP), HDAC1 (TP53, RBBP4, TRIM28, and CTNNB1), RBBP4 (CTNNB1
and TP53), and TRIM28 (TP53, RBBP4, and CSNK2A1), and eight negative correlations were found
between RBBP4 (APP), PINK1 (TRIM28, RBBP4, TP53, and HDAC1), and DAB1 (UBC, HDAC1, and
TP53). *: p < 0.05, **: p < 0.01, ***: p < 0.001.
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Table 5. The expression status of eleven genes identified in GBM disease. Six genes represent a
significantly increased expression in the GBM state, whereas four genes were downregulated. All
eleven specific genes were altered during the primary stage of the tumor. “+”: presence; “--”: absence;
ns: nonsignificant.

Gene
Name

Non-
Tumor GBM Pairwise t-Test (GBM-Non-Tumor)

p.adj (p-Value with Bonferroni Correction) Primary Secondary Recurrent

UBC -- + 1.8 × 10−3 + -- --

HDAC 1 -- + 7.8 × 10−18 + -- --

CTNNB1 -- + 6.0 × 10−3 + -- --

TRIM28 -- + 1.1 × 10−3 + -- --

CSNK2A1 -- + 6.9 × 10−1 (ns) + -- --

RBBP4 -- + 3.2 × 10−5 + -- --

TP53 -- + 1.6 × 10−13 + -- --

APP + -- 1.2 × 10−3 + -- --

DAB1 + -- 4.0 × 10−4 + -- --

PINK1 + -- 2.9 × 10−10 + -- --

RELN + -- 5.7 × 10−8 + -- --
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Figure 8. Survival analysis. Analysis of the prognostic value of identified genes using a combined
cohort with pooling all datasets (Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO),
and Chinese Glioma Genome Atlas (CGGA)) together in OSgbm. The survival analysis results were
presented using a Kaplan–Meier (KM) plot with a hazard ratio (HR) and log-rank p-value.

3.4. Enrichment Analysis

Eleven significant GSEA results were categorized into four axes. Negative control of
the cellular process (FDR = 0.00165), negative control of the cell cycle
(FDR = 0.00165), protein phosphorylation (FDR = 0.00165), negative control of the biological
process (FDR = 0.00165), and negative control of the apoptotic process
(FDR = 0.00165) were significant in the biological process (Supplementary Table S12).
Enzyme binding (FDR = 0.000316), positive transcription regulation (FDR = 0.0055), DNA-
dependent negative transcription regulation (FDR = 0.0188), and DNA-dependent transcrip-
tion from RNA polymerase II promoter (FDR = 0.0315) all played a crucial role in molecular
function (Supplementary Table S13). Nuclear chromatin (FDR = 4.04 × 10−6), nuclear chro-
mosome part (FDR = 3.01 × 10−5), nuclear chromosome (FDR = 3.63 × 10−5), chromatin
( FDR = 3.63 × 10−5), and histone deacetylase complex (FDR = 0.000161) in cellular compo-
nents (Supplementary Table S14) were indispensable, as well as mitophagy
( FDR = 0.00978) and the Wnt signaling pathway (FDR = 0.046), in the KEGG pathway en-
richment analysis (Supplementary Table S15). Additionally, miEAA-related results showed
that fatty acid biosynthesis (0.0078415), galactose metabolism (0.0078415), mucin-type O-
glycan biosynthesis (0.0233921), and autophagy (0.0264018) might also be crucial in GBM
disease (Supplementary Table S16). (Figures 9 and 10).

The third level of analysis was performed using the metabolites, KEGG, and SMPDB
databases [45]. The three main FDR-based pathways obtained from KEGG (Supplemen-
tary Table S17) were aminoacyl-tRNA biosynthesis (1.39 × 10−8), arginine biosynthesis
(3.94 × 10−7), alanine, aspartate, and glutamate metabolism (2.03 × 10−6). In comparison,
three other main pathways were identified using the SMPDB databases
(Supplementary Table S18): glutamate metabolism (9.34 × 10−9), urea cycle (9.34 × 10−9),
and arginine and proline metabolism (3.24 × 10−8) (Figure 11).
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Figure 11. The association of metabolic pathway enrichment analysis results with 182 metabolites:
(A) based on the KEGG database; (B) based on the SMPDB database.

3.5. Metabolic Pathway Analysis

The outcomes of the metabolic pathway enrichment analysis and pathway topology
analysis were combined for this investigation. The results were divided into four categories
according to the factors considered, as shown in Table 6.

Table 6. The application of multiple criteria in the metabolic pathway analysis.

Result Visualization
Methods Enrichment Method Topology Analysis Reference Metabolome Pathway Library

1 Scatter plot Hypergeometric test
Relative-betweenness

centrality
R-b C

All compounds in the
selected pathway library

Homo sapiens
(KEGG)

2 Scatter plot Hypergeometric test Out-degree Centrality
O-d C

All combinations in the
selected pathway library

Homo sapiens
(KEGG)

3 Scatter plot Hypergeometric test Relative-betweenness
centrality

All compounds in the
selected pathway library

Homo sapiens
(SMPDB)

4 Scatter plot Hypergeometric test Out-degree Centrality All combinations in the
selected pathway library

Homo sapiens
(SMPDB)

The results were analyzed and summarized based on three criteria: 1. The selection
of the first five cases in each of the centralities—relative betweenness centrality (R-b C)
and out-degree centrality (O-d C)—based on the highest score obtained in the impact
parameter. 2. In the next step, the results were classified based on FDR, and five cases
(phenylalanine, tyrosine, and tryptophan biosynthesis; synthesis and degradation of ketone
bodies; one-carbon (1C) pool by folate; trehalose degradation; and glycerol phosphate
shuttle) were excluded because they were not significant in the metabolic pathway analysis
(red color). 3. The common items in both cases (R-b C and O-d C) and databases (KEGG
and SMPDB) were considered vital and further discussed. Two items were obtained from
the KEGG database (nitrogen metabolism, alanine, aspartate, and glutamate metabolism)
and three items were obtained from the SMPDB database (alanine metabolism, aspartate
metabolism, and malate-aspartate shuttle) (Tables 7 and S19–S22).
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Table 7. The final results from the metabolic pathway analysis. Further discussion of two items from the KEGG database (nitrogen metabolism, alanine, aspartate,
and glutamate metabolism) and three from the SMPDB database (alanine metabolism, aspartate metabolism, and malate-aspartate shuttle) due to vitality. “+”:
accept; “--”: reject.

KEGG Database SMPDB Database

Result 1

R-b C
Impact FDR

Result 2

O-d C
Impact FDR

Result 3

R-b C
Impact FDR

Result 4
O-d C
Impact FDR

Final Decision (FD) Final Decision (FD) Final Decision (FD) Final Decision (FD)

Nitrogen metabolism
1 0.043213 Arginine biosynthesis 0.8125 1.90 ×

10−7
Alanine metabolism

1 0.010641
Malate-aspartate shuttle

0.63333 0.013128

FD: + FD: -- FD: + FD: +

Phenylalanine, tyrosine,
and tryptophan

biosynthesis

1 0.12885 Alanine, aspartate, and
glutamate metabolism

0.75 1.73 ×
10−7

Trehalose degradation
0.84211 0.18355

Phosphatidylcholine
biosynthesis

0.56707 0.00011577

FD: -- FD: + FD: -- FD: --

Synthesis and
degradation of ketone

bodies

0.86667 0.18716 Valine, leucine, and
isoleucine biosynthesis

0.75 8.82 ×
10−5

Aspartate metabolism
0.8 0.0044894

Transfer of acetyl groups
into mitochondria

0.54167 0.010641

FD: -- FD: -- FD: + FD: --

Alanine, aspartate, and
glutamate metabolism

0.81732 1.73 ×
10−7

Nitrogen metabolism
0.75 0.043213

Glycerol phosphate
shuttle

0.7619 0.3023
Ammonia recycling

0.49306 0.00011577

FD: + FD: + FD: -- FD: --

One-carbon pool by
folate

0.80793 0.46957 Phenylalanine, tyrosine,
and tryptophan

biosynthesis

0.75 0.12885
Malate-Aspartate Shuttle

0.71429 0.013128
Cardiolipin biosynthesis

0.49057 0.013128

FD: -- FD: -- FD: + FD: --
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3.6. Joint Pathway Analysis

We used joint pathway analysis to simultaneously analyze eleven identified essential
genes and 182 distinctive metabolites within metabolic pathways. Three types of results
were obtained based on the topology measure used (Table 8). The results were analyzed
and summarized based on four criteria: 1. The selection of the first 10 cases in each of
the centralities based on the highest score obtained in the impact parameter. 2. In the
next step, the results were classified based on FDR, and five cases (1C pool by folate, p53
signaling pathway, phosphatidylinositol signaling system, longevity regulating pathway,
and mitophagy-animal) were excluded because they were not significant in the joint path-
way analysis. 3. Considering the results obtained from all three of the centralities, the
two items observed in all three (citrate cycle and arginine biosynthesis) were selected
and further discussed (Tables 9 and S23–S26). The results were combined in one table to
obtain a comprehensive overview of the pathway enrichment analysis at different levels
(eleven essential proteins, five miRNAs, and 182 metabolites), pathways, and joint pathway
analyses (Table 10).

Table 8. The application of multiple criteria in the joint pathway analysis.

Result Enrichment Method Topology Measure Integration Method

1

Hypergeometric test
Degree centrality

Combined score2 Betweenness centrality

3 Closeness centrality

Table 9. The final results from joint pathway analysis. The two items observed in all three centralities
(citrate cycle and arginine biosynthesis) were selected and further discussed. “+”: presence; “--”:
absence.

Title Degree Betweenness Closeness

Alanine, aspartate and glutamate metabolism + + --

Citrate cycle (TCA cycle) + + +

Arginine biosynthesis + + +

Synthesis and degradation of ketone bodies + -- +

Pyruvate metabolism + -- +

Purine metabolism + + --

Glutathione metabolism + + --

Pyrimidine metabolism + + --

Glycolysis or gluconeogenesis -- + +

Table 10. The summary of all results obtained from the pathway enrichment analysis at different
pathway levels and joint pathway analyses.

Enrichment Analysis
Pathway Analysis Joint Pathway Analysis

Eleven Genes Five miRNAs 182 Metabolites

Mitophagy Fatty acid biosynthesis Aminoacyl-tRNA
biosynthesis Nitrogen metabolism Citrate cycle (TCA cycle)

Wnt signaling
pathway Galactose metabolism Arginine biosynthesis Alanine, aspartate and

glutamate metabolism Arginine biosynthesis

Mucin-type O-glycan
biosynthesis

Alanine, aspartate and
glutamate metabolism

Malate-aspartate shuttle
Autophagy

Glutamate metabolism

Urea cycle

Arginine and proline
metabolism
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3.7. Gene–Metabolite Interaction Network

Drawing the interaction network between the genes and metabolites showed that the
APP and TP53 genes are related to each other through five factors (adenosine triphosphate,
ADP, glycerol, L-glutamic acid, and L-lysine). Moreover, the connection between RELN,
CTNNB1, and CSNK2A1 and APP was shown through Gamma-aminobutyric acid (GABA),
palmitic acid, and glycerol, respectively (Figure 12).
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TP53, CTNNB1, CSNK2A1, and RELN with APP were further investigated.

3.8. Identification of SNPs-Related Metabolites and Genes

Using eleven critical genes as input data in the mGWAS-Explorer database, six metabo-
lites and 23 SNPs were identified (Tables 11 and S27). Additionally, we determined the top
25 SNPs via 182 metabolites as input data in the MetaboAnalyst 5.0 database (Figure 13).

Table 11. The metabolites and SNPs from the mGWAS-Explorer database.

Metabolite SNP

HDL rs111929233, rs7298751

N6-acetyllysine
rs12602273, rs12603869, rs12945970, rs12947788,
rs12949655, rs12951053, rs1642782, rs17881556,

rs1794284, rs2078486, rs5819163

Cholesterol rs35608584, rs111929233

Formate rs17520463

N, N-Dimethylglycine/Xylose rs41450451

X2.piperidinone rs75787097, rs75524270, rs79232054,
rs145435197, rs74901488, rs117235978
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4. Discussion

Gene sequencing studies have made it possible to learn more about GBM genetics and
epigenetics in recent years [46]. A practical approach for diagnosing and treating GBM is
to use molecular biomarkers. The current study used genes, miRNAs, and metabolites to
develop a panel of predictive biomarkers for GBM.

Based on the biological pathways, the identified genes in the GBM biomarker panel
were classified into different signaling pathways such as the AKT (MYC, BMI1, EGFR,
PIK3CA, PTK2, and UBC), the inflammation (IRAK1 and APP), the P53 (HDAC1, P53,
and TRIM28), the WNT (CTNNB1), and the mitochondrial signaling pathways (DAB1,
PINK1, and RELN). AKT regulates angiogenesis and metabolism [47]. Numerous human
tumors have elevated levels of MYC, including GBM [48]. There is a correlation between
Myc expression and glioma grade [49,50], and it was shown that inhibiting Myc in gliomas
reduces proliferation and increases apoptosis [51]. The BMI-1 is another important gene
related to the AKT signaling pathway. The BMI1 gene belongs to the polycomb group (PcG)
gene family and is a transcriptional repressor of several genes that govern cell proliferation
and differentiation throughout life [52–56]. In GBM, the simultaneous targeting of EZH2
and BMI1 was more effective than either agent alone due to the presence of both proneural
and mesenchymal GSCs [57].

There is evidence that EGFR overexpression is associated with more aggressive GBM
phenotypes in most primary GBMs and some secondary GBMs [58]. An analysis of the
TCGA GBM database uncovered a subgroup with EGFR amplification and TP53 mutations.
Both of these functions are almost mutually exclusive, suggesting EGFR regulates the
function of wild-type p53 (wt-p53). EGFR signaling inhibits the function of wt-p53 in GBM
by facilitating the interaction between p53 and the DNA-dependent protein kinase catalytic
subunit (DNA-PKcs) [59].

It has been reported that 6–15% of glioblastomas contain activating mutations in the
PIK3CA. There is evidence that PIK3CA-activating mutations are associated with an earlier
recurrence of GBM in adults and a shorter survival time [60]. Additionally, immunohis-
tochemical analysis of most anaplastic astrocytomas and glioblastomas demonstrated a
strong expression of the PTK2 protein [61]. Elevated PTK2 (focal adhesion kinase 1 (Fak1))
protein levels were detected in astrocytic gliomas [62].
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In the case of GBM, ubiquitin-dependent mechanisms may be exploited as a thera-
peutic strategy. It was indicated that the ubiquitin system is involved in core signaling
pathways, including EGFR, TGF-β, p53, and stemness-related pathways in GBM [63]. In
addition, it was shown that the inhibition of ubiquitin signaling could reverse metabolic
reprogramming and suppresses GBM growth. The regulation of protein stability by the
ubiquitin–proteasome system (UPS) represents an important control mechanism of cell
growth in various human cancers, including GBM [64].

Evidence from both in vitro and in vivo studies shows that the highest expressed form
of IRAK1 in low-grade gliomas (LGG) inhibits cell apoptosis and increases malignancy [65].
GBM is positively associated with mortality in Alzheimer’s disease (AD) [66]. There is
an up-regulation of the HDAC class I isoforms HDAC1 and HDAC2 in GBM cell lines
compared with non-neoplastic brain tissues [67,68]. Proliferating, migrating, and invading
are inhibited in GBM cells when HDAC1 and HDAC2 expressions are silenced. Similarly,
HDAC3 is overexpressed in aggressive glioma cell lines and is associated with poor prog-
nosis and OS of GBM patients [69]. A selective histone deacetylase inhibitor induces
autophagy and cell death in GBM cells by downregulating SCNN1A [70]. A significant
correlation was found between most members of the HDAC family and glioma grade,
IDH1 mutation, and 1p/19q co-deletion. Among the HDAC1-related signatures for precise
prognosis prediction in glioma, HDAC1 indicates prognosis and immune infiltration [71].

GBM is commonly associated with TP53 mutations. Approximately 84% of GBM
patients exhibit dysregulation of the p53-ARF-MDM2 pathway, a finding that is confirmed
in 94% of GBM cell lines adopted for in vitro assays [72,73].

Diverse cellular functions are mediated by PI3K/Akt-WNT signaling interactions
in GBM, including cell proliferation, EMT, metabolism, and angiogenesis [47]. A study
has shown that inhibiting WNT-CTNNB1 signaling enhances the SQSTM1 expression and
sensitizes GBM cells to autophagy blockers [74]. This pathway also regulates autophagy and
mitophagy [74–76]. Mitophagy, a selective autophagy of mitochondria, is crucial for quality
control since it can efficiently degrade, remove and recycle malfunctioning or damaged
mitochondria [77]. It has been demonstrated that platelet-derived growth factor (PDGF)
signaling induces N6-methyladenosine (m6A) accumulation in GSCs to regulate mitophagy.
A PDGF ligand stimulates the transcription of early growth response 1 (EGR1), which
promotes the proliferation and self-renewal of GSCs by inducing methyltransferase-like 3
(METTL3). By regulating the m6A modification of optineurin (OPTN), the PDGF-METTL3
axis inhibits mitophagy. In GBM patients, the forced expression of OPTN mimics the
inhibition of PDGF, and higher OPTN levels predict a longer survival time [78].

There were three categories of miRNAs identified in the GBM biomarker panel: pro-
liferation (hsa-mir-221-3p), invasion (hsa-mir-15a-5p and hsa-let-7b-5p), and proliferation
and invasion (hsa-mir-30a-5p and hsa-mir-130a-3p).

In GBM, miR-221/222, which targets the p53 upregulated modulator of apoptosis
(PUMA), was reported to induce cell survival [79]. There is evidence that the chronic
miR-221/222-mediated downregulation of MGMT may result in cells being unable to repair
genetic damage. The presence of miR-221/222 oncogenic potential may improve the prog-
nosis of GBM [80]. Furthermore, decreased EGFR and increased miR-221 were associated
with increased resistance to temozolomide (TMZ) and radiotherapy in GBM [81], compared
to normal brain tissues (NBTs). MiR-30a-5p is overexpressed in glioma cell lines and glioma
samples, with its expression level positively correlated with tumor grade [82]. Accord-
ing to researchers, the Wnt/β-catenin–miR-30a-5p–NCAM regulatory axis is essential in
controlling glioma cell invasion and tumorigenesis. It was shown that the Wnt/β-catenin
pathway activates miR-30a-5p through the direct binding of β-catenin/TCF4 to two sites in
the promoter region of miR-30a-5p. In addition, miR-30a-5p can inhibit the expression of
neural cell adhesion molecule (NCAM) by directly targeting two sites in the 3′-untranslated
regions (3′-UTR) of NCAM mRNA [83].

The proliferation and invasion of GBM cells are mediated by several critical molecules,
such as cell adhesion molecule 1 (CADM1). CADM1 expression is decreased in GBM
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patients and GBM cell lines, and CADM1 overexpression inhibits the proliferation of GBM
cells. According to these findings, CADM1 effectively suppresses the proliferation of GBM.
MiR-15a-5p was shown to promote the proliferation and invasion of T98G GBM cells by
targeting CADM1 [84,85].

In the GBM biomarker panel, five categories of metabolites were identified: lipid
metabolism (cholesterol), glutamate metabolism (glutamate and GABA), tricarboxylic acid
(TCA) cycle (alanine), urea cycle (arginine), and the Leloir cycle (galactose). There is a link
between metabolic syndrome and several types of cancer, including GBM.

An analysis of a New Zealand cohort of GBM patients showed that metabolic syn-
drome is associated with reduced OS. In light of this finding, there is a greater likelihood
that GBM results from metabolic pathogenesis [86]. According to studies, lipid metabolism
plays a critical role in the pathogenesis of GBM. Among the members of the apolipoprotein
family, apolipoprotein C1 (ApoC1) is crucial for the metabolism of both very-low-density
lipoprotein (VLDL) and high-density lipoprotein (HDL) cholesterols. The pre-surgery
level of serum LDL cholesterol was a prognostic factor for the outcome of patients with
GBM [87].

Cholesterol is another important molecule with the potential role of repurposed drugs.
Due to the discovery that many cancers, including GBM, reprogrammed the cholesterol
metabolism, the cholesterol metabolism has become a promising potential target for ther-
apy [88]. Different strategies for inhibiting cholesterol metabolism have been proposed
since GBM cells require external cholesterol for survival and lipid droplets for rapid growth.
The activation of liver X receptors (LXRs) inhibits cholesterol uptake, promotes cholesterol
efflux, disrupts cholesterol trafficking within cells, interferes with SREBP signaling, and im-
pedes cholesterol esterification. They may potentially counteract glial tumor growth [89,90].
It has also been demonstrated that lipid accumulation and oxidation play a role in GBM.
Monounsaturated fatty acids have been found to promote GBM proliferation by modu-
lating triglyceride metabolism [91]. A knockdown of carnitine palmitoyltransferase 1A
(CPT1A), a critical enzyme in fatty acid oxidation (FAO), also reduced tumor growth and
increased survival, according to in vivo studies [92].

The excitatory neurotransmitter glutamate plays a significant role in brain tumor
cells’ proliferation and growth. Glutaminase produces a large amount of glutamate in
glioma cells, which converts glutamate from glutamine and increases intracellular Ca2+

through P2 × 7Rs [93]. Moreover, high levels of glutamate have been found to cause brain
edema and seizures in glioma patients. Glutamate and glutamine are linked to the proline
pathway. L-proline is a multifunctional amino acid essential in the primary metabolism
and physiological functions. Proline is oxidized to glutamate in the mitochondria, and
the FAD-containing enzyme proline oxidase (PO) catalyzes the first step in the L-proline
degradation pathway. It was shown that PO might play a regulatory role in glutamatergic
neurotransmission by affecting the cellular concentration of glutamate [94]. Study results
indicate that serine and glycine levels are higher in the low-nutrient regions of GBM
tumors than in the other areas. A study of the metabolic and functional properties of GBM
cells revealed that serine availability and 1C metabolism support glioma cells’ survival
following glutamine deprivation. Serine synthesis was mediated by autophagy rather than
glycolysis [95].

ATP by glycolysis and the TCA cycle are associated with oxidative phosphoryla-
tion (OXPHOS) through the breakdown of pyruvate or fatty acids to meet the growing
energy demand of cancer cells. Recent studies demonstrate that SMI EPIC-0412 can ef-
fectively perturb the TCA cycle. It was shown that in combination with the cytosolic
phospholipase A2 (cPLA2) inhibitor AACOCF3 and the hexokinase II (HK2) inhibitor
2-DG, SMI EPIC-0412 disrupted GBM energy metabolism for targeted metabolic therapy.
ATP production significantly declined in glioma cells when treated with a monother-
apy (EPIC-0412 or AACOCF3), dual therapy (EPIC-0412 + AACOCF3), or triple therapy
(EPIC-0412 + AACOCF3 + 2-DG) regimen [96]. Furthermore, it has been shown that pa-
tients with GBM with high levels of glycolysis-related genes, including HK2 and PKM2,
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and low levels of mitochondrial metabolism-related genes, such as SDHB and COX5A,
related to TCA cycle and oxidative phosphorylation (OXPHOS), have poor survival rates.
In contrast to LGG, the expression levels of genes involved in the mitochondrial oxidative
metabolism in GBM are markedly increased; however, they are lower than those in normal
brains [97].

It has been shown that dysregulated alanine could serve as a potential predictive
marker for glioma [98]. Alanine, a glucogenic amino acid, enters the metabolic stream
through enzymatic conversion to pyruvate to provide energy and replenish the nutri-
ent reservoir for rapidly proliferating tumor cells [99]. Arginine is another amino acid
substrate actively metabolized by tumor cells to promote tumor growth and immunosup-
pression [100,101]. Arginine transporters appear abundant in GBM, as evidenced by the
accumulation of byproducts of arginine metabolism [102,103]. The results indicate that
the arginine metabolism is functional and may be sensitive to targeted depletion. Recent
research demonstrated that pegylated human recombinant ARG1 depleted arginine in
glioma cells and induced cytotoxicity [104].

GBM tumor cell proliferation depends on the availability of extracellular nutrients.
As a result of inadequate tumor perfusion, glucose and glutamine are in short supply.
Due to this metabolic remodeling, GBMs scavenge alternative nutrients from the tumor
microenvironment to sustain their growth and proliferation. Glut3 and Glut14 are sugar
transporters expressed in GBM. GBM cells can scavenge galactose (Gal) from the circulation
and extracellular space as a suitable substrate for Glut3/Glut14. The Leloir pathway
provides GBM cells with an alternative energy source by transporting and metabolizing
Gal at physiological Glc concentrations [105].

5. Conclusions and Future Direction

Research on GBM has made significant progress in recent years, partly due to the avail-
ability of large-scale multi-omics databases and other data sources that allow researchers
to better understand the disease’s genetic and molecular characteristics. It is important to
identify genes, miRNAs, and metabolites that contribute to the progression of GBM. In our
current investigations, we identified eleven important genes and five miRNAs that have a
critical role in the pathogenesis of GBM. In addition, we found essential metabolites that
drive GBM development. These findings highlight the importance of genes, miRNAs, and
metabolites in GBM progression.

It is critical for both basic and clinical scientists to find out which genes or proteins
lead to or are associated with metabolic changes. In future, transcriptome and proteomic
analyses should identify key genes and proteins contributing to inflammation in GBM
progression. Understanding how inflammation influences GBM progression is critical for
developing new therapeutic strategies. Our team will focus on tailoring formulations and
repurposing drugs to develop diagnostic and therapeutic biomarkers in the near future
and open up new avenues for the personalized treatment of patients with GBM.
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