
Pré-Publicações do Departamento de Matemática
Universidade de Coimbra
Preprint Number 07–11

RANKING MULTIOBJECTIVE SHORTEST PATHS

ERNESTO QUEIRÓS MARTINS, JOSÉ MANUEL PAIXÃO, MÁRIO SILVA ROSA
AND JOSÉ LUIS SANTOS

Abstract: This paper is concerned with the ranking of multi-objective shortest
paths accordingly to an order relation verifying certain conditions such is the case,
for instance, of the lexicographic order. We present a new labelling algorithm that
makes use of shortest deviation paths for obtaining the set of Pareto solutions for the
multi-objective shortest path problem. The computational experience reported at
the end of the paper shows that the new algorithm clearly outperforms the previous
approaches when one looks for the `-th shortest non-dominated paths.

Keywords: Multiple objective programming, combinatorial optimization, ranking
algorithm, total order, non-dominated path.
AMS Subject Classification (2000): 90B10, 90C27, 90C29, 90C35.

1. Introduction
The multiobjective shortest path problem (MSPP) is a natural extension

of the classical shortest path problem when several parameters are assigned
to the arcs of the underlying network.

The MSPP has been dealt with by many authors addressing either the-
oretical aspects, algorithmic approaches or applications. In particular, the
bi-objective case has been extensively studied in the literature. For a review
of the MSPP, the interested reader is referred to [8].

For the MSPP, one intends to determine a path that minimizes simultane-
ously all the criteria under consideration. Usually, there is a conflict among
the different criteria and such an ideal solution does not exist. The resolu-
tion of the MSPP turns into finding non-dominated paths (ND paths), that is,
paths for which there is no other path with better values for all the criteria.

Received March 29, 2007.
This work was supported in part by FCT through POCTI - Research Units

Pluriannual Funding to CMUC (Centro de Matemtica da Universidade de Coim-
bra) and CIO (Operations Research Center of the University of Lisbon), and grant
POCTI/MAT/139/2001 cofunded by the EU program FEDER.

The authors would like to thank Anders J.V. Skriver for the friendly way he made his software
available.

1

2 E.Q. MARTINS, J.M. PAIXÃO, M.S. ROSA AND J.L. SANTOS

In the worst case, as proved by Hansen, [14], one may have to deal with an
exponential number of ND paths. Therefore, the computation of the entire
set of non-dominated paths can be hard to accomplish.

Several strategies have been adopted for tackling the MSPP. As proposed
by Martins and Santos, [17], those approaches can be classified into two
groups. The first one includes the algorithms that select a single ND path
as is the case of a global optimization problem where an utility function is
defined ([3]) or the interactive procedures ([5]) where the user guides the
searching within the criteria space. In the second group, one considers the
approaches for the MSPP that find all the non-dominated paths. That is the
case of the well-known labelling algorithm, [2, 14, 26, 27], the ranking paths
procedures, [6, 7], and the algorithm presented by Mote [18] that computes
the full set of ND paths, after solving the linear programming relaxation for
the MSPP.

In this paper, we present a new labelling technique that is able to obtain
the ND paths ranked accordingly to a total order relation defined on IRk.
This means that the new algorithm produces the ` ”best” shortest ND paths
with ` varying from one to the total number of ND paths.

The new algorithm is based on a ranking path procedure where labels
are scanned by tracing the nodes of the next shortest deviation path. The
computational experience reported in section 6 of the paper, shows that the
new algorithm is quite competitive relatively to the previous approaches.

In the next section of the paper, we introduce the notation used through
out the paper. The section 3 is dedicated to the description of the algorithm
that is exemplified in the following section. The correctness of the algorithm
is proved in section 5 and, as already mentioned, computational results are
shown in section 6. Finally, conclusions are summarized in section 7.

2. Definitions and notation
In this section, some definitions are given and just a crucial result is pre-

sented taking into account that detailed mathematical background can be
found in Martins and Santos, [17].

A network is denoted by G = (N, A, c), where N = {1, . . . , n} is the set
of nodes (or vertices) and A ⊂ N × N is the set of arcs. Each arc a ∈ A,
a = (i, j), has a tail (tail(a) = i) and a head (head(a) = j) node. The set of
arcs for which i is the tail node will be denoted by A(i) = {(x, y) ∈ A : x = i}.
Let k be the number of criteria, then the vectorial function c attributes a k

RANKING NON-DOMINATED PATHS 3

dimensional vector cost to each arc:

c : A −→ IRk

(i, j) 7−→ c(i, j) = ci,j = (c1
i,j, . . . , c

k
i,j).

A path p, from the vertex i to j, is an alternating sequence of nodes and
arcs of the form p = 〈v0, a1, v1, . . . , ar, vr〉, where:

• v` ∈ N , ∀` ∈ {0, . . . , r};
• v0 = i and vr = j;
• a` = (v`−1, v`) ∈ A, ∀` ∈ {1, . . . , r}.

The set of all paths from i to j is denoted by Pi,j and PG represents the
set of all paths in the network, that is, PG =

⋃
i,j∈N Pi,j. A cycle is a path

with non repeated vertices except the initial and terminal ones which are
coincident; that is, v0 = vr.

With no loss of generality, we consider that N has an initial node s and a
terminal node t such that:

• for any arc a ∈ A, tail(a) 6= t and head(a) 6= s;
• for any i ∈ N − {s, t}, Ps,i 6= ∅ and Pi,t 6= ∅.

In order to simplify the notation, P will be used instead of Ps,t.
Multiple arcs (arcs with the same pair of head and tail nodes) are not

allowed. As a consequence, p can be denoted only by the sequence of its
nodes, 〈v0, v1, . . . , vr〉. We denote by subp(u, w) the subpath of p from u to
w (u, w ∈ N ∩ p), that is, the subsequence 〈v`, v`+1, . . . , v`+h〉, where v` = u
and v`+h = w.

The vectorial objective function f is defined by

f : PG −→ IRk

p 7−→ f(p) = (f1(p), . . . , fk(p)),

where f`(p) =
∑

(i,j)∈p c`
i,j,∀` ∈ {1, . . . , k}.

The concatenation operator, ♦, joins two paths p = 〈v0, . . . , vrp
〉 and q =

〈u0, . . . , urq
〉 such that vrp

= u0. Then, p♦q = 〈v0, . . . , vrp
= u0, . . . , urq

〉.
Now, let us recall that, for the MSPP, one looks for the set of non-

dominated paths from s to t, mathematically described as follows:

Definition 1. : Let p and q be two paths of Pi,j. We say that p dominates q
or q is dominated by p (p <D q) if and only if

f(p) 6= f(q) and f`(p) ≤ f`(q),∀` ∈ {1, . . . , k}.

4 E.Q. MARTINS, J.M. PAIXÃO, M.S. ROSA AND J.L. SANTOS

Definition 2. : Let p be a path in Pi,j, i, j ∈ N . If there is no path q ∈ Pi,j

such that q <D p, then p is called non-dominated, efficient or Pareto optimal

path. The set of non-dominated paths from i to j is denoted by D̄i,j and D̄
will be used for D̄s,t.

Note that the dominance relation (<D) is not a total order relation in IRk

and, therefore, does not allow the full ranking of the paths in the network.
Nevertheless, this may be achieved by considering a total order relation [11]
as the ones defined as follows:

Definition 3. : Let p and q be two paths of Pi,j.

• p ≤lex q ⇔ f(p) = f(q) or (lexicographic)
∃x ∈ {1, . . . , k} : fx(p) < fx(q) and fy(p) = fy(q),∀y < x;

• p ≤sum q ⇔
∑k

x=1 fx(p) ≤
∑k

x=1 fx(q) (or other positive
weighted sum);
• p ≤max q ⇔ max

1≤x≤k
{fx(p)} ≤ max

1≤x≤k
{fx(q)} (maximum component);

The computation of the ND paths can be accomplished in a more efficient
way if the order relation ≤R verifies the following properties:

Property 1: p <D q ⇒ p ≤R q,∀p, q ∈ Pi,j.
Property 2: p ≤R p♦〈j, `〉,∀p ∈ Pi,j,∀(j, `) ∈ A(j).
The following Lemma, proved in [19], establishes the sufficient conditions

for that the total order above defined hold properties 1 and 2.

Lemma 1. : If c`
i,j > 0,∀(i, j) ∈ A and ` ∈ {1, . . . , k}, then properties 1 and

2 are satisfied when ≤lex, ≤max and ≤sum are used.

3. The label-deviation path algorithm (L&DP)
The new algorithm for the MSPP, presented in this paper, is based on the

procedure for ranking paths developed by Martins et al., [16], for the shortest
path problem with a single objective. That procedure consists of sequentially
determining deviation paths in order to consider a non-decreasing sequence
of shortest paths from s to t. Next, we remind some basic aspects of the
procedure and two results stated for the single objective case that will be
used in the new label-deviation path algorithm.

Now, let us consider a path p = 〈v0, . . . , vr〉 ∈ P and let vi be a node
of p (0 ≤ i < r). A deviation path from p at vertex vi through the arc
(vi, j) ∈ A(vi) is a path q ∈ P which coincides with p from s = v0 to vi,
then follows arc (vi, j) and finally goes to vr = t (see Figure 1 (a)). So,

RANKING NON-DOMINATED PATHS 5

..•x •y
a path from x to y

...•x •y
(x, y) arc

...........................•x •y
the shortest path from x to y

•s = v0 •vi •vr = t
subp(s, vi)

subp(vi, t)
...

....•j...................
.................

...............
................

.................
.............

...
................

................
................

..
...............

..............
......
..........

......}
deviation

paths

(a)

•s = v0 •vi •vr = t
subp(s, vi)

subp(vi, t)
..

....•j1.............
..........

...........
...........

...........
...

..
.........
.....•j2

........
.......

.......
.......

...
....
........
......•j3

......
......

.....
......

.....}shortest
deviation

paths(b)

Figure 1. Deviation paths of p = 〈v0, v1, . . . , vr〉 from ver-
tex vi.

(a) Deviation paths of p through the arc (vi, j);
(b) Shortest deviation paths of p at node vi.

q = subp(s, vi)♦〈vi, j〉♦w, where w is a path of Pj,t. Note that, (vi, j) is the
first arc for which q diverges from p. This arc is called the deviation arc of q
relatively to p.

For the single objective case, if the least cost path from j to t is denoted
by T ?(j) then qp

vi,j
= 〈v0, . . . , vi〉♦〈vi, j〉♦T ?(j) is the shortest deviation path

from p through the arc (vi, j).
Hence, if one considers the vertex vi ∈ p, the shortest deviation path from

p at the node vi is the one corresponding to min
(vi,j)∈A(vi)

f(qp
vi,j

), (see Figure 1

(b)). Therefore, the shortest deviation path from p will be determined by

min
vi∈p

(
min

(vi,j)∈A(vi)
f(qp

vi,j
)

)
.

From the above, one may depict a very simply procedure for generating
shortest paths from s to t, ordered by non-decreasing costs. The first path
(p∗1) is the shortest path from s to t and the next path in the sequence (p∗2)

will be the least cost path in D(p∗1) = {qp∗1
vi,j

: vi ∈ p∗1, (vi, j) ∈ A}, the set
of deviation paths from p∗1. Then, p∗3 will be obtained considering all the
deviation paths from p∗1 and p∗2, excluding p∗2, and the algorithm proceeds
successively in this way, until all the shortest paths are generated.

Since p∗2 is itself a deviation path from p∗1 through an arc (vi, j) with vi ∈ p,
that we denote by θ(p∗2), we only need to consider the deviation paths from p∗2
related to the vertices in p∗2, subsequent to the tail of θ(p∗2), inclusive, since the
remaining deviation paths have been obtained from p∗1. Therefore, p∗3 is ob-

tained from D(p∗1)\{p∗2} or D(p∗2) = {qp∗2
vi,j

: vi ∈ subp∗2(tail(θ(p∗2)), t), (vi, j) ∈
A}. Now, θ(p∗3) will be the deviation arc through which p∗3 is generated and,
consequently, defines D(p∗3) the set of deviation paths from p∗3 that must be

6 E.Q. MARTINS, J.M. PAIXÃO, M.S. ROSA AND J.L. SANTOS

considered, together with (D(p∗1)∪D(p∗2))\{p∗2, p∗3}, for determining the next
shortest path. The procedure follows like that until no new deviation path
can be found for scanning.

Next, we show how to reduce the computational effort for the calculation
of min

(vi,j)∈A(vi)
f(qp

vi,j
) required for each vertex vi in the successive D(p∗`), ` ≥ 1.

Let us recall that T ?(i) is the shortest path from i to t. Those paths can be
chosen in such a way that T ? =

⋃
i∈N T ?(i) forms the shortest tree rooted at t.

Then, for each arc (i, j) ∈ A, c̄i,j = ci,j + f(T ?(j))− f(T ?(i)) is the reduced
cost of (i, j) relatively to T ? and f̄(p) =

∑
(i,j)∈p c̄i,j is the corresponding

reduced cost for a path p. Now, let us recall the following result already
presented in ([16]):

Lemma 2. : Let T ? be a shortest tree rooted at t and c̄ the reduced cost
computed for T ?. Then:

(1) 0 ≤ c̄i,j, ∀(i, j) ∈ A.
(2) c̄i,j = 0, ∀(i, j) ∈ A ∩ T ?.
(3) f̄(T ?(i)) = 0, ∀i ∈ N .
(4) f̄(p) = f(p) + f(T ?(j))− f(T ?(i)),∀p ∈ Pi,j.

Now, let us remind that we denote by θ(p) the deviation arc for the path
p relatively to another path previously obtained by the procedure described
above. Then, when looking for the deviation paths from p we only need to
consider the vertices subsequent to the tail(θ(p)), say vk, since the remaining
ones have been already scanned. Therefore, for qp

vi,j
, the shortest deviation

path from p, vi is subsequent to vk and one can state the following:

Lemma 3. : f̄(qp
vi,j

) = f̄(p) + c̄vi,j.

Proof: Note that qp
vi,j

is of the form qp
vi,j

= subp(s, vi)♦〈vi, j〉♦T ?(j), where
vi ∈ subp(vk, t)) = T ?(vk). Hence,

f̄(qp
vi,j

) = f̄(subp(s, vi))︸ ︷︷ ︸
=f̄(p)

+ f̄(〈vi, j〉)︸ ︷︷ ︸
=c̄vi,j

+ f̄(T ?(j))︸ ︷︷ ︸
=0

= f̄(p) + c̄vi,j. 2

Corollary 1. : f̄(p) ≤ f̄(qp
vi,j

).

From the previous results, it is clear that the deviation paths obtained
from p at node vi can be easily sorted out if A(vi) = {(x, y) ∈ A : x = vi} is
rearranged by no decreasing order of c̄. Consequently, one needs to consider

RANKING NON-DOMINATED PATHS 7

one shortest deviation path per node of p from tail(θ(p)) to t, reducing the
number of elements in D(p). Then, the shortest deviation path from p at
the node vi will be obtained through the first arc in A(vi) that has not been
used as a deviation arc, called the active arc of A(vi).

Note that, in order to assure that all the arcs of A(vi) are considered, the
first arc of A(vi) (for all i ∈ N) will be an arc of T ?. At last, since T ?(s) is
not obtained from a previous path, θ(T ?(s)) is fixed as the first arc of T ?(s).

The algorithm presented in Martins et al., [16], can be easily extended for
the case where a k-uple cost is assigned to each arc of the network. That is
attained by considering a total order relation in IRk such as the ones given
in Definition 3. Therefore, T ? will be formed by ≤R-shortest paths from j to
t (the shortest path in the network when the ≤R is considered).

From the Lemma 2, we conclude that, for any p ∈ Ps,`, f(p) − f̄(p) is a
constant value and equal to f(T ?(s)) − f(T ?(`)). In consequence, as stated
in the next result, the relation between p and q with the operators <D , ≤lex,
≤max and ≤sum are not affected when ci,j is replaced by c̄i,j.

Lemma 4. : Let p and q be two paths of Ps,i. Then:

(1) f(p) ≤R f(q)⇔ f̄(p) ≤R f̄(q), R ∈ {lex, max, sum};
(2) f(p) <D f(q)⇔ f̄(p) <D f̄(q).

Now, note that, for a vertex vi, the arcs of A(vi) are sorted by the ≤R

order and let qp
vi,h

be a deviation path from p at vi using the active arc in

A(vi). If subqp
vi,h

(s, h) is dominated by some subpath from s to h previously

determined, then any path generated from qp
vi,h

at vertex x ∈ T ?(h) will be

also dominated. So, qp
vi,h

can be ignored and a new deviation path from p at

node vi must be generated using the next arc in A(vi).
The algorithm outlined on the previous page computes the set of non-

dominated paths on a network G with k-uple costs assigned to the arcs using
an order relation (≤R) which holds the properties 1 and 2 stated in section 2.
The algorithm consists of an initialization step and an iterative cycle (step
2) for searching the elements in X, the set of candidates for the next non-
dominated path. In this searching process, a path in X is selected in order
to create new deviation paths by using an internal cycle (step 2.2). Let us
mention that in step 2.2.1, the logical function DT (w, Πh) indicates when
the sub-path w is dominated by some path from the set Πh. Finally, note
that Πh is the set of the temporary ND paths from s to h and, at the end of

8 E.Q. MARTINS, J.M. PAIXÃO, M.S. ROSA AND J.L. SANTOS

L&DP algorithm
{X: set of candidates for the next non-dominated path}
{Πi: set of temporary non-dominated paths from s to i,i ∈ N}
{θ(p): deviation arc of p}
{DT (p, Π): dominance test applied to p over Π; DT (p, Π) = true⇔ ∃q ∈ Π : q <D p}
{≤R: total order relation verifying properties 1 and 2 of section 2}
step 1: {initialization}

T ? ← tree of the ≤R-shortest paths from i to t, ∀i ∈ N
c̄i,j ← ci,j + f(T ?(j))− f(T ?(i)),∀(i, j) ∈ A
Sort A(i) by non-decreasing order of c̄i,j using ≤R

p← T ?(s) {Assume that p = 〈v0, . . . , vr〉}
θ(p)← (v0, v1)
X ← {p}
Πi ← ∅,∀i ∈ N

step 2: {searching for a new candidate to the next ND path}
while (X 6= ∅) do

2.1: Select p ∈ X such that f̄(p) ≤R f̄(q),∀q ∈ X {Suppose p = 〈v0, . . . , vr〉}
Assume that θ(p) is the arc (vj, vj+1) of p
X ← X\{p}

{search a node of p for generating a shortest deviation path}
2.2: for i← j to r do
2.2.1: w ← subp(s, vi)

if (DT (w, Πvi
) = true)

then goto step 2 {ignore the remaining nodes of p}
else Πvi

← {w} ∪ {u ∈ Πvi
: DT (u, {w}) = false};

Suppose (vi, vi+1) is the `-th arc of A(vi), i.e., a` = (vi, vi+1)
2.2.2: arcFound← false {find the next active arc in A(vi)}

for x← ` to |A(vi)| do
if (DT (w♦〈vi, head(ax)〉, Πhead(ax)) = false)
then arcFound← true and goto step 2.2.3

endfor {for x← ` to |A(vi)| do}
2.2.3: {computation of a new candidate for the next ND path}

if (arcFound = true)
then h← head(ax) {ax = (vi, h)}

q ← w♦〈vi, h〉♦T ?(h) {qp
vi,h
}

θ(q)← ax

X ← X ∪ {q}
Πh ← {w♦〈vi, h〉} ∪ {u ∈ Πh : DT (u, {w♦〈vi, h〉}) = false}

endfor {for i← j to r do}
endwhile {while (X 6= ∅) do}

step 3: {all the non-dominated paths have been determined}
D̄ ← Πt

RANKING NON-DOMINATED PATHS 9

...
..........
........
........
.........
.............

...........

4
...

..........
........
........
.........
.............

...........

5

...
..........
........
........
.........
.............

...........

2
...

..........
........
........
.........
.............

...........

3
...

..........
........
........
.........
.............

...........

1
s ...

..........
........
........
.........
.............

...........

6
t

................
................

................
................

................
................

..................
..............

..
...

...

..
.....

...
.....
..............

..
...

........

........

........

........

........

........

........

........

........

........

........

........

...................

..............

...

........

........

........

........

........

........

........

........

........

........

........

........

...................

..............

................
................

................
................

................
................

..................
..............

A graph

(a)

...
..........
........
........
.........
.............

...........

i
f(T ?(i))

...
..........
........
........
.........
.............

...........

4
(11, 3, 16)

...
..........
........
........
.........
.............

...........

5
(8, 2, 8)

...
..........
........
........
.........
.............

...........

2
(11, 14, 13)

...
..........
........
........
.........
.............

...........

3
(2, 6, 9)...

..........
........
........
.........
.............

...........

1
(15, 10, 16)

...
..........
........
........
.........
.............

...........

6
(0, 0, 0)

..
...

...
..

...

...
................

................
................

................
................

................
..................
..............

Lexicographic shortest tree T ?

(b)

Figure 2. Network for the example.

(i, j) (1,2) (1,4) (2,3) (2,5) (3,4) (3,6) (4,2) (4,5) (5,3) (5,6)
c(i, j) (8,4,1) (4,7,0) (9,8,4) (8,0,7) (1,5,9) (2,6,9) (7,4,1) (3,1,8) (10,8,2) (8,2,8)

Table 1. Arc costs for the example of Figure 2(a).

the algorithm, Πt will correspond to D̄, the full set of non-dominated paths
on the network from s to t.

4. Example
The network depicted in Figure 2(a) is used to illustrate the L&DP algo-

rithm performance when it is considered the lexicographic order (≤lex). The
costs for the arcs are given in Table 1 and the iterative results obtained for
this example are shown in Figure 3. In the graph that figure, the succes-
sive generated deviation paths are represented with a dashed line identifying
those ones not scanned so far.

The lexicographic shortest path from 1 to 6 in the network, T ?(s) =
〈1, 4, 5, 6〉, is the first deviation path (q1) to be included in X. Then, q1 is
selected for scanning and, from that, two shortest deviation paths (q2 and q3)
are generated. Note that q3 ∈ X in spite of being dominated by q2, because
ND deviation paths could be obtained from subq3

(s, 5) = 〈1, 4, 5〉. We would
like to stress that the deviation path from q1 at the node 4, 〈1, 4, 2〉♦T ?(2),
is discarded since 〈1, 4, 2〉 is dominated by 〈1, 2〉, already in Π2.

At iteration 2, q2 is scanned and q4 is the only shortest deviation path to
be added up to X. Then, q3 and q4 are analysed, respectively, at iteration 3
and 4, producing no new shortest deviation paths.

10 E.Q. MARTINS, J.M. PAIXÃO, M.S. ROSA AND J.L. SANTOS

(i, j) (1,4) (1,2) (2,3) (2,5) (3,6) (3,4) (4,5) (4,2) (5,6) (5,3)
c̄(i, j) (0,0,0) (4,8,-2) (0,0,0) (5,-12,2) (0,0,0) (10,2,16) (0,0,0) (7,15,-2) (0,0,0) (4,12,3)

Table 2. Reduced cost associated to T ? (Figure 2(b)) where
A(i) is lexicographically sorted by c̄i,j.

X Π1 Π2 Π3 Π4 Π5 Π6

Initialization {q1} ∅ ∅ ∅ ∅ ∅ ∅
Iteration 1 {q2, q3} {〈1〉} {〈1, 2〉} {〈1, 4, 5, 3〉} {〈1, 4〉} {〈1, 4, 5〉} {q1}
Iteration 2 {q3, q4} {〈1〉} {〈1, 2〉} {〈1, 4, 5, 3〉, {〈1, 4〉} {〈1, 4, 5〉, {q1, q2}

〈1, 2, 3〉} 〈1, 2, 5〉}
Iteration 3 {q4} {〈1〉} {〈1, 2〉} {〈1, 4, 5, 3〉, {〈1, 4〉} {〈1, 4, 5〉, {q1, q2}

〈1, 2, 3〉} 〈1, 2, 5〉}
Iteration 4 ∅ {〈1〉} {〈1, 2〉} {〈1, 4, 5, 3〉, {〈1, 4〉} {〈1, 4, 5〉, {q1, q2, q4}

〈1, 2, 3〉} 〈1, 2, 5〉}
................

................
................

....
........
........

........

1
(0, 0, 0)................

................

........................
......
........
......
................

................
................

....
........
........

........

4
(0, 0, 0)................

................

........................
......
........
......
................

................
................

....
........
........

........

5
(0, 0, 0)................

................

........................
......
........
......
................

................
................

....
........
........

........

6
(0, 0, 0)

q1

X = {q1}

Initialization

(a)

...
..........
........
........
.........
.............

...........

1
(0, 0, 0)..

......
........
......

................
................

................
................

...............
....

.............. ...
..........
........
........
.........
.............

...........

4
(0, 0, 0)..

......
........
......

................
................
................

....
........
........

........

2
(4, 8, -2)................

................

........................
......
........
......

...
..........
........
........
.........
.............

...........

5
(0, 0, 0)..

......
........
......

..
....

................
................
................

....
........
........

........

3
(4, 8, -2)................

................

........................
......
........
......

...
..........
........
........
.........
.............

...........

6
(0, 0, 0)

q1

................
................
................

....
........
........

........

3
(4, 12, 3)................

................

........................
......
........
......

................
................
................

....
........
........

........

6
(4, 8, -2)

q2

................
................
................

....
........
........

........

6
(4, 12, 3)

q3

X = {q2, q3}

Iteration 1

(b)

...
..........
........
........
.........
.............

...........

i
f̄(subq(s, i))

...
..........
........
........
.........
.............

...........

1
(0, 0, 0)..

......
........
......

..
....

.............. ...
..........
........
........
.........
.............

...........

4
(0, 0, 0)..

......
........
......

...
..........
........
........
.........
.............

...........

2
(4, 8, -2)..

......
........
......

................
................

................
................

...............
....

.............. ...
..........
........
........
.........
.............

...........

5
(0, 0, 0)..

......
........
......

................
................

................
................

...................
....

...
..........
........
........
.........
.............

...........

3
(4, 8, -2)..

......
........
......

................
................
................

....
........
........

........

5
(9, -4, 0)................

................

........................
......
........
......

...
..........
........
........
.........
.............

...........

6
(0, 0, 0)

q1

................
................
................

....
........
........

........

3
(4, 12, 3)................

................

........................
......
........
......

...
..........
........
........
.........
.............

...........

6
(4, 8, -2)

q2

................
................
................

....
........
........

........

6
(9, -4, 0)

q4

................
................
................

....
........
........

........

6
(4, 12, 3)

q3

X = {q3, q4}

Iteration 2

(c)

Figure 3. Simulation of the new algorithm for the example of
Figure 2(a).

RANKING NON-DOMINATED PATHS 11

5. Correctness of the algorithm
In this section, we will prove that, considering an order relation ≤R holding

the properties 1 and 2 (see section 2), the L&DP algorithm computes the
full set of non-dominated paths after a finite number of iterations. Actually,
as will be shown, the algorithm finds the full set of non-dominated from s to
any other vertex on the network. First of all, we recall the following basic
result which proof can be seen in [15]:

Theorem 1. : Assume that for each cycle C of the network f`(C) ≥ 0,∀` ∈
{1, . . . , k}. Then, the MSPP holds the Optimality Principle stating that each
non-dominated path is formed by non-dominated subpaths.

Now, let us remind that Ps,i is the set of paths from s to i and D̄s,i ⊆ Ps,i

corresponds to the subset of non-dominated paths between those nodes. In
the algorithm, the set Πi (i ∈ N) is used to store any path w, from s to i,
generated in step 2 and not discarded by the logical function DT (w, Πi),
that returns the value ”true” if and only if there is a path q ∈ Πi such
that q <D w. Whenever a new path w joins the set Πi this is updated by
removing all the paths u such that DT (u, {w}) = true. So, we may say that,
until the end of the procedure, the paths in any Πi (i ∈ N) are temporarily
non-dominated. Now, the following result becomes quite obvious:

Lemma 5. : Let p be a path of D̄s,i that has been included in Πi. Then, p
will never be removed from Πi.

Let us recall that X is the set of candidates for the next ≤R-shortest ND
path and that the algorithm stops when X turns out to be an empty set. At
an intermediate step, a path p is selected from X and the arcs of A(tail(θ(p))
are scanned in order to find new shortest deviation paths. Remember that
θ(p) is the deviation arc for p and that A(vi), the set of arcs having i as tail
node, is ordered by non-decreasing reduced cost. Next, we show that the
algorithm checks all the arcs in the network that may lead to ND-paths.

Lemma 6. : Let z = 〈v0, . . . , vi〉 be a ND path from s to vi and suppose that
z♦T ?(vi) ∈ X. Then, all arcs of A(vi) are scanned by the algorithm.

Proof: The first arc of A(vi) is in T ? and, necessarily, is considered by the
algorithm, since z♦T ?(vi) ∈ X. On the other hand, we know that this path
will be selected at some iteration, on step 2, with θ(p) = (vj, vj+1) for some
j ∈ {0, 1, . . . , i}. When that happens, every vertex subsequent to vj in p,

12 E.Q. MARTINS, J.M. PAIXÃO, M.S. ROSA AND J.L. SANTOS

will be analyzed having in mind the generation of shortest deviation paths.
In particular, vi will be ”visited” looking for a new active arc (vi, h) of A(vi)
leading, even temporarily, to a ND path. If such an arc is found, qp

vi,h
is a

shortest deviation path from p included in X. Later, the vertex vi will be
visited again when qp

vi,h
is picked up from X and a new active arc of A(vi)

will be searched. At some point, one may not find an arc in A(vi) that leads
to a temporary ND path. This means that all the arcs in A(vi) have been
scanned by the algorithm. 2

Now, in order to proof the correctness of the algorithm, we show first that
all ND paths from s to t are detected and included in Πt. Actually, this is true
for any ND path from s to any other node i ∈ N which will be an element of
Πi, at the end of the procedure. To assure the correctness of the algorithm,
we proof that a finite number of iterations is required for computing D̄.

Theorem 2. : Let Πt be the set of temporary non-dominated paths and as-
sume that the Optimality Principle is verified. Then, at the end of the L&DP
algorithm,
Πt = D̄.

Proof: Firstly, let us see that D̄ ⊆ Πt. If 〈v0 = s, . . . , v` = t〉 is a path of
D̄s,t then, from the Optimality Principle, all subpaths of 〈v0, . . . , v`〉 are ND.
It is easy to show, by induction, that 〈v0, . . . , vi〉 ∈ Πvi

, for all i ∈ {0, . . . , `}.
In fact, in the first iteration of the algorithm, 〈v0〉 = 〈s〉 is included in Πs.
Furthermore, if 〈v0, . . . , vi〉 ∈ Πvi

(for some i ∈ {0, . . . , ` − 1}) then all arcs
A(vi) will be scanned (Lemma 6) and so, at some stage of the algorithm,
〈v0, . . . , vi, vi+1〉 will join the elements of Πvi+1

. Since 〈v0, . . . , vi, vi+1〉 is a
ND sub-path, from the Lemma 5, it will be not further removed from Πvi+1

.
Therefore, at the end of the algorithm, 〈v0 = s, . . . , v` = t〉 will be an element
of Πt.

Now, let us show that Πt ⊆ D̄. Suppose that p ∈ Πt and p 6∈ D̄. Hence,
there is a path q ∈ D̄ that q <D p and, as seen above, q will be added to Πt

at some iteration of the algorithm. This could not happen before p joined Πt

since the dominance test, performed at the step 2.2.2 of the L&DP algorithm,
would prevent the possibility of including p in Πt. Therefore, p ∈ Πt when
q is determined by the algorithm. Then, in this case, either at step 2.2.1 or
step 2.2.3, the dominance test will remove p from Πt. 2

RANKING NON-DOMINATED PATHS 13

Corollary 2. : If the Optimality Principle is verified then, at the end of the
L&DP algorithm, Πi = D̄s,i,∀i ∈ N .

The Theorem 2 guarantees that the L&DP algorithm determines all the
ND paths from a source node to a sink node in a network. Next, we show
that this is achieved in a finite number of iterations.

Lemma 7. : If 0 <D f(C), for any cycle C in the network, then every
temporary non-dominated path has no cycles.

Proof: Let p = w1♦C♦w2 be a non simple path from s to a node v`

where C = 〈u0 = vi, . . . , uj = vi〉 is a cycle, w1 = 〈v0 = s, . . . , vi〉 and
w2 = 〈vi, . . . , v`〉. Then, suppose that p is produced, at some stage, by the
algorithm. This means that p is a deviation path from another one previously
found, say q with θ(p) = (x, y). Hence, p = subq(s, x)♦〈x, y〉♦T ?(y) and,
since T ?(y) is a simple path, there exists a node j ∈ subq(s, x) ∩ T ?(y)
such that C = subq(j, x)♦〈x, y〉♦subT ?(y)(y, j). Consequently, subq(s, j)♦
subT ?(y)(j, t) = w1♦w2 is also a deviation path from q, previously found by
the algorithm and, under the assumption, dominating p. 2

Theorem 3. : Assuming that 0 <D f(C) holds for every cycle C in the
network, the L&DP algorithm computes D̄ in a finite number of iterations.

Proof: Under the assumption, the Optimality Principle is verified (The-
orem 1). From Lemma 7, we know that the algorithm only generates ele-
mentary paths as possible elements for the sets Πi. Therefore, only a finite
number of iterations is required for, as stated in Theorem 2, computing the
full set D̄. 2

At last, we prove that the L&DP algorithm finds the ND paths in the ≤R

order (Corollary 3) using the next result.

Theorem 4. : Let ≤R be an order relation holding properties 1 and 2 and
p be the path selected from the set X, at step 2.1 of L&DP algorithm. A
sub-path w = subp(s, vi), with vi in p such that ”DT (w, Πvi

) = false”, is a
ND-path.

Proof: In fact, property 2 assures that L&DP algorithm computed paths
in G by non-decreasing order of its labels. On the other hand, if q <D w =
subp(s, vi), then q ≤R w (property 1). Hence, q is selected by the algorithm
before w and, consequently, ”DT (w, Πvi

) = true”. 2

14 E.Q. MARTINS, J.M. PAIXÃO, M.S. ROSA AND J.L. SANTOS

Corollary 3. : Let ≤R be an order relation verifying properties 1 and 2
and assume that f`(C) > 0 holds for every cycle C in the network and ` ∈
{1, . . . , k}. Then, the L&DP algorithm ranks the ND paths in G.

We would like to emphasize that the previous result means that one can
stop the L&DP algorithm before X becomes an empty set. In this case, the
(temporary) ND paths already scanned by this procedure are the best ND
paths following the order relation ≤R.

6. Computational results
In this section, we report computational experience carried out for con-

fronting the new algorithm with the two classical versions known for the la-
belling algorithm where, in short words, the nodes in the network are scanned
accordingly to the respective labels. In the case of the label correcting ap-
proach, the node selected for scanning is the one associated with the oldest
label, while for the label setting version, is the node with the minimum label
for a specific order relation.

An extensive computational study on both of the above mentioned versions
for the labelling algorithm is presented in [19]. There, we conclude that the
best performance is achieved by the label correcting implementation following
a particular label selection policy and a FIFO rule. Also, the ”double-end-
queue” (DEQUE) procedure proposed by Pape [20, 21], produced very good
results when using the ≤sum or ≤max operators for positioning the elements
in the queue.

Concerning to the label setting version, the experience reported in [19]
shows that the best computational results are obtained when using a Dial
structure [9, 10], sorted by the ≤sum or ≤max operators, for keeping the set
of non-scanned labels. However, the label correcting approach consistently
outperforms the label setting version mainly because, in this case, one has to
find all of the ND labels. That is, the set of all non-dominated paths from s
to every note i ∈ N .

Now, let us refer that, in the literature, there are several papers reporting
computational experiments for the labelling algorithm [2, 6, 7, 12, 13, 14, 18,
19, 24, 25, 26, 27]. Nevertheless, it is not easy to use those results as a basis
for a fair benchmarking since they are produced by codes made by different
people and ran on different machines. Also, the set of test instances differs
significantly from work to work.

RANKING NON-DOMINATED PATHS 15

Class Network Description Groups
RandN Random n ∈ {i ∗ 1000 : i ∈ IN, 1 ≤ i ≤ 15}; d = 6; k = 6 15
RandD Random n = 5000; d ∈ {i : i ∈ IN, 2 ≤ i ≤ 10}; k = 6 9
RandK Random n = 5000; d = 6; k ∈ {i : i ∈ IN, 2 ≤ i ≤ 10} 9
CompN Complete n ∈ {i ∗ 10 : i ∈ IN, 1 ≤ i ≤ 12}; d = n− 1; k = 6 12
CompK Complete n = 100; d = n− 1; k ∈ {i : i ∈ IN, 2 ≤ i ≤ 10} 9
GridN Square Grid n ∈ {i2 : i ∈ IN, 5 ≤ i ≤ 12}; d ≈ 4; k = 6 8
GridK Square Grid n = 100; d ≈ 4; k =∈ {i : i ∈ IN, 2 ≤ i ≤ 10} 9

n = number of nodes; d = number of arcs/n; k = number of criteria

Table 3. Set of test instances with the arc costs ran-
domly generated in [1, 1000], using an uniform distribu-
tion.

Hence, aiming for a fair comparison between the algorithms, we followed the
suggestion made at the ”9th DIMACS Implementation Challenge - Shortest
Paths” [4], carrying out computational experience with the very same set
of instances and using a public code as a benchmarking reference. For this
purpose, we produced a non optimized code for the label correcting approach
using a label selection policy and a FIFO rule. Both, that code (publicMOSP)
and the set of test instances in our computational experience, have been made
public in the internet [23].

Let us say that we looked for other available codes but we only be succeeded
with the ones proposed by Skriver and Andersen, [26]. However, those codes
were developed only for the bicriteria case and proved to be much slower
than our publicMOSP code (see [22]).

Concerning to the L&DP algorithm, we tested 6 versions resulting from
the combination of the binary heap ([1]) and the Dial’s structure for keeping
the set candidates, with the ≤lex, ≤sum and ≤max order relations.

The computational experiments were carried out on a 3.00GHz Intel(R)
Pentium(R) 4 processor with 1024 KB cache size and 384MB of RAM, run-
ning over Linux operating system (Suse 9.3 version), at the Laboratory for
Computational Mathematics of Centre for Mathematics of the University of
Coimbra. All the codes were written in the C language and the computa-
tional tests were made up using 50 instances for each one of the groups within
the 7 classes of problems described in the Table 3.

A full description of the set of test problems is provided at [23], including
the data relative to the 3550 instances considered in our computational expe-
rience. Hence, we opted for showing, in Table 4, some parameters - number

16 E.Q. MARTINS, J.M. PAIXÃO, M.S. ROSA AND J.L. SANTOS

of ND s-t paths (ND), number of ND labels (rotND) and the average num-
ber of ND labels per node (rotND/n) - for only a subset of the groups that
illustrate reasonably well the size and characteristics of the instances used
for the computational tests. In that table, one can see that for each class of
test instances either ND or rotND rapidly grow with the size of the network.
The only exception appears to happen for the class RandN where a linear
relation seems to occur between those parameters and number of nodes. An
interesting aspect is that for the grids (GridN and GridK), ND is much larger
than rotND/n, contrary to the other classes where those parameters show
values quite similar to each other. This means that in general the number of
ND paths from s to a particular node does not depend on the choice of the
ending vertex.

Since publicMOSP will be used as a basic reference for comparing the per-
formance of the other codes, we show, in Table 5, its behaviour for the same
groups considered for Table 4. Note that, in spite of being a non sophisti-
cated code, the publicMOSP is very effective (generating mostly ND labels)
and, in consequence, running reasonably fast for all the groups, even for some
of the largest size ones. In fact, for most of the cases, it does not require, in
average, more than one minute for finding the solution. Also, let us refer that
the results presented in the Table 5 clearly show that the complete networks
are the hardest problems to solve.

In Table 6, we present the average ratios obtained for each code relatively
to publicMOSP. Note that a value less than 1 means that the corresponding
code outperforms the public code; if it is greater than 1, then publicMOSP
performed better. For instance, for the test group RandN, the Label Correct-
ing algorithm (Deque, ≤max}) tooks, in average, less time and slightly the
same number of iterations than publicMOSP. The full information provided
at [22] shows that the size of instances does not have a significant influence
on the ratios.

From Table 6, we can draw the following conclusions:

(1) The label setting algorithm is the most effective one. However, this
is achieved by keeping the set X ordered accordingly to ≤R where
R ∈ {lex, max, sum}, and, consequently, increasing the computa-
tional effort in terms of CPU time and required memory.

(2) The label correcting algorithm shows the best performance in terms
of CPU time and used memory. This is a consequence of its simple

RANKING NON-DOMINATED PATHS 17

Class
RandN n 3000 6000 9000 12000 15000

ND 64.28 74.00 84.18 90.40 84.80
rotND 193260.8 445764.8 714064.4 1019683.8 1308722.9

rotND/n 64.42 74.29 79.34 84.97 87.25
RandD d 2 4 6 8 10

ND 8.32 38.62 71.42 115.84 153.04
rotND 46686.2 179151.0 351698.0 564780.4 814661.5

rotND/n 9.34 35.83 70.34 112.96 162.93
RandK k 2 4 6 8 10

ND 6.10 31.12 71.42 123.00 191.52
rotND 31755.1 151904.5 351698.0 627617.5 969384.9

rotND/n 6.35 30.38 70.34 125.52 193.88
CompN n 40 60 80 100 120

ND 187.12 312.52 509.86 706.58 951.82
rotND 7616.8 20282.5 41422.1 69178.7 107138.9

rotND/n 190.42 338.04 517.78 691.79 892.82
CompK k 2 4 6 8 10

ND 12.64 169.58 706.58 1790.24 —
rotND 1276.9 16791.8 69178.7 183137.6 —

rotND/n 12.77 167.92 691.79 1831.38 —
GridN n 64 81 100 121 144

ND 752.30 1545.72 3190.46 6183.24 11702.90
rotND 6152.3 14043.5 32148.6 68713.8 141357.8

rotND/n 96.13 173.38 321.49 567.88 981.65
GridK k 2 4 6 8 10

ND 17.40 472.64 3190.46 10423.80 20797.18
rotND 704.7 7751.3 32148.6 80863.9 141548.5

rotND/n 7.05 77.51 321.49 808.64 1415.48
n = number of nodes; d = number of arcs/n; k = number of criteria

Table 4. Number of ND s-t paths (ND), number of ND
labels (rotND) and average number of ND labels per
node (rotND/n).

structure (a queue) and higher effectiveness (only a small percentage
of dominated labels were determined).

(3) The new algorithm requires, in general, the least number of iterations
but due to the large percentage of dominated labels, shows larger com-
putational times comparatively to the other procedures. Additionally,
note that the best performance for the LD&P is produced when using
the binary heap structure.

(4) For all the procedures, the ≤R order relation (R ∈ {lex, max, sum}),
has a significant influence on the pivot label selection process. This

18 E.Q. MARTINS, J.M. PAIXÃO, M.S. ROSA AND J.L. SANTOS

Class
RandN n 3000 6000 9000 12000 15000

time 4.58 15.09 27.50 43.59 58.95
nIter 193688.3 446963.5 716094.4 1022522.6 1312879.5
percD 1.74 1.86 1.88 1.85 1.96
memo 82.60 189.34 302.46 430.41 552.43

RandD d 2 4 6 8 10
time 0.11 2.67 12.65 38.35 88.15
nIter 46749.3 179493.7 352591.9 566341.2 817052.4
percD 0.36 1.15 1.79 2.22 2.52
memo 21.34 77.09 149.70 239.21 344.03

RandK k 2 4 6 8 10
time 0.13 2.55 12.70 39.17 90.18
nIter 38139.1 154656.6 352591.9 627810.1 969430.6
percD 30.67 6.55 1.79 0.48 0.15
memo 16.56 60.35 149.7 298.14 514.94

CompN n 40 60 80 100 120
time 0.26 2.59 16.45 59.60 172.92
nIter 7624.1 20312.1 41500.2 69319.4 107447.4
percD 3.18 3.98 4.63 4.94 5.70
memo 3.51 9.25 18.78 31.29 48.56

CompK k 2 4 6 8 10
time 0.03 1.92 50.30 406.34 —
nIter 1566.8 17135.7 69319.4 183173.7 —
percD 51.31 16.07 4.94 1.63 —
memo 1.94 8.54 31.29 88.24 —

GridN n 64 81 100 121 144
time 0.06 0.34 1.52 8.24 54.78
nIter 6155.0 14052.2 32181.3 68787.6 141617.3
percD 5.03 7.01 8.09 8.47 9.21
memo 2.63 6.06 13.96 29.88 61.85

GridK k 2 4 6 8 10
time 0.00 0.06 1.54 21.69 113.87
nIter 761.5 7814.4 32181.3 80915.8 141569.4
percD 21.48 10.82 8.09 5.59 3.81
memo 0.30 2.99 13.96 39.26 76.41

n = number of nodes; d = number of arcs/n; k = number of criteria
time = CPU time (sec); nIter = number of iterations;

percD = 100(number of labels created-rotND)/(number of labels created);
memo = memory space (Mb)

Table 5. Computational results for publicMOSP code.

produces a strong effect on the percentage of dominated labels created
by the algorithm and, consequently, on its performance. In general,
the worst results were obtained when using the ≤lex operator.

RANKING NON-DOMINATED PATHS 19

C
la

ss
A

lg
.

L
&

D
P

L
ab

el
Se

tt
in

g
L
ab

el
C

or
re

ct
in

g
pr

ob
le

m
se

t
X

D
ia

l
he

ap
D

ia
l

D
eq

ue
F
ifo

or
de

r
≤

le
x
≤

m
a
x
≤

su
m

≤
le

x
≤

m
a
x
≤

su
m

≤
m

a
x
≤

su
m

≤
m

a
x
≤

su
m

R
an

dN
ti

m
e

1.
35

5
1.

11
5

1.
08

1
1.

26
6

0.
98

7
1.

02
1

0.
90

7
0.

95
1

0.
86

6
0.

87
2

0.
87

2
nI

te
r

0.
81

0
1.

14
6

1.
13

1
0.

81
0

0.
83

0
0.

81
2

0.
99

7
0.

99
7

1.
00

1
0.

99
9

1.
00

0
pe

rc
D

5.
89

0
21

.6
6

21
.9

2
5.

89
0

2.
66

1
1.

37
5

0.
37

7
0.

01
3

1.
09

0
0.

66
8

1.
00

0
m

em
o

1.
25

8
1.

94
0

1.
95

1
1.

25
7

1.
26

4
1.

23
5

1.
13

4
1.

12
8

1.
07

5
1.

06
7

1.
00

0
R

an
dD

ti
m

e
1.

29
7

1.
19

0
1.

18
4

1.
34

2
1.

07
8

1.
10

1
0.

96
1

0.
99

1
0.

89
2

0.
89

1
0.

88
2

nI
te

r
0.

76
0

1.
07

0
1.

06
7

0.
76

0
0.

77
8

0.
76

1
0.

99
8

0.
99

8
1.

00
1

0.
99

9
1.

00
0

pe
rc

D
6.

61
0

32
.5

1
32

.9
5

6.
61

0
3.

44
5

2.
07

8
0.

37
4

0.
01

2
1.

17
9

0.
66

3
1.

00
0

m
em

o
1.

25
1

1.
91

1
1.

94
1

1.
24

9
1.

26
4

1.
23

7
1.

13
3

1.
12

9
1.

07
4

1.
06

7
1.

00
0

R
an

dK
ti

m
e

1.
43

7
1.

43
1

1.
41

3
1.

46
0

1.
13

4
1.

17
6

0.
97

4
1.

02
0

0.
93

3
0.

93
8

0.
94

6
nI

te
r

0.
78

5
1.

15
9

1.
15

0
0.

78
5

0.
81

0
0.

78
8

0.
97

3
0.

97
3

0.
98

9
0.

98
4

1.
00

0
pe

rc
D

13
.3

3
52

.9
6

52
.7

0
13

.3
3

4.
26

4
2.

13
2

0.
44

1
0.

06
0

1.
15

9
0.

67
3

1.
00

0
m

em
o

1.
22

1
1.

93
0

1.
94

8
1.

22
0

1.
24

8
1.

21
8

1.
10

2
1.

09
3

1.
06

1
1.

05
3

1.
00

0
C

om
pN

ti
m

e
1.

21
0

1.
10

4
1.

10
3

1.
23

4
0.

98
7

0.
98

5
1.

01
4

1.
06

4
0.

88
5

0.
88

1
0.

88
4

nI
te

r
0.

92
7

1.
03

3
0.

96
1

0.
92

7
0.

97
0

0.
93

6
0.

99
9

0.
99

9
1.

00
0

0.
99

9
1.

00
0

pe
rc

D
5.

85
5

5.
45

6
2.

97
5

5.
85

5
2.

49
8

1.
23

2
0.

39
8

0.
10

4
0.

81
5

0.
70

4
1.

00
0

m
em

o
1.

38
9

1.
44

8
1.

51
1

1.
35

5
1.

27
8

1.
22

0
1.

14
5

1.
25

8
1.

05
8

1.
05

5
1.

00
0

C
om

pK
ti

m
e

1.
16

2
1.

00
3

1.
03

9
1.

16
8

0.
94

1
0.

91
8

0.
92

8
0.

97
4

0.
86

0
0.

86
6

0.
88

8
nI

te
r

0.
91

2
0.

97
9

0.
93

8
0.

91
2

0.
98

5
0.

92
8

0.
96

1
0.

96
1

0.
99

4
0.

98
7

1.
00

0
pe

rc
D

4.
24

1
2.

45
9

1.
06

8
4.

24
1

1.
78

8
0.

83
0

0.
49

3
0.

25
8

0.
89

1
0.

80
8

1.
00

0
m

em
o

1.
28

2
1.

27
9

1.
22

0
1.

27
6

1.
27

1
1.

19
6

1.
07

5
1.

06
4

1.
04

9
1.

04
4

1.
00

0
G

ri
dN

ti
m

e
1.

61
5

1.
81

6
1.

55
6

1.
65

5
2.

12
4

2.
12

2
1.

54
2

1.
31

0
1.

21
2

0.
97

6
0.

85
0

nI
te

r
0.

40
5

0.
37

1
0.

35
3

0.
40

5
0.

34
3

0.
33

7
0.

99
9

0.
99

9
1.

02
3

1.
00

6
1.

00
0

pe
rc

D
1.

02
4

2.
30

1
1.

35
5

1.
02

4
1.

54
2

1.
11

5
0.

18
6

0.
01

2
0.

76
1

0.
50

7
1.

00
0

m
em

o
1.

19
8

1.
40

2
1.

55
6

1.
13

0
1.

26
8

1.
22

8
1.

13
3

1.
27

6
1.

06
2

1.
04

7
1.

00
0

G
ri

dK
ti

m
e

1.
76

2
2.

01
6

1.
97

2
1.

78
3

2.
38

6
2.

60
9

1.
74

5
1.

38
9

1.
47

3
1.

05
8

0.
93

0
nI

te
r

0.
40

2
0.

39
6

0.
37

7
0.

40
2

0.
35

5
0.

35
0

0.
98

8
0.

98
8

1.
02

6
1.

00
4

1.
00

0
pe

rc
D

0.
58

8
1.

90
5

1.
05

0
0.

58
8

1.
31

5
0.

95
1

0.
20

4
0.

05
6

0.
81

4
0.

58
2

1.
00

0
m

em
o

1.
14

5
1.

39
0

1.
32

9
1.

11
3

1.
28

4
1.

24
2

1.
09

1
1.

10
0

1.
06

3
1.

03
7

1.
00

0
ti

m
e

=
C

P
U

ti
m

e
(s

ec
);

nI
te

r
=

nu
m

be
r

of
it

er
at

io
ns

;
m

em
o

=
m

em
or

y
sp

ac
e

(M
b)

;
pe

rc
D

=
10

0(
nu

m
be

r
of

la
be

ls
cr

ea
te

d-
ro

tN
D

)/
(n

um
be

r
of

la
be

ls
cr

ea
te

d)
;

Table 6. Average ratios obtained between each code and
publicMOSP.

The values reported in Table 6 lead us to the general conclusion that the
new algorithm is outperformed by the other procedures. However, there is
a particular feature of the algorithm, related to the effort taken to find the

20 E.Q. MARTINS, J.M. PAIXÃO, M.S. ROSA AND J.L. SANTOS

first ND s-t paths, making it quite competitive in the cases when it is not
necessary to find the full set of ND paths. This is clearly illustrated by Table
7 where we show the average computational times taken by the algorithms
for determining a fixed number, say `, of non-dominated paths. Note that
the Label Correcting algorithms (LC-Deque and FIFO) can not produce such
result before finding all of the non-dominated paths. On the contrary, the
L&DP and Label Setting algorithms compute those paths accordingly to the
order relation that is considered. That is, for an order relation verifying
properties 1 and 2 of section 2, the L&DP and the LS algorithm obtain the
`-shortest non-dominated paths.

In Table 7, we present the outcome of the computational experience carried
out, using the largest size test problems for each class of instances, when
fixing ` to a value approximately equal to a percentage of the total number
of non-dominated paths. For example, for the RandN test instances, the
L&DP algorithm with ≤max only requires 0.01 seconds for finding the `-
shortest paths for ` equal, in average, to 60% of the non-dominated paths.
That is clearly much less than the corresponding time (25.98 seconds) for the
LS algorithm and, let us remind that the Label Correcting algorithms can not
produce such result before finding all the non-dominated paths requiring in
average 52.69 and 53.63 seconds, respectively, for the LC-Deque and FIFO.
For these algorithms, we show within brackets the time instant when the
label of the corresponding path is scanned, in the particular case, 31.54 and
36.58 seconds.

From Table 7, we conclude that the L&DP is quite efficient in finding the
`-shortest non-dominated paths even when ` is close to the total number of
non-dominated paths. The exception to this occurs for the grid networks
where the FIFO algorithm proves to be faster when ` corresponds to more
than 40% percent of the total number of non-dominated paths.

Let us remark that, for ranking 100% of the non-dominated paths, the
L&DP algorithm requires, in general, a small share of the time needed for
guaranteeing that the full set of non-dominated paths has been found (shown
in Table 7 by the row named final). This is particularly evident for the classes
RandN, RandD and RandK, where the ”full ranking” accounts for less than
50% of the ”final time”.

Finally, let us mention that we present in Table 7 the results obtained
for the L&DP algorithm with ≤lex since this is usually used for ranking
multi-objective solutions. In this case, for the random and the complete

RANKING NON-DOMINATED PATHS 21

Class ≤lex ≤max ≤sum

%ND #ND LDP LDP LS LC Fifo LDP LS LC Fifo

RandN 20 16.54 0.02 0.00 6.11 (12.38) (23.18) 0.00 7.92 (14.87) (22.31)
40 33.08 0.51 0.00 15.12 (22.82) (28.90) 0.00 19.10 (22.73) (29.66)
60 49.62 3.42 0.01 25.98 (31.54) (36.58) 0.00 29.19 (32.52) (37.83)
80 66.16 12.52 0.08 38.12 (37.08) (41.45) 0.01 40.76 (37.73) (42.22)

100 84.80 64.78 15.79 53.24 (51.90) (52.75) 11.77 55.80 (52.16) (52.91)
final — 75.71 57.51 54.15 52.69 53.63 59.65 56.71 52.98 53.63

RandD 20 30.24 0.65 0.00 8.47 (16.99) (31.78) 0.00 12.92 (21.52) (29.44)
40 60.48 5.12 0.00 21.70 (30.74) (39.36) 0.00 27.69 (30.58) (40.68)
60 90.72 16.68 0.05 36.70 (42.69) (53.28) 0.01 42.60 (43.29) (51.69)
80 120.96 38.39 1.09 53.31 (53.98) (58.01) 0.12 57.77 (54.19) (59.09)

100 153.04 94.55 35.34 72.69 (69.37) (71.06) 39.11 76.99 (69.88) (71.11)
final — 100.86 74.62 74.01 71.30 73.00 77.32 78.13 72.23 73.00

RandK 20 37.90 0.03 0.00 9.06 (17.81) (33.46) 0.00 12.91 (21.41) (31.11)
40 75.80 0.70 0.00 22.97 (35.72) (47.90) 0.00 27.44 (37.42) (45.89)
60 113.70 3.90 0.01 38.45 (42.46) (50.71) 0.01 42.61 (46.85) (53.25)
80 151.60 15.17 0.16 55.27 (56.49) (61.62) 0.04 57.76 (56.38) (63.00)

100 191.52 82.14 37.12 74.54 (71.25) (72.25) 32.30 77.25 (71.94) (72.47)
final — 94.16 77.10 75.75 74.03 74.85 79.49 78.36 74.50 74.85

CompN 20 189.96 3.05 0.02 8.74 (24.20) (45.48) 0.00 14.78 (28.50) (47.67)
40 379.92 17.11 0.41 24.57 (35.99) (55.87) 0.04 32.20 (40.99) (56.19)
60 569.88 41.90 2.96 45.42 (54.85) (65.84) 0.72 52.28 (55.22) (66.45)
80 759.84 77.82 18.19 70.05 (66.01) (74.74) 11.19 75.77 (64.34) (73.53)

100 951.82 121.92 78.19 98.48 (80.80) (83.11) 90.16 103.49 (81.34) (83.16)
final — 122.19 92.84 98.73 81.01 83.29 93.10 103.76 81.53 83.29

CompK 20 357.66 13.79 0.04 36.79 (101.70) (166.58) 0.01 57.54 (97.42) (164.25)
40 715.32 59.95 0.52 92.44 (133.65) (184.78) 0.09 116.47 (142.84) (193.77)
60 1072.98 137.96 8.01 158.47 (181.32) (217.72) 1.49 180.19 (195.30) (225.01)
80 1430.64 237.78 48.15 231.14 (217.04) (241.21) 23.69 248.19 (221.05) (242.38)

100 1790.24 352.80 252.72 312.09 (261.93) (267.69) 280.11 328.85 (265.95) (267.97)
final — 353.29 273.32 312.54 262.58 268.15 284.17 329.43 266.38 268.15

GridN 20 2340.16 1.93 3.66 35.23 (42.00) (31.48) 4.09 52.76 (38.00) (31.48)
40 4680.32 12.48 17.43 51.08 (53.97) (31.50) 21.57 58.05 (40.25) (31.48)
60 7020.48 33.58 39.51 65.21 (63.32) (31.47) 48.80 62.41 (41.52) (31.48)
80 9360.64 63.45 67.29 77.99 (64.34) (31.46) 80.32 66.71 (42.23) (31.47)

100 11702.9 99.70 97.88 89.06 (74.55) (31.82) 111.68 71.40 (45.30) (31.71)
final — 99.73 128.30 89.06 74.60 31.86 134.73 71.40 45.33 31.86

GridK 20 4158.98 4.02 8.31 51.33 (74.15) (69.12) 9.40 81.48 (64.32) (69.05)
40 8317.96 20.96 36.32 77.49 (85.76) (69.19) 41.97 95.23 (67.55) (69.05)
60 12476.9 49.61 77.73 102.37 (99.93) (68.97) 89.34 106.13 (70.46) (68.86)
80 16635.9 88.09 127.66 127.42 (105.17) (69.65) 142.17 117.61 (71.95) (69.61)

100 20797.2 135.66 184.90 152.38 (125.88) (72.04) 195.12 131.54 (81.07) (72.31)
final — 135.68 203.51 152.38 126.18 72.32 203.04 131.54 81.08 72.32

%ND: percentage of ND s-t paths; final: CPU time to finishes the algorithm;
#ND: number of ND s-t paths;
LDP: heap implementation for L&DP algorithm; LS: Dial implentation for label setting algorithm
LC: deque implementation for label correcting algorithm; Fifo: FIFO rule implementation for label correcting algorithm

Table 7. CPU time (sec) for ranking ND paths on the
biggest problem for each class.

22 E.Q. MARTINS, J.M. PAIXÃO, M.S. ROSA AND J.L. SANTOS

networks, the algorithm takes slightly longer than relatively to ≤max and
≤sum. However, for the grid networks, the L&DP performs faster for the
≤lex order relation.

7. Conclusion
In this paper, we presented a new algorithm to solve the MSPP with the

particular feature of efficiently ranking the non-dominated paths, accordingly
to an order relation. We proved the correctness of the algorithm and reported
computational experience using a public code as reference basis. From the
computational results shown in the paper, one may conclude that the new
algorithm has the lowest average working effort to obtain a non-dominated
path and clearly outperforms the previously known procedures for the MSPP,
when one looks for ranking the ND paths.

References
[1] R.K. Ahuja, T. L. Magnanti, and J.B. Orlin. Network Flows – theory, algorithms, and appli-

cations. Prentice-Hall, Inc., New Jersey, 1993.
[2] J. Brumbaugh-Smith and D. Shier. An empirical investigation of some bicriterion shortest

path algorithms. European Journal of Operational Research, 43:216–224, 1989.
[3] R.L. Carraway, T.L. Morin, and H. Moskowitz. Generalized dynamic programming for multi-

criteria optimization. European Journal of Operational Research, 44:95–104, 1990.
[4] Dimacs Center. 9th dimacs implementation challenge - shortest paths, 2006.

(http://www.dis.uniroma1.it/∼challenge9/).
[5] J.N. Cĺımaco, C.H. Antunes, and M.J. Alves. Interactive decision support for multiobjective

transportation problems. European Journal of Operational Research, 65/1:58–67, 1993.
[6] J.N. Cĺımaco and E.Q. Martins. On the determination of the nondominated paths in a mul-

tiobjective network problem. Proceedings of V Sympösium über Operations Research, Köln,
(1980), in Methods in Operations Research, 40, (Anton Hain, Königstein, 1981), 255–258.

[7] J.N. Cĺımaco and E.Q. Martins. A bicriterion shortest path algorithm. European Journal of
Operational Research, 11:399–404, 1982.

[8] J. Current and M. Marsh. Multiple transportation network design and routing problems:
taxonomy and annotation. European Journal of Operational Research, 65:4–19, 1993.

[9] R. Dial. Algorithm 360. shortest path forest with topological ordering. Communications of
ACM, 12:632–633, 1969.

[10] R. Dial, G. Glover, D. Karney, and D. Klingman. A computational analysis of alternative
algorithms and labelling techniques for finding shortest path trees. Networks, 9:215–348, 1979.

[11] M. Ehrgott. Multiple Criteria Optimization – Classification and Methodology. Shaker Verlag,
Aachen, 1997.

[12] F. Guerriero and R. Musmanno. Label correcting methods to solve multicriteria shortest path
problems. Journal of Optimization Theory and Applications, 111:589–613, 2001.

[13] W. Habenicht. Efficient routes in vector-valued graphs. In Proceedings of the 7th conference
on graphtheoretic concepts in computer science (WG 81), pages 349–355. Mühlbacher, 1982.

[14] P. Hansen. Bicriterion path problems. in Multiple Criteria Decision Making: Theory and
Application, editors: G. Fandel and T. Gal, Lectures Notes in Economics and Mathematical
Systems, 177, 109-127, Springer Heidelberg, 1980.

RANKING NON-DOMINATED PATHS 23

[15] E.Q. Martins. On a multicriteria shortest path problem. European Journal of Operational
Research, 16:236–245, 1984.

[16] E.Q. Martins, M.M. Pascoal, and J.L. Santos. Deviation algorithms for ranking shortest paths.
International Journal of Foundations of Computer Science, 10 (3):247–261, 1999.

[17] E.Q. Martins and J.L. Santos. The labelling algorithm for the multiobjective shortest path
problem. Internal Technical Report, TR 1999/005, CISUC.

[18] J. Mote, I. Murthy, and D.L. Olson. A parametric approach to solving bicriterion shortest
path problems. European Journal of Operational Research, 53:81–92, 1991.

[19] J.P. Paixão, M.S. Rosa, and J.L. Santos. Labelling methods for the general case of the multi-
objective shortest path problem - a computational study. Working Paper 07-xx, CMUC and
submitted for publication., 2001.

[20] U. Pape. Implementation and efficiency of moore-algorithms for the shortest route problem.
Mathematical Programming, 7:212–222, 1974.

[21] U. Pape. Algorithm 562: Shortest paths lengths. ACM Transactions on Mathematical Soft-
ware, 6:450–455, 1980.

[22] J.L. Santos. Computational results in networks optimization problems.
(http://lirio.mat.uc.pt/redes/paper results.htm).

[23] J.L. Santos. Multiobjective shortest path problem.
(http://www.mat.uc.pt/∼zeluis/INVESTIG/MSPP/mspp.htm).

[24] J.L. Santos. O problema do trajecto óptimo multiobjectivo, 1997. (Master degree dissertation;
Mathematics Department; University of Coimbra).

[25] J.L. Santos. Optimização vectorial em redes. PhD thesis, Departamento de Matemática, Uni-
versidade de Coimbra, 2003.

[26] A.J. Skriver and K.A. Andersen. A label correcting approach for solving bicriterion shortest-
path problems. Computers & Operations Research, 27:507–524, 2000.

[27] P. Vincke. Problèmes multicritères. Cahiers du Centre d’Études de Recherche Opérationelle,
16:425–439, 1974.

Ernesto Queirós Martins
Department of Mathematics, University of Coimbra

José Manuel Paixão
Operations Research Center, Department of Statistics and Operations Research, Uni-
versity of Lisbon

E-mail address: jpaixao@fc.ul.pt

Mário Silva Rosa
Centre for Mathematics of the University of Coimbra, Department of Mathematics,
University of Coimbra

E-mail address: mrosa@mat.uc.pt

José Luis Santos
Centre for Mathematics of the University of Coimbra, Department of Mathematics,
University of Coimbra

E-mail address: zeluis@mat.uc.pt
URL: http://www.mat.uc.pt/∼zeluis

