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ON THE EDGE OF STABILITY ANALYSIS

ERCÍLIA SOUSA

Abstract: The application of high order methods to solve problems with phys-
ical boundary conditions in many cases implies to consider a different numerical
approximation on the discrete points near the boundary. The choice of these ap-
proximations, called the numerical boundary conditions, influence most of the times
the stability of the numerical method.

Some theoretical analysis for stability, such as the von Neumann analysis, do
not take into account the influence of the numerical representation of the boundary
conditions on the overall stability of the scheme. The spectral analysis considers
the eigenvalues of the matrix iteration of the scheme and although they reflect
some of the influence of numerical boundary conditions on the stability, many times
eigenvalues fail to capture the transient effects in time-dependent partial differential
equations.

The Lax analysis does provide information on the influence of numerical boundary
conditions although in practical situations it is generally not easy to derive the
corresponding stability conditions. In this paper we present properties that relates
the von Neumann analysis, the spectral analysis and the Lax analysis and show
under which circumstances the von Neumann analysis together with the spectral
analysis provides sufficient conditions to achieve Lax stability.

Keywords: Stability, high-order methods, von Neumann analysis, spectral.

1. Introduction

The analysis of numerical schemes involves the study of consistency, ac-
curacy, stability and convergence. Clearly, the conditions of consistency,
stability and convergence are related to each other and the precise relation is
contained in the fundamental Equivalence Theorem of Lax a proof of which
can be found in Ritchmyer and Morton [9]. The theorem says that for a well-
posed initial value problem and a consistent discretisation scheme, stability
is the necessary and sufficient condition for convergence.

The von Neumann analysis is the most well known classical method to
determine stability conditions. However, when applicable to finite domain
problems, this method only provides necessary and sufficient conditions if we
assume periodic boundary conditions. The spectral analysis takes in consid-
eration the spectral radius of the matrix iteration of the numerical method.
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If the matrix is normal, the spectral radius gives accurate information about
the matrix norm and this guarantees sufficient and necessary conditions for
stability. When the matrix iteration is not normal the spectral radius gives
no indication of the magnitude of the error for a finite time. It guaran-
tees eventual decay of the solution, but does not control the intermediate
growth. Therefore, the spectral condition for a non normal matrix it is only
a necessary condition for stability. Additionally, practical computations are
performed for finite values which reinforces the importance of controlling the
intermediate growth of the error.

The Lax stability guarantees that the norm of the powers of the matrix
iteration is uniformly bounded. In this paper we show that under certain cir-
cumstances the von Neumann and spectral stability together ensure Lax sta-
bility even when we have a finite domain problem with non-periodic boundary
conditions.

Nowadays there are many textbooks that describes the three types of sta-
bility analysis mentioned above, such as, the classical book by Ritchmyer
and Morton [9], or some more recent books [4], [5], [8], [10].

In many works the von Neumann analysis has been used to study the stabil-
ity even when we have finite domains without periodic boundary conditions.
Therefore it is assumed in practice that the von Neumann analysis is a neces-
sary condition for stability. Also the work of Godunov and Ryabenkii [2],[3]
considers the von Neumann condition has still being necessary for stability.

The outline of the paper is as follows. In the next section we introduce
the model problem and the general form of the finite difference schemes
considered. In section 3, we give an overview of the stability theories we are
discussing. In section 4, we present the main results. In section 5, we obtain
stability conditions for some practical examples using the theories considered.
The last section includes some conclusions.

2. The finite difference schemes

The initial boundary problem we consider is a linear equation and is defined
on a half-real line:

∂u

∂t
= Lu(x, t) x ≥ 0, t ≥ 0, (1)
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where L is a general differential operator in x. The initial condition and the
boundary conditions are given by

u(x, 0) = f(x), (2)

u(0, t) = g(t), lim
x→∞

u(x, t) = 0. (3)

Suppose we have approximations Un
j to the values u(xj, tn) at the mesh

points xj, j = 0, 1, 2, . . . and assume we approximate the problem (1)–(3) by
the difference scheme

Un+1
j = QUn

j , j = r, r + 1, . . . (4)

Q =

p
∑

j=−r

ajE
j, EaUn

j = Un
j+a, (5)

where a−r and ap are non-zero. The aj ’s also depend of parameters ∆x and
∆t, where ∆t is the time step and ∆x the space step.

Considering the finite difference scheme (4) we observe that as Q uses r
points upstream, the basic approximation can not be used at x0, x1, x2,
. . ., xr−1, so there we need to apply numerical boundary conditions. In our
particular case the boundary given by the physical problem is associated
only with the point x0. At the other points the boundary conditions, called
numerical boundary conditions, affect the difference scheme. Let us assume
that the boundary conditions can be written as

Un+1
β =

q
∑

j=0

bβjU
n
j β = 0, 1, . . . , r − 1 (6)

and bβj depend also of parameters ∆x and ∆t.

3. Stability analysis

3.1. The von Neumann analysis. The von Neumann (Fourier) method is
the most well known classical method to determine necessary and sufficient
stability conditions. If we assume periodic boundary conditions the von
Neumann analysis is based on the decomposition of the numerical solution
into a Fourier sum as

Un
j =

N−1
∑

p=0

κn
pe

iξp(j∆x)
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where i =
√
−1, κn

p is the amplification factor of the p-th harmonic and

ξp =
p2π

N∆x
. The product ξp∆x is often called the phase angle: θ = ξp∆x

and covers the domain [0, 2π) in steps of 2π/N . The region around θ = 0
corresponds to the low frequencies while the region θ = π is associated with
the high-frequencies. In particular, the value θ = π corresponds to the
highest frequency resolvable on the mesh, namely the frequency of wavelength
2∆x.

Considering a single mode, κneijθ, its time evolution is determined by the
same numerical scheme as the complete numerical solution Un

j . Hence in-
serting a representation of this form into a numerical scheme we obtain a
stability condition by imposing an upper bound to the amplification factor,
κ.

The amplification factor is said to satisfy the von Neumann condition

if there is a constant K such that

|κ(ξ)| ≤ 1 +K∆t, ∀ξ ∈ IR. (7)

However, for some problems the presence of the arbitrary constant in (7)
is too generous for practical purposes, although being adequate for eventual
convergence in the limit ∆t→ 0. In practice, the inequality (7) is substituted
by the following stronger condition,

|κ(ξ)| ≤ 1, ∀ξ ∈ IR, (8)

or in terms of the phase angle,

|κ(θ)| ≤ 1, ∀θ ∈ [0, 2π). (9)

This has been called practical stability by Richtmyer and Morton [9] or strict
stability by other authors. In some cases condition (7) allows numerical
modes to grow exponentially in time for finite values of ∆t. Therefore, the
practical, or strict, stability condition (8) is recommended in order to pre-
vent numerical modes from growing faster than the physical modes of the
differential equation.

Von Neumann stability: The amplification factor satisfy the practical
von Neumann condition if

|κ(ξ)| ≤ 1, ∀ξ ∈ IR.
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3.2. The spectral analysis. Let us assume that we are considering an
explicit method that can be written in the form of a matrix iteration, where
the nodal points are Un

j , j = 0, . . . , N − 1.

Introducing the vector Un = [Un
0 , . . . , U

n
N−1]

T , the scheme may be written
as a matrix equation

Un+1 = AUn + v, n = 0, 1, 2, . . . . (10)

where A is an N ×N matrix and v is a vector that may contain some data
from the physical boundary conditions.

Any errors En in a calculation based on (10) will grow according to

En+1 = AEn, n = 0, 1, 2, . . . . (11)

where En = un − Un with un, Un the exact and numerical solutions of (10),
respectively, at t = n∆t.

Given A ∈ IRN×N denote the spectral radius of A by ρ(A) and the 2-norm
of the matrix A by ||A||. We recall that

||A|| = ρ(A) if A ∈ IRN×N is normal.

It is well known that for any A ∈ IRN×N

ρ(A) ≤ ||A||,
and that

Am → 0 as m→ ∞ if and only if ρ(A) ≤ 1,

where the eigenvalues on the unit circle must be simple.
A simple criterion for regulating the error growth governed by (11) is given

by

ρ(A) ≤ 1. (12)

When the matrix A is not normal the spectral radius gives no indication
of the magnitude of En for finite n. In this case a condition of the form
ρ(A) ≤ 1 guarantees eventual decay of the solution, but does not control the
intermediate growth of the solution. Then, it is easy to understand that the
condition (12) is a necessary condition for stability but not always sufficient.

Spectral stability: Let A be the matrix iteration of a numerical method,
then the spectral condition is given by

ρ(A) ≤ 1.
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3.3. The Lax analysis. The Lax stability is in some way connected with
the spectral stability. The spectral stability ensures that ||En|| → 0 when
n → ∞. Practical computations are however, performed at finite values of
n, and the spectral condition does not ensure that the norm ||An|| does not
become large at finite values of n before decaying as n goes to infinity. In
order to guarantee that ||An|| does not become too large we require ||An|| to
remain uniformly bounded for all values of n.

Lax stability: In order for all Un to remain bounded and the scheme,
defined by the operator A, to remain stable the infinite set of operators An

has to be uniformly bounded. That is, a constant K exists, such that,

||An|| ≤ K, 0 < ∆t < τ, 0 ≤ n∆t ≤ T,

for fixed values of τ and T and for all n. This condition implies the definition
of some norm in the considered functional space.

4. Main results

We start this section by presenting the results for problems with periodic
boundary conditions before showing the results for the case we have numerical
boundary conditions additionally to the physical boundaries. We assume the
norm || · || of vectors and matrices is the 2-norm.

4.1. Periodic boundary conditions. Consider the difference scheme

Un+1
j = QUn

j , j = r, r + 1, . . . (13)

Q =

p
∑

j=−r

ajE
j, EaUn

j = Un
j+a, (14)

and assume we have periodic boundary conditions. The matricial form of
the numerical scheme is given by

Un+1 = QUn (15)

for Un = [Un
0 , U

n
1 , . . . , U

n
N−1]

T and where Q is a circulant N×N matrix given
by
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Q =

















































































a0 . . . ap 0 . . . 0 a−r . . . a−1

... . . . . . . . . . . . . ...

a−r+1 . . . a0 . . . ap 0 . . . 0 a−r

a−r . . . a0 . . . ap 0 . . . 0

... . . . . . . . . . . . . . . . ...

0 . . . 0 a−r . . . a0 . . . ap 0

0 a−r a0 ap

ap ap−1
... . . . . . . . . . . . . . . . ...

a1 ap 0 . . . 0 a−r a0

















































































(16)

Theorem 1. The finite difference scheme (13)-(14) is spectral stable if and
only if is von Neumann stable.

Proof : Let us assume that our methods have the matricial form (15)-(16).
The eigenvalues of the matrix Q, in (16), are [1] given by

λm =

p
∑

k=0

ake
i2πmk/N +

N−1
∑

k=N−r

ak−Ne
i2πmk/N , m = 0, . . . , N − 1 (17)
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with associated eigenvectors

ψm =
1√
N













1
ei2πm/N

ei2πm2/N

...
ei2πm(N−1)/N













(18)

If now we consider the von Neumann analysis for the finite difference
scheme represented by the matrixQ, we need to substitute in (13) the Fourier
components

κn
me

ijm2π/N , m = 0, . . . , N − 1

usually represented by

κn
me

ijθm, m = 0, . . . , N − 1,

where θm = m2π/N represents the phase angle and covers the domain [0, 2π)
in steps of 2π/N .

For

Un+1 = QUn with Un = [Un
0 , U

n
1 , . . . , U

n
N−1]

T

we get

κm













1
ei2πm/N

ei2πm2/N

...
ei2πm(N−1)/N













= Q













1
ei2πm/N

ei2πm2/N

...
ei2πm(N−1)/N













(19)

We have then the same eigenvectors that are associated with the circulant
matrix and therefore κm = λm.

Theorem 2. The finite difference scheme (13)-(14) is von Neumann stable
if and only if is Lax stable.

Proof : A circulant matrix is a normal matrix (see for instance [1]). If the
matrix is normal then ||Q|| = ρ(Q), where || · || is the 2-norm. Therefore if
the finite difference scheme is von Neumann stable ||Q|| ≤ 1 since from the
previous theorem ρ(Q) ≤ 1. Also ||Qn|| ≤ ||Q||n ≤ 1 and we conclude the
scheme is Lax stable.

Let us now assume the interior scheme is not von Neumann stable.
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We define the Discrete Fourier Transform:

Û(θ) =
1

N

N−1
∑

j=0

Uje
ijθ,

where 0 ≤ θ < 2π, and θ = 2kπ/N, k = 0, . . . , N − 1.

The Rayleigh Energy Theorem (Discrete Parseval’s relation) says [7]

N−1
∑

j=0

|Uj|2 = N
N−1
∑

k=0

|Û(θk)|2.

Assuming that the scheme (13) is not von Neumann stable, therefore the
von Neumann condition is not satisfied. Suppose that for each K > 0, exists
a θK, 0 ≤ θK < 2π such that

|κ(θK)| > 1 +K∆t,

where κ(θ) =
∑p

k=−r ake
ikθ. This proof follows an idea presented in Sod [11].

We have that κ(θ) is a continuous function of θ. Therefore there exists an
interval IK such that θ ∈ IK and |κ(θ)| > 1 +K∆t, ∀θ ∈ IK.

Consider the initial data u0
j so that the discrete Fourier transform of U 0

j ,

Û 0(θ) is 0 outside IK . Thus, for 0 ≤ θ < 2π with Û 0(θ) 6= 0, |κ(θ)| > 1+K∆t.
We have that

Ûn(θ) = Q̂U
n−1

(θ) = κ(θ)Ûn−1(θ).

Therefore, it follows that

Ûn(θ) = κ(θ)Ûn−1(θ) = . . . = κn(θ)Û 0(θ).

Then

Ûn(θ) > (1 +K∆t)nÛ 0(θ).

Now using the Discrete Parseval’s relation we have

||Un||2 =
N−1
∑

j=0

|Un
j |2

= N

N−1
∑

k=0

|Ûn(θk)|2
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= N
N−1
∑

k=0

|κ(θk)|2n|Û 0(θk)|2

> (1 +K∆t)2nN
N−1
∑

k=0

|Û 0(θk)|2

= (1 +K∆t)2n||U 0||2.
We have Un = QnU 0 and then

||QnU 0||2 > (1 +K∆t)2n||U 0||2

or
||QnU 0||2
||U 0||2 > (1 +K∆t)2n.

But

||Qn||2 = max
||U ||6=0

||QnU ||2
||U ||2

>
||QnU 0||2
||U 0||2

> (1 +K∆t)2n.

Finally we have

||Qn||2 > (1 +K∆t)2n, for all n.

This suggests that when the scheme is not von Neumann stable the operator
Qn follows the rise of the amplification factor κn.

4.2. Numerical boundary conditions. Suppose we have approximations
Un

j as described in section 2, given by the difference scheme

Un+1
j = QUn

j , j = r, r + 1, . . . (20)

Q =

p
∑

j=−r

ajE
j, EaUn

j = Un
j+a (21)

and the numerical boundary conditions

Un+1
β =

q
∑

j=0

bβjU
n
j β = 0, 1, . . . , r − 1. (22)
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We consider p ≤ q. Usually q = p+ r. Also in what follows N > p+ r.
Assume that the matricial form of the scheme is

Un+1 = AUn, (23)

and the iterative matrix A is now given by

A =





Br×N

Q(N−(r+p))×N

Fp×N



 (24)

where B contains the part of the boundary conditions and Q the part of the
interior scheme, that is

Un+1
β = BβU

n, β = 0, . . . , r−1 Un+1
j = QjU

n, j = r, . . . , N−(r+p).

Note that Bβ represents the β-row and Qj represents the j-row. The last
block matrix F contains the lines that represent the discrete points computed
using (20) and takes in consideration we are assuming the solution u(x, t) is
equal to zero as x goes to infinity, that is, we assume that

Un
N = Un

N+1 = . . . = Un
N+p−1 = 0.

Note that in most applications r and p takes the values 1,2 or 3.
Explicitly the matrix Br×N is given by

Br×N =













b00 b01 . . . b0q 0 . . . 0
b10 b11 . . . b1q 0 . . . 0

...
...

...
...

...
...

...

br−10 br−11 . . . br−1q 0 . . . 0













Q(N−(r+p))×N is of the form





















a
−r a

−r+1 . . . . . . a0 . . . . . . ap−1 ap 0 . . . . . . 0

0 a
−r a

−r+1 . . . . . . a0 . . . . . . ap−1 ap 0 . . . 0

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

0 . . . 0 a
−r a

−r+1 . . . . . . a0 . . . ap−1 ap 0

0 . . . . . . 0 a
−r a

−r+1 . . . . . . a0 . . . ap−1 ap




















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and the matrix Fp×N is






















0 . . . . . . 0 a
−r a

−r+1 . . . a
−1 a0 . . . . . . . . . ap−1

0 . . . . . . . . . 0 a
−r a

−r+1 . . . a
−1 a0 . . . . . . ap−2

...
. . .

. . .
. . .

. . .
. . .

...

0 . . . . . . . . . . . . . . . 0 a
−r a

−r+1 . . . a
−1 a0 a1

0 . . . . . . . . . . . . . . . . . . 0 a
−r a

−r+1 . . . a
−1 a0























In what follows we prove properties that relates Lax stability with spectral
and von Neumann stability.

Theorem 3. If the numerical method (20)–(22) is Lax stable then is spectral
stable.

Proof : If the scheme is Lax stable then A is power-bounded, that is, ||An|| ≤
K for n = 1, 2, . . .. We know that ρ(A) ≤ ||A||. Then

ρ(An) ≤ ||An|| ≤ K, n = 1, 2, . . .

But ρ(An) = ρn(A), hence ρn(A) ≤ K, n = 1, . . . and therefore ρ(A) ≤
K1/n. Then limn→∞K1/n = 1.

Theorem 4. If the interior scheme is von Neumann stable then

||An|| ≤ en||L||, where L = A−Q,

for A and Q N ×N matrices given by (24) and (16) respectively.

Proof : We prove by induction that

||(Q+ L)n|| ≤ en||L||.

For n = 1 is true because

||Q+ L|| ≤ ||Q|| + ||L|| ≤ 1 + ||L|| ≤ e||L||.

It is easy to prove (by induction) that

(Q+ L)n = Qn +

n−1
∑

k=0

Qn−k−1L(Q+ L)k, n = 1, 2, . . .
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Therefore

||(Q+ L)n|| ≤ ||Qn|| +
n−1
∑

k=0

||Qn−k−1|| ||L|| ||(Q+ L)k||.

By assumption, the interior scheme is von Neumann stable. Therefore,
||Qn|| ≤ 1 and ||Qn−k−1|| ≤ 1, for k = 0, . . . , n. By the inductive hypothesis,
||(Q+ L)k|| is bounded, that is, ||(Q+ L)k|| ≤ ek||L||.

We have

||(Q+ L)n|| ≤ 1 +
n−1
∑

k=0

||L||ek||L||

≤ 1 + ||L||
n−1
∑

k=0

ek||L||.

It is easy to check that

en||L|| ≥ 1 + ||L||
n−1
∑

k=0

ek||L||.

Therefore

||(Q+ L)n|| ≤ en||L||.

Theorem 5. Assume the interior scheme is von Neumann stable:

(1) If A = Q+ L such that ||L|| ≤ ∆tC then A is power-bounded.
(2) If ρ(A) ≤ 1 then A is power-bounded.

Proof : (1) If A = Q + L such that ||L|| ≤ ∆tC then ||(Q + L)n|| ≤ eTC for
T = n∆t and we can conclude that A is power-bounded, that is, ||An|| ≤ K.

(2) If ρ(A) ≤ 1, since [14]

lim
k→∞

||Ak||1/k = ρ(A),

there is a k0 such that ||Ak|| ≤ 1, for all k ≥ k0. Therefore, from Theorem
4.4, follows

||An|| ≤ ek0||L||, for all n.
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We have that von Neumann and spectral stability are sufficient conditions
for ||An|| ≤ K for all n.

How can we prove that ||An
N || ≤ C for all N, that is, limN→∞ ||An

N || ≤
C? Note that N is the size of the matrix A and is directly related with the
space step ∆x, such that, ∆x→ 0 as N → ∞.

If we have ρ(AN) ≤ 1, for all N , it is guaranteed that ||An
N || ≤ K, for all

N .
If AN = QN +∆tLN then ||An

N || ≤ en∆t||LN || = eT ||LN || . Let ||LN || = M
for all N > p+ r, where M is a constant. Then we have Lax stability and
in this case ||An

N || ≤ eTM , for all n and N > p+ r. The value of ||LN || is in
fact the same as N → ∞ as we shall prove in the next theorem.

Theorem 6. For LN such that LN = AN −QN we have

||LN || = ||LN+1||, for all N > p+ r.

Proof : Note that

LN = AN −QN =





Br×N −Qr×N

O(N−(r+p))×N

Fp×N −Qp×N





where O(N−(r+p))×N is the null matrix or zero matrix. The block matrixQr×N

represent the first r lines of the matrix Q given by (16) and Qp×N the last p
lines.

Also,

LN+1 = AN+1 −QN+1 =





Br×N+1 −Qr×N+1

O(N+1−(r+p))×N+1

Fp×N+1 −Qp×N+1





The difference between Br×N −Qr×N and Br×N+1−Qr×N+1 is that the latter
has an additional column of zeros. The same difference occur between the
matrices Fp×N −Qp×N and Fp×N+1−Qp×N+1. Therefore it is easy to conclude
that ||LN || = ||LN+1||. Note that usually in practical applications the block
matrices B and F does not have more than three lines.

5. Numerical examples

In this section two examples are given: a classical example with physical
boundary conditions and a more complex example with numerical boundary
conditions.
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5.1. A classical example. This example is a classical example showing
that the eigenvalues of the matrix iteration does not give a sufficient and
necessary condition for stability.

Suppose we consider the problem (1)-(3), where

Lu(x, t) =
∂u

∂x
, x ∈ (0, 1)

with an initial condition and boundary conditions given, where u(1, t) = 0.
We discretize the equation by

Un+1
j = Un

j + σ(Un
j+1 − Un

j ), where σ =
∆t

∆x
.

Then Un+1 = AUn, where Un = [Un
0 , . . . , U

n
N−1]

T and

A =













1 − σ σ
1 − σ σ

...
...

...
...
σ

1 − σ













The eigenvalues are λi = 1 − σ, i = 0, . . . , N − 1, and ρ(A) < 1 if and only
if σ < 2.

On the other hand the von Neumann stability analysis for the interior
scheme says that the amplification factor is given by

κ = 1 + σ(eik∆x − 1).

Therefore, for θ = k∆x,

κ = 1 − σ + σ cos θ + iσ sin θ.

We have
|κ|2 = 1 − 2σ(1 − σ)(1 − cos θ).

For that reason we have that |κ|2 ≤ 1 if and only if σ(1 − σ)(1 − cos θ) ≤ 1
that is σ ≤ 1.

In conclusion we have

von Neumann : 0 < σ ≤ 1 Spectral : 0 < σ < 2

Therefore, the spectral radius suggests stability for 1 < σ < 2, although the
scheme is unstable for these values.

In this case it is easy to check that as N becomes larger the eigenvalues of
A are the same. We can also conclude the stability condition, 0 < σ ≤ 1,
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is the intersection of both conditions and is the same as the von Neumann
condition.

5.2. An example with numerical boundary conditions. Consider the
one-dimensional problem with constant velocity V in the positive x direction
and constant diffusion with coefficient D > 0:

∂u

∂t
+ V

∂u

∂x
= D

∂2u

∂x2
, t > 0, x > 0 (25)

with the initial condition

u(x, 0) = f(x), x ≥ 0 (26)

and the boundary conditions

u(0, t) = g(t), t > 0 u(x, t) → 0, x→ ∞. (27)

We discretize at the interior points j = 2, . . . , N − 1, using the scheme
introduced by Leonard [6],

Un+1
j = {1 − ν∆0 + (

1

2
ν2 + µ)δ2 +

1

6
ν(1 − ν2 − 6µ)δ2∆−}Un

j (28)

that interpolates the mesh points Un
j−2, U

n
j−1, U

n
j , Un

j+1 and where

ν = V
∆t

∆x
and µ = D

∆t

∆x2
.

The operators are the usual central, backward and second difference operators

∆0Uj :=
1

2
(Uj+1 −Uj−1), ∆−Uj := Uj −Uj−1, δ2Uj := Uj+1 − 2Uj +Uj−1.

At j = 1, we use a numerical boundary condition suggested in [12], that
interpolates the mesh points Un

j−1, U
n
j , Un

j+1 and Un
j+2,

Un+1
j = {1 − ν∆0 + (

1

2
ν2 + µ)δ2 +

1

6
ν(1 − ν2 − 6µ)δ2∆+}Un

j , (29)

where ∆+Uj := Uj+1 − Uj.
In Figure 1 we show the von Neumann condition for the scheme (28),

considering we have a Cauchy problem, that is, periodic boundary condition.
We also plot the spectral condition for the matrix iteration A that takes
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in consideration the interior scheme (28) and also the numerical boundary
condition (29). The matrix iteration A is given by

A =

















a∗ b∗ c∗ d∗ 0 0 . . . . . . 0 0 0 0
a b c d 0 0 . . . . . . 0 0 0 0
0 a b c d 0 . . . . . . 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . . . . a b c d
0 0 0 0 0 0 . . . . . . 0 a b c

















where
a∗ = c1 + c2 − c3 a = −c3
b∗ = 1 − 2c2 + 3c3 b = c1 + c2 + 3c3
c∗ = −c1 + c2 − 3c3 c = 1 − 2c2 − 3c3
d∗ = c3 d = −c1 + c2 + c3

for

c1 =
ν

2
c2 =

ν2

2
+ µ c3 =

ν

6
(1 − ν2 − 6µ).

Note that here r = p = 1.
It was proved in [13], for this example, using normal mode analysis that

the stable region is given by the region in Fig. 1(b). This region is the same
as the region shown in Fig. 1(a) that represents the intersection of the von
Neumann condition and spectral condition.

In Figure 2 we plot ||An|| as n → ∞. For µ = 0.001 and ν = 1.02 we are
in the spectral stable region but von Neumann unstable and we observe in
Figure 2 (a) that the maxn ||An|| is increasing as the size N of the matrix
A increases. On the other hand, for µ = 0.001 and ν = 0.1 we are in the
region where the scheme is spectral and von Neumann stable and it is shown
in Figure 2 (b) that the maximum value is always the same as N increases.

The spectral condition guarantees eventual decay of the solution but does
not control the intermediate growth of the solution, being this guaranteed
by the von Neumann condition, that is, the von Neumann condition seems
to assure that as N becomes larger there will not be a strong effect in the
value maxn ||An||.

In Figure 3 we plot the amplification factor for the scheme (28) given by

|κ(s)| = 1 − 8µs+ 4[(2µ+ ν2)2 − ν2 + 2α(1 − 2ν)]s2

−16α(2µ+ ν2 − ν − α)s3,
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where α = 2νµ− (ν/3)(1− ν2) and s = sin2(ξ/2). Also if we observe Figure
4 we see that ||An|| has a behavior very close to |κ(π)|n where ξ = π is the
value for which the amplification factor takes the biggest value.

It was pointed out in the end of section 4.1 that the norm of the powers
of the matrix iteration, namely ||Qn||, follows the rise of the amplification
factor. Although, in this example, A is not a normal matrix and the first line
represents the numerical boundary condition, the norm ||An|| seems to follow
also the rise of the amplification factor associated to the interior scheme.

6. Conclusion

The aim of this paper is to present some properties that relates the von
Neumann analysis, the spectral analysis and the Lax theory in order to give
a new way to verify when a finite difference scheme is stable even if the
matrix iteration is not normal. To control the growing of the norm of the
power matrices is usually more difficult than to verify the von Neumann
condition for the interior scheme and to calculate the maximum eigenvalue
of the matrix iteration.
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Figure 1. Stability region
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Figure 2. N = 30, (−), N = 50, (−−), N = 70, (− · −), N = 90(· ·
·) (a)µ = 0.001, ν = 1.02 ρ30(A) = 0.3031, ρ50(A) = 0.3053, ρ70(A) =
0.5448, ρ90(A) = 0.5671 (b) µ = 0.001, ν = 0.1 ρ30(A) = 0.9608, ρ50(A) =
0.9608, ρ70(A) = 0.9608, ρ90(A) = 0.9642
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Figure 3. Amplification factor κ(s), 0 ≤ s ≤ 1 for µ = 0.001 and ν = 1 (-
−), ν = 1.005(− · −)ν = 1.02(−−)
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Figure 4. N = 30, (−), N = 50, (−−), N = 70, (− · −), N = 90(· · ·)
µ = 0.001, (a) ν = 1.005 (b) ν = 1.02


