MODULAR CLASSES OF POISSON-NIJENHUIS LIE ALGEBROIDS

RAQUEL CASEIRO

ABSTRACT: The modular vector field of a Poisson-Nijenhuis Lie algebroid A is defined and we prove that, in case of non-degeneracy, this vector field defines a hierarchy of bi-Hamiltonian A-vector fields. This hierarchy covers an integrable hierarchy on the base manifold, which may not have a Poisson-Nijenhuis structure.

KEYWORDS: Poisson-Nijenhuis structures, Lie algebroids, modular vector fields, integrable hierarchies.

1. Introduction

The relative modular class of a Lie algebroid morphism was first discussed by Grabowski, Marmo and Michor in [11]. Kosmann-Schwarzbach and Weinstein in [16] showed that this relative class could be seen as a generalization of the notion of modular class introduced by Weinstein in [17]. In [8], Damianou and Fernandes introduced the modular vector field of a Poisson-Nijehuis manifold and showed that it is intimately related with integrable hierarchies (see, also, the alternative approach offered by Kosmann-Schwarzbach and Magri in [14]). In this paper, we generalize this construction and consider the modular vector field of a Poisson-Nijehuis Lie algebroid.

Recall (see, e.g, [15]) that a Nijenhuis operator $N:A\to A$ on a Lie algebroid $(A,[\ ,\],\rho)$ allows us to define a deformed Lie algebroid structure $A_N=(A,[\ ,\]_N,\rho\circ N)$ such that $N:A_N\to A$ is a Lie algebroid morphism. Our first result states that the modular class of this morphism has a canonical representative:

Proposition 1. The relative modular class $N: A_N \to A$ is represented by $d_A \operatorname{Tr} N$.

Let us assume now that A is equipped with a Poisson structure π compatible with N. Then we can define two Lie algebroid structures on A^* , namely $(A^*, [\ ,\]_{\pi}, \rho \circ \pi^{\sharp})$ obtained by dualization from π , and $A^*_{N^*} = (A^*, [\ ,\]_{N\pi}, \rho \circ N\pi^{\sharp})$ obtained from the first one by deformation

Received January 19, 2007.

This work was partially supported by POCI/MAT/58452/2004 and CMUC/FCT.

along N^* . Again, $N^*: A_{N^*}^* \to A^*$ is a Lie algebroid morphism and, by the proposition above, its relative modular class has the canonical representative $X_{(N,\pi)} := d_{\pi}(\operatorname{Tr} N)$, which we will call the modular vector field of the Poisson-Nijenhuis Lie algebroid (A, π, N) . When A = TM we recover the construction of Damianou and Fernandes [8] up to a factor of 1/2 (for the same reason that the modular class associated with a Poisson manifold differs from the modular class of its cotangent Lie algebroid by a factor of 1/2).

The modular vector field $X_{(N,\pi)}$ of the Poisson-Nijenhuis Lie algebroid (A,π,N) is always a $d_{N\pi}$ -cocycle. If N is non-degenerated it is also a $d_{N\pi}$ -coboundary. In this case we have the following generalization of a result of Damianou and Fernandes for a Poisson-Nijenhuis manifold:

Theorem 2. Let (A, π, N) be a Poisson-Nijenhuis Lie algebroid with N a non-degenerated Nijenhuis operator. Then there exists a hierarchy of A-vector fields

$$X_{(N,\pi)}^{i+j} = N^{i+j} X_{(N,\pi)} = d_{N^i \pi} h_j = d_{N^j \pi} h_i, \quad (i, j \in \mathbb{Z})$$

where

$$h_0 = \ln(\det N)$$
 and $h_i = \frac{1}{i} \operatorname{Tr} N^i$, $(i \neq 0)$.

The hierarchy of flows on A, given by this theorem, covers a hierarchy of (ordinary) multi-Hamiltonian flows on the base manifold M. Although the hierarchy on A is generated by a Nijenhuis operator, it may happen that the base hierarchy is not generated by one. We will see that this is precisely the case for the A_n -Toda lattice. This gives a new explanation for the existence of a hierarchy of Poisson structures and flows associated with a bi-Hamiltonian system which may not have a Nijenhuis operator.

This paper is organized as follows. In Section 2, we present the necessary background on Poisson-Nijenhuis Lie algebroids. In Section 3, we introduce the modular vector field of a Poisson-Nijenhuis Lie algebroid, state its basic properties, and prove Theorem 2. Section 4 is concerned with integrable hierarchies and discusses the example of the A_n -Toda lattice. In the last section, we discuss our results in the context of three basic classes of Lie algebroids: The first class is the extreme case where the base manifold is a point, i.e., a Lie algebra. The second class, is the case of the tangent bundle of a manifold where we recover the results of [8], and the last class is the Lie algebroid associated with the dynamical Yang-Baxter equation of Etingof and Varchenko ([4]) and discovered by Xu in [18].

2. Poisson-Nijenhuis Lie Algebroids

In this section we will recall some basic facts about Nijenhuis operators and Poisson structures on Lie algebroids which we will need later. A general reference for Lie algebroids is the book by Cannas da Silva and Weinstein [3]. Nijenhuis operators are discussed in detail in the article by Kosmann-Schwarzbach and Magri [15], while PN-structures on Lie algebroids are discussed by Kosmann-Schwarzbach in [13] and by Grabowski and Urbanski in [12].

2.1. Cartan calculus on Lie algebroids. Let us recall that a Lie algebroid is a kind of generalized tangent bundle, which carries a generalized Cartan calculus.

First, for any Lie algebroid $(A, [,], \rho)$ we have a complex of A-differential forms $\Omega^k(A) := \Gamma(\wedge^k A^*)$ with the differential given by:

$$d_{A}\omega(X_{0},...,X_{k}) := \sum_{i=0}^{n} (-1)^{i} \rho(X_{i}) \cdot \omega(X_{0},...,\hat{X}_{i},...,X_{k})$$
$$+ \sum_{0 \le i \le j \le k} (-1)^{i+j} \omega\left([X_{i},X_{j}]_{A},X_{0},...,\hat{X}_{i},...,X_{k}\right),$$

where $X_0, \ldots, X_k \in \Gamma(A)$. The corresponding Lie algebroid cohomology is denoted by $H^{\bullet}(A)$.

Dually, the space of A-multivector fields $\mathfrak{X}^{\bullet}(A) = \bigoplus_{k \in \mathbb{Z}} \mathfrak{X}^k(A) := \bigoplus_{k \in \mathbb{Z}} \Gamma(\wedge^k A)$ carries a super-Lie bracket $[\ ,\]_A$, extending the Lie bracket on $\Gamma(A)$, and satisfying the following super-commutation, super-derivation and super-Jacobi identities:

$$\begin{split} [P,Q] &= -(-1)^{(p-1)(q-1)}[P,Q] \\ [P,Q \wedge R] &= [P,Q] \wedge R + (-1)^{(p-1)q}Q \wedge [P,R] \\ (-1)^{(p-1)(r-1)}[P,[Q,R]] + (-1)^{(q-1)(p-1)}[Q,[R,P]] + (-1)^{(r-1)(q-1)}[R,[P,Q]] = 0 \end{split}$$

where $P \in \mathfrak{X}^p(A)$, $Q \in \mathfrak{X}^q(A)$ and $R \in \mathfrak{X}^r(A)$. The triple $(\mathfrak{X}^{\bullet}(A), [,,]_A, \wedge)$ is a Gerstenhaber algebra.

If $X \in \Gamma(A)$ and $\omega \in \Omega^k(A)$ the *Lie derivative* of ω along X is the A-differential form $\mathcal{L}_X \omega \in \Omega^k(A)$ defined by

$$\mathcal{L}_X\omega := \mathrm{d}_A i_X\omega + i_X \mathrm{d}_A\omega,$$

where $i_X: \Omega^k(A) \to \Omega^{k-1}(A)$ is defined by

$$i_X \eta(X_1, \dots X_{k-1}) := \eta(X, X_1, \dots, X_k), \quad X_1, \dots, X_{k-1} \in \Gamma(A),$$

for k > 1. If k = 1, then $i_X \eta := \eta(X)$ and, for $k \le 0$ we say that $i_X \eta = 0$.

A morphism $\phi: A \to B$ (over the identity) of Lie algebroids over M induces by transposition a chain map of the complexes of differential forms:

$$\phi^*: (\Omega^k(B), d_B) \to (\Omega^k(A), d_A).$$

Hence, we also have a well defined map at the level of cohomology, which we will denote by the same letter $\phi^*: H^{\bullet}(B) \to H^{\bullet}(A)$.

2.2. Nijenhuis operators. Let $(A, [,], \rho)$ be a Lie algebroid over a manifold M. Recall that a *Nijenhuis operator* is a bundle map $N : A \to A$ (over the identity) such that the induced map on the sections (denoted by the same symbol N) has vanishing torsion:

$$T_N(X,Y) := N[X,Y]_N - [NX,NY] = 0, \quad X,Y \in \Gamma(A),$$
 (1)

where $[,]_N$ is defined by

$$[X, Y]_N := [NX, Y] + [X, NY] - N[X, Y], \quad X, Y \in \Gamma(A).$$

Let us set $\rho_N := \rho \circ N$. For a Nijenhuis operator N, one checks easily that the triple $A_N = (A, [,]_N, \rho_N)$ is a new Lie algebroid, and then $N : A_N \to A$ is a Lie algebroid morphism.

Since N is a Lie algebroid morphism, its transpose gives a chain map of the complexes of differential forms $N^*: (\Omega^k(A), d_A) \to (\Omega^k(A_N), d_{A_N})$. Hence we also have a map at the level of algebroid cohomology $N^*: H^{\bullet}(A) \to H^{\bullet}(A_N)$.

2.3. Poisson structures on Lie algebroids. Let $\pi \in \mathfrak{X}^2(A)$ be a bivector on the Lie algebroid $(A, [,], \rho)$ and denote by π^{\sharp} the usual bundle map

$$\pi^{\sharp}: A^* \longrightarrow A$$
 $\alpha \longmapsto \pi^{\sharp}(\alpha) = i_{\alpha}\pi.$

We say that π defines a *Poisson structure on* A if $[\pi, \pi]_A = 0$. In this case, the bracket on the sections of A^* defined by

$$[\alpha, \beta]_{\pi} = \mathcal{L}_{\pi^{\sharp} \alpha} \beta - \mathcal{L}_{\pi^{\sharp} \beta} \alpha - d_A (\pi(\alpha, \beta)), \quad \alpha, \beta \in \Gamma(A^*),$$

is a Lie bracket and $(A^*, [,]_{A^*}, \rho \circ \pi^{\sharp})$ is a Lie algebroid. The differential of this Lie algebroid is given by $d_{\pi}X = [\pi, X]_A$, $X \in \Omega(A^*)$, and the pair (A, A^*) is a special kind of Lie bialgebroid, called a triangular Lie bialgebroid.

2.4. Poisson-Nijenhuis Lie algebroids. The basic notion to be used in this paper is the following:

Definition 3. A **Poisson-Nijenhuis Lie algebroid** (in short, a PN-algebroid) is a Lie algebroid $(A, [,]_A, \rho)$ equipped with a Poisson structure π and a Nijenhuis operator N which are compatible.

The compatibility condition between N and π means that:

$$[\,,\,]_{N\pi} = [\,,\,]_{N^*}\,,$$

where $[\,,\,]_{N\pi}$ is the Lie bracket defined by the bivector field $N\pi \in \mathfrak{X}^2(A)$, and $[\,,\,]_{N^*}$ is the Lie bracket obtained from the Lie bracket $[\,,\,]_{\pi}$ by deformation along the Nijenhuis tensor N^* .

As a consequence, $N\pi$ defines a new Poisson structure on A, compatible with π :

$$[\pi, N\pi]_A = [N\pi, N\pi]_A = 0,$$

and one has a commutative diagram of morphisms of Lie algebroids:

$$(A^*, [\cdot, \cdot]_{N\pi}) \xrightarrow{N^*} (A^*, [\cdot, \cdot]_{\pi})$$

$$\uparrow^{\sharp} \qquad \qquad \downarrow^{N\pi^{\sharp}} \qquad \qquad \downarrow^{\pi^{\sharp}}$$

$$(A, [\cdot, \cdot]_{N}) \xrightarrow{N} (A, [\cdot, \cdot]_{A})$$

In fact, we have a whole hierarchy $N^k\pi$ $(k \in \mathbb{N})$ of pairwise compatible Poisson structures on A.

3. Modular class of a Poisson-Nijenhuis Lie algebroid

In this section we will state and prove our main results.

3.1. Modular class of a Lie algebroid. Let $(A, [,], \rho)$ be a Lie algebroid over the manifold M. For simplicity we will assume that both M and A are orientable, so that there exist non-vanishing sections $\eta \in \mathfrak{X}^{\text{top}}(A)$ and $\mu \in \Omega^{\text{top}}(M)$.

The modular form of the Lie algebroid A with respect to $\eta \otimes \mu$ is the A-form $\xi_A \in \Omega^1(A)$, defined by

$$\langle \xi_A, X \rangle \eta \otimes \mu = \mathcal{L}_X \eta \otimes \mu + \eta \otimes \mathcal{L}_{\rho(X)} \mu, \quad X \in \Gamma(A).$$
 (2)

This is a 1-cocycle of the Lie algebroid cohomology of A. If one makes a different choice of sections η' and μ' , then $\eta' \otimes \mu' = f \eta \otimes \mu$, for some non-vanishing smooth function $f \in C^{\infty}(M)$. One checks easily that the modular form ξ'_A associated with this new choice is given by:

$$\xi_A' = \xi_A - d_A \log |f|, \tag{3}$$

so that the cohomology class $[\xi_A] \in H^1(A)$ is independent of the choice of η and μ . This cohomology class is called the *modular class* of A and we will denoted it by mod $A := [\xi_A]$.

Proposition 4. Let N be a Nijenhuis operator on a Lie algebroid A and fix non-vanishing sections η and μ as above. The modular form ξ_{A_N} of the Lie algebroid A_N and the modular form ξ_A of A are related by:

$$\xi_{A_N} = d_A(\operatorname{Tr} N) + N^* \xi_A. \tag{4}$$

Proof: Around any point, we can always choose a local base $\{e_1, \ldots, e_r\}$ of sections of A and local coordinates (x_1, \ldots, x_n) of M such that $\eta = e_1 \land \ldots \land e_r$ and $\mu = dx_1 \land \ldots \land dx_n$. In these coordinates, we have the following expressions for the anchor ρ and the Nijenhuis operator N:

$$\rho(e_i) = \sum_{u=1}^n p_i^u \frac{\partial}{\partial x_u} \text{ and } N(e_i) = \sum_{j=1}^r N_i^j e_j, \quad (i = 1, \dots, r).$$

Now, for i = 1, ..., r, we compute:

$$\mathcal{L}_{e_i} \eta = \mathcal{L}_{e_i}(e_1 \wedge \ldots \wedge e_r) = \sum_{k,j=1}^r \left[N_i^k C_{kj}^j - \sum_{u=1}^n \left(\rho_j^u \frac{\partial N_i^j}{\partial x_u} + \rho_i^u \frac{\partial N_j^j}{\partial x_u} \right) \right] \eta$$

and

$$\mathcal{L}_{\rho_N(e_i)}\mu = \mathcal{L}_{\rho \circ N(e_i)}(dx_1 \wedge \ldots \wedge dx_n) = \sum_{k=1}^r \sum_{u=1}^n \left(\frac{\partial N_i^k}{\partial x_u} \rho_k^u + \frac{\partial \rho_k^u}{\partial x_u} N_i^k \right) \mu.$$

So

$$\xi_A^N(e_i) = \sum_j \left(\sum_k N_i^j C_{jk}^k + \sum_u \left(\frac{\partial \rho_j^u}{\partial x_u} N_i^j + \frac{\partial N_i^j}{\partial x_u} \rho_i^u \right) \right)$$

$$= \sum_j \left(\sum_k N_i^j C_{jk}^k + \sum_u \frac{\partial \rho_j^u}{\partial x_u} N_i^j \right) + d_A \operatorname{Tr} N(e_i)$$

$$= (N^* \xi_A + d_A \operatorname{Tr} N) (e_i).$$

By linearity this holds for any section of A, so the result follows.

The theorem shows that the A_N -form $\xi_{A_N} - N^* \xi_A = d_A \operatorname{Tr} N$ is independent of the choice of section of $\eta \otimes \mu \in \mathfrak{X}^{\operatorname{top}}(A) \otimes \Omega^{\operatorname{top}}(M)$.

Remark 5. This can also be checked directly using relation (3): If ξ_A and ξ_{A_N} are the modular forms associated to the choice $\eta \otimes \mu$, ξ'_A and ξ'_{A_N} are the modular forms associated with another choice $f \eta \otimes \mu$, then:

$$\xi'_A = \xi_A - d_A \ln |f|,$$

 $\xi'_{A_N} = \xi_{A_N} - d_{A_N} \ln |f|.$

For any function $g \in C^{\infty}(M)$, we have $d_{A_N}g = N^*d_Ag$, so it follows from these relations that:

$$\xi'_{A_N} - N^* \xi'_A = \xi_{A_N} - N^* \xi_A.$$

Recall (see [11, 16]) that for any Lie algebroid morphism over the identity $\phi: (A, [\,,\,], \rho_A) \to (B, [\,,\,]_B, \rho_B)$ one defines its relative modular class to be the cohomology class $\text{mod}^{\phi}(A, B) \in H^1(A)$ given by:

$$\operatorname{mod}^{\phi}(A, B) := \operatorname{mod} A - \phi^* \operatorname{mod} B. \tag{5}$$

Therefore we have the following immediate corollary of Proposition 4:

Corollary 6. The relative modular class of the algebroid morphism $N: A_N \to A$ is a A_N -cohomology class with canonical representative the A_N -form $d_A \operatorname{Tr} N$.

Note that the class $[d_A \operatorname{Tr} N] \in H^1(A_N)$ maybe non-trivial: in general, the differentials d_A and d_{A_N} will be distinct.

3.2. Modular class of a Poisson-Nijenhuis Lie algebroid. Now we consider a Poisson-Nijenhuis Lie algebroid (A, N, π) . Then N^* is a Nijenhuis operator of the dual Lie algebroid $(A^*, [\ ,\]_{\pi}, \rho \circ \pi^{\sharp})$ and, by Corollary 6, its relative modular class has the canonical representative $d_{\pi}(\operatorname{Tr} N^*)$, so that:

$$\operatorname{mod}^{N^*}(A_{N^*}^*, A^*) = [d_{\pi}(\operatorname{Tr} N^*)] = [d_{\pi}(\operatorname{Tr} N)].$$

Definition 7. The modular vector field of the Poisson-Nijenhuis Lie algebroid (A, π, N) is defined by

$$X_{(N,\pi)} = \xi_{A_{N^*}^*} - N\xi_{A^*} = d_{\pi}(\operatorname{Tr} N) \in \mathfrak{X}(A).$$

Notice that the modular vector field of a PN-algebroid is a $d_{N\pi}$ -cocycle.

Proposition 8. Let (A, π, N) be a PN-algebroid. Then

$$N^k X_{(N,\pi)} = \frac{1}{k-i+1} X_{(N^{k-i+1}, N^i\pi)}, \quad i < k \in \mathbb{N}.$$

Proof: The operator N is Nijenhuis so it satisfies the identity

$$kN^* d_A \operatorname{Tr} N = d_A \operatorname{Tr} N^k, \quad k \in \mathbb{N}.$$
 (6)

Now simply observe that

$$N^{k}X_{(N,\pi)} = N^{k}d_{\pi}(\operatorname{Tr} N) = N^{k} [\pi, \operatorname{Tr} N]$$

$$= -N^{i} \pi^{\sharp}(N^{*k-i} d_{A} \operatorname{Tr} N) = -\frac{1}{k-i+1} (N^{i}\pi)^{\sharp} (d_{A} \operatorname{Tr} N^{k-i+1})$$

$$= \frac{1}{k-i+1} d_{N^{i}\pi} (\operatorname{Tr} N^{k-i+1}) = \frac{1}{k-i+1} X_{(N^{k-i+1}, N^{i}\pi)}.$$

In case N is non-degenerated, we obtain the PN-algebroid generalization of a result in [8] (which corresponds to the case A = TM; see examples below):

Theorem 9. Let (A, π, N) be a Poisson-Nijenhuis Lie algebroid with N a non-degenerated Nijenhuis operator. Then the modular vector field $X_{(N,\pi)}$ is a $d_{N\pi}$ -coboundary and determines a hierarchy of vector fields

$$X_{(N,\pi)}^{i+j} = N^{i+j} X_{(N,\pi)} = d_{N^i \pi} h_j = d_{N^j \pi} h_i, \quad (i, j \in \mathbb{Z})$$
 (7)

where

$$h_0 = \ln(\det N) \ and \ h_i = \frac{1}{i} \operatorname{Tr} N^i, \quad (i \neq 0).$$
 (8)

Proof: For any integer k, N^k is a non-degenerated Nijenhuis operator and satisfies the identity

$$kN^{*k}d_A(\ln \det N) = d_A(\operatorname{Tr} N^k). \tag{9}$$

It follows that

$$X_{(N,\pi)} = -\pi^{\sharp} \left(\mathrm{d}_A \operatorname{Tr} N \right) = -\pi^{\sharp} N^* \mathrm{d}_A \left(\ln \det N \right) = \mathrm{d}_{N\pi} (\ln \det N).$$

We also have

$$N^{-1}X_{(N,\pi)} = X_{(N,N^{-1}\pi)} = -N^{-1}\pi^{\sharp}(d_A \operatorname{Tr} N) = -\pi^{\sharp}(d_A \ln \det N)$$
$$= -\pi^{\sharp} \left(N^* d_A \operatorname{Tr} N^{-1}\right) = d_{N\pi} \operatorname{Tr} N^{-1} = X_{(N^{-1},N\pi)}.$$

The expressions for the hierarchy now follow from identity (9) and Proposition 8 applied to N and to N^{-1} .

4. Integrable hierarchies and PN-Algebroids

4.1. Flows of A-vector fields. A vector field $X \in \mathfrak{X}(A)$ on a Lie algebroid has a *flow*, generalizing the usual picture which corresponds to the case A = TM.

Given a vector field X on M, we denote by Φ_X^t its flow:

$$\frac{\mathrm{d}}{\mathrm{d}t}\Phi_X^t(x) = X(\Phi_X^t(x)), \quad \Phi_X^0(x) = x .$$

We have that Φ^t is a 1-parameter group of diffeomorphisms and differentiating, we obtain the infinitesimal flow of X:

$$\phi_X^t(x) \equiv (\mathrm{d}\Phi_X^t)_x : T_x M \to T_{\Phi_X^t(x)} M.$$

It is easy to see that ϕ_X^t is a 1-parameter group of automorphisms of the Lie algebroid TM:

$$\phi_X^t([Y, Z]) = [\phi_X^t(Y), \phi_X^t(Z)],$$

for every pair of vector fields $Y, Z \in \mathfrak{X}(M)$.

We can generalize this to any Lie algebroid A: to any vector field $X \in \mathfrak{X}(A)$ (i.e., a section of A) one associates a 1-parameter group ϕ_X^t of automorphisms of A. For this we can use the following general construction of (infinitesimal) flows. Let us assume that E is a vector bundle over M. A derivation on E is a pair (D,X) where $D:\Gamma(E)\to\Gamma(E)$ is a differential operator, X is a vector field on M, satisfying the Leibniz rule

$$D(f\alpha) = fD(\alpha) + X(f)\alpha, \ \forall \ f \in C^{\infty}(M), \alpha \in \Gamma(E).$$

Now, any derivation (D, X) on E has an associated (infinitesimal) flow: a standard argument shows that there is a unique 1-parameter family of linear isomorphisms

$$\phi_D^t(x): E_x \to E_{\Phi_X^t(x)},$$

which is characterized uniquely by the property:

$$\frac{\mathrm{d}}{\mathrm{d}t}(\phi_D^t)^* s = D(s),\tag{10}$$

for all sections $s \in \Gamma(E)$. Here $(\phi_D^t)^*s := \phi_D^{-t} \circ s \circ \Phi_X^t$.

The canonical lift of the vector field X to E associated with D is the vector field X_D^E on E (section of the tangent bundle $TE \to E$) with flow ϕ_D^t :

$$X_D^E = \frac{\mathrm{d}}{\mathrm{d}t} \ \phi_D^t.$$

Denote by D^* be the dual derivation of D, i.e. the derivation on E^* defined by

$$\langle D^*(\alpha), s \rangle + \langle \alpha, D(s) \rangle = X \langle \alpha, s \rangle, \quad s \in \Gamma(E), \ \alpha \in \Gamma(E^*),$$

and by $f_s: E^* \to \mathbb{R}$ the linear function on the fibers defined by evaluation of the section s of E:

$$f_s(\alpha(x)) = \langle \alpha(x), s(x) \rangle, \quad \alpha \in \Gamma(E^*).$$

Notice that

$$X_D^E(f_\alpha) = \frac{\mathrm{d}}{\mathrm{d}t} f_\alpha \circ \phi_D^t = f_{D^*\alpha}, \quad \alpha \in \Gamma(E^*)$$
$$X_D^E(g \circ p) = X(g) \circ p, \quad g \in C^\infty(M),$$

where $f_{\alpha}: E^* \to \mathbb{R}$ is the function defined by evaluation of the section α of E^* . and $p: E \to M$ is the projection of the vector bundle.

We can apply the previous construction to a vector field $X \in \mathfrak{X}(A)$ where we consider the derivation $(D_X, \rho(X))$ with $D_X = [X, -]$. The resulting flow, called the *flow* of X,

$$\phi_X^t(x): A_x \to A_{\Phi_{\rho(X)}^t(x)}$$

is uniquely determined by the formula (10) above.

An alternative description can be obtained using the fiberwise linear Poisson structure $\{\ ,\ \}_A$ on the dual bundle A^* : denote by X_{f_X} the Hamiltonian vector field associated with the function $f_X:A^*\to\mathbb{R}$. It is easy to check (see [7]) that:

(a) The assignment $X \mapsto f_X$ defines a Lie algebra homomorphism

$$(\mathfrak{X}(A), [\ ,\]) \to (C^{\infty}(A^*), \{\ ,\ \}_A);$$

(b) Denoting by $q: A^* \to M$ the projection, X_{f_X} is q-related to $\rho(X)$:

$$q_*X_{f_X} = \rho(X).$$

So X_{f_X} is the canonical lift of the vector field $\rho(X)$ to A^* (associated with the derivation D_X^*). For each t, the flow $\Phi_{X_{f_X}}^t$ defines a Poisson automorphism of A^* (wherever defined), which maps linearly fibers to fibers of A^* . So, in fact, we have a bundle map

$$\Phi^t_{X_{f_X}}:A^*\to A^*$$

and, from (b), it covers $\Phi_{\rho(X)}^t$, the flow of $\rho(X)$. By transposition we obtain the flow of X:

$$\phi_X^t(x): A_x \to A_{\Phi_{\rho(X)}^t(x)}.$$

4.2. Hamiltonian flows on Lie algebroids. Let us assume now that $\pi \in \mathfrak{X}^2(A)$ is a Poisson structure on the Lie algebroid A. This bivector field determines a bundle map $\pi^{\sharp}: A^* \to A$, and for the Lie algebroid structure on A^* , we have that π^{\sharp} is a Lie algebroid morphism.

Definition 10. Let $f \in C^{\infty}(M)$. Its **Hamiltonian vector field** $X_f \in \mathfrak{X}(A)$ is the vector field:

$$X_f := \pi^{\sharp} \mathrm{d}_A f.$$

The corresponding flow $\phi_{X_f}^t$ will be called the **Hamiltonian flow** associated with the Hamiltonian function f.

The Poisson structure π on A covers a (ordinary) Poisson structure π_M on the base manifold M which is defined by $\pi_M^{\sharp} = \rho \circ \pi^{\sharp} \circ \rho^*$, i.e.

$$\{f,g\}_{\pi_M} = \langle d_A f, d_\pi g \rangle = \pi(d_A f, d_A g), \quad f, g \in C^{\infty}(M).$$

We have that:

Proposition 11. For any $f \in C^{\infty}(M)$ the Hamiltonian vector field X_f on A covers the (ordinary) Hamiltonian vector field on M associated with f. The Hamiltonian flow $\phi_{X_f}^t$ on A is dual to the flow of the section $d_A f$ of A^* .

Proof: By definition, the flow of X_f covers the flow of $\rho(X_f)$. This vector field is the Hamiltonian vector field on M associated with f

$$\rho(X_f) = \rho \circ \pi^{\sharp}(d_A f) = \rho \circ \pi^{\sharp} \circ \rho^*(df) = \pi_M^{\sharp}(df).$$

Simply observe that $d_A f$ and X_f , they both cover the same vector field on M and the associated derivations are dual

$$D_{\mathrm{d}_A f}(\alpha) = [\mathrm{d}_A f, \alpha]_{\pi} = \mathcal{L}_{X_f} \alpha = D_{X_f}^*(\alpha), \quad \alpha \in \Gamma(A^*),$$

so, the flows must be dual.

Another way of seeing this duality is considering $\{\ ,\ \}_{A^*}$, the linear Poisson bracket on A defined by the Lie algebroid $(A^*, [\ ,\]_{\pi}, \rho \circ \pi^{\sharp})$: the Hamiltonian vector field $X_{f_{\mathrm{d}_A f}}$ is the canonical lift of $\rho(X_f)$ to A, associated with the derivation $D_{X_f} = [X_f,\]$ and X_{f_X} is the canonical lift of the vector field $\rho(X)$ to A^* , associated with the derivation $D_{\mathrm{d}_A f} = D_{X_f}^*$.

4.3. Integrable Hierarchies on Lie algebroids.

Definition 12. Let X be a vector field on A. A **first integral** of X is a function $f: A \to \mathbb{R}$ which is constant along each integral curve of X:

$$\frac{\mathrm{d}}{\mathrm{d}t}f\circ\phi_X^t=0.$$

Note that a first integral of X is just a first integral of X^A , the canonical lift of $\rho(X)$ to A.

Observe that, on one hand, given $\alpha \in \Gamma(A^*)$, f_{α} is a first integral of X if and only if $D_X^*(\alpha) = \mathcal{L}_X \alpha = 0$. On the other hand, since the flow of X covers the flow of $\rho(X)$, pull-backs of first integrals of $\rho(X)$ are first integrals of X.

Definition 13. Given π a Poisson structure on A, we say that two functions $g, f \in C^{\infty}(A)$ π -commute if $\{f, g\}_{A^*} = 0$. A vector field X is said to be integrable if X^A , the canonical lift of $\rho(X)$ to A, is Liouville integrable.

Two first integrals of the vector field $\rho(X)$ may not π_M -commute but their pull-backs always π -commute, because basic functions always commute with respect to the linear Poisson bracket defined on the dual of a Lie algebroid. In particular, we have:

Proposition 14. Let $f \in C^{\infty}(M)$. The first integrals of the Hamiltonian vector field

$$X_{f_{\mathbf{d}_A f}} = \pi^{\sharp} \mathbf{d}_A f,$$

are the functions which π -commute with $f_{d_A f}$. In particular, evaluations of sections of A^* which commute with $d_A f$ and pull-backs of functions which π_M -commute with f are first integrals of X_f .

Let N be a Nijenhuis operator on A compatible with π . The sequence of Poisson structures $\pi_k = N^k \pi$ covers a sequence of Poisson structure on M:

$${\pi_M^k}^{\sharp} = \rho \circ N^k \pi \circ \rho^*,$$

but, as an example below shows, these Poisson tensors may not be related by a Nijenhuis operator on M. We also have a sequence of linear Poisson brackets on A:

$$\{\ ,\ \}_{A^*}^k$$

and, given a section α on A^* , a sequence of Hamiltonian vector fields

$$X_{f_{\alpha}}^{k} = \{f_{\alpha}, -\}_{A^{*}}^{k}.$$

A bi-Hamiltonian vector field

$$X = \pi_0^{\sharp}(d_A h_1) = \pi_1^{\sharp}(d_A h_0)$$

defines a hierarchy of multi-Hamiltonian vector fields on A:

$$X_{k+i} = \pi_k^{\sharp}(\mathbf{d}_A h_i) = \pi_i^{\sharp}(\mathbf{d}_A h_k).$$

This hierarchy, on one hand, covers a hierarchy of Hamiltonian vector fields on M

$$\rho(X_{i+k}) = \pi_M^{k} {}^{\sharp} \mathrm{d}h_i = \pi_M^{i} {}^{\sharp} \mathrm{d}h_k$$

and, on the other hand, is associated with the hierarchy of canonical lifts

$$\rho(X_{i+k})^A = X_{f_{d_A h_{i+k}}}^0 = X_{f_{d_A h_k}}^i = X_{f_{d_A h_i}}^k.$$

4.4. Covering Integrable Hierarchies. We can try to apply our main result (Theorem 9) to obtain an integrable hierarchy on a Lie algebroid. However, one observes that in Theorem 9 the Hamiltonian functions, which are first integrals of the vector fields in the hierarchy, are all basic functions, i.e., are pull-backs of functions on the base. Hence, in general, they will not provide a complete set of first integrals. However, there is yet another connection with (classical) integrable systems, due to the following theorem:

Theorem 15. Let (A, π, N) be a Poisson-Nijenhuis Lie algebroid with N a non-degenerated Nijenhuis operator. Then the modular vector field $X_{(N,\pi)}$ covers a bi-Hamiltonian vector field on M, and the associated hierarchy (7) of A-vector fields covers a (classical) hierarchy of flows on M. This hierarchy is given by:

$$X_{i+j} = -\pi_i^{\sharp} \mathrm{d}h_j = -\pi_i^{\sharp} \mathrm{d}h_i \quad (i, j \in \mathbb{Z})$$
(11)

where π_j are Poisson structures on M and h_i are the functions given by (8).

Although we have a hierarchy of modular vector fields $X_{(N^k,\pi)}$ generated by the Nijenhuis operator N, generally the covered hierarchy of bi-Hamiltonian vector fields on M is not generated by any Nijenhuis operator. This is illustrated by the next example.

4.5. The classical Toda lattice. The classical Toda lattice was already considered in [1], using specific properties of this system. We use our general approach to show how one can recover those results and explain some of those formulas.

4.5.1. Toda lattice in physical coordinates. The Hamiltonian defining the Toda lattice is given in canonical coordinates (p_i, q_i) of \mathbb{R}^{2n} by

$$h_2(q_1, \dots, q_n, p_1, \dots, p_n) = \sum_{i=1}^n \frac{1}{2} p_i^2 + \sum_{i=1}^{n-1} e^{q_i - q_{i+1}}.$$
 (12)

For the integrability of the system we refer to the classical paper of Flaschka [10].

Let us recall the bi-Hamiltonian structure given in [6]. The first Poisson tensor in the hierarchy is the standard canonical symplectic tensor, which we denote by $\tilde{\pi}_0$, so that

$$\{q_i, p_j\}_0 = \delta_{ij},$$

while the second Poisson tensor $\tilde{\pi}_1$ is determined by the relations

$$\{q_i, q_j\}_1 = -1, (i < j)$$

$$\{q_i, p_j\}_1 = p_i \delta_{ij},$$

$$\{p_j, p_i\}_1 = e^{q_i - q_{i+1}} \delta_{j,i+1}.$$

Then setting $h_1 = p_1 + p_2 + \cdots + p_n$, we obtain the bi-Hamiltonian formulation:

$$\widetilde{\pi}_0^{\sharp} \mathrm{d} h_2 = \widetilde{\pi}_1^{\sharp} \mathrm{d} h_1.$$

If we set, as usual,

$$N := \widetilde{\pi}_1^{\sharp} \circ (\widetilde{\pi}_0^{\sharp})^{-1},$$

then a small computation gives the following multi-Hamiltonian formulation:

Proposition 16. The Toda hierarchy admits the multi-Hamiltonian formulation:

$$\widetilde{\pi}_{j}^{\sharp} \mathrm{d}h_{2} = \widetilde{\pi}_{j+2}^{\sharp} \mathrm{d}h_{0},$$

where $h_0 = \frac{1}{2} \log(\det N)$ and h_2 is the original Hamiltonian (12).

4.5.2. Toda lattice in Flaschka coordinates. Let us recall the Flaschka coordinates $(a_1, \ldots, a_{n-1}, b_1, \ldots, b_n)$ where:

$$b_i = p_i, \quad (i = 1, ..., n)$$

 $a_i = e^{q_i - q_{i+1}}, \quad (i = 1, ..., n - 1)$

In these new coordinates there is no recursion operator anymore (this is a singular change of coordinates, where we loose one degree of freedom). Nevertheless, the multi-Hamiltonian structure does reduce ([6]). One can

then compute the modular vector fields of the reduced Poisson tensors $\overline{\pi}_j$ relative to the standard volume form:

$$\mu = da_1 \wedge \cdots \wedge da_{n-1} \wedge db_1 \wedge \cdots \wedge db_n.$$

It turns out that the modular vector fields X^j_{μ} are Hamiltonian vector fields with Hamiltonian function

$$h = \log(a_1 \cdots a_{n-1}) + j \log(\det(L)),$$

where L is the Lax matrix. This is observed in [1], where one also finds the multi-Hamiltonian formulation:

$$\overline{\pi}_{j}^{\sharp} dh_{2-j} = \overline{\pi}_{j-1}^{\sharp} dh_{3-j}, \quad k \in \mathbf{Z}$$

with $h_j = \frac{1}{i} \operatorname{Tr} L^j$ for $j \neq 0$ and $h_0 = \ln(\det(L))$.

We would like to give now an intrinsic explanation for these formulas, similar to the one given above for the Toda chain in physical coordinates.

4.5.3. Toda lattice in extended Flaschka coordinates. Let us extend the Flaschka coordinates by considering a variable a_n defined by:

$$a_n := q_n$$
.

Then the transformation $(q_i, p_i) \mapsto (a_i, b_i)$ is a honest change of coordinates. In these extended Flaschka coordinates, the first Poisson tensor $\tilde{\pi}_0$ is determined by:

$${a_i, b_i}_0 = a_i,$$
 $(i = 1, ..., n - 1)$
 ${a_i, b_{i+1}}_0 = -a_i,$ $(i = 1, ..., n - 1)$
 ${a_n, b_n}_0 = 1.$

while the second Poisson $\widetilde{\pi}_1$ structure is given by:

$$\{a_i, a_{i+1}\}_1 = -a_i a_{i+1}, \qquad (i = 1, ..., n-1)$$

$$\{a_i, b_i\}_1 = a_i b_i, \qquad (i = 1, ..., n-1)$$

$$\{a_n, b_n\}_1 = b_n$$

$$\{a_i, b_{i+1}\}_1 = -a_i b_{i+1}, \qquad (i = 1, ..., n-1)$$

$$\{b_i, b_{i+1}\}_1 = -a_i, \qquad (i = 1, ..., n-1).$$

In these coordinates, we still have the Nijenhuis tensor, relating the various Poisson tensors in the hierarchy.

The submanifold $\mathbb{R}^{2n-1} \subset \mathbb{R}^{2n}$ defined by $a_n = 0$ is a Poisson submanifold for all Poisson tensors in the hierarchy, so that the bi-Hamiltonian structure reduces to this submanifold, and yields the bi-Hamiltonian formulation for the Toda lattice in Flaschka coordinates. However, the tangent space to this submanifold is not left invariant by the Nijenhuis operator N, and on \mathbb{R}^{2n-1} we do not have an induced PN-structure.

Another way of expressing these facts is to observe that the involutive diffeomorphism $\phi : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ defined by:

$$\phi(a_1, \ldots, a_n, b_1, \ldots, b_n) = (a_1, \ldots, -a_n, b_1, \ldots, b_n),$$

is a Poisson diffeomorphism for all Poisson structures. Hence, the group $\mathbb{Z}_2 = \{I, \phi\}$ acts by Poisson diffeomorphisms on \mathbb{R}^{2n} , for all Poisson structures. It follows that its fix point set, which is just \mathbb{R}^{2n-1} , has induced Poisson brackets (see the Poisson Involution Theorem in [9, 19]), and these form the hierarchy in Flaschka coordinates.

4.5.4. Toda lattice on a Lie algebroid. We now consider the following bi-Hamiltonian formulation on a Lie algebroid.

We let $A = \mathbb{R}^{2n-1} \times \mathbb{R}^{2n} \to \mathbb{R}^{2n-1}$ be the trivial vector bundle with fiber \mathbb{R}^{2n} . We denote by $\{e_1, \ldots, e_n, f_1, \ldots, f_n\}$ a basis of global sections and we let $(a_1, \ldots, a_{n-1}, b_1, \ldots, b_n)$ be global coordinates on the base. Now we define a Lie algebroid structure by declaring that the bracket satisfies:

$$[e_i, e_j]_A = [f_i, f_j]_A = [e_i, f_j]_A = 0,$$

and that the anchor is given by:

$$\rho_A(e_i) = \frac{\partial}{\partial a_i} \quad (i = 1, \dots, n - 1)$$

$$\rho_A(e_n) = 0$$

$$\rho_A(f_i) = \frac{\partial}{\partial b_i} \quad (i = 1, \dots, n).$$

Notice that $(A, [,]_A, \rho_A)$ is just the trivial extension of Lie algebroids:

$$0 \longrightarrow L_{\mathbb{R}} \longrightarrow A \longrightarrow T\mathbb{R}^{2n-1} \longrightarrow 0$$

where $L_{\mathbb{R}}$ denotes the trivial line bundle over \mathbb{R}^{2n-1} .

Now on A we can define the following Poisson tensors:

$$\pi_0 = \sum_{i=1}^{n-1} a_i e_i \wedge (f_i - f_{i+1}) + e_n \wedge f_n$$

$$\pi_1 = -\sum_{i=1}^{n-2} a_i a_{i+1} e_i \wedge e_{i+1} - a_{n-1} e_{n-1} \wedge e_n + \sum_{i=1}^{n-1} a_i e_i \wedge (b_i f_i - b_{i+1} f_{i+1})$$

$$+ b_n e_n \wedge f_n - \sum_{i=1}^{n-1} a_i f_i \wedge f_{i+1}.$$

These Poisson structures on A cover ordinary Poisson structures on the base \mathbb{R}^{2n-1} , which are just the Poisson structures $\overline{\pi}_0$ and $\overline{\pi}_1$ of the Toda lattice, in Flaschka coordinates.

Since π_0 is symplectic, the Poisson tensors on A are associated with a PN-algebroid structure. By our main theorem, they give rise to an integrable hierarchy on A

$$\pi_j^{\sharp} \mathrm{d}h_{2-j} = \pi_{j-1}^{\sharp} \mathrm{d}h_{3-j}, \quad k \in \mathbf{Z}$$

with $h_j = \frac{1}{j} \operatorname{Tr} N^j$ for $j \neq 0$ and $h_0 = \ln(\det(N))$, covering an integrable hierarchy on the base

$$\overline{\pi}_j^{\sharp} dh_{2-j} = \overline{\pi}_{j-1}^{\sharp} dh_{3-j}. \quad k \in \mathbf{Z}$$

In this hierarchy the Hamiltonians differ by a factor of 2 relative to the Hamiltonians in the multi-Hamiltonian formulation of the Toda lattice given by Proposition 16. Although the hierarchy in the Lie algebroid is generated by a Nijenhuis operator, it is well known that this is not the case with the Toda lattice in the base manifold.

5. Examples

In this section, we consider 3 examples that illustrates the results above. The first two examples are the two extreme cases of (i) a Lie algebra over a point $A = \mathfrak{g}$ and (ii) the tangent bundle of a manifold A = TM. The third example, is the Lie algebroid connected with dynamical R-matrices, which is a product of a tangent Lie algebroid and a Lie algebra, therefore combining aspects of both.

5.1. Lie algebras. Let \mathfrak{g} be a finite dimensional Lie algebra, considered as a Lie algebroid over a one point space, and let N be a Nijenhuis operator compatible with a Poisson tensor $\pi \in \mathfrak{X}^2(\mathfrak{g})$.

The modular class of \mathfrak{g} is given by the adjoint character (see, e.g.,[17]):

$$\xi_{\mathfrak{g}}(X) = \operatorname{Tr}(\operatorname{ad}_X), \quad X \in \mathfrak{g}.$$

where ad denotes the adjoint representation of \mathfrak{g} .

Now we consider a Nijenhuis tensor $N: \mathfrak{g} \to \mathfrak{g}$, i.e., a linear map such that:

$$N[NX, Y] + N[X, NY] - N^{2}[X, Y] - [NX, NY] = 0, \quad X, Y \in \mathfrak{g}.$$
 (13)

This allows us to deform the Lie bracket on \mathfrak{g} to the new Lie bracket:

$$[X,Y]_N := [NX,Y] + [X,NY] - N[X,Y], \quad X,Y \in \mathfrak{g}.$$

The new Lie algebra $\mathfrak{g}_N = (\mathfrak{g}, [\ ,\]_N)$ (again viewed as Lie algebroid over a point) has modular class:

$$\xi_{\mathfrak{g}_N}(X) = \operatorname{Tr}(\operatorname{ad}_X^N), \quad X \in \mathfrak{g}.$$

where ad^N denotes the adjoint representation of \mathfrak{g}_N . Since the base manifold is a single point, Proposition 4 says simply that:

$$\xi_{\mathfrak{g}_N} = N^* \xi_{\mathfrak{g}},$$

which of course maybe checked directly. Similarly, by iteration, we have:

$$\xi_{\mathfrak{g}_{N^k}} = N^k \, \xi_{\mathfrak{g}}.$$

Let us denote by $r: \mathfrak{g}^* \to \mathfrak{g}$ the skew-symmetric linear transformation determined by the bivector $\pi \in \mathfrak{X}^2(\mathfrak{g})$. The condition that π is Poisson is just the condition that r is a solution of the *Classical Yang-Baxter Equation*:

$$[r, r] = 0 \tag{14}$$

For this reason, in this example we suppress any mention to the Poisson structure π , and we use instead the notation r, a solution of (14). We have also a Lie bialgebra structure $(\mathfrak{g}, \mathfrak{g}^*)$, and the bracket on \mathfrak{g}^* is given by:

$$[\alpha, \beta]_* = [\alpha, \beta]_r = \mathrm{ad}^*(r(\alpha)) \cdot \beta - \mathrm{ad}^*(r(\beta)) \cdot \alpha, \quad \alpha, \beta \in \mathfrak{g}^*.$$

where ad* denotes the coadjoint representation of \mathfrak{g} . The modular class of \mathfrak{g}^* is given by

$$\xi_{\mathfrak{g}^*}(\alpha) = \operatorname{Tr}(\operatorname{ad}_{\alpha}^r), \quad \alpha \in \mathfrak{g}^*,$$

where ad^r is the adjoint representation of $(\mathfrak{g}^*, [,]_r)$.

Let us assume now that we have a triple (\mathfrak{g}, r, N) . Under the compatibility assumptions,

$$N \circ r = r \circ N^*$$
 and $[\operatorname{ad}_{r\alpha}^*, N^*](\beta) = [\operatorname{ad}_{r\beta}^*, N^*](\alpha), \quad \alpha, \beta \in \mathfrak{g}^*, \quad (15)$

where [,] denotes the usual commutator of operators, we obtain a PN-algebroid (\mathfrak{g}, r, N) , with zero anchor (since the base manifold is a single point). Then N defines a sequence of modular forms on \mathfrak{g}^* , which are associated with the higher brackets on \mathfrak{g}^* , and are just related by:

$$\xi_{\mathfrak{g}_{N^k*}^*} = N^k \, \xi_{\mathfrak{g}_{N^*}^*}.$$

This is just an algebraic relation which must be satisfied by any pair of linear maps N and r which satisfy the algebraic equations (13), (14) and (15).

Obviously, in this case Theorem 9 says nothing, since every function is constant.

5.2. Tangent bundles. Let us consider now the case of A = TM, the tangent bundle of some manifold M. Since the anchor on A is the identity map, Proposition 4 yields the following result of [8]:

Proposition 17. The modular class of $(TM, [\ ,\]_N, \rho_N)$ is the cohomology class represented by the 1-form d(Tr N).

Now a Poisson-Nijenhuis structure on A is just an ordinary Poisson-Nijenhuis manifold (M, π, N) . Note, however, that the modular vector field associated with a Poisson manifold, as originally defined by Weinstein in [17], differs from $\xi_{T^*M,\pi}$ by a factor of 1/2. For this reason, the modular class of a Poisson-Nijenhuis manifold was defined in [8] as

$$X_{(N,\pi)} = \frac{1}{2} \xi_{T^*M_{N^*}} - \frac{1}{2} N \xi_{T^*M} = \frac{1}{2} d_{\pi}(\operatorname{Tr} N).$$

Then Theorem 9 immediately yields the main result of [8]:

Theorem 18. Let (M, π, N) be a Poisson-Nijenhuis manifold and assume that N is non-degenerate. Then the modular vector field X_N is bi-Hamiltonian and hence determines a hierarchy of flows which are given by:

$$X_{i+j} = \pi_i^{\sharp} dh_j = \pi_j^{\sharp} dh_i \quad (i, j \in \mathbf{Z})$$

where

$$h_0 = -\frac{1}{2} \log(\det N), \quad h_i = -\frac{1}{2i} \operatorname{Tr} N^i \quad (i \neq 0).$$

In [8] the authors show that many known hierarchies of integrable systems can be obtained in this manner, therefore providing a new approach to the integrability of those systems.

5.3. Dynamical Lie Algebroid. Let us start by describing the Lie bialgebroids that arise in connection with the dynamical Yang-Baxter equation.

Let \mathfrak{g} be a Lie algebra and $\mathfrak{h} \subset \mathfrak{g}$ an abelian Lie subalgebra of dimension l. We let $A = T\mathfrak{h}^* \times \mathfrak{g}$ be the direct product of Lie algebroids, where $T\mathfrak{h}^*$ is the tangent algebroid of the manifold \mathfrak{h}^* and \mathfrak{g} is viewed as a Lie algebroid over a point. More explicitly, the anchor $\rho: T\mathfrak{h}^* \times \mathfrak{g} \to T\mathfrak{h}^*$ is the projection on the first factor, while the bracket between two sections of A is given by:

$$[(v, f), (w, g)]_A = ([v, w], v(g) - w(f) + [f, g]_{\mathfrak{g}}),$$

where $v, w \in \mathfrak{X}(\mathfrak{h}^*)$ are vector fields in \mathfrak{h}^* and $f, g : \mathfrak{h}^* \to \mathfrak{g}$ are smooth \mathfrak{g} -valued functions on \mathfrak{h}^* .

Let $\{h_1, \ldots h_l\}$ be a basis of \mathfrak{h} and (q_1, \ldots, q_l) the dual system of linear coordinates on \mathfrak{h}^* . Then we have a constant bivector field $\pi_0 \in \mathfrak{X}^2(A)$ defined by:

$$\pi_0 = \sum_{i=1}^l h_i \wedge \frac{\partial}{\partial q_i}.$$

Since \mathfrak{h} is an abelian subalgebra of \mathfrak{g} , it follows that π_0 is in fact a Poisson structure on A. Now we recall (see [4]):

Definition 19. A triangular dynamical r-matrix on \mathfrak{g} is an \mathfrak{h} -equivariant function $r:\mathfrak{h}^*\to\mathfrak{g}\wedge\mathfrak{g}$ satisfying the classical dynamical Yang-Baxter equation

$$\sum_{i=1}^{l} h_i \wedge \frac{\partial r(q)}{\partial q_i} + \frac{1}{2} [r, r](q) = 0.$$
 (16)

Its well known (see [2, 18]) that any triangular dynamical r-matrix on \mathfrak{g} , defines a new Poisson bivector on the Lie algebroid A by:

$$\pi_r(q) = \sum_{i=1}^l h_i \wedge \frac{\partial}{\partial q_i} + r(q).$$

Thus r determines a Lie bialgebroid structure on (A, A^*) . The Lie bracket on the sections of A^* is given by

$$[h_q, h'_q]_* = 0$$

$$[\varepsilon_q, h_q]_* = \operatorname{ad}_{h_q}^* \varepsilon_q$$

$$[\varepsilon_q, \varepsilon'_q]_* = -\operatorname{ad}_{r\varepsilon_q}^* \varepsilon'_q + \operatorname{ad}_{r\varepsilon'_q}^* \varepsilon_q + \operatorname{d}_r(\varepsilon_q, \varepsilon'_q),$$

for $h_q, h_q' \in \mathfrak{h}$ and $\varepsilon_q, \varepsilon_q' \in \mathfrak{g}^*$, where ad* is the co-adjoint representation of \mathfrak{g}

$$\langle \operatorname{ad}_X^* \varepsilon, Y \rangle = \langle \varepsilon, [X, Y] \rangle, \quad X, Y \in \mathfrak{g}, \ \varepsilon \in \mathfrak{g}^*.$$

The modular class of the Lie algebroid A^* is represented by

$$\xi_{A^*}(h_q, \varepsilon_q) = \operatorname{Tr} \operatorname{ad}_{h_q} - \operatorname{Tr} [(\delta r(q))^* \varepsilon_q],$$
 (17)

where $\delta r(q)$ is the 1-cocycle on \mathfrak{g} defined by the anti-symmetric bivector r(q). Now, if N is a Nijenhuis operator on A compatible with π_r , then the modular vector field of this Poisson-Nijenhuis Lie algebroid is

$$d_{\pi_r}(\operatorname{Tr} N) = d_{\pi_0}(\operatorname{Tr} N) = \sum_{i=1}^l \frac{\partial \operatorname{Tr} N}{\partial q_i} \frac{\partial}{\partial q_i}.$$

References

- [1] M. Agrotis and P.A. Damianou, The modular hierarchy of the Toda lattice. *Diff. Geom Appl*, to appear.
- [2] M. Bangoura and Y. Kosmann-Schwarzbach, Equation de Yang-Baxter dynamique classique et algebroïdes de Lie. C. R. Acad. Sci. Paris 327 (1998), no. 8, 541–546.
- [3] A. Cannas da Silva and A. Weinstein, *Geometric Models for Noncommutative Algebras*, Berkeley Mathematics Lectures, vol. **10**, American Math. Soc., Providence, 1999.
- [4] P. Etingof and A. Varchenko, Geometry and Classification of Solutions of the Classical Dynamical YangBaxter Equation. *Comm. Math. Phys.* **192** (1998), 77–120.
- [5] S. Evens, J.-H. Lu and A. Weinstein, Transverse measures, the modular class and a cohomology pairing for Lie algebroids. *Quart. J. Math. Oxford* (2) **50** (1999), 417–436.
- [6] R.L. Fernandes, On the mastersymmetries and bi-Hamiltonian structure of the Toda lattice. J. Phys. A 26 (1993), 3797–3803.
- [7] R. L. Fernandes, Lie algebroids, holonomy and characteristic classe, Adv. in Math. 170 (2002), 119–179.
- [8] R. L. Fernandes and P. Damianou, Integrable hierarchies and the modular class. Preprint math.DG/0607784.
- [9] R.L. Fernandes and P. Vanhaecke, Hyperelliptic Prym Varieties and Integrable Systems, Commun. Math. Phys. 221 (2001) 169–196.
- [10] H. Flaschka, The Toda lattice. I. Existence of integrals. Phys. Rev. B (3) 9 (1974), 1924–1925.
- [11] J. Grabowski, G. Marmo and P. Michor, Homology and modular classes of Lie algebroids. *Ann. Inst. Fourier* **56** (2006), 69–83.
- [12] J. Grabowski, P. Urbanski, Lie algebroids and Poisson-Nijenhuis structures. *Reports on Mathematical Physics* **40** (1997), no. 2, 195–208.

- [13] Y. Kosmann-Schwarzbach, The Lie bialgebroid of a Poisson-Nijenhuis manifold, Lett. Math. Phys. **38** (1996), no. 4, 421–428.
- [14] Y. Kosmann-Schwarzbach and F. Magri, On the modular classes of Poisson-Nijenhuis manifolds, preprint math.SG/0611202.
- [15] Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures. Ann. Inst. Henri Poincaré 53 (1990), 35–81.
- [16] Y. Kosmann-Schwarzbach and A. Weinstein, Relative modular classes of Lie algebroids. C. R. Math. Acad. Sci. Paris **341** (2005), no. 8, 509–514.
- [17] A. Weinstein, The modular automorphism group of a Poisson manifold. J. Geom. Phys. 23 (1997), no. 3-4, 379–394.
- [18] P. Xu, Triangular dynamical r-matrices and quantization. Adv. Math. 16 (2002), 15-28.
- [19] P. Xu, Dirac submanifolds and Poisson involutions, Ann. Sci. École Norm. Sup. (4) **36** (2003), 403–430.

RAQUEL CASEIRO

Universidade de Coimbra, Departamento de Matemática, 3000 Coimbra, Portugal

E-mail address: raquel@mat.uc.pt