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Abstract: Polyphenols are compounds found in various plants and foods, known for their antioxidant
and anti-inflammatory properties. Recently, researchers have been exploring the therapeutic potential
of marine polyphenols and other minor nutrients that are found in algae, fish and crustaceans. These
compounds have unique chemical structures and exhibit diverse biological properties, including
anti-inflammatory, antioxidant, antimicrobial and antitumor action. Due to these properties, marine
polyphenols are being investigated as possible therapeutic agents for the treatment of a wide variety
of conditions, such as cardiovascular disease, diabetes, neurodegenerative diseases and cancer. This
review focuses on the therapeutic potential of marine polyphenols and their applications in human
health, and also, in marine phenolic classes, the extraction methods, purification techniques and
future applications of marine phenolic compounds.

Keywords: marine polyphenols; therapeutics; antioxidants; anti-inflammatories; health; cardiovascular
diseases; diabetes; neurodegenerative diseases; cancer

1. Introduction

The maritime environment encompasses more than 70% of the Earth’s surface and is
the world’s biggest ecosystem, with very changeable and hostile physicochemical condi-
tions (low temperature, restricted light availability, high salinity and high pressure). The
world’s oceans and seas contain approximately 90% of our planet’s biological biomass,
which is dominated by unicellular microbes [1].

The search for natural alternatives for the treatment and prevention of diseases
has been increasingly relevant, and marine polyphenols have aroused the interest of
researchers in this field. These compounds are bioactive molecules that have antioxidant,
anti-inflammatory and antitumor properties, in addition to other beneficial health effects [2].
One of the main sources of marine polyphenols is algae, which contains a diverse range
of substances, including flavonoids, phenols and organic acids. Other important sources
include fish and crustaceans, which are also rich in marine polyphenols such as catechins
and phenolic acids [3].

Marine polyphenols have shown potential for treating and preventing a variety of
health conditions. For example, studies indicate that by lowering oxidative stress and
inflammation, these substances may help reduce the chance of cardiovascular disease. In
addition, marine polyphenols have demonstrated antidiabetic properties, contributing to
glycemic control and improving insulin sensitivity [2]. There is also evidence that these
compounds may be beneficial for brain health, as they have neuroprotective and anti-
inflammatory properties, which may help prevent neurodegenerative diseases such as
Alzheimer’s [4]. In addition, marine polyphenols have demonstrated antitumor effects,
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showing promise in the treatment of several types of cancer. These compounds are be-
lieved to help prevent the development of cancer cells, as well as inhibit the growth and
proliferation of existing tumors [5].

Due to the therapeutic potential of marine polyphenols, there is a growing interest in
the development of nutraceuticals and pharmaceuticals that contain these compounds as
active ingredients. However, more studies are required to assess the safety and effectiveness
of these compounds in people, as well as to identify the optimal dose for therapeutic use [6].

This review aims to provide a comprehensive understanding of marine organism
phenolic compounds and other important compounds, from their origin, highlighting the
potential activities as new potential therapeutics to be applied in cardiovascular diseases,
diabetes, neurodegenerative diseases and cancer. Furthermore, it will exploit the circular ap-
proach: from mechanism of action, safety measures, challenges and extraction/purification
methods of the marine-based phenolic compounds.

2. Methodology

Data were gathered mostly from internet sources, namely Web of Science, Google
Scholar, Science Direct and Scopus, and included research papers, books, chapters, news,
websites and reviews. The following subjects were chosen: seaweed, macroalgae, fish,
fungi, marine plants, marine and phenolic compounds. In addition, we used a laboratory
Mendeley group, which includes article regarding marine phenolic, with all the informa-
tion gathered from 2019 until now. Furthermore, additional terms such as phlorotannin,
bromophenol, terpenoids and flavonoids where also searched. We endeavored to collect as
much data as possible with scientific backing for analysis.

However, there are references from before 2019, due to be articles cited in the bibliog-
raphy analyzed and considered important to cite being the original content cited by the
recent bibliography.

3. Marine Polyphenols

Marine polyphenols are a group of bioactive compounds that are found in a wide
variety of marine organisms, including algae, fish and crustaceans. These compounds
are characterized by the presence of multiple hydroxyl groups (-OH) in their molecular
structures, which give them antioxidant and anti-inflammatory properties [7]. These
compounds have a varied chemical structure and are classified into different groups, such
as flavonoids, phenolic acids, tannins, lignans and stilbenes. Flavonoids are one of the most
studied classes and include compounds such as catechins, quercetin and rutin, which are
commonly found in algae and fish [2].

Marine organisms generate these marine-origin chemicals as a defense strategy against
oxidative stress and ultraviolet radiation. Seaweed, for example, is frequently exposed
to harsh environmental conditions, and the effects of damage are not visible; as a result,
the alga produces a diverse range of metabolites (polyphenols, xanthophylls, tocopherols
and polysaccharides) to protect against abiotic and biological factors such as herbivory
and mechanical aggression from the sea. Furthermore, marine polyphenols also play an
important role in cellular communication and ecological interactions between organisms [8].

Marine polyphenols have aroused the interest of researchers because they have a
wide range of health benefits, including anti-inflammatory, antioxidant, antitumor and
neuroprotective properties. They have also been investigated as possible therapeutic agents
for various conditions such a cardiovascular diseases, diabetes and cancer [9]. Although
most studies have fixed their attention on the antioxidant and anti-inflammatory properties
of marine polyphenols, recent studies have highlighted the importance of investigating
the other mechanisms of action of these compounds, as well as their bioavailability and
metabolism in humans [10].

In summary, marine polyphenols are bioactive compounds with promising therapeutic
potential, but they are still poorly understood in terms of their properties and effects on
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human health. Therefore, there is a growing need for additional research to evaluate their
safety and efficacy and to develop new therapies based on these compounds [11].

3.1. Sources of Marine Polyphenols and Other Micronutrient

Marine polyphenols are found in a variety of natural sources, including algae, fish,
crustaceans and mollusks. Below we will detail the main sources of marine polyphenols
and the compounds that can be found in each of them [12].

3.1.1. Algae

These bioactive compounds are found in different types of algae, including green
(Chlorophyta), brown (Ochrophyta, Phaeophyceae) and red (Rhodophyta) macroalgae [13].
Each type of seaweed has different chemical compositions, with different types and concen-
trations of polyphenols. They are rich in various types of polyphenols, such as fucoxanthins,
phlorotannins and fucoidans [8]. Fucoxanthins are a type of carotenoid found in brown
algae and have antioxidant, anti-inflammatory and anti-obesity properties [14]. Phlorotan-
nins are unique phenolic compounds found in brown seaweed that have antioxidant,
anti-inflammatory and anti-tumor properties [15]. Fucoidans are sulfated polysaccha-
rides found in brown algae and have antitumor, anticoagulant and anti-inflammatory
properties [16].

The polyphenols found in algae are phenolic compounds, which include catechins [17],
phlorotannins, fucoidans and fucoxanthins [18]. Catechins are a type of flavonoid that have
antioxidant and anti-inflammatory activity, being found mainly in red algae. Phlorotannins
are a unique group of polyphenols found in brown seaweed, with antioxidant and anti-
inflammatory activity [19]. Fucoidans are sulfated polysaccharides found in brown algae,
with anticoagulant, anticancer, anti-inflammatory and immunomodulatory properties [16].
Fucoxanthins are a type of carotenoid unique to brown algae, with antioxidant, anti-
inflammatory, anti-obesity and antitumor activity [20].

Seaweed polyphenols have several beneficial properties for human health. In addition
to antioxidant and anti-inflammatory activities, these compounds also exhibit antiviral,
antifungal and antibacterial activities. Furthermore, studies have shown that seaweed
polyphenols exhibit anti-obesity, anti-hypertension, anti-diabetes and anti-cancer activi-
ties [21]. Macroalgae polyphenols are also used in cosmetic products such as skin creams
and lotions. These compounds have anti-aging, moisturizing and UV-protective proper-
ties [22].

Many previous studies have been performed where phenolic compounds were isolated
from seaweed and include single phenolic compounds or polyphenols such as flavonoids,
phlorotannins, mycosporine-like amino acids (MAAs), bromophenols and terpenoids [23].
The biological action of phenolic compounds is determined by the position of the hydroxyl
groups and the number of phenyl rings in the structure [24].

Brown algae species contain a large amount of phlorotannins, while green and red
algae mainly produce flavonoids, bromophenols, terpenoids and mycosporin amino acids
in response to environmental conditions [22]. In the cosmetic industry, phlorotannins
enable the activation of hyaluronidase, with antiallergic, anti-wrinkle, anti-aging, skin
whitening, photoprotection and improved skin health benefits. Thus, seaweed-derived
phenolic compounds and their chemical structures, along with their skin benefits, are
extremely useful in the skincare industry [25].

Seaweed-derived phenolic compounds have a wide range of applications, including
enzyme inhibition (e.g., tyrosinase inhibition, elastase inhibition, collagenase inhibition, ma-
trix metalloproteinase inhibition in photoprotection, angiotensin-converting enzyme inhibi-
tion, 1 (ACE-1), pro-inflammatory cyclooxygenase and lipoxygenase (COX-1, 2 and 5-LOX),
as well as inhibition of dipeptidyl peptidase-4 (DPP-4) and inhibition of hydroxymethyl
glutaryl coenzyme A reductase (hMGCR)) and antibacterial, antifungal, antioxidant and
anti-inflammatory qualities that are appealing when used in makeup and cosmeceutical
product formulations [19,22].
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It is important to emphasize that the concentrations of polyphenols in seaweed vary
according to the species, habitat, environmental conditions, stage of development and
extraction method. Therefore, it is important to carry out studies to identify the best sources
of polyphenols and the best extraction conditions to ensure obtaining products with a
high concentration of bioactive compounds [13]. Among the seaweed species with the
greatest potential (see Table 1), the red macroalgae stand out (Rhodophyta): Neorhodomela
larix, Rhodomela confervoides, Callophycus serratus, Tichocarpus crinitus, Chondrus crispus,
Kappaphycus spp., Porphyra/Pyropia spp. and Symphyocladia latiuscula; the brown macroal-
gae (Ochrophyta, Phaeophyceae): Ecklonia cava, E. cava subsp. stolonifera, E. cava subsp.
kurome, Eisenia bicyclis, Ishige okamurae, Fucus vesiculosus, F. spiralis, Gongolaria nodicaulis,
G. usneoides, Laminaria digitata, Sargassum muticum, S. vulgare, S. thunbergii, Lessonia spicata,
Durvillaea antarctica, Vidalia colensoi, Padina gymnospora, Macrocystis pyrifera; and the green
macroalgae (Chlorophyta): Caulerpa racemosa, Cladophora socialis, Monostroma grevillei, Ulva
clathrata, U. compressa, U. intestinalis, U. linza, U. flexuosa, U. australis, Capsosiphon fulvescens,
Chaetomorpha moniligera.

Table 1. Phenolic compounds and other micronutrients from some marine macroalgae and
their bioactivities.

Species Phenolic Compounds and Other
Micronutrients Bioactivities References

Callophycus serratus (R) Phenolic terpenoids: diterpenes
and sesquiterpenes

Antibacterial, antifungal
and anticancer [23,26]

Capsosiphon fulvescens (C) Bromophenols and flavonoids Antioxidant [27]

Caulerpa racemosa (C)
(Figure 1a)

Catechin, epicatechin,
epigallocatechin, catechin gallate,

epicatechin gallate

Antidiabetic, Antiproliferative,
anti-inflammatory and antioxidant [19]

Chaetomorpha moniligera (C) Bromophenols and flavonoids Antioxidant [22,27]

Chondrus crispus (R)
(Figure 1b) Isoflavones Antioxidant, antiproliferative

and antidiabetic [28]

Cladophora socialis (C) Cladophorol Antibiotic [29]

Durvillaea antarctica (P) Phlorotannins, tocopherol Antioxidant [15,30,31]

Ecklonia cava (P) Polyphenol extract, phlorotannins,
cholinesterase, dieckol

Antioxidant, anti-obesity,
neuroprotection [32,33]

E. cava subsp. stolonifera (P) Phlorotannins, phlorofucofuroeckol
Anti-inflammatory, antioxidant,

anti-hyperlipidemic
chemo-preventive

[34,35]

E. cava subsp. kurome (P) Phlorotannins
Antibacterial, anti-proliferative,

anti-inflammatory and
anti-adipogenic

[19,36]

Eisenia bicyclis (P) Phlorotannins, fucofuroeckol-A Antioxidant, anti-inflammatory and
neuroprotective [23,37]

Fucus spiralis (P) (Figure 1c) Phlorotannins
Antioxidant, photoprotective;

anti-enzymatic, anti-inflammatory
and cytoprotective

[38–40]

F. vesiculosus (P) (Figure 1d) Phlorotannins Antioxidant, antibacterial
and antidiabetic [41,42]

Gongolaria nodicaulis (P)
(Figure 1e) Phlorotannins Antimicrobial [23,43]

G. usneoides (P) (Figure 1f) Phlorotannins Anti-inflammatory, antioxidant,
and antimicrobial [19,44]
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Table 1. Cont.

Species Phenolic Compounds and Other
Micronutrients Bioactivities References

Ishige okamurae (P) Phlorotannins Antioxidant, anti-inflammatory,
photoprotective [45,46]

Kappaphycus alvarezii (R)
(Figure 1g) Chlorogenic and salicylic acid Antioxidant, antimicrobial [47–49]

Laminaria digitata (P)
(Figure 1h) Phlorotannins Antioxidant [50,51]

Lessonia spicata (P) Phlorotannins Antioxidant, photoprotective [52,53]

Macrocystis pyrifera (P) Phlorotannins: phloroeckol and
phloroglucinol Antioxidant and antidiabetic [54,55]

Monostroma grevillei (C) Polyphenol extract Antiviral [23]

Neorhodomela larix (R) Polyphenol extract Antioxidant [19,56]

Padiana boryana (P) Ellagic acid and velutin Antimicrobial and antiprotozoal [57]

Padina boergesenii (P) Phenolic compounds Antioxidant and photo-protective [58]

Padina gymnospora (P)
(Figure 1i) Phenolic compounds, flavonoids Antioxidant, antibacterial [59,60]

Polysiphonia morrowii (R) 5-bromo-3,4-
dihydroxybenzaldehyde Anti-adipogenesis [61]

Polycladia myrica (P) Phlorotannins Antioxidant, Antibacterial and
photo-protective [62]

Rhodomela confervoides (R) Bromophenols Antioxidant, antibacterial, cytotoxic [63–65]

Sargassum muticum (P)
(Figure 1j) Phlorotannins, dieckol Antioxidant, antibacterial, tyrosinase

and elastase inhibition [66,67]

S. vulgare (P) (Figure 1k) Phlorotannins
Antioxidant, antidiabetic, antifungal,

pancreatic lipase and
anti-inflammatory

[13,68,69]

S. thunbergii (P) Phenolic compounds, phlorotannins Antioxidant, anti- inflammatory,
antibacterial and photoprotective [70–72]

Symphyocladia latiuscula (R) Phenolic compounds, bromophenols Antioxidant, neuroprotective [73–75]

Tichocarpus crinitus (R) Bromophenols, phenylpropanoids,
tichocarpol

Antioxidant, feeding-deterrent
activity [76–78]

Ulva australis (C) Phenolic compounds, bromophenols,
flavonoids, tannins Antioxidant, antidiabetic [19,79]

U. clathrata (C) (Figure 1l) Phenolic compounds, flavonoids Antioxidant [80–82]

U. compressa (C) (Figure 1m) Phenolic compounds Antioxidant [83,84]

U. flexuosa (C) Phlobatanins Antifungal, antibacterial [85,86]

U. intestinalis (C) (Figure 1n) Phenolic compounds, flavonoids Antioxidant, antibacterial [87–89]

U. lactuca (C) (Figure 1o) Ellagic acid and velutin Antimicrobial [57]

U. linza (C) (Figure 1p) Phenolic compounds, flavonoids Antioxidant, anti-inflammatory [19,81,90]

U. rigida (C) Phenolic compounds Antifungal, antibacterial, antioxidant
and AChE inhibitory capacity [91,92]

Vidalia colensoi (P) Bromophenols Antibacterial [19,23,93]

C—Chlorophyta; R—Rhodophyta; P—Phaeophyceae.
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Figure 1. Seaweed species images: (a) Caulerpa racemosa (C); (b) Chondrus crispus (R); (c) Fucus spiralis 
(P); (d) Fucus vesiculosus (P); (e) Gongolaria nodicaulis (P); (f) Gongolaria usneoides (P); (g) Kappaphycus 
alvarezii (R); (h) Laminaria digitata (P); (i) Padina gymnospora (P); (j) Sargassum muticum (P); (k) 
Sargassum vulgare (P); (l) Ulva clathrata (C); (m) Ulva compressa (C); (n) Ulva intestinalis (C); (o) Ulva 
lactuca (C); (p) Ulva linza (C); (C) Chlorophyta; (R) Rhodophyta; (P) Phaeophyceae. Scale Bar = 1 cm. 

Figure 1. Seaweed species images: (a) Caulerpa racemosa (C); (b) Chondrus crispus (R); (c) Fucus spiralis
(P); (d) Fucus vesiculosus (P); (e) Gongolaria nodicaulis (P); (f) Gongolaria usneoides (P); (g) Kappaphycus
alvarezii (R); (h) Laminaria digitata (P); (i) Padina gymnospora (P); (j) Sargassum muticum (P); (k) Sargassum
vulgare (P); (l) Ulva clathrata (C); (m) Ulva compressa (C); (n) Ulva intestinalis (C); (o) Ulva lactuca (C);
(p) Ulva linza (C); (C) Chlorophyta; (R) Rhodophyta; (P) Phaeophyceae. Scale Bar = 1 cm.
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3.1.2. Fish

Fish are also an important source of marine polyphenols and other minor nutrients,
particularly fatty fish such as salmon (Salmo salar), tuna (Thunnus orientalis) and sardines
(Sardina pilchardus) [94]. Polyphenols found in fish include compounds such as catechins,
phenolic acids and carotenoids [95]. Catechins are a type of flavonoid that have antioxidant
and anti-inflammatory properties. Phenolic acids are common compounds that are also
found in fruits, vegetables and plants that also have antioxidant and anti-inflammatory
properties. Carotenoids, such as astaxanthin, are natural pigments found in some types of
fish that have antioxidant and anti-inflammatory properties [96].

Curcumin is a natural polyphenol that is found in some fish, such as Tambaqui
(Colossoma macropomum) [97]. It is responsible for the yellow color of turmeric root, a plant
widely used in cooking and traditional medicine [98]. Curcumin has been the subject of
many scientific studies due to its antioxidant and anti-inflammatory properties. Curcumin
is thought to help prevent or treat a variety of inflammatory conditions, such as arthritis,
inflammatory bowel disease and even cardiovascular disease [99]. Additionally, studies
suggest that curcumin may help lower blood cholesterol levels. High cholesterol is a
major risk factor for heart disease, and curcumin may be helpful in preventing these
conditions [100]. Curcumin is considered safe and well tolerated in moderate doses.
However, it is important to note that the absorption of curcumin by the body is limited,
which can limit its effectiveness in some situations [101].

Catechins are a group of polyphenols with antioxidant and anti-inflammatory proper-
ties that are found in many foods, including fish such as tuna and salmon [102]. Catechins
are known for their ability to neutralize free radicals, which are unstable molecules naturally
produced by the body in response to stress, pollution and other factors. The accumulation
of free radicals can lead to cell damage and increase the risk of chronic diseases such as
cancer, heart disease and neurodegenerative diseases [103]. Additionally, catechins have
anti-inflammatory properties that can help reduce inflammation in the body, which is a
natural immune system response to injury and infection, but when persistent can lead
to a number of illnesses [104]. Catechins also have anticancer activities, as they can help
prevent the growth of cancer cells and inhibit the formation of new blood vessels that feed
tumors [105] A study published in the scientific publication “Nutrients” found that eating
catechin-rich fish, such as salmon, was associated with a reduced risk of cardiovascular
disease [106]. Another study published in “Antioxidants” showed that catechins found
in fish can help prevent cellular aging and protect DNA [106]. Although catechins can be
found in some fish, most research into their health benefits has been with green tea, which
is a rich source of catechins. However, including catechin-rich fish in your diet can be a
delicious way to increase your intake of these healthy compounds [107].

Quercetin is a flavonol, a type of flavonoid that is found in many plant foods, includ-
ing fruits, vegetables and some herbs [108]. Furthermore, quercetin can also be found in
some fish such, as salmon and trout. This compound is known for its antioxidant and
anti-inflammatory properties and is one of the most studied flavonoids in relation to human
health. Quercetin acts as an antioxidant, helping to neutralize free radicals, which are un-
stable molecules naturally produced by the body that can damage cells and lead to chronic
disease [108,109]. Additionally, quercetin has anti-inflammatory properties that can help
reduce inflammation in the body, which is a natural immune system response to injury and
infection, but which can lead to a host of illnesses when it becomes chronic [110]. Moreover,
quercetin may help protect cardiovascular health. It helps to lower LDL cholesterol (“bad
cholesterol”) and increase HDL cholesterol (“good cholesterol”), which can help prevent
cardiovascular diseases such as heart attacks and strokes. Quercetin also helps lower blood
pressure and protects heart cells and blood vessels from damage [111]. Quercetin has also
been studied for its potential to prevent and treat cancer. In vivo and in vitro studies have
shown that quercetin can help prevent the growth of cancer cells and inhibit the formation
of new blood vessels that feed tumors. Additionally, quercetin may help increase the
effectiveness of other cancer treatments, such as chemotherapy [112].
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Ellagic acid is a naturally occurring phenolic acid that is found in various foods,
including fruits, vegetables and some types of fish. Phenolic acids are a type of organic
compound that are known for their antioxidant properties and have been associated with
a range of health benefits [113] In the case of ellagic acid, research has suggested that it
may have anticancer properties and may be beneficial in the prevention and treatment of
various types of cancer [114]. Ellagic acid is also believed to have anti-inflammatory and
antimicrobial effects, which may further contribute to its potential health benefits [115].
While ellagic acid is most commonly found in fruits and vegetables, such as strawberries,
raspberries and pomegranates, it has also been identified in some species of fish. For
example, research has shown that ellagic acid can be found in the muscle tissue of salmon
and trout (Oncorhynchus mykiss) [116]. It is important to note, however, that the amount of
ellagic acid present in fish is typically much lower than that found in fruits and vegetables.
Therefore, while including fish in one’s diet may provide some small amount of ellagic acid,
it is unlikely to have a significant impact on overall ellagic acid intake [117]. Overall, while
ellagic acid may be a beneficial compound with potential health benefits, it is important to
consider a variety of dietary sources, including fruits, vegetables, fish and other foods, to
ensure adequate intake of this and other important nutrients [118].

Fisetin is a natural flavonoid that can be found in a variety of plants and fruits, such as
strawberries, grapes, apples, persimmons, onions and cucumbers. It is also present in some
fish, including salmon. Research has shown that fisetin possesses powerful antioxidant,
anti-inflammatory and neuroprotective properties that may help defend the body against
various diseases and health conditions [119]. Antioxidants help to neutralize harmful free
radicals in the body, which can damage cells and contribute to the development of chronic
diseases such as cancer, heart disease, and Alzheimer’s disease. By reducing oxidative
stress, fisetin may help to prevent these conditions from developing [120]. Fisetin has also
been found to have cardioprotective effects, meaning it can help protect the heart and
cardiovascular system from damage. It may help lower blood pressure and reduce the risk
of heart disease by improving blood flow and reducing inflammation in the arteries [121].
In addition to its potential cardiovascular benefits, fisetin has also been studied for its
cancer-fighting properties. Some research has shown that fisetin can inhibit the growth
and spread of certain types of cancer cells, including prostate, breast and colon cancer
cells [122]. Furthermore, fisetin has also been shown to improve cognitive function and
memory in some in vivo studies, suggesting that it may have potential benefits for brain
health as well [123].

Overall, while more research is needed to fully understand the potential health ben-
efits of fisetin, the current evidence suggests that this natural compound may have a
range of health-promoting properties, including antioxidant and anti-inflammatory effects,
cardiovascular protection, cancer prevention and potential benefits for brain health [119].

3.1.3. Shellfish

Shellfish, such as shrimps, clams and oysters, are also a source of marine polyphenols
and other minor nutrients. The most common compounds found in shellfish are carotenoids
such as astaxanthin and zeaxanthin, which have antioxidant and anti-inflammatory proper-
ties [124]. These polyphenols are derived from algae and other marine organisms that are
consumed by shellfish as part of their diet [3]. One example of a marine polyphenol are the
catechins, which are also found in tea, and procyanidins, which are found in various fruits,
vegetables and brown seaweeds [17]. These polyphenols are believed to have a range of
health benefits, including antioxidant and anti-inflammatory effects [125].

Anther minor nutrient found in shellfish is fucoxanthin, which is a type of carotenoid
that is found in brown seaweed. Fucoxanthin has been shown to have antioxidant, anti-
inflammatory and anti-obesity properties [126]
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3.1.4. Sponges

Despite being a rich source of highly bioactive chemicals [127], there has been little
research in the literature on the extraction and identification of polyphenols in sponges.
Traditionally, methanol and dichloromethane were utilized for extraction; however, some
novel phenolic compounds have been discovered. Bisabolenes are polyphenolic chemicals
discovered in sponges that are particularly fascinating. All sponge bisabolenes have a
distinct 7S structure, whereas other marine and terrestrial bisabolenes have a 7R struc-
ture [127]. (S)-(+)-curcuphenol, a member of this family discovered in sponges, has a variety
of biological activities [128].

3.1.5. Marine Fungi

Several Benzaldehyde compounds produced from marine fungus have also sparked
interest due to their scavenging characteristics. Wang et al. discovered and characterized
chaetopyramin, a scavenging metabolite isolated from the marine fungus Chaetomium globo-
sum (Ascomycota) and the red algae Polysiphonia stricta (formerly Polysiphonia urceolata).
Chaetopyramin was synthesized along with known derivatives isotetrahydroauroglaucin
and 2-(2′,3′-epoxy-1′,3′-heptadienyl)-6-hydroxy-5-(3-methyl-2-butenyl)benzaldehyde, hav-
ing DPPH IC50 values of 35, 26 and 88 g/mL, respectively [128].

In this case, two additional benzaldehyde derivatives, flavoglaucin and isodihydroau-
roglaucin, were obtained from the marine fungus Microsporum sp. These metabolites,
renowned for their DPPH scavenging capacity due to the inclusion of two phenolic hy-
droxyl groups, demonstrated considerable action, with IC50 values in the range of 11.3 and
11.5 g/mL, making them more effective than ascorbic acid (20 g/mL) [128].

The hydroquinone farnesylhydroquinone and its oxidized counterpart, sesquiterpene
quinone, were discovered from the marine fungus Penicillium sp., and Farnesylhydro-
quinone (IC50 12.5 M) was shown to be a greater DPPH radical scavenger than ascorbic
acid (IC50 22.5 M) [129].

3.1.6. Sea Urchins

The existence of polyhydroxylated naphthoquinone (PHNQ) pigments in sea urchins
has long been recognized and investigated [130]. They are concentrated in the shells or
gonads, and it has been proposed that they, like other polyphenolic components from
edible plants, may be used as antioxidants. Indeed, PHNQs extracted from sea urchin
gonads have been demonstrated to be potent antioxidants in lipid peroxidation and food
systems [131,132].

However, their use may be hampered by their poor yield and restricted by their
brown/orange coloration. The structures of polyhydroxylated naphthoquinone pigments
reveal that they are easily reduced and re-oxidized. As a result, their stability is critical
for future medical applications. Alternatively, their distinctive quinone structure, along
with their structural diversity, may lead to the discovery of novel bioactivities that are more
relevant to biological applications [130,133].

3.2. Phenolic Compounds Metabolomics

There is a natural necessity of extrinsic or intrinsic drivers to make seaweed cellular
systems to create naturally and/or enhance/trigger its production from one molecule or
a class of chemical to be generated by a specimen in nature or in aquaculture. Primarily
(primary metabolites), phenolic compounds (primary and secondary metabolites) are pro-
duced naturally and inherently in basic conformations. When seaweed cells are activated
in stressful settings, they develop more complex forms [19] As a result, the presence of
phenolic chemicals is invariably recognized in cells [19]

Extrinsic factors, on the other hand, activate cellular defensive responses, which
can shift the molecular mechanism to produce greater quantities and a wider range of
conformations of a specific compound class, particularly when it is a defensive compound
synthesized to protect against external attacks [134,135].
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If the drivers of seaweed compound production are fully understood, the exploitation
of phenolic compounds and their bioactivity can be moved into kinetic models, providing
more exploitation safety and information on how to explore phenolic compounds effi-
ciently with lower costs and higher quality [136,137]. Thus, the cultivation of the marine
organism under controlled conditions can be a feasible system to produce and obtain a
natural phenolic compound that can be applied commercially. One of the examples is the
Dieckol from the brown seaweed Ecklonia radiata, which is already applied in cardiovascular
therapeutics [19].

4. Structure and Properties of Marine Polyphenols

The basic structure of marine polyphenols consists of multiple phenolic rings linked
together by various chemical bonds. These rings can be modified with other chemical
groups, such as sugars or sulfates, which can further influence their properties [138].

One of the unique features of marine polyphenols is their ability to form complex
aggregates or “tannins” through intermolecular interactions such as hydrogen bonding
and hydrophobic interactions. These tannins can have different physical and chemical
properties compared to their monomeric counterparts, including increased solubility and
stability [139].

Another important property of marine polyphenols is their potential to be used as
natural food preservatives. Some marine polyphenols, such as the phlorotannins found
in brown seaweed, have been shown to inhibit the growth of various bacteria and fungi,
which can help to extend the shelf life of food products [15].

Because of their structural variety and unpredictability, phenolic compounds from ma-
rine creatures are significantly less researched than those from terrestrial sources. However,
their biological significance and prospective features make them an appealing category
deserving of more scientific investigation. The utilization of effective extraction and, in
certain circumstances, purifying processes can provide new bio-actives valuable for food,
nutraceutical, cosmeceutical and pharmaceutical applications. The bioactivity of marine
phenolics is due to their enzyme inhibitory action as well as antibacterial, antiviral, anti-
cancer, antidiabetic, antioxidant or anti-inflammatory properties [3]. The marine ecosystem
can be exploited by aquaculture techniques, causing less impact in terrestrial ecosystem.

4.1. Some Phenolic Compound Structures and Bioactivities
4.1.1. Phenolic Acids (PAs)

There are two main types of PAs: hydroxybenzoic acids (HBAs) (Figure 2) and hy-
droxycinnamic acids (HCAs). HBAs include compounds such as gallic acid (Figure 3),
protocatechuic acid (Figure 4) and syringic acid (Figure 5), while HCAs include compounds
such as caffeic acid (Figure 6), ferulic acid and sinapic acid (Figure 7) [68].

The properties of PAs can vary depending on their structure and the position of the
hydroxyl and carboxylic acid groups on the phenolic ring. Some common characteristics of
PAs include:
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Antioxidant activity: PAs are known to have strong antioxidant activity due to their
ability to scavenge free radicals and inhibit lipid peroxidation [140].

Anti-inflammatory activity: PAs have been shown to have anti-inflammatory effects,
which may be due to their ability to inhibit the production of inflammatory mediators such
as cytokines and prostaglandins [141].

Antimicrobial activity: Some PAs have been shown to have antimicrobial activity
against various bacteria and fungi, which may be due to their ability to disrupt microbial
cell membranes or inhibit enzyme activity [142].
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Absorption and metabolism: PAs are absorbed in the small intestine and metabolized
by the liver. The degree of absorption and metabolism can vary depending on the structure
of the PA and the presence of other dietary components [143].

4.1.2. Phlorotannins

Phlorotannins, as mentioned earlier, are phenolic compounds that are primarily found
in brown algae (Phaeophyceae). Here are some of their characteristics and structures:

Chemical structure: Phlorotannins are phloroglucinol polymers that are formed by
the bonding of phloroglucinol units through ether linkages. There are various types of
phlorotannins, based on the number of phloroglucinol units they contain and the nature of
the linkages between these units [144].

Antioxidant properties: Phlorotannins are known for their strong antioxidant proper-
ties, which make them useful in a variety of medical and cosmetic applications [145].

Potential antimicrobial activity: Some studies indicate that phlorotannins may have
antimicrobial activity, which could make them useful in the treatment of infections [146].

Potential anti-inflammatory activity: Some studies suggest that phlorotannins may
have anti-inflammatory properties, which could make them useful in the treatment of
inflammatory conditions [145].

Phlorotannins are characterized by their complex structure, which typically consists of
multiple phloroglucinol units (Figure 8) linked by ether or carbon–carbon bonds. Phlorotan-
nins can vary in size and degree of polymerization, with some larger molecules containing
more than 20 phloroglucinol units [144].

Mar. Drugs 2023, 21, x  12 of 42 
 

 

The properties of PAs can vary depending on their structure and the position of the 
hydroxyl and carboxylic acid groups on the phenolic ring. Some common characteristics 
of PAs include: 

Antioxidant activity: PAs are known to have strong antioxidant activity due to their 
ability to scavenge free radicals and inhibit lipid peroxidation [140]. 

Anti-inflammatory activity: PAs have been shown to have anti-inflammatory effects, 
which may be due to their ability to inhibit the production of inflammatory mediators 
such as cytokines and prostaglandins [141]. 

Antimicrobial activity: Some PAs have been shown to have antimicrobial activity 
against various bacteria and fungi, which may be due to their ability to disrupt microbial 
cell membranes or inhibit enzyme activity [142]. 

Absorption and metabolism: PAs are absorbed in the small intestine and metabolized 
by the liver. The degree of absorption and metabolism can vary depending on the 
structure of the PA and the presence of other dietary components [143]. 

4.1.2. Phlorotannins 
Phlorotannins, as mentioned earlier, are phenolic compounds that are primarily 

found in brown algae (Phaeophyceae). Here are some of their characteristics and 
structures: 

Chemical structure: Phlorotannins are phloroglucinol polymers that are formed by 
the bonding of phloroglucinol units through ether linkages. There are various types of 
phlorotannins, based on the number of phloroglucinol units they contain and the nature 
of the linkages between these units [144]. 

Antioxidant properties: Phlorotannins are known for their strong antioxidant 
properties, which make them useful in a variety of medical and cosmetic applications 
[145]. 

Potential antimicrobial activity: Some studies indicate that phlorotannins may have 
antimicrobial activity, which could make them useful in the treatment of infections [146]. 

Potential anti-inflammatory activity: Some studies suggest that phlorotannins may 
have anti-inflammatory properties, which could make them useful in the treatment of 
inflammatory conditions [145]. 

Phlorotannins are characterized by their complex structure, which typically consists 
of multiple phloroglucinol units (Figure 8) linked by ether or carbon–carbon bonds. 
Phlorotannins can vary in size and degree of polymerization, with some larger molecules 
containing more than 20 phloroglucinol units [144]. 

 
Figure 8. Phloroglucinol. 

4.1.3. Catechins 
Catechins are a type of flavonoid polyphenol found in green tea, but they are also 

present in some marine algae. They are characterized by a structure that consists of two 
phenolic rings linked by a carbon–carbon bond, with hydroxyl groups attached to the 
rings. Catechins can have various substitutions on the rings, which can affect their 
biological activity [2]. Both rings have hydroxyl groups (-OH) in positions 3 and 4, and in 
ring B there may be a hydroxyl group in position 5. The position of hydroxyl groups and 
other substitutions in ring B and ring C can vary, generating different types of catechins 

Figure 8. Phloroglucinol.

4.1.3. Catechins

Catechins are a type of flavonoid polyphenol found in green tea, but they are also
present in some marine algae. They are characterized by a structure that consists of two
phenolic rings linked by a carbon–carbon bond, with hydroxyl groups attached to the rings.
Catechins can have various substitutions on the rings, which can affect their biological
activity [2]. Both rings have hydroxyl groups (-OH) in positions 3 and 4, and in ring B there
may be a hydroxyl group in position 5. The position of hydroxyl groups and other substi-
tutions in ring B and ring C can vary, generating different types of catechins with specific
biological activities. Some examples of catechins are: epicatechin (EC), epicatechin-3-gallate
(ECG) (Figure 9), epigallocatechin (EGC), epigallocatechin-3-gallate (EGCG) (Figure 10),
gallocatechin (GC) (Figure 11) and catechin (C) (Figure 12) [147].
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Some of the main bioactivities of catechins include:
Antioxidant activity: Catechins have strong antioxidant properties and can scavenge

free radicals and reactive oxygen species, which can cause oxidative damage to cells and
contribute to various diseases [148]

Anti-inflammatory activity: Catechins have been shown to have anti-inflammatory
effects, which may help to reduce the risk of chronic diseases such as cardiovascular disease,
diabetes and cancer [149].

Anti-cancer activity: Several studies have suggested that catechins may have anti-
cancer properties, particularly in reducing the risk of breast, prostate and colon cancer [150].

Anti-obesity activity: Catechins have been shown to have an anti-obesity effect, partic-
ularly by promoting fat oxidation and reducing fat accumulation in the body (2023).

Neuroprotective activity: Catechins have been shown to have neuroprotective effects,
which may help to reduce the risk of neurodegenerative diseases such as Alzheimer’s and
Parkinson’s disease [151].
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Cardiovascular protection: Catechins may help to protect against cardiovascular dis-
ease by reducing the risk of hypertension, lowering LDL cholesterol levels and improving
endothelial function [152].

Anti-diabetic activity: Catechins may help to regulate blood sugar levels and improve
insulin sensitivity, which may be beneficial for people with type 2 diabetes [149].

4.1.4. Bromophenols

Bromophenols (Figure 13) are a type of polyphenol that contain one or more bromine
atoms in addition to the phenolic rings. They are found in some marine organisms such
as red algae and sponges [153]. Bromophenols can have various structures, with some
containing one phenolic ring and others containing two or more rings [23].
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Some of the main bioactivities of bromophenols include:
Antioxidant activity: Bromophenols have been shown to have strong antioxidant

properties, which can help to protect cells from oxidative damage caused by free radicals
and reactive oxygen species [154].

Anti-inflammatory activity: Bromophenols have been shown to have anti-inflammatory
effects, which may help to reduce the risk of chronic diseases such as cardiovascular disease,
diabetes and cancer [155].

Anti-tumor activity: Several studies have suggested that bromophenols may have
anti-tumor properties, particularly in reducing the growth and proliferation of cancer
cells [138].

Antibacterial and antiviral activity: Bromophenols have been shown to have antibac-
terial and antiviral properties, which may help to prevent and treat infections [156].

Neuroprotective activity: Bromophenols have been shown to have neuroprotective ef-
fects, which may help to reduce the risk of neurodegenerative diseases such as Alzheimer’s
and Parkinson’s disease [157].

Cardiovascular protection: Bromophenols may help to protect against cardiovascu-
lar disease by reducing the risk of hypertension, lowering LDL cholesterol levels and
improving endothelial function [158].

Anti-diabetic activity: Bromophenols may help to regulate blood sugar levels and
improve insulin sensitivity, which may be beneficial for people with type 2 diabetes [159].

4.1.5. Flavonoids

Flavonoids are a diverse class of naturally occurring compounds found in many
marine algae, fruits, vegetables and herbs. They are characterized by their unique chem-
ical structure, which consists of two aromatic rings linked by a three-carbon bridge [2].
Flavonoids have a wide range of bioactivities, including:

Antioxidant activity: Flavonoids are well-known for their antioxidant properties,
which help to protect cells from oxidative damage caused by free radicals and reactive
oxygen species [160].

Anti-inflammatory activity: Many flavonoids have been shown to have anti-inflammatory
effects, which may help to reduce the risk of chronic diseases such as cardiovascular disease,
diabetes and cancer [161].
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Anti-cancer activity: Some flavonoids have been shown to have anti-cancer properties,
particularly in reducing the growth and proliferation of cancer cells [162].

Neuroprotective activity: Flavonoids have been shown to have neuroprotective effects,
which may help to reduce the risk of neurodegenerative diseases such as Alzheimer’s and
Parkinson’s disease [163].

Cardiovascular protection: Flavonoids may help to protect against cardiovascular dis-
ease by reducing the risk of hypertension, lowering LDL cholesterol levels and improving
endothelial function [164].

Anti-diabetic activity: Flavonoids may help to regulate blood sugar levels and improve
insulin sensitivity, which may be beneficial for people with type 2 diabetes [159].

Some examples of flavonoids and their bioactivities include:
Quercetin (Figure 14): Quercetin is a flavonoid found in many fruits and vegeta-

bles, including onions, apples and berries. It has been shown to have antioxidant, anti-
inflammatory, anti-cancer and neuroprotective properties [165].
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Epigallocatechin gallate (EGCG) (Figure 10): EGCG is a flavonoid found in green tea.
It has been shown to have antioxidant, anti-inflammatory, anti-cancer and cardiovascular
protective properties [166].

Hesperidin (Figure 15): Hesperidin is a flavonoid found in citrus fruits. It has
been shown to have antioxidant, anti-inflammatory and cardiovascular protective proper-
ties [167].
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Kaempferol (Figure 16): Kaempferol is a flavonoid found in many plants, including
broccoli, kale and tea. It has been shown to have antioxidant, anti-inflammatory, anti-cancer
and neuroprotective properties [168].
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4.1.6. Phenolic Terpenoids

Phenolic terpenoids, also known as terpenophenolics, are a class of natural compounds
that consist of a terpenoid backbone (a linear or cyclic hydrocarbon chain) and one or more
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phenolic groups [19]. They are produced by a wide range of plants and brown and red
seaweeds, and they have a diverse array of bioactivities, including:

Antioxidant activity: Phenolic terpenoids are potent antioxidants that can protect cells
from oxidative stress caused by free radicals and reactive oxygen species [169].

Anti-inflammatory activity: Many phenolic terpenoids have anti-inflammatory effects,
which can help to reduce inflammation in the body and prevent chronic diseases [170].

Anti-cancer activity: Some phenolic terpenoids have been shown to have anti-cancer
properties, including inhibiting tumor growth and inducing cancer cell death [171].

Cardiovascular protection: Phenolic terpenoids may help to protect against cardio-
vascular disease by reducing oxidative stress, inflammation and lipid peroxidation, and
improving vascular function [172].

Anti-microbial activity: Some phenolic terpenoids have been shown to have anti-
microbial properties, which can help to prevent and treat infections [173].

Neuroprotective activity: Phenolic terpenoids may have neuroprotective effects, in-
cluding protecting against oxidative damage, reducing inflammation and improving cogni-
tive function [174].

Examples of phenolic terpenoids and their bioactivities include:
Rosmarinic acid (Figure 17): Rosmarinic acid is a phenolic terpenoid found in many

herbs, including rosemary and sage. It has antioxidant, anti-inflammatory and anti-
microbial properties, and may also have neuroprotective effects [175].
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Ursolic acid (Figure 18): Ursolic acid is a pentacyclic triterpenoid found in many fruits
and herbs, including apples, rosemary and basil. It has anti-inflammatory, anti-cancer and
neuroprotective properties, and may also help to improve cardiovascular health [176].
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Carnosic acid (Figure 19): Carnosic acid is a phenolic diterpene found in rosemary.
It has antioxidant, anti-inflammatory and neuroprotective properties, and may also have
anti-cancer effects [177].
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Curcumin (Figure 20): Curcumin is a polyphenolic terpenoid found in turmeric. It has
antioxidant, anti-inflammatory, anti-cancer and neuroprotective properties, and may also
help to improve cardiovascular health [178].
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Overall, phenolic terpenoids have a wide range of bioactivities that may help to
promote health and prevent chronic diseases. However, more research is needed to fully
understand the mechanisms of action and potential therapeutic applications of these
compounds [179].

4.1.7. Mycosporine-like Amino Acids (MAA)

Mycosporine-like amino acids (MAAs) are a class of water-soluble, low molecular
weight compounds that are widely distributed in marine organisms, including cyanobacte-
ria, algae and some invertebrates [180]. They are produced as a response to UV radiation
and act as a photoprotective agent, absorbing UV radiation and dissipating it as heat.
MAAs have also been found in some marine and terrestrial organisms, including algae,
lichens and fungi [181].

MAAs have a unique structure that consists of a cyclohexenone or cyclohexenimine
chromophore linked to one or more amino acids [134]. The specific structure and number
of amino acids can vary depending on the organism and environmental conditions. Some
examples of MAAs and their bioactivities include:

Shinorine (Figure 21): Shinorine is an MAA found in red algae. It has been shown to
have antioxidant, anti-inflammatory and UV-protective properties [182].
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Porphyra-334: Porphyra-334 is an MAA found in red algae (Rhodophyta). It has been
shown to have UV-protective properties and may also have anti-inflammatory effects [183].

Mycosporine-glycine (Figure 22): Mycosporine-glycine is an MAA found in many ma-
rine organisms, including cyanobacteria and algae. It has been shown to have antioxidant
and anti-inflammatory properties and may also have neuroprotective effects [184].
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Palythine (Figure 23): Palythine is an MAA found in some invertebrates, including
jellyfish and sea anemones. It has been shown to have antioxidant and anti-inflammatory
properties and may also have neuroprotective effects [185].
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MAAs are known to have several bioactivities, including:
UV-protective activity: MAAs are known for their ability to protect organisms from

UV radiation by absorbing UV light and dissipating it as heat. This helps to prevent damage
to DNA and other cellular structures caused by UV radiation [181].

Antioxidant activity: MAAs have been shown to have antioxidant properties, which
can help to protect cells from oxidative damage caused by free radicals and other reactive
oxygen species [186].

Anti-inflammatory activity: Some MAAs have been shown to have anti-inflammatory
effects, which may help to reduce inflammation in the body and prevent chronic dis-
eases [187].

Neuroprotective activity: MAAs may have neuroprotective effects, including protect-
ing against oxidative damage and reducing inflammation in the brain [155].

Overall, MAAs are a unique class of compounds with a wide range of bioactivities
that are important for the survival of marine organisms in UV-rich environments. More
research is needed to fully understand the mechanisms of action and potential therapeutic
applications of these compounds [188].

4.1.8. Non-Typical Phenolic Compounds

Some examples of non-typical phenolic compounds and their bioactivities:
The class of oligomeric polyphenolic compounds known as Cladophorols (Figure 24)

were initially discovered and characterized in the green algae Cladophora socialis (Chloro-
phyta) [29]. These compounds have exhibited noteworthy antimicrobial properties, partic-
ularly against methicillin-resistant Staphylococcus aureus (MRSA). Cladophorol C, a specific
compound within this class, has displayed strong selective antibacterial activity against
pathogenic MRSA, with a minimum inhibitory concentration (MIC) of 1.4 µg/mL [29].
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Several phenolic compounds have been identified in different seaweed species. Colpol,
a phenolic compound, has been identified in brown seaweeds, while tichocarpols, a phenyl-
propanoid derivative, have been identified in the red algae species Tichocarpus crinitus
(Rhodophyta) [77].

5. Phenolic Compound Extraction and Isolation

Pre-treatment with seaweed is advised, such as a washing step to remove stones, sand,
epiphytes or other contaminants. As a result, algal biomass can be utilized fresh, dried
(air drying or at 30–40 ◦C with aeration for 3–5 days) or freeze dried [189]. Freeze-dried
is preferable because it preserves the integrity of the biomolecules and allows for higher
extraction yields [190].

A milling or grinding step is also advised to lower particle size, which would enhance
the exposure area between the seaweed biomass and the solvent used for extraction [191].
As a result, the extraction yield will rise.

To avoid co-extraction of pigments or fatty acids [28] with low polar solvents—n-
hexane, n-hexane:acetone, n-hexane:ethyl acetate or dichloromethane—a pre-extraction
step is usually necessary [19]. The next step is to choose an extraction method, as these
approaches vary greatly.

Soxhlet, solid–liquid and liquid–liquid extractions are examples of traditional extrac-
tion procedures. Organic solvents (e.g., hexane, petroleum ether, cyclohexane, ethanol,
methanol, acetone, benzene, dichloromethane, ethyl acetate, chloroform) are often utilized
in the listed techniques. Nonetheless, the solvent used in extraction processes should be
non-toxic and inexpensive [192]. Because of its cheaper cost, ethanol is used as an extraction
solvent in the industrial sector.

These approaches have changed throughout time to increase extraction efficiency and
sustainability as technology has advanced. Currently, ultrasound and microwave-assisted
extraction are low-cost, large-scale methods [19].

Following the extraction procedure, the isolated and quantified target phenolic com-
ponent must be isolated. Depending on the type of substance to be separated, several
techniques might be used.

In general, the source of phenolic compounds, the extraction and purification processes
used, the sample particle size, the storage conditions and the presence of interfering
components in extracts such as fatty acids or pigments all impact the results [19].

Today, phenolic compounds are isolated using preparative chromatography tech-
niques such as column chromatography, high-pressure liquid chromatography (HPLC) or
thin-layer chromatography (TLC). However, these chromatographic methods have been
developed to be employed for the separation, isolation, purification, identification and
quantification of many phenolic substances [193].

Due to these costly procedures, they are still in the initial stage to exploit marine
phenolics compounds in an efficient way, although they are being studied to be further
applied in pharmaceutics.
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6. Marine Polyphenols Action Mechanisms

Marine polyphenols are a diverse group of compounds that include flavonoids, phe-
nolic acids and stilbenes, among others. They are synthesized by marine organisms as
a defense mechanism against environmental stressors, such as UV radiation, pathogens
and predators [3]. Marine polyphenols have been found to exhibit a wide range of bi-
ological activities, including anti-inflammatory, anticancer, antiviral, antimicrobial and
neuroprotective effects [19].

One of the key mechanisms by which marine polyphenols exert their biological effects
is through their ability to interact with cellular signaling pathways. For example, marine
polyphenols have been found to modulate the activity of the enzymes involved in cell
proliferation, differentiation and apoptosis [194]. This can lead to the inhibition of cancer
cell growth and the induction of cell death. Marine polyphenols can also regulate the
expression of genes involved in inflammation, such as cytokines and chemokines, thereby
reducing inflammation [195].

One of the primary mechanisms of action of marine polyphenols is their ability to
scavenge free radicals and reactive oxygen species (ROS) in the body. Free radicals and
ROS can damage cells and tissues, leading to inflammation, aging, and chronic diseases.
Marine polyphenols have been shown to neutralize free radicals and prevent oxidative
stress, thereby protecting cells and tissues from damage [196].

A mechanism by which marine polyphenols exert their effects is through their in-
teraction with cellular membranes. Polyphenols can interact with the lipid bilayer of the
membrane, altering its physical properties, such as its fluidity and permeability. This can
lead to changes in membrane-associated signaling pathways, affecting cellular functions
such as ion transport, receptor activity, and intracellular signaling [197].

Another mechanism of action of marine polyphenols is their ability to modulate the ex-
pression of genes and proteins involved in various cellular pathways. For example, marine
polyphenols can activate or inhibit enzymes, such as kinases and phosphatases, involved
in signal transduction pathways, leading to altered cellular responses. Marine polyphenols
can also regulate the expression of transcription factors, such as nuclear factor-kappa B
(NF-κB), which plays a critical role in inflammation and immune responses [195,198].

Marine polyphenols can also modulate the gut microbiota, which has important impli-
cations for human health. The gut microbiota plays a critical role in nutrient absorption,
immune function and metabolic homeostasis [199]. Polyphenols can affect the composition
and activity of the gut microbiota, promoting the growth of beneficial bacteria and reducing
the growth of harmful bacteria. This can lead to improved gut health and a reduction
in the risk of chronic diseases such as inflammatory bowel disease, obesity and type 2
diabetes [200].

Most of the marine phenolic compounds actuated in enzymes, such as cyclooxyge-
nase (COX), work in tandem with nonsteroidal anti-inflammatory medicines (NSAIDs) to
suppress the activity or gene expression of pro-inflammatory mediators. Various phenolic
compounds can also operate on transcription factors such as nuclear factor-B (NF-B) or
nuclear factor-erythroid factor 2-related factor 2 (Nrf-2) to upregulate or downregulate
components in antioxidant response pathways. Phenolic chemicals have been utilized to
treat a variety of common human disorders, including hypertension, metabolic difficulties,
incendiary infections and neurodegenerative diseases, because they can block the enzymes
involved in the development of human diseases. Phenolic chemicals have been used to
treat hypertension by inhibiting the angiotensin-converting enzyme (ACE). Carbohydrate
hydrolyzing enzyme inhibition is a type 2 diabetes mellitus medication, and cholinesterase
inhibition is used to treat Alzheimer’s disease [201].

In addition to their biological activities, marine polyphenols have been found to
have applications in various industries, such as food, pharmaceuticals and cosmetics [22].
For example, marine polyphenols are used as natural food preservatives due to their
antimicrobial activity [202]. They are also used in the development of new drugs and
therapies for various diseases, such as cancer and neurodegenerative disorders. Marine
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polyphenols are also used in the cosmetic industry due to their antioxidant and anti-aging
properties [203].

6.1. Therapeutic Potential of Marine Polyphenols
6.1.1. Cardiovascular Diseases

Cardiovascular diseases (CVDs) are a leading cause of morbidity and mortality world-
wide, and marine polyphenols have been studied extensively for their potential therapeutic
effects in CVDs. Some of the ways in which marine polyphenols may be beneficial in
CVDs [115] are as follows:

Antioxidant activity: Marine polyphenols have strong antioxidant properties, which
can help reduce oxidative stress in the cardiovascular system. Oxidative stress has been
implicated in the development and progression of CVDs, and reducing it may help improve
cardiovascular health. Some of the main marine polyphenolic compounds with antioxidant
activity include [204]:

Phlorotannins: These are a group of complex polyphenolic compounds found in
brown seaweeds. Phlorotannins are known for their potent antioxidant activity, and they
have been shown to have a wide range of health benefits, including anti-inflammatory and
anti-cancer properties [15].

Catechins: These are flavonoid polyphenolic compounds found in green tea and
some marine sources, such as seaweed [17]. Catechins have been shown to have potent
antioxidant properties, and they may help reduce the risk of cardiovascular disease and
other chronic diseases [158].

Flavonoids: These are a group of polyphenolic compounds found in a variety of plant
and marine sources. Flavonoids have strong antioxidant properties, and they have been
shown to have numerous health benefits, including reducing inflammation, improving
cardiovascular health and reducing the risk of certain types of cancer [205].

Phenolic acids: These are a group of polyphenolic compounds found in a variety of
marine sources, including marine algae. Phenolic acids have potent antioxidant properties,
and they may help reduce the risk of cardiovascular disease and other chronic diseases by
reducing oxidative stress [19].

Anti-inflammatory effects: Chronic inflammation is a key factor in the development of
CVDs, and marine polyphenols have been shown to possess anti-inflammatory effects. By
reducing inflammation, these compounds may help protect against CVDs [206]. Some of
the most commonly studied compounds in this regard include:

Fucoidan: This is a sulfated polysaccharide found in brown seaweed and has been
shown to possess anti-inflammatory effects by inhibiting the production of pro-inflammatory
cytokines [207].

Phlorotannins: These are polyphenolic compounds found in brown seaweed and
have been shown to possess anti-inflammatory effects by inhibiting the production of
pro-inflammatory enzymes such as cyclooxygenase-2 (COX-2) and inducible nitric oxide
synthase (iNOS) [145].

Fucoxanthin: This is a carotenoid pigment found in brown seaweed and has been
shown to possess anti-inflammatory effects by inhibiting the production of pro-inflammatory
cytokines and reducing oxidative stress [20].

Eckol: This is a phlorotannin found in brown seaweed and has been shown to possess
anti-inflammatory effects by inhibiting the production of pro-inflammatory cytokines and
reducing oxidative stress [208].

Astaxanthin: This is a carotenoid pigment found in microalgae and has been shown
to possess anti-inflammatory effects by inhibiting the production of pro-inflammatory
cytokines and reducing oxidative stress [209].

Regulation of lipid metabolism: Dyslipidemia, or abnormal lipid levels in the blood,
is a major risk factor for CVDs. Marine polyphenols have been shown to regulate lipid
metabolism, potentially reducing the risk of CVDs [210]. Some of the main marine polyphe-
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nolic and other minor compounds that have been shown to regulate lipid metabolism and
potentially reduce the risk of CVDs are:

Fucoxanthin: This is a carotenoid pigment found in brown seaweed. Fucoxanthin
has been shown to reduce body weight, decrease total cholesterol and improve lipid
metabolism in animal studies. It works by inhibiting the enzymes involved in the synthesis
of cholesterol and triglycerides [211].

Phlorotannins: These are a group of polyphenolic compounds found in brown sea-
weed. Phlorotannins have been shown to reduce serum lipid levels by inhibiting the ab-
sorption of dietary fat and cholesterol. They also exhibit antioxidant and anti-inflammatory
properties [15].

Fucoidan: This is a sulfated polysaccharide found in brown seaweed. Fucoidan
has been shown to decrease triglyceride levels and improve lipid metabolism in animal
studies. It works by inhibiting the activity of the enzymes involved in the synthesis of
triglycerides [212].

Astaxanthin: This is a carotenoid pigment found in microalgae, yeast, salmon, trout,
krill, shrimp, crayfish, crustaceans and the feathers of some birds. Astaxanthin has been
shown to improve lipid metabolism by decreasing serum triglyceride and cholesterol levels.
It also exhibits antioxidant and anti-inflammatory properties [213].

Vasodilatory effects: Some marine polyphenols have been shown to have vasodilatory
effects, meaning they can help relax blood vessels and improve blood flow. This can help
reduce blood pressure and improve cardiovascular health [214]. Some of the main marine
polyphenolic and other minor nutrients that have been shown to regulate lipid metabolism
and potentially reduce the risk of CVDs are:

Fucoxanthin: This is a carotenoid pigment found in brown seaweed. Fucoxanthin
has been shown to reduce body weight, decrease total cholesterol and improve lipid
metabolism in animal studies. It works by inhibiting the enzymes involved in the synthesis
of cholesterol and triglycerides [215].

Phlorotannins: These are a group of polyphenolic compounds found in brown sea-
weed. Phlorotannins have been shown to reduce serum lipid levels by inhibiting the ab-
sorption of dietary fat and cholesterol. They also exhibit antioxidant and anti-inflammatory
properties [216].

Fucoidan: This is a sulfated polysaccharide found in brown seaweed. Fucoidan
has been shown to decrease triglyceride levels and improve lipid metabolism in animal
studies. It works by inhibiting the activity of the enzymes involved in the synthesis of
triglycerides [217].

Platelet inhibition: Platelet activation and aggregation play a key role in the develop-
ment of thrombosis, which can lead to heart attacks and strokes. Marine polyphenols and
other minor nutrients have been shown to inhibit platelet aggregation, potentially reducing
the risk of thrombosis [218]. Some of the main ones are:

Fucoidan: Fucoidan is a sulfated polysaccharide found in various types of brown
seaweed. It has been shown to inhibit platelet aggregation by inhibiting the binding of
platelet activating factors to platelet receptors [219].

Phlorotannins: Phlorotannins have been shown to inhibit platelet aggregation by
interfering with the release of platelet activating factors [220].

Catechins: Catechins, a type of flavonoid found in many types of seaweed, can inhibit
platelet aggregation by inhibiting the activity of platelet-activating factors and reducing the
adhesion of platelets to the blood vessel wall [221,222].

Eckol: Eckol is a type of phlorotannin found in brown seaweeds. It has been shown to
inhibit platelet aggregation by interfering with the binding of platelet activating factors to
platelet receptors [223].

6.1.2. Diabetes

Among the marine polyphenols that have been studied for their potential therapeutic
effects in diabetes (Table 2), some of the most commonly studied include:
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Fucoxanthin: This polyphenol has been shown to have anti-diabetic effects by improv-
ing insulin sensitivity and glucose metabolism in animal studies [224].

Phlorotannins: These polyphenols have been shown to have anti-diabetic effects by
reducing blood glucose levels and improving insulin sensitivity in animal studies [225].

Fucoidan: This polysaccharide has been shown to have anti-diabetic effects by im-
proving glucose metabolism and insulin sensitivity in animal studies [6].

Bromophenols: These polyphenols have been shown to have anti-diabetic effects by
reducing blood glucose levels and improving insulin sensitivity in animal studies [226].

Catechins: These polyphenols have been shown to have anti-diabetic effects by im-
proving insulin sensitivity and glucose metabolism in animal studies.

While these marine polyphenols have shown promising potential in animal studies,
further research is needed to determine their efficacy and safety in humans before they can
be recommended as a therapeutic option for diabetes [227].

Table 2. Therapeutic potential of marine polyphenols for Diabetes.

Seaweed Compound Animal/Cell Line Effect Reference

E. cava
fucodiphloroethol G, dieckol,

6,6′-bieckol, 7-phloroeckol,
phlorofucofuroeckol-A

In vitro assay: α-glucosidase and
α-amylase inhibitory activity

Inhibition of α-glucosidase (IC50
values ranged from 10.8 µM for dieckol

to 49.5 µM for 7-phloroeckol)
and α-amylase (IC50 values ranged
from 125 µM for dieckol to <500 µM

for the rest of compounds, except
7-phloroeckol with a value of 250 µM)

activities

[228]

Lessonia
trabeculate Polyphenol-rich extracts In vitro assay: α-glucosidase and

lipase activity
Inhibition of α-glucosidase and lipase

activities (IC50 < 0.25 mg/mL) [229]

F. vesiculosus

Crude extract and semi-purified
phlorotannins composed by fucols,

fucophlorethols, fuhalols and
several other

phlorotannin derivatives

In vitro assay: α-glucosidase,
α-amylase and pancreatic lipase

inhibitory activity

Inhibition of α-amylase
(IC50~28.8–2.8 µg/mL), α-glucosidase
(IC50~4.5–0.82 µg/mL) and pancreatic

lipase (IC50~45.9–19.0 µg/mL)
activities

[230]

Rhodomela
confervoides

3,4-dibromo-5-(2-bromo-3,4-
dihydroxy-6-

(ethoxymethyl)benzyl)benzene-
1,2-diol)

In vitro: insulin resistant C2C12
cells treated with bromophenol

(0.1–0.5 µM for phenol)

Inhibition of PTP1B activity
(IC50~0.84 µM)

Activation of insulin signaling and
potentiate insulin sensitivity

[231]

Rhodomela
confervoides

3-Bromo-4,5-bis(2,3-dibromo-4,5-
dihydroxybenzyl)-1,2-

benzenediol

In vitro: palmitate-induced insulin
resistance in C2C12 cells treated
with bromophenol (0.5–2.0 µM

for phenol)

Inhibition of PTP1B activity
(IC50~2 µM)

Activation of insulin signaling and
prevent palmitate-induced

insulin resistance

[232]

E. stolonifera Phlorofucofuroeckol-A In vitro assay for non-enzymatic
insulin glycation

Inhibition of AGEs formation
(IC50 29.50–43.55 µM for D-ribose and

D-glucose-induced insulin
glycation, respectively)

[233]

Ishige foliacea Octaphlorethol A

In vitro: STZ-induced pancreatic
β-cell damage (RINm5F pancreatic

β-cells) (12.5–50.0 µg/mL
for phenol)

Decreased the death of STZ-treated
pancreatic β-cells

Decreased the TBARS and ROS
Increased the activity of

antioxidant enzymes

[234]

E. cava 6,6-Bieckol, phloroeckol, dieckol
and phlorofucofuroeckol

In vivo: high glucose-stimulated
oxidative stress in zebrafish, a
vertebrate model (10–20 µM

of phenols)

Inhibition of high glucose-induced
ROS and cell death

Dieckol reduced the heart rates, ROS,
NO and lipid peroxidation

Dieckol reduced the overexpression of
iNOS and COX-2

[235]

Ulva prolifera Extract rich in flavonoids
In vivo: STZ-induced diabetic rats
(150 mg/kg/day bw of phenol for

4 weeks by gavage)

Diminished the fasting blood glucose
and improved oral glucose tolerance
Hypoglycemic effect by increasing
IRS1/PI3K/Akt and suppressing

JNK1/2 in liver

[236]
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6.1.3. Neurodegenerative Diseases

Neurodegenerative diseases are a group of chronic and progressive disorders that
affect the nervous system and lead to the gradual loss of function of neurons. They include
Alzheimer’s disease, Parkinson’s disease and Huntington’s disease, among others. The
pathogenesis of these diseases is multifactorial and involves oxidative stress, inflammation
and the accumulation of misfolded proteins [237].

Marine polyphenols are natural compounds found in various marine organisms, in-
cluding seaweeds (Table 3), algae and marine animals. They have been shown to possess a
wide range of biological activities, including antioxidant, anti-inflammatory and neuropro-
tective effects. Therefore, marine polyphenols have been investigated for their therapeutic
potential in the prevention and treatment of neurodegenerative diseases [9].

The antioxidant properties of marine polyphenols can help reduce oxidative stress
in neurons, which is a major contributor to neurodegeneration [238]. These compounds
have been shown to scavenge free radicals, prevent lipid peroxidation and enhance the
activity of antioxidant enzymes. Moreover, marine polyphenols can also modulate inflam-
matory pathways, reducing the release of pro-inflammatory cytokines and chemokines that
contribute to neuronal damage [2].

Marine polyphenols have also been found to have neuroprotective effects by inhibiting
the aggregation of misfolded proteins, such as amyloid-beta and tau in Alzheimer’s disease
and alpha-synuclein in Parkinson’s disease. By preventing the accumulation of these
proteins, marine polyphenols can help maintain neuronal function and prevent neuronal
death [239].

Overall, the therapeutic potential of marine polyphenols in neurodegenerative diseases
is promising, but more research is needed to fully understand their mechanisms of action
and to develop effective treatments. Further studies should focus on identifying the most
potent marine polyphenols and optimizing their delivery to the brain to maximize their
therapeutic effects [240].

Phenolic compounds and other minor nutrients from marine sources have shown
potential in the treatment of neurodegenerative diseases due to their antioxidant and anti-
inflammatory properties [241]. Some of the main phenolic compounds of marine origin
with potential in the treatment of neurodegenerative diseases include:

Phlorotannins: These are a type of polyphenol found in brown seaweed that have been
shown to have neuroprotective effects. They have been shown to reduce oxidative stress and
inflammation in the brain, which are two factors that contribute to neurodegeneration [242].

Fucoxanthin: This is a carotenoid pigment found in brown seaweed that has been
shown to have anti-inflammatory and antioxidant properties. It has been shown to reduce
inflammation in the brain and to protect against oxidative stress [243].

Fucoidan: This is a sulfated polysaccharide found in brown seaweed that has been
shown to have neuroprotective effects. It has been shown to reduce inflammation in the
brain and to protect against oxidative stress [244].

Halogenated phenols: These are phenolic compounds that are found in marine sponges
and have been shown to have neuroprotective effects. They have been shown to protect
against oxidative stress and to reduce inflammation in the brain [3].

Bromophenols: These are phenolic compounds that are found in marine algae and
have been shown to have neuroprotective effects. They have been shown to protect against
oxidative stress and to reduce inflammation in the brain [245].
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Table 3. Therapeutic potential of marine polyphenols for neurodegenerative diseases.

Seaweed Compound Animal/Cell Line Effect Reference

E. cava dieckol, 6,6′-bieckol, 8,8′-bieckol,
eckol and phlorofucofuroeckol-A

In vitro: assays of AChE, BChE
and BACE-1 activities

--
In vitro: Jurkat clone E1–6 cells

(GSK3β activity at 50 µM)

Inhibition of AChE and BChE activities
(IC50 16.0–96.3 µM and 0.9–29.0 µM,

respectively)
Inhibition of BACE-1 activity

(18.6–58.3% at 1 µM)
Inhibition of GSK3β activity

(14.4–39.7% at 50 µM)

[246]

E. bicyclis eckols In vitro: assays of AChE and
BChE activities

Inhibition of AChE and BChE activities
(IC50 2.78 and 3.48 µg/mL,

respectively)
[247]

Gracilaria beckeri,
Gelidium pristoides,

U. rigida and
E. maxima

Aqueous extracts composed by
phloroglucinol, catechin and

epicatechin 3-glucoside

In vitro: assays of AChE and
BChE activities

High antioxidant potency
Inhibition of AChE and BChE activities

(IC50 49.41 and 52.11 µg/mL,
respectively, for E. maxima)

Inhibition of Aβ aggregation

[248]

E. maxima,
G. pristoides,

Gracilaria gracilis
and Ulva lactuca

Aqueous-ethanolic extracts
containing phlorotannins,

flavonoids and phenolic acids

In vitro: assays of AChE, BChE
and BACE-1 activities

Inhibition of AChE and BChE activities
(IC50 1.74–2.42 and 1.55–2.04 mg/mL,

respectively)
Inhibition of BACE-1 activity (IC50

0.052–0.062 mg/mL)
Inhibition of Aβ aggregation

[249]

E. cava Phlorofucofuroeckol
In vitro: Glutamate-stimulated

PC12 cells
(10 µM of phenol)

Increased the cell viability and
attenuated glutamate excitotoxicity

Inhibited the apoptosis in a
caspase-dependent manner

Regulated the production of ROS and
attenuated mitochondrial dysfunction

[250]

E. cava Phloroglucinol

In vitro: Aβ-induced
neurotoxicity in HT-22 cells

(10 µg/mL)
---

In vivo: 5XFAD mice, model of
AD (acute, 1.2 µmol of phenol

bilaterally delivery)

Reduced the Aβ-induced ROS
accumulation in HT-22 cells

Ameliorated the reduction in dendritic
spine density

---
Attenuated the impairments in

cognitive dysfunction

[251]

E. maxima Eckmaxol
In vitro: Aβ oligomer-induced
neurotoxicity in SH-SY5Y cells

(5–20 µM of phenol)

Prevented the Aβ oligomer-induced
neurotoxicity

Inhibition of GSK3β and ERK
signaling pathway

[252]

E. cava eckol, 8,80-bieckol and dieckol
In vitro: Aβ 25–35-induced

damage in PC12 Cells (1–50 µM
of phenol)

Inhibition of pro-inflammatory
enzymes preventing Aβ production

and neurotoxicity on the brain
[253]

E. cava dieckol, 6,6′-bieckol, 8,8′-bieckol,
eckol and phlorofucofuroeckol-A

In vitro: assays of AChE, BChE
and BACE-1 activities

--
In vitro: Jurkat clone E1–6 cells

(GSK3β activity at 50 µM)

Inhibition of AChE and BChE activities
(IC50 16.0–96.3 µM and 0.9–29.0 µM,

respectively)
Inhibition of BACE-1 activity

(18.6–58.3% at 1 µM)
Inhibition of GSK3β activity

(14.4–39.7% at 50 µM)

[246]

E. bicyclis eckols In vitro: assays of AChE and
BChE activities

Inhibition of AChE and BChE activities
(IC50 2.78 and 3.48 µg/mL,

respectively)
[247]

Gracilaria beckeri,
Gelidium pristoides,

U. rigida and
E. maxima

Aqueous extracts composed by
phloroglucinol, catechin and

epicatechin 3-glucoside

In vitro: assays of AChE and
BChE activities

High antioxidant potency
Inhibition of AChE and BChE activities

(IC50 49.41 and 52.11 µg/mL,
respectively, for E. maxima)

Inhibition of Aβ aggregation

[248]

6.1.4. Cancer

As described earlier, polyphenols (Table 4) and other micronutrients are bioactive
compounds found in plants and animals, and recently there has been a growing interest in
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marine polyphenols due to their therapeutic potential in several areas of health, including
cancer [2,254].

Marine polyphenols are extracted from marine organisms such as algae, mollusks,
corals, sponges and fish. They have a wide variety of health benefits, including antioxidant,
anti-inflammatory, anticancer and immunomodulatory activities [255].

The anticancer activity of marine polyphenols has been observed in several in vitro and
in vivo studies. They are able to induce cell death in cancer cells, inhibit cell proliferation,
inhibit angiogenesis and modulate the immune response. These effects are important
because uncontrolled cell proliferation, excessive angiogenesis and suppression of the
immune response are hallmarks of tumor development [256].

Ellagic acid is a polyphenol present in kelp that has been shown to cause cell death in
breast and colorectal cancer. It functions by blocking the expression of pro-inflammatory
and pro-angiogenic genes in cancer cells. It has also been shown to boost the production of
tumor suppressor proteins [257].

Phloroglucinol acid is another polyphenol found in marine sponges with anticancer
activity against lung and prostate cancer cells. This polyphenol induces apoptosis (pro-
grammed cell death) in cancer cells and inhibits the formation of capillaries that are
necessary for angiogenesis [138].

Another micronutrient of marine origin with therapeutic potential is fucoidan, a
sulfated polysaccharide found in brown algae. Studies suggest that fucoidan has anticancer
activity against several cancer cell lines, including breast, lung and colon cancer cells.
This sulfated polysaccharide inhibits angiogenesis, modulates the immune response and
induces apoptosis in cancer cells [258].

Fucoxanthin is a carotenoid pigment found in brown algae that has also been shown
to have anticancer activity. This compound is capable of inhibiting the growth of liver and
colon cancer cells, inhibiting cell proliferation and inducing apoptosis [211].

The eckol-family of phlorotannins stands out among the various phlorotannin struc-
tures due to its exceptional bioactivity, particularly its anti-tumoral properties [254].

Despite the therapeutic potential of marine polyphenols in cancer, more research is
needed to fully understand their mechanisms of action and to develop new anticancer
therapies based on these compounds. Furthermore, it is important to evaluate the safety
and efficacy of these compounds in human clinical trials [259].

Table 4. Therapeutic potential of marine polyphenols for cancer.

Specie Compound Animal/Cell Line Effect Reference

E. bicyclis Phlorofucofuroeckol A
In vitro: LoVo, HT-29, SW480
and HCT116 cells (25–100 µM

of phenol)

Antiproliferative and
pro-apoptotic properties

Induced the apoptosis on colorectal cancer
cells by ATF3 signalling pathway

[260]

E. cava Phloroglucinol

In vitro: MCF7, SKBR3 and
BT549 cells (10–100 µM

of phenol)
In vivo: MDA-MB231 breast
cancer cells implanted into

mammary fat pads of
NOD-scid gamma (NSG) mice,

treated with phloroglucinol
4 times on alternate days

(25 mg/kg bw by intratumoral
injections)

Antiproliferative effect by KRAS
inhibition and its downstream PI3K/Akt

and RAF-1/ERK signalling pathways
[261]
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Table 4. Cont.

Specie Compound Animal/Cell Line Effect Reference

E. cava Dieckol

In vivo: N-
nitrosodiethylamime-induced

hepatocarcinogenesis rats
(40 mg/kg bw/day for

15 weeks administered orally)

Regulated the
xenobiotic-metabolizing enzymes

Induced the apoptosis by
mitochondrial pathway

Inhibited the invasion by decreasing
PCNA expression

Inhibited the angiogenesis by changing
MMP-2 and MMP-9 activity and

VEGF expression
Anti-inflammatory activity by inhibiting

NF-kB and COX2

[262]

E. cava Dieckol In vitro: EA.hy926 cells
(10–100 µM of phenol)

Antiangiogenic activity by inhibiting the
proliferation and migration of cells

through MAPK, ERK and p38
signaling pathways

[263]

E. cava Eckol

In vitro: on human HaCaT
keratinocytes against

PM2.5-induced cell damage
(30 µM of phenol for 17 days)

Decreased ROS generation
Protected the cells from apoptosis by
inhibiting MAPK signaling pathway

[264]

E. cava Dieckol

In vivo: N-
nitrosodiethylamime-induced

hepatocarcinogenesis rats
(40 mg/kg bw/day for

15 weeks administered orally)

Regulated the
xenobiotic-metabolizing enzymes

Induced the apoptosis by
mitochondrial pathway

Inhibited the invasion by decreasing
PCNA expression

Inhibited the angiogenesis by changing
MMP-2 and MMP-9 activity and

VEGF expression
Anti-inflammatory activity by inhibiting

NF-kB and COX2

[262]

7. Safety and Toxicity of Marine Polyphenols

As previously stated, marine polyphenols are natural substances found in a variety of
aquatic creatures, including seaweed, algae and shellfish. These compounds have received
a significant amount of attention because of their possible health advantages, which include
antioxidant, anti-inflammatory and anti-cancer properties. However, concerns have been
raised regarding their safety and toxicity [9,18], mostly regarding their extraction and
isolation methods, which can change their relative safety and toxicity; due to the diverse
chemical structure and impurities, there is a need to standardize the procedure from
extraction until the safety/toxicity assays.

Several studies have investigated the safety of marine polyphenols and their potential
toxicity. Overall, the available evidence suggests that these compounds are generally safe
for human consumption. However, there are some concerns regarding their potential
toxicity at high doses [19]. To date, the bioavailability of seaweeds has not been well
researched. More research and study are required in this sector. The majority of seaweed
phenolic pharmacological and biological bioavailability investigations have used mice
models. Animal investigations and in vitro studies have provided evidence that seaweed
phenols protect against various illnesses. As a result, fresh research investigations are
required to investigate and completely comprehend their bioavailability in humans (the
proportion of the chemical that reaches the human circulatory system and has an active
impact). Furthermore, there is more pharmacokinetics required in order to fully understand
the marine phenolic potential in in vivo models, due to a general lack of information, where
the therapeutics in use do not have full public data regarding this topic [19,201,265,266].
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Although phenolic compounds appear to have a wide range of biological actions, the
problem of safe dose must be addressed. Indeed, phenolic substances have bimodal
pharmacological effects, in that they can be beneficial at low doses while being poisonous
at large concentrations. However, much current research on the negative effects of phenolic
chemicals is focused on cell investigations and animal models, with few human trials [266].

One of the main concerns is the potential for heavy metal contamination in marine
organisms. Heavy metals such as lead, mercury and cadmium can accumulate in the tissues
of marine organisms and can pose a health risk if consumed in large quantities. Therefore,
it is essential to ensure that marine polyphenol supplements are sourced from reputable
suppliers that test for heavy metal contamination [267].

Another concern is the potential for allergic reactions to marine polyphenols. Some
people may be allergic to certain types of marine organisms or their products, which
could lead to adverse reactions. Therefore, it is important to check for any allergies before
consuming marine polyphenol supplements [268].

Furthermore, the effects of marine polyphenols on pregnant and breastfeeding women
are not yet fully understood, and caution should be exercised when consuming these
compounds during these periods [269].

In conclusion, marine polyphenols have shown potential health benefits, but it is
essential to ensure their safety and minimize any potential toxicity. It is recommended to
consume marine polyphenols in moderation and to obtain them from reputable sources.
Furthermore, consulting with a healthcare expert before beginning any new supplement
routine is always recommended [270].

Phenolic Compound Pharmacodynamics

Pharmacodynamics and pharmacokinetics depend on the bioavailability of themarine
phenolic compounds and are conducted by the absorptive process across the intestine
into the circulatory system, after food ingestion. Thus, bioavailability involves several
processes, including liberation from a food matrix, absorption, distribution, metabolism
and elimination phases. Several polyphenols can be ingested as either purified, isolated
substances or in foods. During the absorption process, gastric acid from the stomach can
cause initial modifications to oligomeric polyphenols. Following ingestion, glycosidic
polyphenols are cleaved in the small intestine, releasing the glycoside radical. Lactase
phlorizin hydrolase and cytosolic glucosidase are enzymes with an affinity for glucose,
xylose and galactose. However, polyphenols that are not cleaved by these enzymes are
not absorbed by the small intestine and can be cleaved into small molecules known as
phenolic acids produced by intestinal bacteria. Polyphenol structures can also be involved
in conjugation reactions, resulting in methyl, glucuronide or sulfate groups. The remaining
polyphenols, especially those attached to rhamnose, can be processed by rhamnosidase
released by the colonic microbiota. Following these absorptive processes, phenolics will
typically follow one of four paths: (1) Excretion in the feces; (2) absorption by the mucosa
of the intestines or the colon, followed by entry into the portal vein for delivery to the liver;
(3) further conjugation in the liver can result in the addition of with methyl, glucuronide
or sulfate groups, followed by release into the bloodstream for tissue absorption; and
(4) excretion in the urine. However, the absorption kinetic is mostly determined by the
physical and chemical properties of the bioactive substances, but it can also be impacted by
the subject’s physiology (age, genetic profile, gender, lifestyle, etc.), resulting in a unique
bioavailability profile. As a result, the half-life of bioactive chemicals can range from
minutes (e.g., gallic acid) to hours (e.g., rutin) [201,266].

8. Challenges and Opportunities in the Use of Marine Polyphenols as a Therapy

Due to these activities, there has been increasing interest in using marine polyphenols
as a therapy for various diseases. However, the use of marine polyphenols as a therapy
also presents several challenges. One of the challenges is the identification and isolation of
specific marine polyphenols with therapeutic potential [9,18]. Marine organisms contain
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a vast array of compounds, and it can be challenging to isolate specific polyphenols with
therapeutic potential. Additionally, there is a general absence of standardized techniques
for the extraction and purification of marine polyphenols, which can affect the quality and
consistency of the final product [12].

Another challenge is the limited knowledge of the pharmacokinetics and pharmacody-
namics of marine polyphenols. Unlike synthetic drugs, marine polyphenols have complex
structures that can affect their bioavailability, absorption, distribution, metabolism and
excretion. This complexity can make it challenging to determine the optimal dose and
frequency of administration of marine polyphenols [271].

Despite these challenges, there are several opportunities in the use of marine polyphe-
nols as a therapy. One of the opportunities is the development of new therapies for diseases
that currently have limited treatment options. For example, marine polyphenols have
shown promising results as a therapy for diverse types of cancer, including breast, colon
and prostate cancer. They have also shown potential as a therapy for neurodegenerative
diseases such as Alzheimer’s and Parkinson’s [2].

Another opportunity is the development of new products for the food and cosmetic
industries. Marine polyphenols have been shown to possess anti-aging and skin-whitening
properties, making them attractive ingredients for the cosmetic industry [22]. Additionally,
marine polyphenols have been shown to have antimicrobial properties, making them
potential additives for food preservation [202].

Therefore, the use of marine polyphenols as a therapy presents both challenges and
opportunities. Despite the challenges, the potential benefits of marine polyphenols in the
treatment of various diseases and the development of new products make them a promising
area of research. Further studies are needed to address the challenges and fully exploit the
opportunities in the use of marine polyphenols as a therapy [18].

However, to obtain the benefits of phenolic compounds’ biological activities, they must
be consumed. These chemicals have traditionally been included directly into meals, but
their instability during food processing, distribution and storage, as well as their limited
absorption and bioavailability in the gastrointestinal system, restrict their activity and
health effects. Similarly, topical polyphenol usage is restricted due to their rapid oxidation,
which causes food browning and the creation of undesirable aromas, as well as a decrease
in activity [266,272]. Their encapsulation or application as typical drugs on a delivery
system can potentiate their bioactivity and respective benefits [265,272,273].

Approved Polyphenolic Therapeutics

The most explored seaweed components are phenolic compounds, which are currently
used in commercial solutions (for example, cosmetic items). Normally, phenolic compounds
are not separated because commercial seaweed extracts include a high concentration of
phenols [19].

The European Food Safety Authority has certified SeapolynolTM (Botamedi Inc, Seoul,
Korea) as a food supplement. This supplement is based on dieckol and other polyphe-
nols derived from E. cava; it has been evaluated and shown to be effective as an anti-
hyperlipidemic and cardioprotective agent against doxorubicin-induced cardiotoxicity.
Furthermore, SeapolynolTM improved insulin sensitivity in type 2 diabetes and may play
an important role in the prevention of metabolic diseases [19,274–277] These tests, however,
were carried out only on mice. The primary goals of phlorotannin supplements in cardio-
vascular illness are to avoid arteriosclerosis and enhance protective high-density lipoprotein
cholesterol (HDL-C). HealSeaTM (made by Diana Naturals in Rennes, France), IdAlgTM
(manufactured by Bio Serae in Bram, France) and SeanolTM (produced by LiveChem in Jeju-
do, South Korea and sold by Simple Health in Maitland, USA) are phlorotannin-containing
products [19,278]. InSea2TM (Rimouski, QC, Canada), a commercial combination of
A. nodosum and F. vesiculosus phlorotannins, promotes a 90% decrease in postprandial
blood glucose while lowering peak insulin production by 40% [19].
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Among the sea urchin pigments, a cardiovascular drug, Histochrome (solution of
Echinochrome A sodium salt), is the only compound that has been approved for clinical
use. It is used in solutions of 10 mg/mL for cardiology and 2 mg/mL for ophthalmology. It
is recommended for clinical use in patients with acute myocardial infarction to decrease
incidence of ventricular extra systole and episodes of accelerated idioventricular rhythm
after thrombolytic therapy [133].

9. Conclusions and Future Perspectives

The therapeutic potential of polyphenols and other micronutrients of marine origin
has acquired significant attention in recent years due to their numerous health benefits.
Polyphenols are a class of natural compounds found in several marine organisms that
have antioxidant and anti-inflammatory properties. Other micronutrients found in marine
sources include omega-3 fatty acids, vitamins and minerals, all of which have been linked
to various health benefits [2].

Polyphenols and other micronutrients of marine origin have been shown in studies
to help avoid and cure a variety of health problems, including cardiovascular disease,
cancer, diabetes and neurodegenerative illnesses. Omega-3 fatty acids, for example, have
been shown to promote cardiac health by decreasing inflammation, improving blood lipid
levels, and lowering blood pressure. Polyphenols have also been shown to have anti-cancer
properties by inhibiting the growth of cancer cells and promoting their death [279].

In addition to their therapeutic potential, marine-based polyphenols and micronutri-
ents are also being investigated for their potential use in cosmetic and skincare products.
Studies have shown that marine-derived compounds can have a helpful influence on skin
health by decreasing inflammation, improving collagen production and protecting against
UV damage [22].

Despite the promising potential of marine-based polyphenols and other micronutri-
ents, there is still much research to be done to completely identify their mechanisms of
action and potential side effects. However, the growing body of evidence suggests that
marine-based compounds have significant therapeutic potential and should be further
investigated for their potential use in disease prevention and treatment [13,254].

In conclusion, the therapeutic potential of marine-based polyphenols and other mi-
cronutrients is a promising area of research that has the potential to significantly impact
human health [2]. Ongoing research into the mechanisms of action and potential side
effects of these compounds will provide valuable insights into their therapeutic potential
and pave the way for the development of new therapies and preventive measures. As such,
marine-based compounds should be further investigated as a valuable resource for disease
prevention and treatment [280].
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119. Hassan, S.S.U.; Samanta, S.; Dash, R.; Karpiński, T.M.; Habibi, E.; Sadiq, A.; Ahmadi, A.; Bungau, S. The Neuroprotective Effects
of Fisetin, a Natural Flavonoid in Neurodegenerative Diseases: Focus on the Role of Oxidative Stress. Front. Pharmacol. 2022,
13, 1015835. [CrossRef]
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Compounds and Their Derivatives. Molecules 2022, 27, 1449. [CrossRef]

139. Soares, S.; Brandão, E.; Guerreiro, C.; Soares, S.; Mateus, N.; de Freitas, V. Tannins in Food: Insights into the Molecular Perception
of Astringency and Bitter Taste. Molecules 2020, 25, 2590. [CrossRef]

140. Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant Activity, Total Phenolic and Total Flavonoid Contents of Whole Plant Extracts
Torilis leptophylla L. BMC Complement. Altern. Med. 2012, 12, 221. [CrossRef]

141. Bustos-Salgado, P.; Andrade-Carrera, B.; Domínguez-Villegas, V.; Díaz-Garrido, N.; Rodríguez-Lagunas, M.J.; Badía, J.; Baldomà,
L.; Mallandrich, M.; Calpena-Campmany, A.; Garduño-Ramírez, M.L. Screening Anti-Inflammatory Effects of Flavanones
Solutions. Int. J. Mol. Sci. 2021, 22, 8878. [CrossRef]

142. Baran, A.; Kwiatkowska, A.; Potocki, L. Antibiotics and Bacterial Resistance—A Short Story of an Endless Arms Race. Int. J. Mol.
Sci. 2023, 24, 5777. [CrossRef]

143. Azman, M.; Sabri, A.H.; Anjani, Q.K.; Mustaffa, M.F.; Hamid, K.A. Intestinal Absorption Study: Challenges and Absorption
Enhancement Strategies in Improving Oral Drug Delivery. Pharmaceuticals 2022, 15, 975. [CrossRef]

144. Catarino, M.D.; Pires, S.M.G.; Silva, S.; Costa, F.; Braga, S.S.; Pinto, D.C.G.A.; Silva, A.M.S.; Cardoso, S.M. Overview of
Phlorotannins’ Constituents in Fucales. Mar. Drugs 2022, 20, 754. [CrossRef]

145. Kumar, L.R.G.; Paul, P.T.; Anas, K.K.; Tejpal, C.S.; Chatterjee, N.S.; Anupama, T.K.; Mathew, S.; Ravishankar, C.N. Phlorotannins–
Bioactivity and Extraction Perspectives. J. Appl. Phycol. 2022, 34, 2173–2185. [CrossRef]

146. Pradhan, B.; Nayak, R.; Bhuyan, P.P.; Patra, S.; Behera, C.; Sahoo, S.; Ki, J.-S.; Quarta, A.; Ragusa, A.; Jena, M. Algal Phlorotannins
as Novel Antibacterial Agents with Reference to the Antioxidant Modulation: Current Advances and Future Directions. Mar.
Drugs 2022, 20, 403. [CrossRef]

147. Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid Antioxidants: Chemistry, Metabolism and Structure-Activity Relationships.
J. Nutr. Biochem. 2002, 13, 572–584. [CrossRef]

148. Bernatoniene, J.; Kopustinskiene, D. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018, 23, 965.
[CrossRef]

149. Wen, L.; Wu, D.; Tan, X.; Zhong, M.; Xing, J.; Li, W.; Li, D.; Cao, F. The Role of Catechins in Regulating Diabetes: An Update
Review. Nutrients 2022, 14, 4681. [CrossRef]

150. Trisha, A.T.; Shakil, M.H.; Talukdar, S.; Rovina, K.; Huda, N.; Zzaman, W. Tea Polyphenols and Their Preventive Measures against
Cancer: Current Trends and Directions. Foods 2022, 11, 3349. [CrossRef]

151. Mandel, S.A.; Amit, T.; Kalfon, L.; Reznichenko, L.; Youdim, M. Targeting Multiple Neurodegenerative Diseases Etiologies with
Multimodal-Acting Green Tea Catechins. J. Nutr. 2008, 138, 1578S–1583S. [CrossRef]

152. Chen, X.-Q.; Hu, T.; Han, Y.; Huang, W.; Yuan, H.-B.; Zhang, Y.-T.; Du, Y.; Jiang, Y.-W. Preventive Effects of Catechins on
Cardiovascular Disease. Molecules 2016, 21, 1759. [CrossRef]

https://doi.org/10.3390/md17060375
https://doi.org/10.1016/j.bmc.2005.06.020
https://doi.org/10.1021/np060248n
https://doi.org/10.1016/j.lwt.2014.05.016
https://doi.org/10.1016/j.lwt.2010.03.005
https://doi.org/10.1016/j.lwt.2009.02.020
https://doi.org/10.1007/s11101-018-9547-3
https://doi.org/10.3390/md9030387
https://doi.org/10.1007/s00343-019-8111-3
https://doi.org/10.3390/ijerph17186528
https://doi.org/10.1021/jf981080h
https://doi.org/10.3390/molecules27041449
https://doi.org/10.3390/molecules25112590
https://doi.org/10.1186/1472-6882-12-221
https://doi.org/10.3390/ijms22168878
https://doi.org/10.3390/ijms24065777
https://doi.org/10.3390/ph15080975
https://doi.org/10.3390/md20120754
https://doi.org/10.1007/s10811-022-02749-4
https://doi.org/10.3390/md20060403
https://doi.org/10.1016/S0955-2863(02)00208-5
https://doi.org/10.3390/molecules23040965
https://doi.org/10.3390/nu14214681
https://doi.org/10.3390/foods11213349
https://doi.org/10.1093/jn/138.8.1578S
https://doi.org/10.3390/molecules21121759


Mar. Drugs 2023, 21, 323 37 of 41

153. Dong, H.; Dong, S.; Erik Hansen, P.; Stagos, D.; Lin, X.; Liu, M. Progress of Bromophenols in Marine Algae from 2011 to 2020:
Structure, Bioactivities, and Applications. Mar. Drugs 2020, 18, 411. [CrossRef]

154. Meulmeester, F.L.; Luo, J.; Martens, L.G.; Mills, K.; van Heemst, D.; Noordam, R. Antioxidant Supplementation in Oxidative
Stress-Related Diseases: What Have We Learned from Studies on Alpha-Tocopherol? Antioxidants 2022, 11, 2322. [CrossRef]

155. Barbalace, M.C.; Malaguti, M.; Giusti, L.; Lucacchini, A.; Hrelia, S.; Angeloni, C. Anti-Inflammatory Activities of Marine Algae in
Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 3061. [CrossRef] [PubMed]

156. Liu, M.; Hansen, P.E.; Lin, X. Bromophenols in Marine Algae and Their Bioactivities. Mar. Drugs 2011, 9, 1273–1292. [CrossRef]
157. Pangestuti, R.; Kim, S.-K. Neuroprotective Effects of Marine Algae. Mar. Drugs 2011, 9, 803–818. [CrossRef]
158. Gómez-Guzmán, M.; Rodríguez-Nogales, A.; Algieri, F.; Gálvez, J. Potential Role of Seaweed Polyphenols in Cardiovascular-

Associated Disorders. Mar. Drugs 2018, 16, 250. [CrossRef]
159. Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms

and Effects to Improve Blood Sugar Levels. Biomolecules 2019, 9, 430. [CrossRef]
160. Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [CrossRef]
161. Ginwala, R.; Bhavsar, R.; Chigbu, D.I.; Jain, P.; Khan, Z.K. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases

with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants 2019, 8, 35. [CrossRef]
162. Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457.

[CrossRef] [PubMed]
163. Evans, J.A.; Mendonca, P.; Soliman, K.F.A. Neuroprotective Effects and Therapeutic Potential of the Citrus Flavonoid Hesperetin

in Neurodegenerative Diseases. Nutrients 2022, 14, 2228. [CrossRef]
164. Ciumărnean, L.; Milaciu, M.V.; Runcan, O.; Vesa S, tefan, C.; Răchis, an, A.L.; Negrean, V.; Perné, M.-G.; Donca, V.I.; Alexescu, T.-G.;

Para, I.; et al. The Effects of Flavonoids in Cardiovascular Diseases. Molecules 2020, 25, 4320. [CrossRef]
165. Deepika; Maurya, P.K. Health Benefits of Quercetin in Age-Related Diseases. Molecules 2022, 27, 2498. [CrossRef]
166. Mokra, D.; Joskova, M.; Mokry, J. Therapeutic Effects of Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) in Relation

to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. Int. J. Mol. Sci. 2022, 24, 340. [CrossRef]
[PubMed]

167. Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and Anti-Inflammatory Properties of the Citrus
Flavonoids Hesperidin and Hesperetin: An Updated Review of Their Molecular Mechanisms and Experimental Models. Phytother.
Res. 2015, 29, 323–331. [CrossRef]

168. Calderon-Montaño, J.M.; Burgos-Morón, E.; Perez-Guerrero, C.; Lopez-Lazaro, M. A Review on the Dietary Flavonoid Kaempferol.
Mini-Rev. Med. Chem. 2011, 11, 298–344. [CrossRef] [PubMed]

169. Ponnampalam, E.N.; Kiani, A.; Santhiravel, S.; Holman, B.W.B.; Lauridsen, C.; Dunshea, F.R. The Importance of Dietary
Antioxidants on Oxidative Stress, Meat and Milk Production, and Their Preservative Aspects in Farm Animals: Antioxidant
Action, Animal Health, and Product Quality—Invited Review. Animals 2022, 12, 3279. [CrossRef] [PubMed]

170. Masyita, A.; Sari, R.M.; Astuti, A.D.; Yasir, B.; Rumata, N.R.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and Terpenoids
as Main Bioactive Compounds of Essential Oils, Their Roles in Human Health and Potential Application as Natural Food
Preservatives. Food Chem. X 2022, 13, 100217. [CrossRef]

171. Esmeeta, A.; Adhikary, S.; Dharshnaa, V.; Swarnamughi, P.; Maqsummiya, Z.U.; Banerjee, A.; Pathak, S.; Duttaroy, A.K. Plant-
Derived Bioactive Compounds in Colon Cancer Treatment: An Updated Review. Biomed. Pharmacother. 2022, 153, 113384.
[CrossRef] [PubMed]

172. Ghani, M.A.A.; Ugusman, A.; Latip, J.; Zainalabidin, S. Role of Terpenophenolics in Modulating Inflammation and Apoptosis in
Cardiovascular Diseases: A Review. Int. J. Mol. Sci. 2023, 24, 5339. [CrossRef] [PubMed]

173. Mahizan, N.A.; Yang, S.-K.; Moo, C.-L.; Song, A.A.-L.; Chong, C.-M.; Chong, C.-W.; Abushelaibi, A.; Lim, S.-H.E.; Lai, K.-S.
Terpene Derivatives as a Potential Agent against Antimicrobial Resistance (AMR) Pathogens. Molecules 2019, 24, 2631. [CrossRef]
[PubMed]

174. Montenegro, Z.J.S.; Álvarez-Rivera, G.; Sánchez-Martínez, J.D.; Gallego, R.; Valdés, A.; Bueno, M.; Cifuentes, A.; Ibáñez, E.
Neuroprotective Effect of Terpenoids Recovered from Olive Oil By-Products. Foods 2021, 10, 1507. [CrossRef] [PubMed]

175. Noor, S.; Mohammad, T.; Rub, M.A.; Raza, A.; Azum, N.; Yadav, D.K.; Hassan, M.I.; Asiri, A.M. Biomedical Features and
Therapeutic Potential of Rosmarinic Acid. Arch. Pharmacal Res. 2022, 45, 205–228. [CrossRef]
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213. Šimat, V.; Rathod, N.B.; Čagalj, M.; Hamed, I.; Mekinić, I.G. Astaxanthin from Crustaceans and Their Byproducts: A Bioactive
Metabolite Candidate for Therapeutic Application. Mar. Drugs 2022, 20, 206. [CrossRef] [PubMed]

214. Grosso, G.; Godos, J.; Currenti, W.; Micek, A.; Falzone, L.; Libra, M.; Giampieri, F.; Forbes-Hernández, T.Y.; Quiles, J.L.; Battino,
M.; et al. The Effect of Dietary Polyphenols on Vascular Health and Hypertension: Current Evidence and Mechanisms of Action.
Nutrients 2022, 14, 545. [CrossRef] [PubMed]

215. Mumu, M.; Das, A.; Emran, T.B.; Mitra, S.; Islam, F.; Roy, A.; Karim, M.; Das, R.; Park, M.N.; Chandran, D.; et al. Fucoxanthin: A
Promising Phytochemical on Diverse Pharmacological Targets. Front Pharmacol 2022, 13, 929442. [CrossRef]

216. Venkatesan, J.; Keekan, K.K.; Anil, S.; Bhatnagar, I.; Kim, S.-K. Phlorotannins. In Encyclopedia of Food Chemistry; Elsevier:
Amsterdam, The Netherlands, 2019; pp. 515–527.

217. Shin, D.; Shim, S.R.; Wu, Y.; Hong, G.; Jeon, H.; Kim, C.-G.; Lee, K.J. How Do Brown Seaweeds Work on Biomarkers of
Dyslipidemia? A Systematic Review with Meta-Analysis and Meta-Regression. Mar. Drugs 2023, 21, 220. [CrossRef]

218. Ed Nignpense, B.; Chinkwo, K.A.; Blanchard, C.L.; Santhakumar, A.B. Polyphenols: Modulators of Platelet Function and Platelet
Microparticle Generation? Int. J. Mol. Sci. 2019, 21, 146. [CrossRef]

219. Manne, B.K.; Getz, T.M.; Hughes, C.E.; Alshehri, O.; Dangelmaier, C.; Naik, U.P.; Watson, S.P.; Kunapuli, S.P. Fucoidan Is a Novel
Platelet Agonist for the C-Type Lectin-like Receptor 2 (CLEC-2). J. Biol. Chem. 2013, 288, 7717–7726. [CrossRef]

220. Wei, Y.; Wang, C.; Li, J.; Guo, Q.; Qi, H. Inhibitory Effects and Mechanisms of High Molecular-Weight Phlorotannins from
Sargassum Thunbergii on ADP-Induced Platelet Aggregation. Chin. J. Oceanol. Limnol. 2009, 27, 558–563. [CrossRef]
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