

Afonso Cheung Viana de Lemos Nunes

A CHATBOT FOR THE NEXT GENERATION
LEARNING SYSTEMS

Master’s Dissertation in Electrical and Computer Engineering, supervised by Prof.
Dr. Jorge Miguel Sá Silva and Prof. Dr. André Miguel de Almeida Marrão

Rodrigues, presented to the Faculty of Science and Technology of the University of
Coimbra.

July 2023

A Chatbot for the next generation learning systems

Afonso Cheung Viana de Lemos Nunes

Dissertação para obtenção do Grau de Mestre em
Engenharia Electrotécnica e de Computadores

Orientadores:

Prof. Doutor Jorge Miguel Sá Silva

Prof. Doutor André Miguel de Almeida Marrão Rodrigues

Júri

Presidente: Prof. Doutor Jorge Manuel Miranda Dias

Vogais: Prof. Doutor Paulo José Monteiro Peixoto

Prof. Doutor Jorge Miguel Sá Silva

Julho de 2023

”Remember, as you step into the world of software development, there are only two types of

programming languages: those people always complain about, and those nobody uses.

Enjoy the journey!”

GPT-4

Agradecimentos

Gostaria de agradecer em primeiro lugar à minha famı́lia pelo apoio incondicional.

Aos professores Jorge Sá Silva e André Rodrigues pela orientação e pelo apoio constante

nos vários projectos que integrei neste grupo de investigação.

Aos amigos.

Ao Marcelo Fernandes, que tem a capacidade de resolver todos os problemas e esclarecer

todas as dúvidas, por toda a paciência e camaradagem ao longo dos vários projectos em que

tive o prazer de trabalhar.

Ao Rui Silva pela irmandade sempre presente no curso e fora dele.

Ao Moisés Dias por todos os projectos, cadeiras, trabalhos, noitadas de estudo, F3Es, BotO-

lympics, NLs e tanto mais.

A todos os que contribuı́ram para o meu percurso de formação académica e pessoal.

Abstract

Integrating the Instituto de Engenharia de Sistemas e Computadores de Coimbra (INESCC)

research group from the Departamento de Engenharia Electrotécnica e de Computadores

(DEEC), this research project explores the symbiotic relationship between humans and tech-

nology within the domain of Human-in-the-Loop Cyber-Physical Systems (HITLCPS). By

developing and integrating a ChatBot into the group’s primary platforms, IoT Student Ad-

visor and BEst Lifestyle Analyzer (ISABELA) and Best Assisting Tutor and INteractive

Advisor (BATINA), we focused on the actuation step in HITLCPS, which emphasizes the

interaction between the system and the human, closing the loop.

Working in a long-standing partnership with the University of Coimbra (UC) and integrating

ISABELA and BATINA’s features, this project takes a step into innovative research with the

ON-BOARD initiative, that was recently funded by the Plano de Recuperação e Resiliência

(PRR), which will incorporate our developed ChatBot as a digital tutor into the UC official

platforms.

Our research explores the potential of Internet of Things (IoT), Artificial Intelligence (AI)

and Natural Language Processing (NLP) for enhancing the INESCC-DEEC Human-in-the-

Loop (HITL) platforms and establishing the groundwork for future human interactions with

Cyber-Physical-Systems (CPS). This dissertation contributes to this expanding field by de-

tailing implementations and proposing a solid architecture for future development.

Keywords

ChatBots, Human-in-the-Loop Cyber-Physical Systems, Internet of Things, Artificial Intel-

ligence, Natural Language Processing

Resumo

Este projecto foi desenvolvido integrando o grupo do Instituto de Engenharia de Sistemas e

Computadores de Coimbra (INESCC) do Departamento de Engenharia Electrotécnica e de

Computadores (DEEC) e explora a simbiose entre o ser humano e a tecnologia através o

conceito de Sistemas Ciber-Fı́sicos Human-in-the-Loop. Através do desenvolvimento de um

ChatBot para as plataformas principais deste grupo, IoT Student Advisor and BEst Lifestyle

Analyzer (ISABELA) e Best Assisting Tutor and INteractive Advisor (BATINA), o nosso

trabalho centrou-se na etapa de actuação dos sistemas HITL, que gere a interacção entre o

sistema e o ser humano, fechando o loop.

Através de uma parceria com a Universidade de Coimbra (UC) e integrando as funcional-

idades das plataformas ISABELA e BATINA, este projecto inova através da iniciativa ON-

BOARD que, recentemente financiada pelo Plano de Recuperação e Resiliência (PRR), irá

incorporar o ChatBot desenvolvido como um tutor digital nas plataformas oficiais da UC.

Este trabalho explora o potencial dos conceitos Internet das Coisas (IoT), Inteligência Ar-

tificial (IA) e Processamento de Linguagem Natural para fortalecer as plataformas HITL

do grupo INESCC-DEEC e estabelece um trabalho de base para futuras interacções hu-

manas com Sistemas Ciber-Fı́sicos. Esta dissertação contribui para este tema em cresci-

mento descrevendo em detalhe as funcionalidades implementadas e propondo uma arquitec-

tura sólida para trabalhos futuros.

Palavras-Chave

ChatBots, Human-in-the-Loop Cyber-Physical Systems, Internet das Coisas, Inteligência

Artificial, Processamento de Linguagem Natural

List of Figures

2.1 Number of Internet of Things (IoT) connected devices worldwide from 2019

to 2021, with forecasts from 2022 to 2030 (in billions) 6

2.2 Mobile data traffic in Western Europe 2011-2027 (in exabytes per month) . 7

2.3 Control Loop for a HITLCPS . 11

2.4 Xamarin Architecture . 12

2.5 FIWARE Modules . 13

2.6 Dialogflow Architecture . 14

3.1 ISABELA Architecture . 18

3.2 ISABELA’s Feedback Pages . 19

3.3 ISABELA’s ChatBot . 20

3.4 ISABELA’s Smartwatch Activity . 21

3.5 Professor’s Course and Questionaire Lists 22

3.6 Professor’s Support Material and Doubts Lists 22

3.7 Creating a questionnaire from pool . 23

3.8 Course Report . 23

3.9 Student Doubt Answered . 24

3.10 BATINA Mobile Courses Pages . 25

3.11 BATINA Mobile Questionnaire Pages . 25

3.12 BATINA Mobile Questionnaire Pages (cont) 26

List of Figures

3.13 BATINA Mobile Reports . 27

3.14 UC Teacher . 28

3.15 UC Student . 28

4.1 ChatBot Architecture . 42

4.2 UI Architecture . 43

4.3 Pollux Architecture . 44

4.4 Dialogflow’s Architecture . 45

4.5 ChatBot Alarm Interaction . 46

4.6 Canteen Menu Interaction . 47

4.7 Historic Fact Interaction . 48

4.8 Professor’s Info Interaction . 49

4.9 Exam Reminder Interaction . 50

4.10 Exam Feedback Interaction . 50

4.11 Assignment Submission Reminder Interaction 51

4.12 Poor Questionnaire Result Interaction . 52

4.13 GPT-3 Toggled On and Off Interactions 53

4.14 Dialogflow Intent List . 55

List of Tables

2.1 ChatBot overview over time . 10

4.1 Functional Requirements . 36

4.2 Requirements’ Parameters . 36

4.3 Intent recognition and subsequent behavior in Pollux 57

4.4 Background services’ messages and matching Dialogflow’s Intents 58

4.5 Alarm Test . 59

4.6 Canteen Menu with Meals Time Test . 59

4.7 Canteen Menu Test . 60

4.8 Canteen Menu Lowest Kcal Meal Test . 60

4.9 Professor Contact Info Test . 61

4.10 History Facts Test . 61

4.11 Calculations Test . 62

4.12 Random Characters Test . 62

4.13 Random Question Test . 62

4.14 Random Question Test 2 . 62

Acronyms

AI Artificial Intelligence.

AIML Artificial Intelligence Markup Language.

ALEKS Assessment and LEarning in Knowledge Spaces.

ALICE Artificial Linguistic Internet Computer Entity.

API Application Programming Interface.

BATINA Best Assisting Tutor and INteractive Advisor.

CNN Convolutional Neural Networks.

CPS Cyber-Physical-Systems.

DEEC Departamento de Engenharia Electrotécnica e de Computadores.

DL Deep Learning.

FCTUC Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

FMUC Faculdade de Medicina da Universidade de Coimbra.

FR Functional Requirement.

GNN Generative Neural Networks.

GPA Grade Point Average.

GPS Global Positioning System.

Acronyms

GPT-3 Generative Pre-Trained Transformer 3.

HITL Human-in-the-Loop.

HITLCPS Human-in-the-Loop Cyber-Physical Systems.

HTTP HyperText Transfer Protocol.

IBM International Business Machines Corporation.

IDE Integrated Development Environment.

INESCC Instituto de Engenharia de Sistemas e Computadores de Coimbra.

IoT Internet of Things.

ISABELA IoT Student Advisor and BEst Lifestyle Analyzer.

JSON JavaScript Object Notation.

KST Knowledge Space Theory.

MAUI Multi-Platform App User Interface.

MIT Massachusetts Institute of Technology.

ML Machine Learning.

NLP Natural Language Processing.

OCB Orion Context Broker.

OS Operating System.

POMS Profile of Mood States.

PRR Plano de Recuperação e Resiliência.

REST Representational State Transfer.

RNN Recurrent Neural Networks.

Acronyms

SASUC Serviços de Ação Social da Universidade de Coimbra.

UC University of Coimbra.

UI User Interface.

URL Uniform Resource Locator.

UWP Universal Windows Platform.

XAML Extensible Application Markup Language.

Contents

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Objectives . 2

1.3 Methodology . 2

1.4 Document Structure . 3

2 Background Knowledge 5

2.1 Base Concepts . 5

2.1.1 Internet of Things (IoT) . 5

2.1.2 Smartphones . 6

2.1.3 Artificial Intelligence (AI) . 7

2.1.4 ChatBots . 8

2.1.5 Human-in-the-Loop Cyber-Physical Systems (HITLCPS) 10

2.2 Framework Technologies . 11

2.2.1 Xamarin . 11

2.2.1.A Xamarin.Essentials . 12

2.2.1.B Xamarin.Forms . 13

2.2.2 FIWARE . 13

2.2.3 Flask . 14

Contents

2.2.4 Dialogflow . 14

2.2.5 GPT-3 . 15

2.2.6 Lottie . 15

3 Group Platforms 17

3.1 IoT Student Advisor and BEst Lifestyle Analyzer (ISABELA) 17

3.2 Best Assisting Tutor and INteractive Advisor (BATINA) 21

3.2.1 BATINA Dashboard . 21

3.2.2 BATINA Mobile . 23

3.3 UC Teacher / UC Student . 27

3.4 ON-BOARD Project . 29

3.5 Similar Academic Platforms . 30

3.5.1 StudentLife . 30

3.5.2 BigBlueButton . 30

3.5.3 ALEKS . 31

3.5.4 Socrative . 31

3.5.5 Comparative Analysis . 32

3.6 GreenBear . 33

4 ChatBot Development 35

4.1 Context . 35

4.2 Requirements . 36

4.2.1 Functional . 37

4.2.2 Non-Functional . 41

4.3 Architecture . 41

4.3.1 Overview . 41

4.3.2 UI . 42

Contents

4.3.3 Pollux . 43

4.3.4 Dialogflow . 44

4.4 Implemented Features . 45

4.4.1 Define an alarm . 46

4.4.2 Canteen Menu . 47

4.4.3 Historic Facts . 48

4.4.4 Professor Contact Info . 49

4.4.5 Exam Reminder . 49

4.4.6 Exam Feedback . 49

4.4.7 Assignment Submission Reminder 51

4.4.8 Poor Questionnaire Result Feedback 51

4.4.9 GPT-3 Interaction . 52

4.5 Implementation . 53

4.5.1 Dialogflow configuration . 53

4.5.2 GPT-3 configuration . 55

4.5.3 Pollux configuration . 56

4.5.4 Smartphone application . 57

4.6 Tests . 59

5 Conclusion and Future Work 63

5.1 Conclusion . 63

5.2 Future Work . 64

A Introduction Tutorial to ChatBot Technologies 70

B Green Bear – A LoRaWAN-based Human-in-the-Loop Case-Study for Sustain-

able Cities 94

i

ii

Chapter 1

Introduction

1.1 Context and Motivation

This project is the result of a comprehensive research conducted alongside the Instituto de

Engenharia de Sistemas e Computadores de Coimbra (INESCC) research group. This group

is dedicated to the development of Human-in-the-Loop Cyber-Physical Systems (HITLCPS),

a field that emphasizes the symbiotic relationship between humans and technology by cre-

ating human-centric systems. These systems infer present and future states based on data

acquisition and provide user feedback therefore integrating the human as part of the system.

The development of HITLCPS is important in order to adapt technology to human behavior

as well as human behavior to technology. It is essential to comprehend this relationship from

both a physical and an emotional standpoint, as we move towards an increasingly intercon-

nected future.

Our group’s primary development and testing platforms, IoT Student Advisor and BEst Life-

style Analyzer (ISABELA) and Best Assisting Tutor and INteractive Advisor (BATINA)

(discussed in greater detail in Chapter 3), allowed us to investigate this relationship by fo-

cusing on the actuation of HITLCPS: the interaction between the system and the human,

which closes the loop.

After an initial phase devoted to familiarising ourselves with the pertinent frameworks and

technologies (detailed in section 2), we developed and implemented a ChatBot for the group’s

platforms on both ISABELA and BATINA. We also created an in-depth introduction to Chat-

1

1. Introduction

Bot technologies to provide the INESCC-DEEC research team a solid foundation for com-

prehending and implementing the developed architecture on future platforms.

Furthermore, in a long-standing partnership with our group, the University of Coimbra (UC)

has demonstrated its dedication to innovative research by integrating ISABELA and BAT-

INA features into its official platforms. Our most recent collaboration with the UC is the

ON-BOARD project (described in section 3.4), wherein our developed ChatBot will be used

as a digital tutor.

1.2 Objectives

As mentioned previously, our project’s primary objective was to build a foundation for Chat-

Bot operations that can manage system-user interactions, to close the loop on the existing

HITLCPS platforms, therefore providing feedback and actuation from the system to the user

as well as data acquisition from the user to the system. To achieve this, the first objective

was to design and implement the ChatBot on the two main developing platforms mentioned

previously: ISABELA and BATINA.

As a secondary objective, we aimed at implementing the ChatBot focused on academic life,

furthering our partnership with the UC, behaving as a digital tutor for students, providing

feedback on their academic results and lifestyle and help them improve their performance,

preventing dropout.

1.3 Methodology

This project was developed using the Scrum methodology, which is an agile framework

widely adopted in software development [1]. It structures work into iterations known as

”sprints”, which are typically a few weeks in duration. At the start of each sprint, tasks

are defined and planned out. Progress is monitored through weekly meetings where the

team discusses their achievements, problems and the next steps. The conclusion of each

sprint involves an evaluation of the work accomplished and, if needed, an adjustment to

the planning or strategy for subsequent sprints. To keep track of iterations, GitLab was

used to maintain a record of features and version control, as well as issues and bugs on the

2

1.4 Document Structure

smartphone applications [2].

As means of communication, the team used Slack and the weekly meetings were hosted in

Skype [3, 4].

For software development, JetBrains’ Rider and IntelliJ were the chosen Integrated Develop-

ment Environment (IDE)s due to their great programming tools for different languages and

projects, but also GitLab integration [5–7].

1.4 Document Structure

The chapters that provide structure to this document are ordered as follows:

• Chapter 1 presents the context, motivations and methodology for this study;

• Chapter 2 describes the base concepts and technologies used;

• Chapter 3 characterises the platforms on which this project stands on, along with the

group’s initiatives developed in partnership with the UC, the Faculdade de Medicina

da Universidade de Coimbra (FMUC) and the Coimbra City Hall;

• Chapter 4 explains the proposed system and its integrations in ISABELA and BAT-

INA projects;

• Chapter 5 discusses the results obtained, drawing conclusions from the implemented

system and presents future work suggestions.

3

1. Introduction

4

Chapter 2

Background Knowledge

2.1 Base Concepts

This section summarises the background knowledge acquired from the research conducted,

which substantiates the work developed in the next chapters. Although the foundational

concepts supporting this project are extensive and intricate, a concise explanation of each

core concept applied in this study is provided.

2.1.1 Internet of Things (IoT)

Internet of Things is a network of diverse physical devices equipped with sensors, software

and communication protocols whose purpose is to collect, exchange and distribute data over

the Internet. Kevin Ashton coined the term ”Internet of Things” during a Procter & Gamble

presentation in 1999 [8]. These devices may capture the physical world and could involve

industrial tools, academic utilities, household items and commonplace consumer objects.

Consequently, the physical world can be incorporated into digital platforms and systems in

order to better comprehend or monitor certain activities. Some recent examples may include

a refrigerator that monitors its fill level or a lightbulb that powers on automatically at dusk.

IoT devices may also be able to communicate with each other autonomously, allowing for

the automation of these systems.

In 2022, there were an estimated 13 bilion IoT devices connected to the Internet [9]. By 2030,

it is expected that the number of IoT devices will approach 30 billion [10] as it is shown in

5

2. Background Knowledge

Figure 2.1. However, having access to data provided by these devices is not enough, we must

also know how to utilize it.

Figure 2.1: Number of Internet of Things (IoT) connected devices worldwide from 2019 to
2021, with forecasts from 2022 to 2030 (in billions) [10]

Designing highly sophisticated, reliable, and user-friendly systems will become increasingly

more challenging as the number of these devices in our daily lives and the complexity of the

systems increase in the coming years.

2.1.2 Smartphones

International Business Machines Corporation (IBM) introduced the IBM Simon, the world’s

first smartphone, in 1994. This unveiling represents the born of a new era of mobile phones,

as it included numerous applications, such as an address book, calendar, appointment sched-

uler, calculator, world time clock, electronic notepad, handwritten annotations and standard

and predictive stylus input screen keyboards. Since then, smartphones have been an ever-

growing success. More than three and a half billion smartphone network subscriptions exis-

ted in 2016. Subsequently, there were nearly twice as many subscriptions in 2022 [11]. For

reference, in 2022, the population of the Earth was 7.96 billion [12]. Smartphones manage

a vast number of aspects of our existence in the twenty-first century, gradually becoming an

essential item. The operations of a smartphone today range from commerce to entertainment

6

2.1 Base Concepts

to communications to photography and so much more. It is estimated that the average indi-

vidual, in 2023, uses their smartphone for more than three hours per day. This corresponds

to a 480% increase compared to 2011, when it was only approximately thirty-one minutes

[13]. Recent reports show that, in Western Europe alone, in 2020, the average mobile traffic

per month was about 4.45 exabytes, as shown in Figure 2.2 [14]. There has been an in-

crease in daily smartphone usage as well as data traffic, which indicates that more people are

connected to the Internet and spend more time on their smartphones than ever before.

Figure 2.2: Mobile data traffic in Western Europe 2011-2027 (in exabytes per month) [14]

2.1.3 Artificial Intelligence (AI)

AI is the science and engineering behind the creation of devices that are intelligent, especially

smart computer programs. AI was born to perform the task of using computers to compre-

hend human intelligence, but it is not limited to methods that are biologically observable

[15]. According to John McCarthy [16], AI comprises numerous subfields and applications.

AI is present in master chess game engines [17], speech recognition applications, computer

vision software and natural language processing software. AI’s versatility in applications

comes from the fact that it can be implemented through various branches, including pattern

recognition, learning from experience, ontology and inference [18].

AI evolved from the application of knowledge, algorithms and computing ability, commonly

7

2. Background Knowledge

referred as Machine Learning (ML), to the combination of layers of data, algorithms, and

processing power, also known as Deep Learning (DL) [19]. ML is a subset of AI that de-

scribes one of AI’s fundamental principles. Methods based on ML automatically improve

system outcomes through training. DL falls under AI and ML. It instructs a system or ma-

chine to process information in layers, classify, interpret and infer the result. Convolutional

Neural Networks (CNN), Recurrent Neural Networks (RNN) and Generative Neural Net-

works (GNN) are prevalent DL techniques, which learn from experiences or datasets rather

than just instructions [20]. Currently, AI applications are so widespread that they permeate

virtually every aspect of society: computer vision, autonomous driving, voice recognition,

neural networks and natural language processing, to mention a few, are among the most

popular.

2.1.4 ChatBots

In 1966, Joseph Weizenbaum introduced the first ChatBot at the Massachusetts Institute of

Technology (MIT). In order to simulate a conversation with a person-centered (Rogerian)

psychotherapist, the Eliza program generated responses based on a set of established rules,

making natural language conversation with a Computer possible [21]. The program would

determine a response based on the user’s input keywords. The implementation of the psy-

cotherapist model was ingenious, as the interactions would appear to formulate a natural

conversation during a psycotherapy session. This was the primary objective, to create a

seamless experience that gave the user the impression that Eliza understood the meaning of

every sentence in their inputs, despite the fact that Eliza did not store data from inputs [21].

In 1975, Parry ChatBot was created and designed to behave like a paranoid individual. It

was the first ChatBot to successfully pass the Turing test [22]. Like Eliza, Parry interactions

were designed based on rules. In addition, it contained an affective model for simulating the

ChatBot’s emotions.

It is evident that these programs created a significant number of new challenges:

• How to give a ChatBot knowledge about the world?

• Would it be advantageous for the ChatBot to construct a knowledge model of the indi-

vidual interacting with it?

8

2.1 Base Concepts

• Can a ChatBot be designed to be able to handle all interactions, not just a psychother-

apy session?

The need arose to supply ChatBot programs with knowledge, not only about the world but

also about the context of a conversation or the person speaking to it. The capabilities and

usefulness of ChatBots have been vastly enhanced by AI. As previously observed, the earliest

ChatBots were rule-based and could only deliver pre-programmed responses in response to

specific inputs - they had limited conversational capabilities and followed a simple prescribed

logic.

Some years later, around 1995, a new initiative emerged that incorporated AI. It was the

first ChatBot with customizable scripts and pattern-matching recursion [23]. Artificial Lin-

guistic Internet Computer Entity (ALICE) was powered by supervised learning, a technique

in which the ChatBot’s programmer plays a crucial role. By supervising bot interactions, it

is the programmer’s responsibility to develop new Artificial Intelligence Markup Language

(AIML) scripts to enhance the content of the conversation [24].

Alongside a previously-mentioned technology on the rise, a follow-up significant innov-

ation was introduced. The first smartphone to integrate an intelligent personal assistant

was Apple’s iPhone with Siri; Google Assistant soon followed in Android devices. These

ChatBots provided the user with various kinds of assistance and were incorporated into the

device’s operating system. These were the first ChatBots broadly available that could inter-

pret text, voice and images.

With Apple and Google developing these technologies, ChatBots gained popularity, and

Microsoft quickly followed suit with XiaoIce, a social ChatBot with empathy. XiaoIce was

introduced in 2014 and promptly went viral. 1.5 million messaging groups added XiaoIce

within 72 hours [25].

Table 2.1 displays some of the most important ChatBots in history over time along with some

metrics comparisons: time of release, scalability, key features, accomplishment, modality,

modeling, domain, key technical breakthroughs and key technical limitations.

9

2. Background Knowledge

Table 2.1: ChatBot overview over time [26]

Metric ELIZA ALICE Siri XiaoIce
Chat

GPT

Time 1966 1995 2011 2018 2022

Scalability None Scripts can be customized Scalable Scalable Scalable

Key Features

Mimicking human

behavior in

conversation

Easy customisation

of scripts (via AIML)

Providing personal

digital assistance

Building emotional

attachment to users;

scalable skill set

for user assistance

Ability to generate

responses like humans

in real-time,

based on the user’s input;

Multilingual support

Accomplishment First chitchat bot
Won the Loebner Prize

three times

The first widely

deployed intelligent

personal assistant

(IPA)

The first widely deployed

social ChatBot;

100MM users;

published poem book;

host TV programs

Generative

Pre-training

Transformer

architecture

and is trained

on a massive dataset

of internet text;

Modality Text only Text only Text, image, voice Text, image, voice Text only

Modeling Rule-based Rule-based Learning-based Learning-based Learning-based

Domain Constrained domain Constrained domain Open domain Open domain Open domain

Key technical

breakthrough

Use of scripts;

Keyword-based

pattern matching;

rule-based response

Using AIML and recursion

for pattern matching;

multiple patterns can be

mapped into same response

Provide both reactive

assistance covering

a wide range of domains

Emotional intelligence

models for

establishing emotional

attachments with users

Deep learning

techniques to generate

human-like text;

ability to generate

text that is coherent

and fluent,

contextually relevant

and can be fine-tuned

for specific tasks

Key technical

limitation

Limited domain

of knowledge
Size of scrip can be huge

Lack of emotional

engagement with users

Inconsistent

personality

and responses in

long dialogue

Cannot access Internet

in real-time;

cannot handle

multitasking

2.1.5 Human-in-the-Loop Cyber-Physical Systems (HITLCPS)

The majority of IoT applications today do not include the Human as an integral compon-

ent of the system and in order to develop technology that better services humans, we must

develop systems capable of comprehending their actions, intentions, and emotions [27, 28].

Four phases are depicted in Figure 2.3: data acquisition, present state inference, future state

inference and actuation.

HITLCPS applications are meant to react to natural human behavior and do not necessarily

require direct human interaction [29]. The acquisition of data through which the human’s

state may be inferred is a complex process with a multitude of possible sources of informa-

10

2.2 Framework Technologies

Figure 2.3: Control Loop for a HITLCPS [28]

tion [29]. Many physical data, such as a person’s Global Positioning System (GPS) location

and heart rate, can be used to infer their state, however, there are also valuable non-physical

data, such as communication and socialization practices [29].

2.2 Framework Technologies

This section emphasises the software and frameworks used to develop this project. Xamarin

is the base framework that is used by the INESCC-DEEC group to develop multi-platform

applications and FIWARE framework is used to deal with data management and context in-

formation. Flask, Dialogflow, GPT-3 and Lottie are frameworks used to develop this project.

2.2.1 Xamarin

Xamarin is an open-source platform for developing modern and performant iOS, Android,

and Universal Windows Platform (UWP) applications using the .NET framework. As an

abstraction layer, Xamarin bridges the gap between shared code across multiple platforms

and platform-specific code, as seen in Figure 2.4. Xamarin allows developers to share an

average of 90 percent of their application code across multiple platforms. This pattern en-

11

2. Background Knowledge

ables developers to compose or reuse existing code while still achieving native performance,

appearance, and behavior on each platform [30].

Figure 2.4: Xamarin Architecture[30]

The most recent version of Xamarin is Multi-Platform App User Interface (MAUI), which,

in addition to Xamarin’s features, offers improved performance with fewer resources and

enables the development of a native User Interface (UI) within a single project. Our team is

currently upgrading all Xamarin platforms to MAUI.

2.2.1.A Xamarin.Essentials

Xamarin.Essentials is a library that provides developers with a single cross-platform Ap-

plication Programming Interface (API) that is compatible with all Xamarin.Forms, as well

as Xamarin.Android, Xamarin.iOS or UWP application using shared code. It is a tool that

considerably accelerates the mobile app development process by providing cross-platform

support for the common features that mobile apps typically require [31].

The greatest advantage of Xamarin.Essentials is the wide range of out-of-the-box function-

ality it provides, such as network connectivity detection, device geolocation, persistent pref-

erences, secure data storage, device information, file system helpers, accelerometer data,

phone dialer access and text-to-speech capabilities, among others. All of these features sup-

press the need for platform-specific code, allowing developers to write their applications in

C# [31].

12

2.2 Framework Technologies

2.2.1.B Xamarin.Forms

Xamarin.Forms is an open-source User Interface (UI) framework. Xamarin.Forms allows

developers to build multiplatform applications from a single shared codebase and create user

interfaces in Extensible Application Markup Language (XAML) with code-behind in C#.

These interfaces are rendered as performant native controls on each platform [32].

2.2.2 FIWARE

FIWARE is an open-source framework of key open standards that enable the development of

portable and interoperable smart solutions [33]. The primary and only required component

of any platform or FIWARE solution is a FIWARE Context Broker Generic Enabler, which

provides an essential function required by any smart solution: the need to manage context

information, enabling updates and providing access to context [34]. A very powerful Context

Broker currently provided by FIWARE is the Orion Context Broker (OCB) which is a core

component of the FIWARE platform, illustrated in Figure 2.5. It is a server that enables the

management of the lifecycle of context information, including updates, queries, registrations,

and subscriptions [35]. The OCB enables the creation of virtual entities that represent real-

world objects or human beings [27, 35]. It is also possible to create and manage context

elements, as well as query and update them as required [35].

Figure 2.5: FIWARE Modules [34]

13

2. Background Knowledge

2.2.3 Flask

Flask is a lightweight, micro web framework written in Python. It was created to assist

Python developers in rapidly building basic web applications without requiring a complex

framework. Its ”micro” label indicates that it seeks to keep the application’s core simple and

extensible. Uniform Resource Locator (URL) routing (what code to execute on which page)

and request handling are essential and straightforward features provided by Flask [36].

2.2.4 Dialogflow

Dialogflow is a natural language understanding platform that makes it simple to design and

integrate a conversational user interface into mobile apps, web applications, etc. It is capable

of analyzing a selection of inputs, including text and audio. Additionally, it can respond

through text or synthetic speech [37].

It is a platform that provides the ability to create a fully customizable ChatBot that produces

individualized responses to the user based on a previously configured intent match. To create

a competent ChatBot agent, we must provide it with knowledge inputs. If configured to do

so, the agent is capable of maintaining context during interactions. It is also feasable to

provide training phrases to improve its user input interpretation and intent matching. It is

possible as well to create a webhook service to access external databases and APIs to fulfill

the agent responses [37]. This architecture is illustrated in Figure 2.6

Figure 2.6: Dialogflow Architecture [37]

14

2.2 Framework Technologies

2.2.5 GPT-3

OpenAI’s GPT-3, which stands for Generative Pre-Trained Transformer 3, is a highly ad-

vanced language model. It uses deep learning to generate human-like text by anticipating the

following word based on the context. With 175 billion machine learning parameters, GPT-3

can comprehend context and generate coherent, pertinent sentences. It is capable of learning

from a few examples and accurately performing duties. GPT-3 has numerous applications,

including email writing, scripting, tutoring, language translation, and even creative writing,

however, it has some limitations and can occasionally generate incorrect or nonsensical out-

put, despite its strengths [38]. OpenAI released an iteration of this language model, GPT-4,

that improves all previous features and has access to external plugins, making it the best

version available. GPT-4 is currently being integrated in our project.

2.2.6 Lottie

Lottie is a library for Android, iOS and Web (officially) that parses animations exported as

JavaScript Object Notation (JSON) files from an open-source Adobe After Effects plugin

called Bodymovin [39, 40]. It enables native applications to render animations for approx-

imately the same cost as rendering static assets and the file size of lottie animations is signi-

ficantly smaller than any animation in video format. In addition to Android, iOS and Web,

Lottie provides the following stable versions, developed by its community: React Native,

Windows, Qt, Skia, Python and Xamarin [39, 41].

15

2. Background Knowledge

16

Chapter 3

Group Platforms

3.1 IoT Student Advisor and BEst Lifestyle Analyzer (ISA-

BELA)

ISABELA is a mobile application developed to help students achieve better results in their

academic journey. It is based on the four phases of HITLCPS previously mentioned: data

acquisition, inference, future inference and actuation. Using IoT devices, it collects sound

and light data from the student’s University facilities and residence. Using the smartphone’s

sensors, it also records the student’s location, physical activity and social interactions. It

implements a FIWARE architecture, displayed in Figure 3.1, which provides a solid ground

to store data and communicate with different devices [27].

ISABELA project’s objective is to get insights of the student’s routines in order to prevent

bad habits that could lead to poor academic results or even dropout. The HITLCPS architec-

ture of ISABELA generates a system in which students are the primary agents in modifying

their own behavior.

From a research perspective, one of ISABELA’s goals is to develop and test modern, robust

privacy techniques. As the collection of data continues to increase, so does the need for

enhanced privacy safeguards to reduce potential hazards and abuse.

This platform was initially designed to monitor students twenty-four hours a day using smart-

phone sensors and IoT devices to gain a deeper understanding of their environment and daily

behaviors. It monitors the student’s activity, sleep, social interactions and location in order to

17

3. Group Platforms

Figure 3.1: ISABELA Architecture [27]

infer their behavior. Figure 3.2 gives an example of the data that is displayed to the student

in real-time.

The student is notified via smartphone push notifications and a ChatBot whenever a negative

or positive behavior is identified. The function of the ChatBot is to interact with the student,

either in response to these inferred bad or good behaviors detected by the system, or in

response to textual input from the user. In the case of bad behavior, if the student alters

it, the system will recognize the change and cease sending them notifications about their

previous misbehavior, it will continue to alert the student otherwise [27].

As ISABELA implements a complete HITLCPS, it has become a core developing and test-

ing platform for new functionalities in our group’s research and development projects. In

addition, in the context of a partnership with the FMUC’s Clinical Psychology group, we are

currently adapting the HEXACO Personality Inventory test and the Profile of Mood States

(POMS) test into surveys within ISABELA [42, 43].

18

3.1 IoT Student Advisor and BEst Lifestyle Analyzer (ISABELA)

(a) Physical Activity (b) Location Activity (c) Social Activity

Figure 3.2: ISABELA’s Feedback Pages [27]

One of the features in ISABELA’s smartphone application is the ChatBot. This ChatBot

was developed integrating Google’s Dialogflow API (formerly API.AI) directly on the ap-

plication. As mentioned previously, Dialogflow is a platform that provides the tools required

to construct a fully customisable ChatBot and functions as an external API that developers

can instruct in real time using Google’s technology. Given that Google’s machine learning

algorithms are among the most advanced, this is a major benefit in NLP for any project

[27, 37]. This ChatBot was a basic prototype centered entirely on the ISABELA’s platform,

which served as the foundation for the work presented in this dissertation.

Based on the student’s behavior, ISABELA’s ChatBot is equipped with 5 intents:

• Too much time still (not moving)

• Insufficient exercise

• Not enough time at the university

• Excessive time at home

• Insufficient sleep

In addition, it has some intents that take advantage of the deployed IoT devices and smart-

phone sensors, as well as the ability to deal with user’s interactions. Figure 3.3 illustrates

19

3. Group Platforms

two distinct ChatBot interactions: in Figure 3.3a, the student requests assistance defining

an alarm and finding the local room temperature, in Figure 3.3b, the system is triggered to

provide the student with feedback regarding their lack of physical activity (triggered ”Insuf-

ficient exercise” intent) and it suggests the student to go for a run. This alarm interaction was

adapted during this project’s development to the new designed architecture.

(a) Alarm and temperature interactions (b) Exercise recommendation

Figure 3.3: ISABELA’s ChatBot [27]

ISABELA also includes a smartwatch application that communicates with the smartphone

application in order to better track physical activity and movement. Figure 3.4 depicts the

foreground activity that displays physical metrics which include steps taken and heart rate

using the smartwatch’s internal sensors, while the background activity broadcasts these met-

rics to the smartphone.

ISABELA is the foundation for several subsequent initiatives, including BATINA (section

3.2), ON-BOARD (section 3.4) and GreenBear (section 3.6). As mentioned previously, ISA-

BELA is also a development and testing platform for our ongoing group’s projects which

result from partnerships with the UC, the FMUC and the Coimbra City Hall.

20

3.2 Best Assisting Tutor and INteractive Advisor (BATINA)

(a) Wear screen (b) Wear screen scrolled down

Figure 3.4: ISABELA’s Smartwatch Activity [27]

3.2 Best Assisting Tutor and INteractive Advisor (BATINA)

BATINA is a tutoring system comprised of a dashboard web application and a smartphone

application based on ISABELA. The primary objective of this system is to be implemented

in the classroom and provide resources for professors (who utilize the dashboard app) and

students (who utilize the smartphone app). Furthermore, BATINA, alongside ISABELA, is

used for the development of new features, in the context of partnership with the Rectory

of the UC, to be integrated in the official UC applications: UC Teacher and UC Student

(detailed in section 3.3) as well as the ON-BOARD project (detailed in section 3.4).

3.2.1 BATINA Dashboard

The BATINA Dashboard is a Dash-based [44] platform which enables professors to manage

their courses, displayed in Figure 3.5a, and classroom-related duties, such as creating and

managing questionnaires, illustrated in Figure 3.5b, or providing study materials to students,

as seen in Figure 3.6a, as well as a system to answer questions, displayed in Figure 3.6b.

Here are the main features of the BATINA Dashboard:

• Questionnaires can be created and monitored throughout its duration. It is possible

to construct a questionnaire by writing each question individually or by letting the

system automatically pick questions from a question database (Question Pool), as seen

in Figure 3.7.

21

3. Group Platforms

(a) Courses List (b) Questionnaire List

Figure 3.5: Professor’s Course and Questionaire Lists

(a) Support Materials List (b) Doubts List

Figure 3.6: Professor’s Support Material and Doubts Lists

• Courses display the roster of students enrolled in a particular course taught by the

professor. It provides charts indicating success and failure rates based on questionnaire

results, both for the course as a whole and for each individual student. This allows one

to predict, for instance, dropout rates. This example can be seen in Figure 3.8.

• The professor may provide Support Materials about the lectures which can be ac-

cessed by the students via the smartphone application, illustrated in Figure 3.6a.

• Any student may submit Doubts and the professor has a page, depicted in Figure 3.6b,

dedicated to answering them. Each time a response is provided, the student who posed

the question is notified in real-time as seen in Figure 3.9.

22

3.2 Best Assisting Tutor and INteractive Advisor (BATINA)

Figure 3.7: Creating a questionnaire from pool

Figure 3.8: Course Report

3.2.2 BATINA Mobile

BATINA Mobile is a smartphone application designed for students. Its primary objective is

to provide insight into academic achievement and results through an analytical summary. In

addition, it encourages positive habits that contribute to improved academic performance via

feedback pages with data and a ChatBot, similar to ISABELA, although BATINA Mobile

focuses more on classroom performance and does not use IoT devices to monitor students’

23

3. Group Platforms

(a) Doubt Notification (b) Doubt Answer

Figure 3.9: Student Doubt Answered

daily habits.

BATINA Mobile has five main pages: Courses Page, Courses Reports, Global Report, Set-

tings Page and ChatBot Page. The Courses Page gives a list of courses the student is currently

enrolled in, as well as a history of past courses. Each Course page has the correspondent

questionnaires, support materials and the ability to ask questions to the professor, as seen in

Figure 3.10.

The questionnaires menu displays uncompleted questionnaires and maintains a record of

completed ones, as displayed in Figure 3.11. When a student starts a questionnaire, there

is an initial page, displayed in Figure 3.12a, which warns the student to maintain a stable

connection and to not leave the questionnaire during its duration, as it will end automatically

otherwise. In Figure 3.12b, there is an example of a multi-choice question. The support

material menu provides access to any course-specific materials supplied by the professor.

24

3.2 Best Assisting Tutor and INteractive Advisor (BATINA)

(a) Courses List (b) Course Detail Page

Figure 3.10: BATINA Mobile Courses Pages

(a) Questionnaire List (b) Questionnaire Detail Page

Figure 3.11: BATINA Mobile Questionnaire Pages

25

3. Group Platforms

(a) Questionnaire Initial Page (b) Question Example

Figure 3.12: BATINA Mobile Questionnaire Pages (cont)

The Course Report page gives the student an analytical insight about their academic per-

formance based on questionnaire results, illustrated in Figure 3.13a. The student can have

an overview of their grades in each questionnaire and which questions got wrong or right.

Figure 3.13b depicts the global academic perfomance through the various courses the student

is currently enrolled in, as well as the possibility to check past global reports from previous

academic years. It is possible to consult each course individually from this page, by clicking

on the correspondent course.

26

3.3 UC Teacher / UC Student

(a) Course Report (b) Global Report

Figure 3.13: BATINA Mobile Reports

3.3 UC Teacher / UC Student

UC Teacher is an academic platform to support classes with the primary goal of providing all

University of Coimbra (UC) professors with an instrument to manage their entire teaching

activity. This platform exists for the sole purpose of serving the entire UC community. The

platform is the subject of significant development and is becoming increasingly vital to the

daily lives of all UC instructors, providing features like conducting remote exams, record

class sessions or meetings, create groups to share content with specific users, multilingual

translation and creation of repositories. It should also be noted that the UC Student platform

shares a close connection with UC Teacher [45]. Figure 3.14 displays the UC Teacher’s

platform. On the left side there are the main menus, where the teacher is able to manage

courses, groups, exams, support materials and files, chatting channels and recordings from

meetings, classes or exams. On the center there is some statistical data about the professor’s

activity and a quick action menu.

UC Student is an academic platform available to all students at the University of Coimbra

for class support [46]. It shares some primary features with UC Teacher and also includes

27

3. Group Platforms

Figure 3.14: UC Teacher [45]

the ability to join or create virtual rooms and inspect enrolled courses, classes and support

materials [46]. The UC Student’s platform is illustrated in Figure 3.15, and it gives the

students the same features as UC Teacher’s except the exams, recordings options and the

management of courses and support materials.

Figure 3.15: UC Student [46]

Our group is working with UC Frameworks, the entity responsible for the official UC plat-

forms, to integrate the most valuable features developed in the ISABELA and BATINA ap-

plications into the UC Teacher and UC Student platforms. Some features currently being

integrated are the BATINA’s questionnaires and the smartphone application.

28

3.4 ON-BOARD Project

3.4 ON-BOARD Project

The ON-BOARD project is the product of a successful application of the UC to the Plano de

Recuperação e Resiliência (PRR) funding for education and it focuses on personal and digital

tutoring procedures for students and teachers, as well as the transformation of organisational

conditions and performance in academia. The student dropout rate, especially during the

first year of study, is one of the primary concerns of this project. It is based on the following

key components:

• Data Analytics Solution: This involves the systematic analysis of data to ascertain pat-

terns and predictive models related to academic failure and premature discontinuation

of studies.

• Adaptive Learning: This element is focused on the enhancement and modernization of

student learning experiences.

• Happy Campus UC: This encompasses workshops aimed at fostering personal and

social connections, leadership and overall well-being.

• Peer Tutoring: This component involves collaborative dynamics where upper-year stu-

dents provide guidance and support to first-year students.

• Tutoring Preparation: This entails the exchange of experiences among teaching staff

from the UC and other domestic or international institutions, with the objective of

sharing exemplary pedagogical practices.

In addition to the collection and analysis of data to identify dropout prediction patterns, the

initiative integrates technological tools for adaptive teaching and personalised monitoring of

students. Wellness and mental health are also considered by promoting stress and anxiety

management techniques among students and instructors [47, 48].

This project is one of the next steps in developing the ChatBot, as an integrated part of our

group’s partnership with the UC, to contribute as a digital tutor for students. Thanks to the

PRR funding, this work will be developed over the course of the upcoming months.

29

3. Group Platforms

3.5 Similar Academic Platforms

3.5.1 StudentLife

Researchers at Dartmouth College conducted the StudentLife study to objectively measure

and evaluate the behavioral trends and mental health of college students using sensor data

collected from smartphones, the research was longitudinal in nature and spanned the entire

10 week academic term. The primary objective was to determine how factors such as sleep,

physical activity, social interaction and location affect academic performance and mental

health. In addition to sensor data (GPS, accelerometer, etc.), variables like phone usage and

responses to periodic self-reported surveys from students were integrated. Consequently, the

collected data was quite comprehensive [49].

A significant portion of the study was devoted to predicting the student’s Grade Point Av-

erage (GPA). The researchers were able to predict the GPAs by correlating these variables

with academic performance. In an identical manner, class attendance was evaluated using

GPS and activity data. It was observed that students with a higher GPA had more regu-

lar sleep patterns, spent more time studying, were reserved on their phones and were more

likely to be in locations classified as ’academic.’ Conversely, students with lower GPAs had

irregular sleep patterns, less study time, more time at parties and longer evening conversa-

tions. The researchers concluded that this behavior is associated with self-reported stress and

loneliness and has a negative effect on academic performance. Students who partied more

frequently had lower GPAs, were less likely to attend classes and reported higher levels of

stress. The StudentLife study provides a comprehensive digital phenotype of student life

and helps to identify and address the factors that influence academic performance and men-

tal health among students. Continuous monitoring using devices could offer an unobtrusive

method for detecting behavioral trends among college students, allowing for the possibility

of early intervention [49, 50].

3.5.2 BigBlueButton

BigBlueButton’s features are geared towards the educational setting, replicating the classroom

environment in a virtual space. It enables teachers to, among other things, exchange docu-

30

3.5 Similar Academic Platforms

ments, play videos, use a virtual whiteboard, share their screen and carry out polls. To keep

track of student development, it provides the teacher with an Analytics Dashboard, on which

the teacher can monitor who attends classes, who actively participates and how students

are evolving (based on poll results), making it easy to identify potential students who are

struggling [51, 52].

This software is entirely open-source and was developed by a community of committed de-

velopers with a passion for enhancing online learning. It has been deeply embedded into ma-

jor learning management systems used world-wide. It has been adopted by Canvas, Moodle

Cloud, Sakai, Jenzabar, D2L and Schoology as their default virtual classroom [51].

3.5.3 ALEKS

Assessment and LEarning in Knowledge Spaces (ALEKS) is a web-based, artificially intel-

ligent assessment and learning system that uses adaptive questioning to accurately determine

exactly what a student knows in a field of study. Its AI is based on a theoretical framework

called Knowledge Space Theory (KST) [53, 54]. KST allows the representation in the com-

puter’s memory of an enormously large number of possible knowledge states that organize a

scholarly subject. Rather than giving a score or series of scores that describe a student’s over-

all mastery of the subject, KST allows for a precise description of what the student knows,

does not know and is ready to learn next [53, 55].

The adaptive nature of ALEKS is based on the principles of formative assessment, which in-

volves ongoing evaluation of student understanding to tailor instruction to individual needs.

As students interact with the system, ALEKS continually reassesses their knowledge, adjust-

ing the learning path as necessary. This dynamic approach allows for differentiated instruc-

tion, accommodating a wide range of learning styles and paces. It also provides immediate

feedback, which research has shown to be crucial for effective learning [53, 55].

3.5.4 Socrative

Socrative is a web-based educational platform with two major features: interactive classroom

engagement tools and customisable assessment capabilities. The first feature, interactive

classroom engagement tools, is designed to facilitate real-time communication and instant

31

3. Group Platforms

feedback during lessons. Educators can launch quick polls or questions in the midst of a

lecture and students can respond immediately, stimulating their participation. This instant-

aneous feedback enables educators to modify their approach on the spot based on student

comprehension and engagement [56].

Alternatively, Socrative’s customisable assessment capabilities are designed to enable edu-

cators to create, distribute and evaluate quizzes and tests. The types of questions vary from

multiple choice to true or false and short answer questions. These assessments can be util-

ized as assignments, spontaneous quizzes, or unit examinations. Post-assessment analytics

provide educators with a detailed understanding of each student’s performance, allowing for

personalized and effective feedback and subsequent lesson planning [56].

Despite the fact that Socrative’s features facilitate real-time feedback and individualized

learning, it is crucial to note that the platform’s efficacy is largely dependent on the in-

structor’s pedagogical approach. Without an effective teaching strategy, it may not be pos-

sible to attain the desired educational outcomes using the platform. It is the responsibility of

the educator to use Socrative’s features to enhance the learning experience.

3.5.5 Comparative Analysis

Using IoT and smartphone sensors, the ISABELA and BATINA projects seek to improve

academic performance and prevent bad habits. While both projects are designed to enhance

academic performance, ISABELA focuses on student lifestyle, whereas BATINA focuses on

developing performance in the classroom for both professors and students. In the context

of a partnership with FMUC, these platforms are also being used to develop new clinical

psychology support features. ISABELA also has an integrated ChatBot that provides direct

feedback to students and handles their inquiries, which is crucial for promoting an effective

interaction between the platform and the student. Similar to ISABELA but without real-time

feedback, the StudentLife Study utilises smartphone data to gather insights about student

behaviour and academic performance in order to predict student success. This data-driven

strategy in HITLCPS is comparable to BigBlueButton’s use of analytical data to monitor stu-

dent engagement and progress. ALEKS also relies on data, but its AI-driven approach goes

one step further by adapting the learning topics dynamically based on the student’s individual

knowledge level. Socrative, meanwhile, integrates real-time feedback into classrooms and

32

3.6 GreenBear

provides immediate insights into classroom methodology.

All of these platforms and studies demonstrate how technology is transforming education to

become more data-driven, personalised and able to provide real-time feedback. Even though

they provide real-time insights about academic performance and knowledge levels, there is

no mutual interaction between the student and the system, with the exception of ISABELA.

Consequently, it is essential to cover this void in human-system interaction, therefore the

proposal to develop a ChatBot.

3.6 GreenBear

The GreenBear initiative began as a case study, evolving into a collaborative project with the

Coimbra City Hall. This evolution underscores its growing relevance by promoting sustain-

able practices and enhancing the quality of urban life. The initiative employs technology to

encourage healthier habits and sustainable behaviors, aligning with the broader concept of

smart cities. Developed using Xamarin Forms, the platform is designed to support Android

and iOS devices and offers a variety of features to stimulate and monitor user engagement in

sustainable actions.

One of the platform’s key features is a user-friendly interface that includes a map showcasing

local recycling bins, green spaces and public transportation options. In addition, it includes a

ChatBot that responds to user questions and provides feedback. The GreenBear initiative is

characterized by its rewards-based system, which is designed to encourage users to engage in

more sustainable behaviors. This system not only encourages participation, but also permits

the collection of data on user behavior.

The collected data is a valuable resource for assessing the efficacy of the platform’s in-

centives and identifying areas for enhancement. The GreenBear initiative is committed to

ongoing testing and development to ensure that the platform remains responsive to user re-

quirements and continues to foster long-term sustainability.

The INESCC group has published an article that has been peer-reviewed and published in

the Pervasive and Mobile Computing Journal, which is classified in the top quartile (Q1) of

journals in its field. This article features a ChatBot created using the architecture proposed

in this dissertation. The article is provided in Appendix B.

33

3. Group Platforms

34

Chapter 4

ChatBot Development

4.1 Context

This chapter overviews the ChatBot development and implementation in the ISABELA and

BATINA projects.

As stated before, the core development of this project is a ChatBot for HITLCPS learning

platforms. The development integrated the INESCC-DEEC research group’s projects, taking

advantage of the existing platforms, architectures and features, focusing on the last stage of

HITLCPS: user feedback and actuation. To achieve this, we took advantage of the existing

smartphone applications, with a special focus on ISABELA and BATINA, developed a Flask

server which we named Pollux to handle users’ requests and a Dialogflow agent as a NLP

platform to understand users’ interactions. Later we added another NLP platform: GPT-3 to

expand the capabilities of understanding natural language of our implemented system.

ISABELA and BATINA serve as platforms for the development and testing of new concepts

and features. Given their design, transferring the features developed on these platforms to

other projects within our group, such as GreenBear and ON-BOARD, is a straightforward

procedure.

35

4. ChatBot Development

4.2 Requirements

In this section, both the Functional and Non-Functional Requirements for the ChatBot are

described. Table 4.1 displays each Functional Requirement (FR) and its corresponding title,

which substantiate the designed architecture and the implemented features.

Table 4.1: Functional Requirements

FR Title FR Title

FR0 Dialogflow FR6 Exam Feedback

FR1 ChatBot Page FR7 Poor Questionnaire Result Feedback

FR2 ChatBot Interface FR8 Assignment Submission Reminder

FR3 Alarm Clock FR9 GPT-3 Interactions

FR4 Canteen Menu Access FR10 GPT-3 Setting

FR5 Exam Reminder

To characterise each FR, we utilize the following parameters, described in Table 4.2: priority,

description, actors, pre-conditions, event flow and expected result.

Table 4.2: Requirements’ Parameters

Parameter Description

Priority

Must: is essential to the project.

Should: is important to the project but the system should work without

it.

Could: not implemented which don’t affect the implementation of

important requirements.

Will not: not implemented and considered future work.

Description Overall explanation.

Actors Intervening systems.

Pre-Conditions Requisites necessary for functionality.

Event Flow Description of necessary actions to achieve the desired outcome.

Expected Outcome The desired result.

36

4.2 Requirements

4.2.1 Functional

Dialogflow

• Priority: Must.

• Description: the ChatBot must have Dialogflow has a NLP.

• Actors: the user.

• Pre-Conditions: none.

• Event Flow: the user sends a message.

• Expected Outcome: Dialogflow responds to the user message.

ChatBot Page

• Priority: Must.

• Description: the smartphone applications must have a ChatBot page which displays

text interactions.

• Actors: the user.

• Pre-Conditions: Internet connection.

• Event Flow: the user presses de ChatBot page button from any navigation page and

the application navigates to the ChatBot page.

• Expected Outcome: the ChatBot page loads up with the history of past messages, an

entry text box where the user may write messages and a send message button.

ChatBot Interface

• Priority: Must.

• Description: the ChatBot interface must be able to send and retrieve messages.

• Actors: the user.

• Pre-Conditions: Internet connection.

37

4. ChatBot Development

• Event Flow: on the ChatBot page, the user writes a message and presses the send

button.

• Expected Outcome: the message is sent and a few seconds later a response is re-

ceived.

Alarm Clock

• Priority: Should.

• Description: the ChatBot should be able to handle an alarm clock request given a

date, time and description.

• Actors: the user.

• Pre-Conditions: Internet connection.

• Event Flow: the user asks the ChatBot to set an alarm.

• Expected Outcome: the ChatBot sets an alarm for the given date, time and the de-

scription.

Canteen Menu Access

• Priority: Should.

• Description: the ChatBot should be able to provide the SASUC’s canteen menu for

any given day.

• Actors: the user.

• Pre-Conditions: Internet connection.

• Event Flow: the user asks the ChatBot for the menu of a given day.

• Expected Outcome: the ChatBot provides the corresponding menu.

38

4.2 Requirements

Exam Reminder

• Priority: Should.

• Description: the ChatBot interface should remind a user to go to bed early on the

evening before the exam.

• Actors: none.

• Pre-Conditions: Internet connection.

• Event Flow: when information is gathered from the user’s calendar, if the user has an

exam on the day after, the ChatBot sends a message to the user.

• Expected Outcome: the user receives a message with a reminder to go to bed early

on the evening before an exam.

Exam Feedback

• Priority: Should.

• Description: the ChatBot interface should ask the user about their perception on their

performance of a taken exam.

• Actors: the user.

• Pre-Conditions: Internet connection.

• Event Flow: when information is gathered from the user’s calendar, if the user has had

an exam on that day, the ChatBot sends a message to the user with a pop up question.

• Expected Outcome: the user receives a message with a pop up question about their

exam performance and answers it in a scale of 1(very badly) to 5(very well).

Poor Questionnaire Result Feedback

• Priority: Should.

• Description: the ChatBot interface should warn the user about their poor result in a

questionnaire.

39

4. ChatBot Development

• Actors: the user.

• Pre-Conditions: Internet connection.

• Event Flow: when information is gathered from the user’s completed questionnaires,

if the user has had a poor result, the ChatBot sends a message warning the student to

study the recommended materials.

• Expected Outcome: the user receives a message with a warning about their poor

questionnaire performance and a recommendation to study the support materials.

Assignment Submission Reminder

• Priority: Should.

• Description: every week, the ChatBot interface should remind a user about assign-

ment submissions coming up in the following week.

• Actors: the user.

• Pre-Conditions: Internet connection.

• Event Flow: when information is gathered from the user’s calendar, if the user has an

assignment coming up during the following week, the ChatBot sends a message for

each submission, reminding them about it.

• Expected Outcome: the user receives a message for each assignment submission,

with a reminder about the deadline along with all the details about it.

GPT-3 Interactions

• Priority: Should.

• Description: the ChatBot should have GPT-3 integrated.

• Actors: none.

• Pre-Conditions: none.

• Event Flow: the user sends a message.

40

4.3 Architecture

• Expected Outcome: GPT-3 responds to the user message.

GPT-3 Setting

• Priority: Should.

• Description: the user should be able to toggle ChatBot interactions with GPT-3.

• Actors: the user.

• Pre-Conditions: none.

• Event Flow: on the settings page, the user presses the GPT-3 interaction toggle.

• Expected Outcome: the GPT-3 interaction will be toggled on or off.

4.2.2 Non-Functional

• Usability: the ChatBot interface must have a pleasing and appealing UI to provide

ease of use.

• Support: the ChatBot interface should be supported by the majority of iOS and An-

droid devices.

• Accessibility: the system should be simple and straightforward.

• Scalability: the system should facilitate the development of new features and ChatBot

interactions.

4.3 Architecture

4.3.1 Overview

This section provides an overview of the architecture, while the following sections describe

each module portrayed in the diagram. Figure 4.1 depicts the system architecture for the

ChatBot’s development.

41

4. ChatBot Development

The UI refers to the smartphone application, which in this case are the ISABELA and BAT-

INA applications, as mentioned previously.

The Pollux module is the Flask server developed to handle all communications between the

UI and the remaining modules of the system. It forwards the users’ messages to Dialogflow

in order to be interpreted and handles the response accordingly. If Dialogflow’s agent does

not interpret the user input it interacts with GPT-3 as an alternative. Finally, it also manages

the access to external APIs if needed.

Dialogflow’s module has a programmable agent configured to interpret specific user interac-

tions based on intent matching, maintains context during a conversation and provides appro-

priate responses.

Figure 4.1: ChatBot Architecture

There are two methods to initiate a ChatBot interaction: a user message or a previously pro-

grammed message. The last type is used when a student’s behaviour triggers an interaction

that provides recommendations to improve academic performance.

4.3.2 UI

In the smartphone applications, we developed a ChatBot page to be interacted with, which

is ran by the Operating System (OS) on the UI Thread, responsible for handling all user

interactions. Subsequently, the OS also runs background services which manage data trans-

fers and external communications. Figure 4.2 displays the relevant background services for

42

4.3 Architecture

the developed ChatBot. The Calendar Service checks regularly for academic activities and

deadlines, the Questionnaire Service checks the student’s performance in completed ques-

tionnaires via the existing FIWARE database and the ChatBot Service handles all interac-

tions with Pollux. Since the first two are invisible to the student, these services are the ones

responsible for triggering a ChatBot interaction without text input from the student.

Figure 4.2: UI Architecture

4.3.3 Pollux

The Pollux server has a main thread that handles all the ChatBot’s interactions. It is com-

prised of three main modules which control the flow of each interaction, depicted in Figure

4.3:

• Dialogflow module is responsible to forward the received message to the Dialogflow

agent and await a response.

• Intent Matching and Conversion manages the Dialogflow’s response, converts it

into simpler types of data to work with and matches the intent with a specific function,

subsequently, it also manages the interaction with the GPT-3 and the External APIs

modules.

43

4. ChatBot Development

• The Response module handles the response back to the source of the whole interac-

tion.

Figure 4.3: Pollux Architecture

The GPT-3 module handles the interaction with OpenAI’s agent and the External APIs mod-

ule manages interactions with external APIs. These modules operate only when the Dialog-

flow agent is unable to understand the request or when external data is required.

4.3.4 Dialogflow

Dialogflow’s agent has an intent matching feature which matches the user interaction to a

predefined intent. The intent matching is processed and a response is given back. Every

intent has 3 modules:

• Training Phrases to know which type of inquiries might lead to which intent.

• Action and Parameters that allow for identification of types of entities like time,

names, dates and locations.

• Responses so Dialogflow can choose one randomly.

44

4.4 Implemented Features

The user’s utterance, or input, is matched to an intent which has a previously programmed

response. This behavior is illustrated in Figure 4.4

Figure 4.4: Dialogflow’s Architecture [57]

4.4 Implemented Features

The ChatBot was developed having the student’s in mind, therefore, the following features

were designed to improve student’s academic success and academic lifestyle. All presented

features were implemented on ISABELA and BATINA and may later be adapted to every

INESCC-DEEC’s group platforms.

45

4. ChatBot Development

4.4.1 Define an alarm

The first step in the development was to program a simple task: making the ChatBot able

to define a smartphone alarm given a time, a date and a description by the student. The

alarm interaction was adapted from the ISABELA’s ChatBot prototype to integrate all of the

group’s platforms. This is triggered by the student asking for the setting of an alarm, which

the ChatBot fulfills if the all the parameters mentioned before are met, otherwise, it will

ask for them until the student provides all of them. When successful, the ChatBot creates a

smartphone alarm, this is illustrated in Figure 4.5.

(a) Alarm Interaction (b) Continuation Alarm Interaction

Figure 4.5: ChatBot Alarm Interaction

46

4.4 Implemented Features

4.4.2 Canteen Menu

The canteen menu feature is triggered by the student and there are three distinct possibilities:

to ask for the complete menu for the day, which includes lunch and dinner, to ask for the

menu for one of the meals and to ask for the lowest calorie meal. Here, Pollux makes

a HyperText Transfer Protocol (HTTP) request to an external API: the Serviços de Ação

Social da Universidade de Coimbra (SASUC) menu API, to retrieve the specific data the

student asked for. Figure 4.6 displays this interaction.

Figure 4.6: Canteen Menu Interaction

47

4. ChatBot Development

4.4.3 Historic Facts

This feature is also triggered by the student, who can ask for some historic facts. The imple-

mented ones are about the UC, the Departamento de Engenharia Electrotécnica e de Com-

putadores (DEEC) and the Faculdade de Ciências e Tecnologia da Universidade de Coimbra

(FCTUC) and an example is given in Figure 4.7.

Figure 4.7: Historic Fact Interaction

48

4.4 Implemented Features

4.4.4 Professor Contact Info

If the student would like to contact a professor, they may ask the ChatBot about the pro-

fessor’s contact info. The ChatBot then retrieves the asked data and provides it to the student.

Figure 4.8 illustrates this interaction.

Figure 4.8: Professor’s Info Interaction

4.4.5 Exam Reminder

This feature is triggered by a Calendar Service and does not require student interactions. The

Calendar Service checks if the student has an exam in the following day and, if so, reminds

the student to go to bed early and get a nightful of sleep, as shown in Figure 4.9.

4.4.6 Exam Feedback

This feature is also triggered by the Calendar Service that checks if the student had an exam

during the day and if so, sends a message asking how well did it go. The message contains

49

4. ChatBot Development

Figure 4.9: Exam Reminder Interaction

a button that shows a pop-up page in which the student can answer on a scale from 1(very

bad) to 5(very good). This data is then stored in the database and it can be important to infer

the student’s perception, later on, comparing the student’s expectation with the score of the

exam. This interaction is depicted in Figure 4.10.

(a) Exam Feedback Message (b) Exam Feedback Pop-Up

Figure 4.10: Exam Feedback Interaction

50

4.4 Implemented Features

4.4.7 Assignment Submission Reminder

This is another feature developed as the previous one, only this time the Assignments Sub-

mission Reminder checks once per week if the student has any assignment’s deadlines com-

ing up and if so it triggers the message displayed in Figure 4.11

Figure 4.11: Assignment Submission Reminder Interaction

4.4.8 Poor Questionnaire Result Feedback

This feature is triggered by a background service, which runs once a week, that checks if the

student had any poor questionnaire results. If so, the ChatBot sends a message warning the

student to study the provided support materials, as seen in Figure 4.12.

51

4. ChatBot Development

(a) Poor Result Notification (b) Poor Result Message

Figure 4.12: Poor Questionnaire Result Interaction

4.4.9 GPT-3 Interaction

This was the latest feature to be developed, as the technology that powers it is very recent.

The GPT-3 interaction is triggered by the student and it has the full capabilities of the GPT-3

language model. It is an optional feature that may be toggled on or off in the settings page.

Figure 4.13a refers to the case when the interaction setting is on and the ChatBot answers

correctly to the question ”What’s the capital of Canada?”. In Figure 4.13b, however, the

interaction setting is off and the ChatBot does not understand the question.

At the time of this implementation, the only concern with this interaction is that it cannot

maintain context. Due to time constraints, it was not possible to develop context awareness

in this interaction, as doing so would require a substantial amount of time and effort.

52

4.5 Implementation

(a) ChatGPT Toggled On (b) ChatGPT Toggled Off

Figure 4.13: GPT-3 Toggled On and Off Interactions

4.5 Implementation

4.5.1 Dialogflow configuration

To implement Dialogflow, we had to create a Dialogflow agent. This was achieved through

Dialogflow’s Cloud Console.

In order to use the agent, there was a need to configure a remote access account for remote

interactions. We created a service account with a specific access key, which can be used to

authorize the access to our created agent. The Google Cloud Console provides this generated

key on a JSON format file to later be used by the Pollux server.

We then configured a list of intents, as illustrated in Figure 4.14, to formulate responses

53

4. ChatBot Development

to specific student interactions. As mentioned previously, these intents enable the agent

to interpret student queries and provide an appropriate response. We created two types of

intents:

• Visible intents are intents that are tailored to respond directly to student queries each

time a student interacts with the agent. To facilitate intent matching, we provide illus-

trative phrases that simulate student messages for each intent. We called these ”visible”

because these intents are triggered by a message which is visible to the student.

• Invisible intents are intents that are not triggered by a student interaction, but func-

tion identically. In contrast to the prior ones, these are configured with a predefined

message. Each of these intents is only activated by a unique message. We called these

”invisible” because the trigger is a message invisible to the student.

Here is the full list of intents and the description for each one:

• Bad Answer Report is the intent matched when the Poor Questionnaire Result feed-

back is triggered. This is an Invisible intent.

• Calendar Exam Feedback is matched when the student has an exam. This is an

Invisible intent.

• Calendar Exam Reminder Tomorrow is matched to remind the student to go to bed

early on the day before an exam. This is an Invisible intent

• Calendar Infor Submission is the intent related to remind the student about assign-

ments submissions. This is also an Invisible intent.

• Canteen Menu is the intent matched when the student asks for informations about the

menu on the canteens on any given day. This is a Visible intent.

• Canteen Menu Lowest Calories Meal is matched when the student asks for the low-

est calories dish on any meal’s menu. This is a Visible intent.

• Define An Alarm is matched when the student asks for an alarm setting. This is a

Visible intent.

54

4.5 Implementation

• Professor Contact Info is matched when the student asks for the contact details of a

professor. This is a Visible intent.

• UC History Facts is matched when the student asks for any random fact or historic

facts. This is a Visible intent.

Figure 4.14: Dialogflow Intent List

We also created an entity to deal with the canteen menu interaction: meals time. This is

a custom entity used by Dialogflow’s agent to identify if the student referred a meal time

(lunch or dinner) when asking for the menu. This way we can provide the specific meal’s

menu if the student asks for it.

4.5.2 GPT-3 configuration

For interactions with GPT-3, using an OpenAI account, we created an API key to give Pollux

access to the pre-defined OpenAI’s language models. The chosen one was GPT-3 as it was

the latest model by the time this implementation took place and it had more features than any

of the previous ones.

55

4. ChatBot Development

4.5.3 Pollux configuration

We configured the Pollux server using Flask, as mentioned before. We configured it with

only one route which can be accessed through a simple HTTP Post request. We also had to

use the google.cloud library to manage interactions with Dialogflow and the openai library

to interact with GPT-3. We included the access key files from Google Cloud and OpenAI in

our project.

Every time a request is received, we convert its body to a JSON object in order to better

manage its data. The newly converted body is then submitted to a method that deals with

Dialogflow’s agent. This method firstly interacts with Dialogflow to process the student

query and then receives a response with the following fields:

queryResult

• queryText: it is the student’s query message

• action: contains the action to take, if necessary

• parameters: may contain pre-defined parameters like date and time

• fulfillmentText: is the response given by the Dialogflow’s agent

• intent: contains the name of the matched intent

• intentDetectionConfidence: is a value between 0 and 1 which represents the intent

detect confidence

• languageCode: is the language in which the interaction is written

• sentimentAnalysis: contains the score and magnitude of the student message. The

score ranges from -1 to 1 and magnitude from 0 to 1.

The next step is to understand which intent was the matching one, so for each intent there

are different tasks and specific code to be run. The different categories are described in Table

4.3. The rest of the intents do not need additional interactions, therefore, are forwarded to

the student with Dialogflow’s response without Pollux intervention.

56

4.5 Implementation

Table 4.3: Intent recognition and subsequent behavior in Pollux

Name Description

canteen
menu

Makes a HTTP request to the SASUC’s menu API. Scan the response for
the appropriate day. If a meal time was specified, selects the corresponding
one. If not, picks both. Returns the menu.

canteen
menu
lowest
calories
meal

Same the previous one but chooses the lowest calories dish on the menu.
Returns the specific dish.

calendar
infor sub-
mission

Gets the submission title, date and deadline from the body of the request.
Returns a response with submission data.

history
facts

Picks one historic fact from a static structure within the program. Returns a
random fact.

professor
contact
info

Chooses the matching professor from a static structure within the program.
If the name provided exists, returns the appropriate informations. Returns
a warning message indicating that it did not recognise the professor’s name
otherwise.

Unknown

If the intent was not matched, then it interacts with GPT-3 language model.
Makes a request to the OpenAI’s API with the student query and waits for
a response. Returns GPT-3’s response with a note informing that response
was generated using GPT-3.

4.5.4 Smartphone application

In this section we explore the implementation on the smartphone applications. Since both

ISABELA and BATINA were the focus of this project and since the implementations were

the same in both applications, the descriptions in this section will only reference BATINA,

for simplification and to avoid the likelihood of repetition.

The BATINA application is already functional and has a specific architecture, activities and

background services. The ChatBot features were implemented over the existing platform,

taking advantage of some of its behaviors.

An essential component of the ChatBot is the ChatBot page, designed to interact with the

student and to be interacted with. This page was developed using XAML for the UI ele-

ments and C# to program their behavior, which are dynamically changing its content, due

to message exchanging between the ChatBot and the student. We projected it to be like a

text messaging service, so we designed the text bubbles with XAML elements that show the

intended text and the date and time of the message. Since this structure is always the same,

57

4. ChatBot Development

we created a C# class with objects to represent each component of each message. This way,

layout is always the same but the content changes dynamically with each interaction. There

is an important parameter in this class which allows visibility of the message, as there are

messages that we don’t want the student to see. These types of messages are sent by back-

ground services when a certain behavior is detected. Table 4.4 displays which message is

sent, the service that sends it and the corresponding intent in Dialogflow.

Table 4.4: Background services’ messages and matching Dialogflow’s Intents

Background Service Pre-defined Message Matching Dialogflow Intent

Calendar Service
calendar exam feedback calendar exam feedback
calendar inforestudante submission calendar inforestudante submission
calendar exam reminder tomorrow calendar exam reminder tomorrow

Questionnaire Service bad answer report result bad answer report

Every message sent by the student is encapsulated in a JSON payload which has the follow-

ing structure:

• texts: this field contains a text message written by the student or pre-defined messages

written by the background services. In case of the latter, this field can have more

arguments with data for Pollux.

• session id: this field is normally the internal studentID of the application. This is very

important to maintain context during a conversation.

• language code: this refers to the language being used by the student. It is set to the

language of the application, which might be Portguese or English.

• gpt interaction: this field contains the boolean value of the GPT-3 interaction setting.

It is true if the setting is on and false otherwise.

This payload is attached to the body of a REST POST request to the configured Pollux

address and port. After performing the request, the application waits for the Pollux response

with the previously mentioned structure, in section 4.5.3, and displays the contents of the

fulfillmentText field to a new message in the ChatBot page.

58

4.6 Tests

4.6 Tests

In this section we provide some functional tests and tables 4.5 to 4.14 describe examples of

the performed tests to evaluate student interactions. If Dialogflow has a matching intent, then

it provides the answer. If not, and the intent is classified has unknown, GPT-3 will provide

it, as shown in tables 4.11 to 4.14.

Table 4.5: Alarm Test

Matched Intent: define an alarm

Content of Message Response

Can you define me an alarm? In which day would you like your alarm to be?

Next Friday Sure! At what time?

5pm Which description should I use to set your alarm?

Read a book Done setting your alarm.

Table 4.6: Canteen Menu with Meals Time Test

Matched Intent: canteen menu + meals time

Content of Message Response

What’s for lunch tomorrow?

Here’s the menu for 2023-07-08 lunch:

Soup: Vegetable soup (127.95Kcal)

Fish: Spanish style hake with rice, salad (678.44Kcal)

Meat: Thigh roasted chicken w/rice vegetables,

salad (605.57Kcal)

Vegetarian: Bologna soy, salad (520.91Kcal)

59

4. ChatBot Development

Table 4.7: Canteen Menu Test

Matched Intent: canteen menu

Content of Message Response

What’s the menu for today? Here’s the menu for 2023-07-07:

Lunch

Soup: Potato and onion broth with kale strips (134.14Kcal)

Fish: Baked sole with lemon, roast potato, salad (380.11Kcal)

Meat: Spaghetti Bolognese (pork) (744.29Kcal)

Vegetarian: Seitan stew with rice (940.31Kcal)

Dinner

Soup: Potato and onion broth with kale strips (134.14Kcal)

Fish: Hors d’oeuvres with russian salad, salad (411.92Kcal)

Meat: Chichen curry (977.33Kcal)

Vegetarian: Tofu burger with crisp, lettuce and

tomato salad (419.85Kcal)

Table 4.8: Canteen Menu Lowest Kcal Meal Test

Matched Intent: canteen menu lowest calories meal

Content of Message Response

What’s the lowest calories

meal for today’s lunch?

Here’s the lowest Kcal meal on the menu:

Fish: Baked sole with lemon, roast potato, salad (380.11 Kcal)

60

4.6 Tests

Table 4.9: Professor Contact Info Test

Matched Intent: professor contact info

Content of Message Response

Could you give me

the contact info

of professor

Jorge Sá Silva?

Time and place of attendance of Prof. Jorge Sá Silva:

DEEC - G.3.3

Thursdays: 14:00-17:00

Email: sasilva@deec.uc.pt

Table 4.10: History Facts Test

Matched Intent: uc history facts

Content of Message Response

Could you tell me

a random fact?

Here’s a bit of history:

By signing “Scientiae Thesaurus Mirabilis”,

King Dinis created the oldest university of the

country and one of the oldest in the world.

Dated from 1290, the document originated t

he General Study, recognised in the same year

by Pope Nicholas IV.

A century after the birth of the nation,

the University of Coimbra germinated.

It starts operating in Lisbon but, in 1308,

it is transferred to Coimbra, alternating between

the two cities until 1537,

when it is definitely settled in the city of

river Mondego.

61

4. ChatBot Development

Table 4.11: Calculations Test

Matched Intent: Unknown

Content of Message Response

How much is 2+2?
(This answer is provided by GPT-3)

2+2 is 4.

Table 4.12: Random Characters Test

Matched Intent: Unknown

Content of Message Response

jaksdfkldjsafgkdjslagfhads
(This answer is provided by GPT-3)

This is not a valid sentence.

Table 4.13: Random Question Test

Matched Intent: Unknown

Content of Message Response

What’s the capital

of Brasil?

(This answer is provided by GPT-3)

Brasilia.

Table 4.14: Random Question Test 2

Matched Intent: Unknown

Content of Message Response

What’s the best

question to

ask a ChatBot?

(This answer is provided by GPT-3)

That depends on the purpose of the ChatBot.

If the ChatBot is designed to provide information,

a good question to ask might be

\”What can you tell me about [topic]?\”

If the ChatBot is designed to provide customer service,

a good question to ask might be

\”How can I [task]?\”

62

Chapter 5

Conclusion and Future Work

5.1 Conclusion

With this project, we aimed at building a ChatBot to integrate the ISABELA and BATINA

learning platforms, based on the HITLCPS concept, as well as lay a groundwork for hu-

man interactions with CPS. We explored the concepts of IoT, AI and NLP and evaluated

how they could be implemented to enhance these systems and produce more human-centric

applications and interactions.

We developed a ChatBot architecture using Dialogflow as a NLP tool to interpret users’ quer-

ies, a Flask server to manage ChatBot interactions with the system and the INESCC-DEEC’s

HITL platforms to interact with users. All of the developed features were successfully im-

plemented in the ISABELA and BATINA platforms.

The development of HITLCPS in IoT architectures is a recent concept and not many works

have been done in this area. This project aimed to contribute to further research and de-

velopment in these areas by providing a solution with detailed implementations and a solid

architecture. Although we believe this project’s objectives were fulfilled, we also believe

there is more work that can be done to improve this solution.

Integrating OpenAI’s GPT-3 contributed to our project’s potential and processing power.

However, there was a desire for further exploration, which is detailed in the next section.

We concluded that, in order to improve the ChatBot’s intent matching and NLP, there are

some field tests that need to be done to provide insights on how impactful the ChatBot is in

63

5. Conclusion and Future Work

everyday academic life, as well as to fine-tune Dialogflow and GPT-3 operations and rules.

5.2 Future Work

In this section, we mention some of the features that could be improved in future works in

this field.

As future work we need to expand the intents in Dialogflow, adding new functionalities and

better context about academic issues and lifestyle.

As stated previously, we felt the need to further explore GPT-3 and GPT-4 functionalities.

This could be improved by training these language models with tailored datasets, in order

to develop a better ChatBot adapted to students’ academic lifestyle and interactions. Even

though creating a dataset like this requires a large study of students’ interactions with techno-

logy and CPS, this would hugely improve the familiarity between students and the ChatBot.

For the coming months, we expect to improve this project with the ON-BOARD initiative,

which aims to integrate this system into official academic tools from the UC and implement

the ChatBot as digital tutor. We believe this integration will provide new insights about the

next functionalities to implement in this system.

In conclusion, these challenges offer a great opportunity for future research work and con-

tribute to the existing partnerships’ projects with the UC, the FMUC and the Coimbra City

Hall.

64

Bibliography

[1] Scrum Alliance. Scrum. https://www.scrumalliance.org/about-scrum. Ac-

cessed: 2023-07-08.

[2] GitLab. Gitlab. https://about.gitlab.com. Accessed: 2023-07-08.

[3] Slack. Slack. https://slack.com. Accessed: 2023-07-08.

[4] Skype. Skype. https://www.skype.com/en/. Accessed: 2023-07-08.

[5] JetBrains. Jetbrains. https://www.jetbrains.com, . Accessed: 2023-07-08.

[6] JetBrains. Rider. https://www.jetbrains.com/rider/, . Accessed: 2023-07-08.

[7] JetBrains. Jintellij idea. https://www.jetbrains.com/idea/, . Accessed: 2023-

07-08.

[8] Kevin Ashton. In the real world, things matter more than ideas. 1999.

[9] Ericsson. Ericsson mobility report november 2022, 2022.

[10] Lionel Sujay Vailshery (Statista). Number of internet of things (iot) connected

devices worldwide from 2019 to 2021. https://www.statista.com/statistics/

1183457/iot-connected-devices-worldwide/, 2021. Accessed: 2023-06-16.

[11] Ericsson. Number of smartphone mobile network subscriptions worldwide

from 2016 to 2022. https://www.statista.com/statistics/330695/

number-of-smartphone-users-worldwide/, 2023. Accessed: 2023-06-19.

[12] Population Reference Bureau. Population mid-2022. https://www.prb.org/

international/indicator/population/table, 2022. Accessed: 2023-06-19.

65

https://www.scrumalliance.org/about-scrum
https://about.gitlab.com
https://slack.com
https://www.skype.com/en/
https://www.jetbrains.com
https://www.jetbrains.com/rider/
https://www.jetbrains.com/idea/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.prb.org/international/indicator/population/table
https://www.prb.org/international/indicator/population/table

Bibliography

[13] Josh Howarth. Time spent using smartphones. https://explodingtopics.com/

blog/smartphone-usage-stats, 2023. Accessed: 2023-06-19.

[14] Ericsson. Mobile data traffic in western europe from 2011 to 2027 (in

exabytes per month). https://www.statista.com/statistics/1133848/

western-europe-monthly-data-traffic/, 2022. Accessed: 2023-06-19.

[15] John Mccarthy. What is artificial intelligence?, 2007. URL http://www-formal.

stanford.edu/jmc/.

[16] Stanford University. Professor john mccarthy. http://jmc.stanford.edu. Ac-

cessed: 2023-06-27.

[17] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,

et al. Mastering chess and shogi by self-play with a general reinforcement learning

algorithm. arXiv preprint arXiv:1712.01815, 2017.

[18] Stuart J Russell. Artificial intelligence a modern approach. Pearson Education, Inc.,

2010.

[19] Bo Zhang, Jun Zhu, and Hang Su. Toward the third generation artificial intelligence.

Science China Information Sciences, 66(2):1–19, 2023.

[20] Imran Ahmed, Gwanggil Jeon, and Francesco Piccialli. From artificial intelligence to

explainable artificial intelligence in industry 4.0: a survey on what, how, and where.

IEEE Transactions on Industrial Informatics, 18(8):5031–5042, 2022.

[21] Joseph Weizenbaum. Eliza—a computer program for the study of natural language

communication between man and machine. Commun. ACM, 9(1):36–45, jan 1966.

ISSN 0001-0782. doi: 10.1145/365153.365168.

[22] Chatbots.org. Parry. https://www.chatbots.org/chatbot/parry/. Accessed:

2023-06-21.

[23] Bayan Abu Shawar and Eric Atwell. Alice chatbot: Trials and outputs. Computacion y

Sistemas, 19:625–632, 2015. ISSN 14055546. doi: 10.13053/CyS-19-4-2326.

66

https://explodingtopics.com/blog/smartphone-usage-stats
https://explodingtopics.com/blog/smartphone-usage-stats
https://www.statista.com/statistics/1133848/western-europe-monthly-data-traffic/
https://www.statista.com/statistics/1133848/western-europe-monthly-data-traffic/
http://www-formal.stanford.edu/jmc/
http://www-formal.stanford.edu/jmc/
http://jmc.stanford.edu
https://www.chatbots.org/chatbot/parry/

Bibliography

[24] Richard S. Wallace, Robert Epstein, Gary Roberts, and Grace Beber. The Anatomy of

A.L.I.C.E., pages 181–210. Springer Science+Business Media, London, 2009. ISBN

978-1-4020-6710-5. doi: 10.1007/978-1-4020-6710-5 13.

[25] Li Zhou, Jianfeng Gao, Di Li, and Heung Yeung Shum. The design and implementation

of xiaoice, an empathetic social chatbot. Computational Linguistics, 46:53–93, 2020.

ISSN 15309312. doi: 10.1162/COLI a 00368.

[26] Heung yeung Shum, Xiao dong He, and Di Li. From eliza to xiaoice: challenges and

opportunities with social chatbots, 1 2018. ISSN 20959230.

[27] José Marcelo da Silva Lopes Fernandes, Jorge Sá Silva, and Fernando Boavida. Isabela

iot student advisor and best lifestyle analyzer.

[28] David Nunes, Jorge Sa Silva, and Fernando Boavida. A Practical Introduction to

Human-in-the-Loop Cyber-Physical Systems. IEEE Press, 2018.

[29] David Sousa Sousa Nunes, Pei Zhang, and Jorge Sa Silva. A survey on human-in-

the-loop applications towards an internet of all. IEEE Communications Surveys and

Tutorials, 17:944–965, 4 2015. ISSN 1553877X. doi: 10.1109/COMST.2015.2398816.

[30] Microsoft Corporation. Xamarin. https://learn.microsoft.com/en-us/

xamarin/get-started/what-is-xamarin, . Accessed: 2023-06-27.

[31] Microsoft Corporation. Xamarin.essentials. https://learn.microsoft.com/

en-us/xamarin/essentials/, . Accessed: 2023-06-27.

[32] Microsoft Corporation. Xamarin.forms. https://learn.microsoft.com/en-us/

xamarin/get-started/what-is-xamarin-forms, . Accessed: 2023-06-27.

[33] FIWARE Foundation. Fiware. https://www.fiware.org/about-us/, . Accessed:

2023-06-28.

[34] FIWARE Foundation. Fiware. https://www.fiware.org/catalogue/#core, . Ac-

cessed: 2023-06-28.

[35] FIWARE Foundation. Fiware-orion. https://fiware-orion.readthedocs.io/

en/master/, . Accessed: 2023-06-27.

67

https://learn.microsoft.com/en-us/xamarin/get-started/what-is-xamarin
https://learn.microsoft.com/en-us/xamarin/get-started/what-is-xamarin
https://learn.microsoft.com/en-us/xamarin/essentials/
https://learn.microsoft.com/en-us/xamarin/essentials/
https://learn.microsoft.com/en-us/xamarin/get-started/what-is-xamarin-forms
https://learn.microsoft.com/en-us/xamarin/get-started/what-is-xamarin-forms
https://www.fiware.org/about-us/
https://www.fiware.org/catalogue/#core
https://fiware-orion.readthedocs.io/en/master/
https://fiware-orion.readthedocs.io/en/master/

Bibliography

[36] Pallets. Flask. https://https://flask.palletsprojects.com/en/2.3.x/. Ac-

cessed: 2023-06-27.

[37] Google. Dialogflow. https://cloud.google.com/dialogflow/docs. Accessed:

2023-06-27.

[38] OpenAI. Gpt - openai api. https://platform.openai.com/docs/guides/gpt.

Accessed: 2023-06-27.

[39] Airbnb. Lottie docs. https://github.com/airbnb/lottie, . Accessed: 2023-07-

05.

[40] Hernan Torrisi. Bodymovin. https://exchange.adobe.com/apps/cc/12557/

bodymovin. Accessed: 2023-07-05.

[41] Airbnb. Lottie github. https://github.com/airbnb/lottie, . Accessed: 2023-07-

05.

[42] Michael C. Ashton Kibeom Lee. The hexaco personality inventory. https://hexaco.

org. Accessed: 2023-07-08.

[43] Oxford Reference. Profile of mood states. https://www.oxfordreference.com/

display/10.1093/oi/authority.20110803100348404. Accessed: 2023-07-08.

[44] Plotly. Dash. https://dash.plotly.com. Accessed: 2023-06-29.

[45] UC Frameworks. Uc teacher. https://www.uc.pt/ucframework/apps/

ucteacher/, . Accessed: 2023-06-30.

[46] UC Frameworks. Uc student. https://www.uc.pt/ucframework/apps/

ucstudent/, . Accessed: 2023-06-30.

[47] Ana Bartolomeu and Karine Paniza. On-board: na luta contra o aban-

dono escolar. Notı́cias UC. URL https://noticias.uc.pt/artigos/

on-board-na-luta-contra-o-abandono-escolar/.

[48] João Pedro Campos. Meio milhão de euros para combater aban-

dono escolar na universidade de coimbra. Jornal de Notı́cias.

URL https://www.jn.pt/local/noticias/coimbra/coimbra/

68

https://https://flask.palletsprojects.com/en/2.3.x/
https://cloud.google.com/dialogflow/docs
https://platform.openai.com/docs/guides/gpt
https://github.com/airbnb/lottie
https://exchange.adobe.com/apps/cc/12557/bodymovin
https://exchange.adobe.com/apps/cc/12557/bodymovin
https://github.com/airbnb/lottie
https://hexaco.org
https://hexaco.org
https://www.oxfordreference.com/display/10.1093/oi/authority.20110803100348404
https://www.oxfordreference.com/display/10.1093/oi/authority.20110803100348404
https://dash.plotly.com
https://www.uc.pt/ucframework/apps/ucteacher/
https://www.uc.pt/ucframework/apps/ucteacher/
https://www.uc.pt/ucframework/apps/ucstudent/
https://www.uc.pt/ucframework/apps/ucstudent/
https://noticias.uc.pt/artigos/on-board-na-luta-contra-o-abandono-escolar/
https://noticias.uc.pt/artigos/on-board-na-luta-contra-o-abandono-escolar/
https://www.jn.pt/local/noticias/coimbra/coimbra/meio-milhao-de-euros-para-combater-abandono-escolar-na-universidade-de-coimbra-16206470.html/
https://www.jn.pt/local/noticias/coimbra/coimbra/meio-milhao-de-euros-para-combater-abandono-escolar-na-universidade-de-coimbra-16206470.html/
https://www.jn.pt/local/noticias/coimbra/coimbra/meio-milhao-de-euros-para-combater-abandono-escolar-na-universidade-de-coimbra-16206470.html/

Bibliography

meio-milhao-de-euros-para-combater-abandono-escolar-na-universidade-de-coimbra-16206470.

html/.

[49] Rui Wang, Fanglin Chen, Zhenyu Chen, Tianxing Li, Gabriella Harari, Stefanie Tignor,

Xia Zhou, Dror Ben-Zeev, and Andrew T. Campbell. Studentlife: Assessing men-

tal health, academic performance and behavioral trends of college students using

smartphones. pages 3–14. Association for Computing Machinery, Inc, 2014. ISBN

9781450329682. doi: 10.1145/2632048.2632054.

[50] University of Darthmouth. Studentlife study. http://studentlife.cs.dartmouth.

edu. Accessed: 2023-06-29.

[51] Big Blue Button. Big blue button. https://bigbluebutton.org, . Accessed: 2023-

06-29.

[52] Big Blue Button. Teacher features. https://bigbluebutton.org/teachers/

features/, . Accessed: 2023-06-29.

[53] ALEKS Corporation. Aleks. https://www.aleks.com, . Accessed: 2023-06-29.

[54] ALEKS Corporation. Knowledge space theory. https://www.aleks.com/about_

aleks/knowledge_space_theory, . Accessed: 2023-06-29.

[55] Scotty D Craig, Xiangen Hu, Arthur C Graesser, Anna E Bargagliotti, Allan Sterb-

insky, Kyle R Cheney, and Theresa Okwumabua. The impact of a technology-based

mathematics after-school program using aleks on student’s knowledge and behaviors.

Computers & Education, 68:495–504, 2013.

[56] Socrative. Socrative. https://www.socrative.com. Accessed: 2023-06-29.

[57] Priyanka Vergadia. Deconstructing chatbots: Getting star-

ted with dialogflow. https://medium.com/google-cloud/

deconstructing-chatbots-getting-started-with-dialogflow-4f91deb32135.

Accessed: 2023-07-05.

69

https://www.jn.pt/local/noticias/coimbra/coimbra/meio-milhao-de-euros-para-combater-abandono-escolar-na-universidade-de-coimbra-16206470.html/
https://www.jn.pt/local/noticias/coimbra/coimbra/meio-milhao-de-euros-para-combater-abandono-escolar-na-universidade-de-coimbra-16206470.html/
https://www.jn.pt/local/noticias/coimbra/coimbra/meio-milhao-de-euros-para-combater-abandono-escolar-na-universidade-de-coimbra-16206470.html/
https://www.jn.pt/local/noticias/coimbra/coimbra/meio-milhao-de-euros-para-combater-abandono-escolar-na-universidade-de-coimbra-16206470.html/
https://www.jn.pt/local/noticias/coimbra/coimbra/meio-milhao-de-euros-para-combater-abandono-escolar-na-universidade-de-coimbra-16206470.html/
http://studentlife.cs.dartmouth.edu
http://studentlife.cs.dartmouth.edu
https://bigbluebutton.org
https://bigbluebutton.org/teachers/features/
https://bigbluebutton.org/teachers/features/
https://www.aleks.com
https://www.aleks.com/about_aleks/knowledge_space_theory
https://www.aleks.com/about_aleks/knowledge_space_theory
https://www.socrative.com
https://medium.com/google-cloud/deconstructing-chatbots-getting-started-with-dialogflow-4f91deb32135
https://medium.com/google-cloud/deconstructing-chatbots-getting-started-with-dialogflow-4f91deb32135

Appendix A

Introduction Tutorial to ChatBot

Technologies

This document introduces ChatBot technologies and lays the groundwork for our imple-

mentation. It serves as an instructional introduction to the three distinctive frameworks of

this project: Dialogflow, Flask, and Xamarin. This document is extremely important for the

INESCC-DEEC research group, as it explains in great detail how to implement and utilize

ChatBots on the group’s platforms.

70

Dialogflow and Xamarin Introduction

2023/2024

1. Introduction

The objective of this assignment is to introduce you to the world of conversational AI frameworks
and the tools required to develop a chatbot. You will be introduced to the concept of Natural
Language Processing (NLP) and its importance in building intelligent chatbots that can communicate
with users in a natural and intuitive way. In addition, you will gain an understanding of the role played
by a managing server in managing and maintaining the chatbot.

This assignment will also explore the importance of a user interface (UI) in designing an
engaging and user-friendly chatbot. You will learn how to create a UI that enables users to interact
with the chatbot seamlessly, and how to incorporate design elements that promote user engagement
and satisfaction.

By the end of the assignment, you will have a solid understanding of the key components
required to build a chatbot, including NLP, managing servers, and user interfaces. You will also have
the opportunity to put their skills into practice by developing your own chatbot using a platform such
as Dialogflow, which offers a range of tools and features for building conversational AI applications.

Dialogflow is a cloud-based conversational AI platform that enables developers to design and
integrate intelligent chatbots and virtual assistants into their applications. With Dialogflow, developers
can create natural language processing (NLP) models that can understand user inputs and generate
appropriate responses. (Read more at https://cloud.google.com/dialogflow/es/docs)

FIRST DIALOGFLOW 2023/2024	 	 1

 DEPARTAMENTO DE ENG. ELECTROTÉCNICA E COMPUTADOPRES

Universidade de Coimbra
Faculdade de Ciências e Tecnologia

Fig. 1 displays the architecture of the system you are going to develop. On one side (yellow)
you have the User Interface (UI) which is going to be a smartphone app developed using Xamarin
framework. On the other side (orange) you have Dialogflow - Google’s framework to develop
chatbots. To establish a connection between the two you are going to develop a server using the Flask
framework, and run it locally (on your machine) to manage all the interactions between the user and
Dialogflow.

2. Requirements

2.1. Visual Studio

In order to develop a Xamarin smartphone app you need the Visual Studio IDE. You can
download it here: https://visualstudio.microsoft.com/

Note: Make sure you install Visual Studio and not Visual Studio Code.

Follow the instructions for installation here:

- Windows: https://learn.microsoft.com/en-us/xamarin/get-started/installation/?
pivots=windows-vs2022

 - MacOS: https://learn.microsoft.com/en-us/xamarin/get-started/installation/?
pivots=macos-vs2022

The installation process may take a while. While it is running, head over to the next step.

 2.2. PyCharm

To be able to develop and run your server (Pollux) you need to install python and flask. To
make it simple you should use JetBrains IDE for python - PyCharm. You can download it here:
https://www.jetbrains.com/pycharm/.

Fig. 1 - Simple architecture diagram

FIRST DIALOGFLOW 2023/2024	 	 2

 Note: if you don’t have python installed on your machine, download it and install it from
https://www.python.org/downloads/. Note 2: Make sure you download the Community Edition if
you don’t have a JetBrains license.

 Install PyCharm on your machine. Open it up and create a new Python project.

 2.3. Dialogflow

In order to use Dialogflow you need a Google account. If you don’t have one, you should
create one now. When you are done, head over to https://dialogflow.cloud.google.com/#/login. Once
you are logged in you need to create an agent.

FIRST DIALOGFLOW 2023/2024	 	 3

Give your agent a name and click “Create"

Click the button “Create Agent”

3. Exercise: Dialogflow Agent

FIRST DIALOGFLOW 2023/2024	 	 4

On the sidebar, click the
“Prebuilt Agents”

Scroll down and find the “Small Talk” prebuilt agent. Import it.

FIRST DIALOGFLOW 2023/2024	 	 5

Leave the name on default and create your new
agent from template

Next open your agent settings

FIRST DIALOGFLOW 2023/2024	 	 6

Click on your Project ID

A new tab is going to open up and you are now in the Google Cloud Console. Go to API &
Services

FIRST DIALOGFLOW 2023/2024	 	 7

Go to “Enable API and Services”

Find the Dialogflow API

FIRST DIALOGFLOW 2023/2024	 	 8

Make sure it is enabled

Go back and open the side menu. Go to IAM & Admin

FIRST DIALOGFLOW 2023/2024	 	 9

On the side menu go to
Service Accounts

Create a service account

FIRST DIALOGFLOW 2023/2024	 	 10

Give your account a name. Click on “Create and
Continue”

Next select the “Owner” role and click "Done”

FIRST DIALOGFLOW 2023/2024	 	 11

Click on your new account

Go to “Keys”

FIRST DIALOGFLOW 2023/2024	 	 12

Add a new key

Make sure the JSON option is selected and click “Create”

FIRST DIALOGFLOW 2023/2024	 	 13

A file should be downloaded and a pop up like this should show up. Move this file to your
Python project directory.

Exercise 2 - Pollux Server

 Coding the server

 Now you are going to create a middleman between Dialogflow and the user: the server (we
named it Pollux for easier referencing).

 Head over to your PyCharm and import the following libraries:

 from flask import Flask, request

 from google.cloud import dialogflow

 import os

 import json

 If any of these imports is not recognised, make sure you have all these libraries installed. You
may need to install them for these project specifically. You should find on the left icons, a Python
Packages menu. Make sure you have the google-cloud-dialogflow package installed.

 Next you are going to configure the access to your Dialogflow agent. Firstly you need to
move the JSON file you downloaded from Google Cloud Console to the directory of your PyCharm
project. Next you declare these variables:

 project_id = ‘smalltalk-tfdq‘

 os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = 'smalltalk-
tfdq-2ee70168ff37.json'

 app = Flask(__name__)

 The project_id variable is the name of your Dialogflow Project ID, which should be
“smalltalk-XXXX”. The os.environ[“GOOGLE_APPLICATION_CREDENTIALS”] variable is
created to store the JSON file from the Google Cloud Console referenced before.

 Now, from Dialogflow’s and Flask’s reference guide:

 @app.route(“/chatbot”, methods=['POST'])

 def chat_bot():

 body = request.json

 responseBody =
 detect_intent_texts(body[‘session_id’], body[‘query’],body['language_code'])

 The detect_intent_texts method is the main focus of the interaction with the Dialogflow agent.
This last snippet of code is just to format Dialogflow’s response to JSON.

 responseHelper = {"responses": responseBody}

 return app.response_class(

 response=json.dumps(responseHelper),

 status=200,

 mimetype='application/json'

)

FIRST DIALOGFLOW 2023/2024	 	 14

 Now let’s develop the detect_intent_texts method:

def detect_intent_texts(session_id, texts, language_code):

 session_client = dialogflow.SessionsClient()

 session = session_client.session_path(project_id, session_id)

 responseObject = {}

 responses = []

 text_input = dialogflow.TextInput(text=texts, language_code=language_code)

 query_input = dialogflow.QueryInput(text=text_input)

 response = session_client.detect_intent(request={"session": session, "query_input":
query_input})	 	 	 	 	 	
 responseObject = parse_object(response._pb.query_result)

 responses.append(responseObject)

 return responses

 You should add the parse_object and helping methods to the code:
def parse_object(obj):

 j = {}

 for f in obj.ListFields():

 name = f[0].name

 field = f[1]

 if 'Struct' in str(field.__class__):

 field = struct_to_json(field)

 elif 'google.protobuf.internal.containers' in str(field.__class__):

 field = parse_array(field)

 elif str(field.__class__.__name__) in ['Intent','SentimentAnalysisResult','Sentiment','Text']:

 field=parse_object(field)

 elif 'google._upb._message' in str(field.__class__):

 field = parse_array(field)

 elif 'google.protobuf.struct_pb2.Struct' in str(field.__class__):

 field = struct_to_json(field)

 elif 'google.protobuf.pyext._message.RepeatedCompositeContainer' in str(field.__class__):

 field = parse_array(field)

 elif 'google.protobuf.pyext._message.RepeatedScalarContainer' in str(field.__class__):

 field = parse_array(field)

 print(field.__class__)

 j[name] = field

FIRST DIALOGFLOW 2023/2024	 	 15

 print(j)

 return j

def parse_array(array):

 j=[]

 for i in array:

 if isinstance(i, (int, float, str, bool)):

 j.append(i)

 else:

 j.append(parse_object(i))

 return j

def struct_to_json(struct):

 j = {}

 for k in struct.keys():

 j[k] = struct[k]

 return j

 And lastly you need to route the server like this:

if __name__ == '__main__':

 app.run(port=9001, host="0.0.0.0")

 You should choose a port (9001 or 9002 recommended) and the host should be as given.

FIRST DIALOGFLOW 2023/2024	 	 16

Exercise 3 - Xamarin App

 Now you are going to create the Xamarin App to interact with the user.

 Open Visual Studio and create a new project.

FIRST DIALOGFLOW 2023/2024	 	 17

Select a Multiplatform Blank App in C#

Give your app a name of your choice

 Your main focus here are these two files: MainPage.xaml and MainPage.xaml.cs. The
MainPage.xaml is the visual layout of the app, where you can place buttons, labels, pictures, etc. The
MainPage.xaml.cs is the behaviour part of the app (i.e. what actions buttons perform). On the xaml
file you are going to create this layout:

FIRST DIALOGFLOW 2023/2024	 	 18

Your project directory should look
like this

Simple Xamarin app layout: A title, a textbook to receive Dialogflow’s
responses, an input to send messages and a Send button.

 Before starting to code, there is some package management to be done. Head over to the
toolbar and choose the “Project” tab. Select “Manage NuGet Packages…”. Search for
“newtonsoft.json” and install the Newtonsoft.Json package. Next search for “restsharp” and install
the RestSharp package. After installing both packages, close the NuGet Packages Manager.

 Note: If there are any Dependencies to update, update them.

 The following code generates the previous layout. On the MainPage.xaml, switch the
StackLayout from your default app for the following one:

<StackLayout>

 <Frame BackgroundColor="DarkOrange"

 Padding="20" CornerRadius="0" Margin="20, 40">

 <Label Text="Dialoglfow Agent"

 HorizontalTextAlignment="Center" TextColor="White"

 FontSize="24"/>

 </Frame>

 <Label Text="Answers here"

 x:Name="AnswerLabel"

 FontSize="16"

 Padding="30,0,30,0"/>

 <Label FontSize="16"

 Padding="30,24,30,0">

 </Label>

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="Auto" />

 </Grid.ColumnDefinitions>

 <Entry

 x:Name="InputQuery"

 Grid.Row="0"

 Placeholder="Write your message here"

 Margin="10, 10, 5, 10"

 HorizontalOptions="FillAndExpand"

 >

 </Entry>

FIRST DIALOGFLOW 2023/2024	 	 19

 <Button

 Grid.Row="0"

 Grid.Column="1"

 Text="Send"

 BackgroundColor="DarkOrange"

 TextColor="WhiteSmoke"

 ScaleX="1"

 ScaleY="1"

 x:Name="SendButton"

 Margin="0, 10, 5, 10"

 CornerRadius="20"

 FontSize="12"

 HeightRequest="10"

 WidthRequest="80"

 Clicked="SendButton_Clicked"

 >

 </Button>

 </Grid>

 </StackLayout>

 Next, on the top of the MainPage.xaml.cs make sure you add the following lines:

using RestSharp;

using Newtonsoft.Json;

using Newtonsoft.Json.Linq;

 After adding those packages to the code, take a look at the code for the MainPage class.
Paste the relevant code into the proper areas:

 public partial class MainPage : ContentPage

 {

 private static string serverIP = "10.101.230.206";

 private static readonly string ChatBotProxyAddress = $"http://{serverIP}:9001"; //
chatBotProxy”

 private static string responseDialogflow;

 public MainPage()

 {

FIRST DIALOGFLOW 2023/2024	 	 20

 InitializeComponent();

 }

 async void SendButton_Clicked(System.Object sender, System.EventArgs e)

 {

 var query = InputQuery.Text; // Save text from Entry

 InputQuery.Text = ""; // Reset the Entry to empty text

 var respContent = await waitClient(query);

 AnswerLabel.Text = responseDialogflow;

 }

 public static async Task<string> waitClient(string query)

 {

 var options = new RestClientOptions($"{ChatBotProxyAddress}")

 {

 RemoteCertificateValidationCallback = delegate { return true; }

 };

 var clientRest = new RestClient(options);

 var request = new RestRequest("chatbot", Method.Post);

 request.AddHeader(“Content-Type", "application/json");

 request.AddHeader("Accept", "application/json");

 var json = JsonConvert.SerializeObject(new

 {

 query,

 session_id = "test",

 language_code = "en"

 });

 request.AddJsonBody(json);

 var response = await clientRest.ExecuteAsync(request);

FIRST DIALOGFLOW 2023/2024	 	 21

 if (string.Equals(response.StatusCode.ToString(), "OK"))

 {

 var chatResponse = JObject.Parse(response.Content);

 var resp = chatResponse["responses"]?[0];

 var chatText = resp?["fulfillment_text"].ToString();

 responseDialogflow = chatText;

 return chatText;

 }

 return null;

 }

 }

}

Exercise 4 - Test your implementation

 4.1 - Run your Pollux server locally on debug mode. Check your local IP (normally displayed
in PyCharm console. If not run ipconfig/ifconfig. Copy your IP to the Xamarin app in Visual Studio
and check if the port is the same.

 4.2 - Configure a new Android device in Visual Studio. To run smoothly, Pixel (API 30) is
recommended.

 4.3 - Run the app in debug mode. This should open a Pixel emulator and open your app on it.
If the app does not open, please run the app again without closing the emulator.

 4.4 - Send the following message: “How old are you?” and register the response.

 4.5 - Try three other examples of messages and register the corresponding answers.

 4.6 - On Dialogflow create a new intent with the following parameters:

 - Intent name: create_alarm

 - Training phrases:

 - “could you set me an alarm?”

 - “remind me of something”

 - “set alarm please”

 - Text responses:

 - “Glad to help!”

 - “It’s done”

 4.7 - Send one of the three training phrases from 4.6. Did you get a response?

 4.8 - The alarm intent could be better. Notice that if the user does not provide a date and time,
how are you going to set an alarm. Also if the user does not provide a description, what’s the alarm
about? Let’s fix this. In Dialogflow go to the create_alarm intent. In action and parameters insert 3
new parameters: date, time and description. Set them to required. Define a prompt for each parameter.

FIRST DIALOGFLOW 2023/2024	 	 22

These prompts are going to be activated if the user does not meet one or more of the parameters. Test

the intent again.

FIRST DIALOGFLOW 2023/2024	 	 23

New intent parameters

Appendix B

Green Bear – A LoRaWAN-based

Human-in-the-Loop Case-Study for

Sustainable Cities

94

Green Bear – A LoRaWAN-based
Human-in-the-Loop Case-Study for Sustainable

Cities
Oscar Torres Sanchez∗, José Marcelo Fernandes∗, André Rodrigues∗†, Jorge Sá Silva‡,

Fernando Boavida∗, Jorge Eduardo Rivadeneira∗, Afonso Viana de Lemos§,and Duarte Raposo¶
∗Centre of Informatics and Systems of the University of Coimbra, CISUC, Coimbra, Portugal

Email: {otorres, jmfernandes,arod, boavida, jrivadeneira}@dei.uc.pt
†Polytechnic of Coimbra, Coimbra Business School Research Centre | ISCAC, Coimbra, Portugal

Email: andre@iscac.pt
‡University of Coimbra, Institute for Systems Engineering and Computers, INESC, Coimbra, Portugal

Email: sasilva@deec.uc.pt
§Department of Electrical Engineering, University of Coimbra, Coimbra, Portugal

Email: aln@student.uc.pt
¶Instituto de Telecomunicações, University of Aveiro, Aveiro, Portugal

Email: dmgraposo@av.it.pt

Abstract—The success of any smart city project or initiative
lies in two key factors: on one side, a clear drive to contribute
to sustainability and, on the other side, the involvement and
contribution of citizens. These two factors should, thus, be taken
into account when designing and implementing both the technical
solutions and the functionality of smart city systems. This paper
presents the Green Bear smart city platform, an IoT system that
uses LoRaWAN nodes to gather information on city green spaces,
bike lanes, and recycling depots, as well as a user-centered mobile
application that allows for active user participation, feedback,
and incentivization. This solution is being implemented in the city
of Coimbra, Portugal. After an overview of the system, the paper
provides a description of each of the main system modules. The
Green Bear prototype was subject to functional and technological
assessment, and the results are presented and discussed.

Index Terms—Sustainable cities, LoRaWAN, Human-in-the-
loop, TheThingsNetwork.

I. INTRODUCTION

Information and Communication Technology (ICT) is driv-
ing the transformation of our cities. During the last two
decades, widespread access to ICT has impacted and shaped
all sectors of society [1]. Innovation in computer science is
leading to an unprecedented change in the way that cities
function and the way citizens live, with impact on operability,
sustainability, quality of life, and social interaction. Clearly,
modern urban living is connected with and driven by the
ICT’s evolution and response, transforming the development
of communities [2].

Urban sustainability projects deal with complex environ-
mental, physical, social, economic systems, involving many
aspects, of which political vision, investment, environmen-
tal care initiatives, smart transportation, eco-friendly builds,
renewable energy use, green spaces, and committed citizens
are just some examples. In turn, these lead to a multitude of

technological challenges, in order to determine how ICT can
actively help addressing and solving the complex requirements
of a sustainable city [3].

Internet of Things (IoT) is an essential ICT component for
sustainable cities infrastructures. IoT technologies can connect
multiple urban domains to the Internet, gathering vast amounts
of data that can be processed and analyzed to improve city
sustainability [4]. Low Power Wide Area Networks (LPWANs)
have gained relevance in IoT deployments in sustainable
cities due to fulfilling some requirements such as long-range
communication and extended device battery life [5]. Long-
Range Wide Area Network (LoRaWAN) technology is one of
the most deployed LPWAN technologies [6]. In addition to
LPWAN’s general advantages, LoRaWAN uses an unlicensed
frequency band (868 MHz band for Europe), adaptive data
rate, and high interference immunity. Moreover, companies
like The Things Network (TTN) provide extensive public
gateways coverage, making IoT LoRaWAN-based solutions
easy to implement in cities [7]. Essential characteristics of
LoRaWAN are the transfer of small data packets, high energy
efficiency, the ability to interconnect remote areas, and easy
interoperability, making it ideal for supporting the smart,
sustainable city concept [8].

IoT solutions for sustainable cities usually focus on devices
and sensors that collect people’s daily activities, and consider
humans as one more data-source, not as agents that are an inte-
gral part of the system, both producing data and being the main
beneficiary of the whole system, thus closing the loop. One
advantage of using the Human-in-the-Loop (HiTL) concept is
that the actions, intents, emotional states, and physical aspects
of humans are considered and integrated into the solutions.
For a smart, sustainable city, human behavior and feedback
are vital, because the system can be enhanced, influenced,

or disrupted by the interaction between human players and
the system. Once humans are added to the system, they can
provide information to be processed and, based on this, the
system can infer future states and close the loop providing
user feedback. This was, for instance, the approach we took
in the system proposed in [9], where we proposed a HiTL
cyber-physical system to improve students’ performance. With
the work presented in the current paper, we build on our
previous work to develop a larger scale case study, involving
the deployment of a more significant IoT infrastructure.

This paper describes the Green Bear system, developed by
the authors with the aim of exploring and demonstrating the
use of IoT, LoRaWAN public networks, and HiTL technolo-
gies in a sustainable city environment. Green Bear provides
user feedback and guidance through a virtual friend chatbot,
called the bear. The paper describes the overall solution,
technical implementation details, and case-study assessment
in the city of Coimbra, Portugal. The main contributions of
the paper can be summarized as follows:

• an overall architecture for a Human-in-the-Loop, IoT and
LoRaWAN-based solution for smart cities, exploring the
concepts of sustainability and of the active participation
of citizens;

• a real-world case-study implementation of the proposed
system, involving the development of LoRaWAN pro-
totypes that obtain data from users and can be placed
in strategic locations throughout the city; the use-case
resorted to several types of devices, adapted to a variety
of different uses, such as garbage recycling, outdoor
activities, or bicycle paths;

• an assessment of the proposed system, with identification
of issues, limitations, and resulting research directions.

The remainder of the paper is organized as follows. Section
II identifies the related work, their limitations, and distinguish-
ing aspects of the Green Bear proposal. Section III provides
an overview of the proposed system, discussing the overall
approach and some sample application scenarios. Section IV
details the technical aspects of the Green Bear implementation.
An assessment of the system is presented in section V,
essentially covering scalability issues. The conclusions and
guidelines for further research are presented in section VI.

II. RELATED WORK

The development of human-centered systems using Lo-
RaWAN to enhance urban sustainability is not novel. For
instance, in [10] a human-centered methodology using Lo-
RaWAN for gas concentration monitoring in public buildings
was presented. The paper addresses several topics, such as
sensor collection, long-range connectivity, cloud engine, au-
tomatic control, and mobile applications. However, the paper
does not close the human loop, as the system does not try
to modify employees’ behavior to improve gas concentration
measurements. In [11], a framework for Real-Time Human-
In-The Loop Simulation with Mobile Agents, Chat Bots,
and Crowd Sensing for Smart Cities was developed. In this
work, humans are considered as sensors, based on three

models. The concerned data is used to analyze digital social
media usage and its impact on social interaction, mobility,
and opinion-making. Nevertheless, contrary to what happens
in Green Bear, this work is based on simulation, and not
on LoRaWAN prototypes that can easily be deployed in
any urban environment. Deployment of a collaborative mesh
network based on Bluetooth low energy (BLE) and long-
range wide-area network (LoRaWAN) technologies promoting
human-machine collaboration is presented in [12]. This paper
builds on OperaBLE as the key enabler for human-in-the-
loop systems seeking safer working conditions and sustainable
digitalization of Industry 4.0. In [13], the authors developed
new ways for managing environmental monitoring through
a Mobile Crowd Sensing platform. The platform uses the
microphone of the citizens’ smartphones to build large-scale
noise maps. The system can output strategies to reduce noise.
In [14], an innovative garbage monitoring system using NB-
IoT (Narrow Band IoT) was proposed. This solution used a
set of sensors placed in garbage cans to provide information
to edge nodes, that can correctly classify this information.
NB-IoT is an LPWAN technology that allows the system to
transmit the management garbage information with low-power
consumption. The authors of [15] evaluated bike sharing and
bike rental variations using IoT to enhance bike supplying
services per season in China’s smart city context. In [16],
detailed strategies for building Green IoT solutions that make
cities smarter, sustainable, and ecofriendly are presented. The
study explained the best techniques to use IoT for improving
energy efficiency, reducing pollution, managing waste, and
sustainability.

Considering the mentioned pieces of work, and as far as we
know, our solution is the only one that takes a Human-in-The-
Loop-Cyber-Physical-System (HiTLCPS) approach to enhance
urban sustainability and citizens’ quality of life, by closing the
loop and giving feedback to the users. Moreover, Green Bear
prototypes use LoRaWAN for long-range communication and
BLE connections for short-range communication, leading to
extremely low power consumption in nodes, as required by
green city implementations.

By combining a human-in-the-loop approach with chat-
bots for human assistance, and low-power LoRaWAN and
BLE transmission technologies, Green Bear is a technological
solution that seeks to improve participatory and sustainable
processes in intelligent cities.

III. GREEN BEAR OVERVIEW

A. Overall Approach

Green Bear is a solution that consists of a mobile application
interacting with LoRaWAN nodes strategically located in the
city, which collect data on the users’ activity, under their full
control. The solution includes LoRaWAN nodes using a public
TTN gateway, a TTN application to integrate external services,
a back-end developed to support Internet services, a dashboard
that allows system management, and a mobile application
that integrates humans in the system. IoT LoRaWAN devices,
mobile devices, and the voluntary human participation in the

Fig. 1. Green Bear general architecture

system are the main components of an integrated solution that
aims to improve the participants’ lifestyle and the dynamics
of the city. Fig 1 shows the overall architecture of the Green
Bear solution.

Green Bear users register through the mobile application.
To protect the users’ identity, their name is never used nor
maintained in the system; instead, randomly generated iden-
tifiers, called user ID, are assigned to each user. The system
does not collect any personal information from the users, and
the identifiers are solely used as primary key in the system
database. When performing various activities, the users are
informed of the earned points. These points are reported to the
system, and the global ranking is updated on a weekly basis.
With this setting, a variety of incentives can be created, such
as prizes, discounts in stores, or discounts in public services,
depending on corporate or governmental agreements.

In addition to providing a way for the users to check
the earned points, the mobile application has a chatbot to
interact with the users and collect additional data. For instance,
the chatbot can provide recommendations on sleep hours
and physical activity, depending on the observed activity.
Notifications help participants to become more involved in
the system. Additionally, the chatbot allows the system to
ask questions and set mobile parameters, assisting the user
in configuring the system. The overall objectives of the mech-
anisms implemented in the mobile application are to foster
the citizens’ interaction with city spaces, e.g., green spaces,
outdoor activities, recycling dynamics, and to incentivize the
users’ physical activity, sleep time, and quality of life.

B. Green Bear activities

Green Bear’s architecture was devised in such a way that
it does not limit the applications and activities that may be of
interest in any smart city environment. In this sub-section, we
present the activities implemented in the Coimbra case-study
as a way of example, but many more are possible.

Recycling bins: In this activity, users receive one point each
time they report a full recycling bin. For instance, if there
are three main types of recycling bins at each location (e. g.,

paper/cardboard, glass, and plastic/metal), users may receive
up to three points per day per recycling bin spot. LoRaWAN
devices located in the bins register that the user has notified the
bin status. Then, the saved information is sent by the recycle
bin spot on a daily basis, through a LoRaWAN connection, to
the central system.

Green Spaces: Users earn one point when performing
activities in parks or green spaces. Many European cities
have adapted spaces for leisure activities, and the World
Health Organization (WHO)) makes several recommendations
on activities of this type [17]. In the Green Bear case-study,
if users spend at least one hour in a green space, they will
receive one point. For implementing this, LoRaWAN devices
determine the time spent by the user on the grounds and,
if it is longer than one hour, save the information in their
local memory, and periodically send the user identifiers to the
central system.

Bike Lanes: Similarly, the use of bike lanes gives users
one point. People can use these spaces on bicycles, skates,
skateboards, scooters, or even on foot. LoRaWAN devices
located on the bike lanes gather information on the users and
assign points that are periodically sent to the central system.

Sleep Hours: Based on an estimated number of hours
of rest, the user will be rewarded with one point per day.
The number of hours of sleep is collected through the user’s
phone, and points will be assigned if the user complies with
a recommended six sleep hours (average adult).

Physical Activity: Furthermore, following WHO physical
activity recommendations, if the user achieves the minimum
threshold, he/she also earns one point, which is then reported
to the system on a daily basis.

It should be noted that all the data pertaining to the users’
activities is anonymized, through the use of the randomly
generated identifier assigned to each user at registration time.
The system does not save nor maintains any association
between the actual identity of the user and his/her identifier.

IV. GREEN BEAR IMPLEMENTATION

Green Bear’s architecture consists of LoRaWAN nodes,
TTN public infrastructure, MQTT broker connectors, back-
end implementation through FIWARE, dashboard, and end-
user mobile application. Figure 1 shows the referred compo-
nents, which are going to be described in detail in the current
section.

A. LoRaWAN Devices

LoRaWAN nodes are fixed nodes deployed throughout the
city with the objective of interacting with end-user mobile
applications, collecting data, and forwarding it to the central
system. These nodes were implemented using Pycom devices.
A Pycom FiPy includes a microcontroller that can be pro-
grammed using Micropython. In addition to LoRaWAN, FiPy
devices have four other connectivity options, namely SigFox,
Wi-Fi, Bluetooth, and LTE [18], which allows the development
of heterogeneous, flexible systems, with a variety of com-
munication capabilities. Pycom devices are based on ESP32

Fig. 2. BLE packet format in Green Bear

SoC, with ultra-low power consumption, 4MB RAM, 8 MB
Flash Memory, and several peripherals for IoT applications.
Furthermore, the Pycom firmware allows developers to use
microcontroller functions such as interrupts, timers, analog-
to-digital converters, digital-to-analog converters, and general-
purpose input/output pins, among others [19].

Two communication technologies are used in Green Bear
fixed-node devices: Bluetooth Low Energy (BLE) for collect-
ing user identifiers, and LoRaWAN for sending user identifiers
and collected data to the central system. The BLE packet frame
comprises a preamble, Access Address, a variable Protocol
Data Unit (PDU) and a Cyclic redundancy check (CRC), as
is shown in Figure 2.. The variable size PDU is used for
advertisement PDUs or for data PDUs. In Green Bear, an
advertisement PDU has a variable payload (0-37 bytes) and is
used by mobile phones to notify the respective user ID. The
user ID is a 2-byte identification code sent to Green Bear fixed
devices in advertisement PDUs. In addition to the identifier,
the Pycom device can obtain several other data from BLE
packets, namely the communication RSSI, the MAC address,
proximity Universally unique identifier (UUID), and measured
Tx power [20].

On other hand, LoRa supports long-distance communication
with the TTN public gateways. A FiPy can be configured with
operating class (class A or class C), spreading factor (SF),
data rate (DR), and frequency band [21]. The node to gateway
communication range is directly affected by the SF configured
at the nodes, as shown in the study presented in [22] and
illustrated in Fig 3. However, increasing the SF affects the
number of bytes in the message [23], and message airtime
allowed for TTN public gateways [24]. Therefore, the ISM
band (868 MHz Europe) limitations allow a maximum number
of bytes sent in a single message and the number of messages
per day.

The LoRaWAN message format is shown in Figure 4. The
message contains header and trailer fields that consume 13
bytes for uplink or downlink messages, and a variable frame
payload. Hence the maximum size of a message will depend
on the data sent in the payload. This frame payload contains
application-specific information, such as the Green Bear IDs.

Fig. 3. Distance vs Spreading Factor [22]

Fig. 4. LoRaWAN message in Green Bear

A Green Bear ID includes the user IDs extracted from BLE
packets, activity ID (which contains the device’s identifier,
based on each activity), and the Recycling Type (RT) (which
is reserved for the recycling bins activity).

Green Bear nodes are composed of the Pycom device,
LiPo battery, the developing board, LoRaWAN antennas, and
control buttons to trigger the operations of the node. Fig. 5
depicts the LoRaWAN nodes’ general look. These devices
operate in sleep mode until a user presses a control button
that triggers an interruption and awakens them. This manual
approach to the triggering of Green Bear nodes was adopted as
a first step, for simplicity reasons, although more automated
ones can be adopted in the future. The approach is used in
the various activities where a fixed node is used for collecting
data from users: recycling bins, green spaces,and bicycle lanes.
Each Green Bear device is programmed for its corresponding
activity. Once the user manually activates the device, it will
gather the user ID and add the information for the rest of the
fields of the Green Bear ID (Fig. 4). For instance, in the case
of recycling bins, the user should notify the status of the depot
by pressing the corresponding button. The device will store the
user’s information, the activity, and the type of recycling bin.

Fig. 5. Green Bear nodes

In the case of green spaces, a user should press the button on
entering the space and then on exiting it; based on this, the
Green Bear nodes calculate the duration of the visit and assign
one point if it is longer than 1 hour. Finally, in the case of bike
lanes, the user should adopt a similar proceeding. Users can
earn one point for each depot for the recycling bins activity,
getting a maximum of 3 points per day. In the case of green
spaces and bike lanes, the users can earn one point per day,
for each of these activities.

B. The Things Network

TTN is a collaborative ecosystem released by the Things
Industries to develop and deploy networks, devices, doc-
umentation, and solutions over LoRaWAN. TTN, through
its community edition, releases a decentralized LoRaWAN
network with hundreds of public gateways around the world.
TTN provides a platform that allows creating and managing
devices, program downlink and uplink payload formatters,
manage integrators and keys. Once the nodes are created in
the platform, they can establish link credentials and initiate
communication.

The nodes send LoRaWAN frames containing identifiers
and type of function; the platform should structure the message
for external connections. TTN allows for the definition of
payload formatters in JavaScript, which decode incoming node
messages and reformat them before the platform sends them
to subscribing applications. The decoded payload intends to
establish the object format for those external connections. Fur-
thermore, TTN supports Message Queuing Telemetry Trans-
port (MQTT) connections, working as a broker, enabling third-
party applications to publish and subscribe on established
topics. The subscribing upstream traffic topics include joining,
data, and ack information, while TTN can push external data or
commands to the nodes using the downstream topics, therefore
providing end-to-end communication between external appli-
cations and LoRaWAN nodes.

C. MQTT broker connectors

These connectors are located inside the TTN platform
and support two methods for clients, namely subscribing to

Fig. 6. Green Bear Back-end/Fiware Architecture

upstream traffic, and publishing downlink traffic. Regarding
upstream traffic, it is possible to subscribe to the following top-
ics: join, up, down/queued, down/sent, down/ack, down/failed,
and service/data. Regarding publishing downlink traffic, the
only accepted topics are /down/push and /down/replace, where
sending information from an external source to the devices is
available.

D. Fiware

FIWARE is an open-source framework with tools and
components to integrate smart solutions with third-party com-
ponents. FIWARE allows interfacing IoT projects to capture
updates on information context and translate that on expected
actuations [25]. Additionally, it allows publication, manage-
ment, processing, analyzing, and visualizing applications in-
formation.

The Green Bear’s back-end is based on our previous
work in the ISABELA’s project [26] , and was developed
using FIWARE. The back-end contains the connectors for
the interaction of LoRaWAN nodes with the dashboard and
mobile application. FIWARE receives updated information
notifications from the nodes through the MQTT broker, stores
the data in a database, and provides the mobile application and
the dashboard with this information using the HTTP protocol.

The modular nature of the FIWARE ecosystem allows it
to be the backbone of several applications, enabling the easy
deployment of modules, called Generic Enabler (GE), which
perform specific functionalities. In figure 6 we can see the
modules used in the backend architecture of Green Bear and
their interconnections.

The main GE of FIWARE is the ORION module [27]. This
module works as a context broker, which receives information,
represents that information as virtual entities, and manages
subscriptions and registrations to said entities. The FIWARE
project adopts the NGSI9/10 information model, which is
based on attributes and entities, and is represented using
JSON format [28]. This information model is used by the
ORION context broker to represent real world devices/physical

sensors to virtual entities, which can be accessed through an
Application Programming Interface (API) that enables end
applications to create/delete/retrieve entities, and to update
existing ones.

On one hand, the ORION GE for itself does not allow the
system to store historic data. As such the addition of other
GEs is required. To connect the ORION with other modules,
the FIWARE catalogue has the Cygnus [29] module. This
module can work as a connector from the broker to several
storage-capable modules or third-party apps. The Cygnus GE
is based in the Apache Flume technology [30]. When a new
entity accesses the module, it is redirected to a specific channel
and forwarded to the selected storage solution (e.g., MySQL,
MongoDB and CKAN channel). In the Green Bear project,
the information is stored in a MongoDB database.

On the other hand, a database system, by itself, does
not provide APIs to retrieve the data from applications. To
tackle this issue, the FIWARE catalogue offer a different GE,
namely the Short-Term History (STH)-Comet GE [31]. This
module provides a RESTful API which allows applications
to retrieve information in a historic and aggregated manner.
Both the Green Bear mobile application and the dashboard
retrieve historic information concerning user activity (e.g.,
sleep information or ’green’ activities) through this API.
Additionally, this API can aggregate the information using
different time intervals, e.g., per week, per day, or per hour.
This functionality allows us to create the end-user application,
without the need to develop complex back-end APIs or to deal
with database native queries.

As explained before, FIWARE’s main objective is to in-
tegrate IoT solutions with cloud services and third-party
applications. In order to achieve this, an interface layer to
communicate with IoT devices is needed. IoT devices have
all sorts of hardware and there is great heterogeneity in terms
of communication protocols. The IDAS GE implements a set
of IoT agents that work as a translation layer between IoT
devices and the ORION context broker [32]. These agents are
developed for several of the most common IoT protocols such
as JSON/MQTT, LwM2M, Ultra Light and OPC UA. In the
Green Bear project, we use the JSON/MQTT IoT agent in
conjunction with the MQTT Mosquitto broker, to interpret the
data coming from the TTN.

Although Green Bear anonymizes data through a randomly
assigned user ID, since we are dealing with information
pertaining to human activity, security and privacy is one of
the most important requirements of this project. The Identity
Management GE called IDM or Keyrock [33] allows us
to protect communications between GEs, IoT devices, and
applications. The IDM allows the addition of authentication
and security to devices, users, and applications, as well as
the implementation of authorization policies. Additionally, in
terms of privacy, and to comply with the EU privacy laws,
namely the General Data Protection Regulation of May 2018
[34], all data captured by the mobile application is anonymized
in the device before being sent to the server.

Fig. 7. Mobile Application Activities

Fig. 8. Mobile Application leaderboard, and user’s points display.

E. Mobile Application

Users interact with the Green Bear system through an
Android mobile application 7. The main objective of of this
application is to allow any registered user to interact with
Green Bear LoRaWAN devices over Bluetooth, without the
need for additional hardware. Most people, nowadays, have
a smartphone, and Bluetooth BLE has become a standard in
modern smartphones. As such, this approach means that most
people will be able to use Green Bear off-the-shelf. As future
work, we plan to move our development to a cross-platform
technology (e.g., Xamarin) to be able to cover the iOS user
base as well.

When a user first logins, in the application, a unique ID
is assigned to the user. This ID is registered in the back-
end server and subsequently mapped to an internal sequential
number, which is then utilized as the user’s identifier sent
in BLE beacons. The mobile application periodically sends a
BLE beacon advertisement. When a user is near a Green Bear
node that has been activated by pressing its interface button,
this BLE beacon is captured and the user identifier is stored
to register the user specific action. These actions are later sent
to the Green Bear server through TTN.

In addition to allowing users to interact with Green Bear
nodes, the mobile application also collects user information,
namely user activity and sleep patterns. In order to gather

Fig. 9. Leaderboard dashboard’s perspective

information on the activity of users, the Activity Recognition
API [35] was used. This API is able to automatically detect
activities, by periodically reading and processing short bursts
of sensor data. The API is able to classify user’s activity into
one of several possible categories, namely: running, walking,
on bicycle, in vehicle, on foot, tilting, and still. To detect
user sleep patterns, we used the Sleep API from Google [36].
This API is able to perform two tasks: firstly, it periodically
classifies temporal intervals into ”sleeping” or ”not sleeping”;
and secondly, it is able to daily report sleep segments, which
include the timestamp of the start and the timestamp of the
end of sleeping periods. As explained before, this data is used
to assign points to users, using healthy lifestyle criteria. This
data is periodically sent to the FIWARE back-end through the
available HTTP/Rest API.

The mobile application is also used as a front-end to the
user. In the mobile application, as can be seen in Figure 7,
the user has access to the collected information, aggregated
by week, namely, the percentage of each type of activity
he/she performed in the last 7 days, and the total number of
sleep hours per day. It is also possible for the user to check
the number of points obtained as a result of each performed
action, and how they rank against other users (user IDs) in the
leaderboard, as can be seen from figure 8.

Finally, in order to enhance the interaction with the user,
thus closing the loop, a chatbot was developed, as seen in
Figure 7. The chatbot can report problems to the users about
their lifestyle, such as having low exercise levels or sleeping
less than the recommended daily hours.

F. Dashboard

The Green Bear dashboard was developed using DASH
[37]. The DASH framework allows the development of
data-intelligence and data-analytics, specific applications, in
Python. This allows for a fast tracking of the development
of front-end applications, in projects that deal with a large
volume of data and require its visualization.

In the Green bear project, the dashboard serves as a means
of administrating the system. This platform can be used, for
instance, by the officials of a municipality to gather data and
act accordingly, in a smart city context. The dashboard can also
be used to check the ranking of users, so that incentives are
given. The administration team has access to the leaderboards

Fig. 10. Device management in the Dashboard.

of the various activities (e.g., physical activity, sleep, recycling,
bike tracks, green spaces) through the dashboard, as illustrated
in Figure 9. Based on this, it is possible to define prizes based
on the type of activity, such as, for instance, discounts in a
sportswear shop to top scoring users of bike lanes or other
physical activity. The dashboard also allows to visualize the
leaderboards for different temporal intervals.

Additionally, the dashboard serves as management tool for
the system itself. As can be seen in Figure 10, it is possible
to list all the connected LoRaWAN nodes in the dashboard.
It is also possible to see their current position and the type
of device in each case. In the future we want to extend
the dashboard capabilities to show the current energy status
of each device. This would allow to manage and plan the
preventive maintenance of devices. Additionally, since we
know the location of each device and the interaction of the
users with them, it would be possible to further extend the
functionalities of the system to create a heat map, showing
the affluence of people to certain spaces. This would be
particularly important in the context of the Covid-19 pandemic
or future pandemics, for instance, where restricting the number
of people in certain spaces can be important to maintain public
safety.

V. ASSESSMENT

The functional assessment of the solution was carried out
in the city of Coimbra, Portugal. The project was developed
using TTN’s public gateways; in the case of Coimbra, there
are eight gateways, which cover most of the city. Furthermore,
in its urban area Coimbra has parks such as Choupal, Vale de
Canas, and Parque Verde do Mondego, and bike lanes in areas
such as Portela. The recycling bins scenario was evaluated
using the Coimbra garbage depots as part of this solution.
Considering the scenarios, this initial phase comprised three
LoRaWAN nodes, one for the recycling bins, one for green
areas in Choupal Park, and one in the city’s bike lanes.

For the assessment of the mobile application, the authors’
smartphones were used in the initial phase. The mobiles collect
sleep and physical activity data, and generate recommenda-
tions through the chatbot. Fig. 7 illustrates the functionality
used in the evaluation. In addition, this information is shown
in the dashboard, along with the score obtained in the various
activities.

Fig. 11. Limitations on LoRaWAN messages [38]

After several weeks of use during which data pertaining to
several identifiers (i.e., users) was collected, the corresponding
leaderboard was assembled and could be viewed through the
dashboard. By clicking on a specific user identifier, additional
information on the points earned by that user in that period
can be seen. Fig. 9 shows the leaderboard for a weekly period.
Furthermore, the dashboard allows to check the user’s score
in each of the five case-study categories mentioned in section
III.B. Using their mobile application, users can check their
score in each category and get chatbot notifications.

Participants’ identities are protected both on the dashboard
and mobile devices. Thus, the platform administrators have
no way of knowing the name of the leading scorer, while
mobile users know their own position but not the names of
the other participants on the leaderboard. With this personal
data protection scheme, claiming incentives is done by simply
presenting the user smartphone.

In addition to a user-oriented functional assessment, the
system was subject to technical assessment, as well. This is
presented and discussed in the following paragraphs. Green
Bear nodes can detect multiple gateways, but they communi-
cate with the one that presents the highest RSSI. Upon startup,
each node sends its position through LoRaWAN. This enables
the system to automatically gather the position of all active
nodes in the city. This information is shown in the dashboard.

As described in section IV, the spreading factor (SF) deter-
mines the maximum size of the payload of uplink messages,
thus limiting the maximum number of Green Bear IDs in each
message. On other hand, [38] states that the duty cycle should
be 1% in the 868 MHz frequency band to comply with the
European Telecommunications Standards Institute (ETSI). As
a consequence, TTN establishes a fair access policy that sets a
maximum number of messages per day depending on the size
of the message. The maximum payload size is as shown in
Figure 11 (dark blue bars). Also, Fig. 11 shows the maximum
number of messages per day (light blue bars) considering the
maximum payload size. Given these limitations, Figure 12
shows the maximum number of user identifiers that can be
sent in just one Green Bear message (blue line), as well as
the maximum number of user IDs per day (orange bars).

For example, analyzing Figures 11 and 12, the maximum

Fig. 12. Green Bear Limitations

number of user identifiers that a node can send, considering
one message per day, is 74 for SF 7. Hence if more than
74 users interact with a device, more messages must be used
to communicate with the system. Considering the maximum
of 81 messages per day given in Figure 11 for SF 7 and a
maximum of 74 users per message, a device can report a
maximum of 5994 users per day (Figure 12). To extend this
solution using TTN, it is necessary to calculate the maximum
number of messages per day that can be sent using the different
SFs.

TTN implements capacity limitations and a fair access
policy. However, it is possible to use private networks for
implementations requiring higher number of users. Although
private networks use proprietary gateways, they can still use
The Things Network configuration and platform through The
Things Stack. This would allow the nodes’ capacity to get
extended, in turn leading to more identifiers in the system
per day. Private network implementations will be analyzed in
subsequent phases of the Green Bear project.

VI. CONCLUSIONS

Sustainable cities play an essential role in global ecosys-
tems, involving social, environmental, and economic compo-
nents. This is why the implementation of green technologies
that help the operation of cities is becoming increasingly
important. IoT projects for sustainable cities, where human
behavior is part of the system, improve city dynamics and the
quality of life of all those who live and work in them.

Despite its limitations, LoRaWAN has gained space in
implementing IoT projects. Furthermore, due to their wide area
communication capabilities, LoRaWAN nodes can be used for
building generalized participatory systems. Scoring systems,
gamification strategies, and social or economic incentives can
generate more significant participation and less resistance to
technologies. Therefore, technological solutions in sustainable
cities must be accompanied by an easy adaptation to the
environment, ease of use by people, and incentives for the
citizens’ involvement in the dynamics of their city. This is the
case of the Green Bear case-study presented in this paper.

Further phases of the Green Bear project aim to deploy more
nodes throughout the city and increase the number of users.
This will require higher involvement or public/private entities
and better user incentives. Developments from a technical
point of view will explore alternative node wake up solutions
(e.g., proximity sensors or capacitive touch), additional system
functionality (e.g., more participatory activities), enhance-
ments to the mobile application in order to improve the user
experience, and the expansion of the system capacity. Once
more nodes are deployed, the data provided by Green Bear can
help the evaluation of the global solution from several points
of view, which is also an important future work guideline.
In addition, the collected data can be helpful in monitoring,
controlling and designing city operational processes, with
sustainability and quality of life in mind.

ACKNOWLEDGMENT

The research presented in this paper was carried out in the
scope of the FikaLabs Contest and of the EEA Grants Portugal
2014-2021 - Bilateral Initiative number 63 “PrivacyCoLab”.

José Marcelo Fernandes wishes to acknowledge the Por-
tuguese funding institution FCT - Foundation for Science and
Technology for supporting his research under the Ph.D. grants
SFRH/BD/147371/2019.

REFERENCES

[1] S. E. Bibri and J. Krogstie, “On the social shaping dimensions of
smart sustainable cities: A study in science, technology, and society,”
Sustainable Cities and Society, vol. 29, pp. 219–246, feb 2017.

[2] M. E. Cortés-Cediel, I. Cantador, and M. P. R. Bolı́var,
“Analyzing Citizen Participation and Engagement in European
Smart Cities:,” https://doi.org/10.1177/0894439319877478, vol. 39,
no. 4, pp. 592–626, oct 2019. [Online]. Available:
https://journals.sagepub.com/doi/full/10.1177/0894439319877478

[3] R. Villarroel Walker, M. B. Beck, J. W. Hall, R. J. Dawson, and O. Hei-
drich, “Identifying key technology and policy strategies for sustainable
cities: A case study of London,” Environmental Development, vol. 21,
pp. 1–18, mar 2017.

[4] B. Shabandri, S. R. Madara, and P. Maheshwari, “IoT-Based Smart
Tree Management Solution for Green Cities,” pp. 181–199, 2020.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-981-
15-0663-5 9

[5] A. Lavric and A. I. Petrariu, “LoRaWAN communication protocol: The
new era of IoT,” 2018 14th International Conference on Development
and Application Systems, DAS 2018 - Proceedings, pp. 74–77, jun 2018.

[6] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “Overview of Cellular LP-
WAN Technologies for IoT Deployment: Sigfox, LoRaWAN, and NB-
IoT,” in 2018 IEEE International Conference on Pervasive Computing
and Communications Workshops, PerCom Workshops 2018. Institute
of Electrical and Electronics Engineers Inc., oct 2018, pp. 197–202.

[7] P. J. Basford, F. M. J. Bulot, M. Apetroaie-Cristea, S. J. Cox, and
S. J. Ossont, “LoRaWAN for Smart City IoT Deployments: A Long
Term Evaluation,” Sensors 2020, Vol. 20, Page 648, vol. 20, no. 3,
p. 648, jan 2020. [Online]. Available: https://www.mdpi.com/1424-
8220/20/3/648/htm https://www.mdpi.com/1424-8220/20/3/648

[8] A. V. Terleev, A. A. Khalturin, and V. A. Shpenst, “LoRaWAN gateway
coverage evaluation for smart city applications,” Proceedings of the 3rd
2021 International Youth Conference on Radio Electronics, Electrical
and Power Engineering, REEPE 2021, mar 2021.

[9] J. Fernandes, D. Raposo, N. Armando, S. Sinche, J. S. Silva, A. Ro-
drigues, V. Pereira, H. G. Oliveira, L. Macedo, and F. Boavida,
“ISABELA – A Socially-Aware Human-in-the-Loop Advisor System,”
Online Social Networks and Media, vol. 16, p. 100060, mar 2020.

[10] S. I. Lopes, A. M. Cruz, P. M. Moreira, C. Abreu, J. P. Silva, N. Lopes,
J. M. Vieira, and A. Curado, “On the design of a Human-in-The-Loop
Cyber-Physical System for online monitoring and active mitigation of
indoor Radon gas concentration,” 2018 IEEE International Smart Cities
Conference, ISC2 2018, feb 2019.

[11] S. Bosse and U. Engel, “Real-Time Human-In-The-Loop Simulation
with Mobile Agents, Chat Bots, and Crowd Sensing for Smart Cities,”
Sensors 2019, Vol. 19, Page 4356, vol. 19, no. 20, p. 4356, oct 2019.
[Online]. Available: https://www.mdpi.com/1424-8220/19/20/4356/htm
https://www.mdpi.com/1424-8220/19/20/4356

[12] C. Garrido-Hidalgo, D. Hortelano, L. Roda-Sanchez, T. Olivares, M. C.
Ruiz, and V. Lopez, “IoT Heterogeneous Mesh Network Deployment
for Human-in-the-Loop Challenges Towards a Social and Sustainable
Industry 4.0,” IEEE Access, vol. 6, pp. 28 417–28 437, may 2018.

[13] M. Zappatore, A. Longo, and M. A. Bochicchio, “Using mobile crowd
sensing for noise monitoring in smart cities,” 2016 International Mul-
tidisciplinary Conference on Computer and Energy Science, SpliTech
2016, aug 2016.

[14] Y. Zhu, G. Jia, G. Han, Z. Zhou, and M. Guizani, “An NB-IoT-based
smart trash can system for improved health in smart cities,” 2019
15th International Wireless Communications and Mobile Computing
Conference, IWCMC 2019, pp. 763–768, jun 2019.

[15] C. Lyu, J. Bie, and H. Wang, “DISCOVERY OF TEMPORAL VARI-
ATIONS OF PUBLIC BIKE RIDERSHIP USING INTERNET OF
THINGS FOR BUILDING SMART CITY,” Microprocessors and Mi-
crosystems, p. 104320, aug 2021.

[16] F. A. Almalki, S. H. Alsamhi, R. Sahal, J. Hassan, A. Hawbani, N. S.
Rajput, A. Saif, J. Morgan, and J. Breslin, “Green IoT for Eco-Friendly
and Sustainable Smart Cities: Future Directions and Opportunities,”
Mobile Networks and Applications 2021, pp. 1–25, aug 2021. [Online].
Available: https://link.springer.com/article/10.1007/s11036-021-01790-
w

[17] W. Gasparini, ““Health-sport”, from the European to the local level:
the circulation of European norms and categories of thought,” 2019.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-02417011

[18] Pycom, “MicroPython Modules.” [Online]. Available:
https://docs.pycom.io/firmwareapi/micropython/

[19] ——, “FiPy - Pycom -Five Network Development Board for IoT.”
[Online]. Available: https://pycom.io/product/fipy/

[20] K. E. Jeon, J. She, P. Soonsawad, and P. C. Ng, “BLE Beacons for
Internet of Things Applications: Survey, Challenges, and Opportunities,”
IEEE Internet of Things Journal, vol. 5, no. 2, pp. 811–828, apr 2018.

[21] L. Alliance, “What is LoRaWAN® Specification - LoRa Alliance®,”
20. [Online]. Available: https://lora-alliance.org/about-lorawan/

[22] A. Duda, U. Grenoble, and M. Heusse, “Spatial Issues in Modeling
Lo-RaWAN Capacity,” Proceedings of the 22nd International ACM
Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems - MSWIM ’19, 2019. [Online]. Available:
https://doi.org/10.1145/3345768.3355932

[23] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-
Segui, and T. Watteyne, “Understanding the Limits of LoRaWAN,” IEEE
Communications Magazine, vol. 55, no. 9, pp. 34–40, 2017.

[24] “Airtime calculator for LoRaWAN.” [Online]. Available:
https://avbentem.github.io/airtime-calculator/ttn/eu868/64

[25] FIWARE, “Developers Catalogue - FIWARE.” [Online]. Available:
https://www.fiware.org/developers/catalogue/ (accessed 27/09/2021)

[26] J. Fernandes, D. Raposo, N. Armando, S. Sinche, J. S. Silva, A. Ro-
drigues, V. Pereira, H. G. Oliveira, L. Macedo, and F. Boavida, “Isabela–
a socially-aware human-in-the-loop advisor system,” Online Social Net-
works and Media, vol. 16, p. 100060, 2020.

[27] Telefonica, “Welcome to orion context broker.” https://fiware-
orion.readthedocs.io/en/master/, (Accessed on 27/09/2021).

[28] S. Krčo, B. Pokrić, and F. Carrez, “Designing iot architecture (s): A
european perspective,” in 2014 IEEE world forum on internet of things
(WF-IoT). IEEE, 2014, pp. 79–84.

[29] Telefonica, “Home - fiware-cygnus,” https://fiware-
cygnus.readthedocs.io/en/latest/, (Accessed on 27/09/2021).

[30] “Flume 1.9.0 user guide — apache flume,”
https://flume.apache.org/FlumeUserGuide.html, (Accessed on
09/27/2021).

[31] Telefonica, “Home - fiware-sth-comet,” https://fiware-sth-
comet.readthedocs.io/en/latest/, (Accessed on 09/27/2021).

[32] F. Academy, “Iot agents - academy,” https://fiware-
academy.readthedocs.io/en/latest/iot-agents/idas/index.html, (Accessed
on 09/28/2021).

[33] G. de Internet de Nueva Generación, “Home - fiware-idm,”
https://fiware-idm.readthedocs.io/en/latest/, (Accessed on 09/28/2021).

[34] C. Castelluccia, S. Guerses, M. Hansen, J. Hoepman, J. van Hoboken,
B. Vieira et al., “Privacy and data protection in mobile applications: A
study on the app development ecosystem and the technical implemen-
tation of gdpr,” 2017.

[35] Google, “Activity recognition api — google developers,”
https://developers.google.com/location-context/activity-recognition,
(Accessed on 09/28/2021).

[36] ——, “Sleep api — google developers,”
https://developers.google.com/location-context/sleep, (Accessed on
09/28/2021).

[37] Plotly, “Dash Overview,” 2021. [Online]. Available:
https://plotly.com/dash/

[38] TheThingsNetwork, “Fair Use Policy explained - End
Devices (Nodes) - The Things Network.” [Online].
Available: https://www.thethingsnetwork.org/forum/t/fair-use-policy-
explained/1300

105

	Abstract
	Resumo
	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives
	1.3 Methodology
	1.4 Document Structure

	2 Background Knowledge
	2.1 Base Concepts
	2.1.1 iot
	2.1.2 Smartphones
	2.1.3 ai
	2.1.4 ChatBots
	2.1.5 hitlcps

	2.2 Framework Technologies
	2.2.1 Xamarin
	2.2.1.A Xamarin.Essentials
	2.2.1.B Xamarin.Forms

	2.2.2 FIWARE
	2.2.3 Flask
	2.2.4 Dialogflow
	2.2.5 GPT-3
	2.2.6 Lottie

	3 Group Platforms
	3.1 isabela
	3.2 batina
	3.2.1 batina Dashboard
	3.2.2 batina Mobile

	3.3 UC Teacher / UC Student
	3.4 ON-BOARD Project
	3.5 Similar Academic Platforms
	3.5.1 StudentLife
	3.5.2 BigBlueButton
	3.5.3 aleks
	3.5.4 Socrative
	3.5.5 Comparative Analysis

	3.6 GreenBear

	4 ChatBot Development
	4.1 Context
	4.2 Requirements
	4.2.1 Functional
	4.2.2 Non-Functional

	4.3 Architecture
	4.3.1 Overview
	4.3.2 ui
	4.3.3 Pollux
	4.3.4 Dialogflow

	4.4 Implemented Features
	4.4.1 Define an alarm
	4.4.2 Canteen Menu
	4.4.3 Historic Facts
	4.4.4 Professor Contact Info
	4.4.5 Exam Reminder
	4.4.6 Exam Feedback
	4.4.7 Assignment Submission Reminder
	4.4.8 Poor Questionnaire Result Feedback
	4.4.9 gpt3 Interaction

	4.5 Implementation
	4.5.1 Dialogflow configuration
	4.5.2 gpt3 configuration
	4.5.3 Pollux configuration
	4.5.4 Smartphone application

	4.6 Tests

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

	A Introduction Tutorial to ChatBot Technologies
	B Green Bear – A LoRaWAN-based Human-in-the-Loop Case-Study for Sustainable Cities

