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Abstract: Metal foams and alloy foams are a novel class of engineering materials and have numerous
applications because of their properties such as high energy absorption, light weight and high
compressive strength. In the present study, the methodology adopted to develop a Ni-Cr alloy
foam is discussed. Polyurethane (PU) foam of 40PPI (parts per inch) pore density was used as
the precursor and coating techniques such as electroless nickel plating (ELN), ultrasonic-assisted
electroplating of nickel (UAEPN), and pack cementation or chromizing were used to develop the
Ni-Cr alloy foam. The surface morphology, strut thickness and minimum weight gain after each
coating stage were evaluated. It was observed from the results that the adopted coating techniques
did not damage the original ligament cross-section of the PU precursor. The minimum weight
gain and the coating thickness after the UAEPN process were observed to be 42 g and 40–60 µm,
respectively. The properties such as porosity percentage, permeability and compressive strength
were evaluated. Finally, the pressure drop through the developed foam was estimated and verified to
determine whether the developed foam can be used for filtering applications.

Keywords: Ni-Cr alloy foam; electroless nickel plating; ultrasonic-assisted; chromizing; porosity

1. Introduction

Porous materials such as alloy foams and metal foams have abundant engineering
applications due to their exceptional physical and mechanical properties. Basically, an
alloy or metal foam is a cellular structure that has a solid matrix made of an alloy or metal
with empty voids. If the voids are connected by means of open pores, then the foam is
described as an open-cell foam, and if the voids are not connected by open channels and are
disconnected by solid walls then the foam is said to be a closed-cell foam. Alloy foams offer

Coatings 2023, 13, 1002. https://doi.org/10.3390/coatings13061002 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings13061002
https://doi.org/10.3390/coatings13061002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0003-2917-3012
https://orcid.org/0000-0002-0312-1612
https://orcid.org/0000-0003-3391-0820
https://orcid.org/0000-0003-2723-4459
https://orcid.org/0000-0003-4035-3241
https://doi.org/10.3390/coatings13061002
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings13061002?type=check_update&version=1


Coatings 2023, 13, 1002 2 of 12

significant performance gain in light and stiff structures for high energy absorption, better
thermal management and high compressive strength [1]. These foams are reproducible and
non-toxic. Thus, foams are one of the best lightweight materials that can be employed in
many functional and structural applications.

Most commercially existing metal foams are based on copper, nickel, zinc, aluminum,
titanium and their alloys. Aluminum alloy foams are mainly used in sound absorption,
thermal insulation and vibration control applications [2]. Nickel-based alloy foams such as
Ni-Cr foams combine good mechanical properties and better corrosion resistance at room
temperature as well as for high-temperature applications. Because of their low density,
high specific area and good ductility, Ni-Cr alloy foams can be used as sandwich-structure
core material and for mechanical damping applications [3]. These foams are also used to
produce near-net-shape complex components, and for filtering and separation applications,
due to their unique microstructure. Chao-Heng et al. [4] investigated a nickel foam for
photocatalytic filtering applications and concluded that the removal of formaldehyde from
indoor air is made better by incorporating the nickel foam in a standard air filter.

Several techniques such as slurry foaming [5,6], direct foaming with a blowing
agent [7,8], investment casting [9,10] and electrochemical deposition [11–13] are avail-
able to fabricate alloy foams. The microstructure and mechanical properties of the foam
greatly depends on the fabrication technique. To use the developed foam for filtering and
separation applications, maintaining the original porosity, ligament or strut structure is
necessary for better functional performance. Hence, in the present study, electrochemical
deposition techniques were used to develop Ni-Cr alloy foams. Duan et al. [14] developed
a Ni-Cr alloy foam using electrodeposition techniques and investigated the various process
parameters for optimization of the microstructure and higher electrical resistivity. Pang Qiu
et al. [15] synthesized Ni-Fe-Cr alloy foams employing gas-phase co-deposition techniques
and studied their compressive and energy absorption properties. They concluded that both
properties were increased with an increase in Cr content in the developed foam.

The mechanical properties of the cellular structures depend on the pore size, rela-
tive density, strut material and porosity percentage. Michailidis et al. [16] fabricated an
open-cell aluminum foam using a space holder technique and evaluated its compressive
strength. It was understood from their study that the stress–strain curve of the foam
depends on the pore size and that the compressive strength reduces with enhancement
of the porosity percentage. Kaplon et al. [17] used two different polyurethane (PU) foam
materials as precursor materials and developed open-porosity magnesium foam using an
investment-casting technique, and they examined its microstructure, corrosion resistance
and mechanical compressive strength. Zhang et al. [18] developed geopolymer foams
by employing aluminum and H2O2-sodium oleate as foaming agent and optimized the
pore structure. Chemical compositions and microstructure were analyzed using Fourier
transform infrared spectroscopy and X-ray diffraction (XRD) techniques and they measured
the permeability and flow properties using a permeameter.

From the literature survey, it can be summarized that a few studies [17,19,20] have used
aluminum, zinc, magnesium and copper metals as foams, while some other
studies [14,15,21] have used nickel alloys, aluminum alloys and titanium-based copper
alloys as foams. In a few works [7,8,10], melt foaming, direct foaming with a blowing
agent, and investment casting were used to fabricate metal or alloy foams. In a few other
works [19,22–24], electrodeposition techniques and powder metallurgy methods were used
to fabricate alloy foams. Some studies [25–27] investigated the microstructure, mechanical
properties and process parameters of the developed foams, and some other studies [28,29]
concentrated on the functional performance and optimum pore-size structure. Overall,
nickel-based and aluminum-based open-cell foams have been discussed without much
focus on the fluid flow characteristics and permeability calculations.

Because of new advancements in the aerospace, defense and automotive industries,
there is a large demand for lightweight structures which can be used as filtering media, as
well as structural components to increase fuel efficiency and functional performance. Thus,
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to satisfy these requirements, the development methodology for such a novel structural
material, a Ni-Cr alloy foam, is discussed in the present study. As per the knowledge of the
authors, there is no study available on Ni-Cr foams which addresses their process capability,
pressure drop and permeability calculations. Very limited studies are available on the
synthesis of Ni-Cr alloy foams using electrodeposition techniques. Thus, the objectives
of the present study are (i) to discuss the methodology adopted to develop a Ni-Cr alloy
foam and its process parameters’ optimization; (ii) to evaluate the process capability of the
various methods used to develop such a foam; and (iii) to determine its porosity percentage,
permeability, pressure drop and mechanical compressive strength.

2. Materials and Methods
2.1. Materials

Polyurethane foam having 40 PPI (parts per inch) pore density and a strut thickness of
100–110 µm was taken as precursor and purchased from Sheela foam Ltd., Noida, India. All
the reagents used in the electroless nickel plating (ELN), ultrasonic-assisted electroplating
of nickel (UAEPN) and pack chromizing were of analytical grade and purchased from
Alfa Aesar, Mumbai, India. Demineralized (DM) water was used to prepare different bath
compositions.

2.2. Synthesis of Ni-Cr Alloy Foam

Figure 1 shows a schematic representation of the Ni-Cr alloy foam development
methodology. The methodology adopted to develop the Ni-Cr foam was mainly elec-
trodeposition techniques and solid-state diffusion techniques. Initially, PU foam having
60 × 60 × 15 mm3 dimensions and 40 PPI was taken as a base material and metallized
using an electroless nickel-plating technique. The detailed bath composition and the ELN
procedure are described in Figure 2. As an output of the ELN process, a thin layer of
Ni atoms was deposited on the precursor foam. The optimized process parameters were
temperature: 90–95 ◦C, time: 50–60 min and pH: 4.5–5.5. In order to achieve uniform
deposition and the required thickness of Ni coating on the metallized foam, an ultrasonic-
assisted electroplating of nickel (UAEPN) technique was used. Table 1 represents the
bath composition and operating parameters used in the study. The process scheme of the
UAEPN technique is shown in Figure 3. The ELN-coated Ni foam was used as cathode,
while two nickel plates of size 80 × 80 × 15 mm3 were used as anodes during the UAEPN
process. Later, in order to remove the PU precursor from the developed Ni foam, sintering
was carried out at 1100 ◦C for 1 h. A resistance-heat furnace of 9 kW capacity and reducing
atmosphere (H2) was used during sintering. In the sintering process, the PU precursor was
burnt out at 450–500 ◦C and strengthening of the EPN foam was carried out by creating
bonding between the plated Ni particles.
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Table 1. Bath composition and process parameters of UAEPN technique.

Process Bath Composition Operating Parameters

UAEPN

Ni salt (NiSO4·6H2O + NiCl2·6H2O): 350 g/L
Current: 7–8.5 A
Voltage: 10–12 V

pH: 4–5
Duration: 300–360 min

Boric acid: 20 g/L
Sodium sulphate: 15 g/L

Omni additive 992: 8 mL/L
Magnum brightener 437: 10 mL/L
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Figure 3. Process scheme of UAEPN technique.

To deposit the chromium on the sintered Ni foam, a chromizing or pack-cementation
process was used. Chromizing is a solid-state diffusion process in which diffusion happens
through the difference in concentrations of the depositing material. To start with the
chromizing process, first, ball milling of the chrome pack was carried out. The chrome
pack consisted of 55 wt.% Cr powder, 15 wt.% NH4Cl (activator) and 30 wt.% Al2O3 (filler
material). The powders were carefully mixed using a mortar and pestle and underwent
high-energy ball milling for 5 h. Ball milling of the pack ensured uniform mixing (blending)
of powders and reduction in the powder particle size. Then, the entire pack composition
was collected and kept in an SS tray of size 65 × 70 × 15 mm3. Then, the tray was loaded
with sintered Ni foam and the pack composition and loaded in the resistance furnace and
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allowed to heat up to 1100 ◦C at a heating rate of 8 ◦C/min. Argon was used as a shielding
gas to avoid oxidation of the foam during chromizing. The sample was soaked for 6 h at
1100 ◦C and then allowed for furnace cooling.

2.3. Characterization Techniques

Different characterization techniques such as scanning electron microscopy (SEM), X-
ray diffraction (XRD), electron dispersive spectroscopy (EDS) (TESCAN ORSAY HOLDING,
Brno, Czech Republic) and compression tests were performed to evaluate the microstructure
and mechanical behavior of the developed alloy foam.

Strut thickness, morphology and elemental mapping of the developed foam were
examined using Vega 3 TESCAN SEM (TESCAN ORSAY HOLDING, Brno, Czech Republic)
at a working depth of 10–11 mm and 10 kV voltage.

In order to know the phase formations and alloys formed between the Ni and Cr, XRD
(Philips, Caerphilly, UK) analysis was used. The developed foam and a Ni 60 Cr 40 solid
sample were compared using XRD to confirm the bonding between the Ni and Cr elements.

The quasi-static compression behavior and the maximum compressive strength of
the developed foam were examined using a 50 kN load cell Universal Testing Machine
(UTM—Jin Ahn Testing, Suzhou, China). A cylindrical specimen of 12 mm diameter and
15 mm height was considered and tested according to the ASTM C365-05 standard. The
lowest possible dimension of the sample was selected, such that it should be at least seven
times the cell size to avoid size effects. Specimens were kept on the bottom ram of the UTM
machine and load was applied to the specimens when the top ram moved downwards at a
constant cross-head speed of 0.5 mm/min.

2.3.1. Measurement of Theoretical Porosity

The theoretical porosity of the developed foam was measured by using the water
displacement method and Equation (1).

Porosity(%) =
Pores volume (S − D)

Bulk volume (S − I)
(1)

where S, D and I indicate the weight of a saturated sample, a dry sample and a sample
immersed in water, respectively.

The weight of a saturated sample indicates the weight of the foam when its pores are
sealed with water. Thus, the weight of water in pore space = S − D and the weight of water
displaced = S − I.

Pores Volume
(
Vp

)
=

wWater(S − D)

densitywater
(2)

If we consider the density of water to be 1 g/cc, then the pores volume will be equal
to the weight of water in pore space. Similarly, the bulk volume can be expressed in terms
of the weight of water displaced.

2.3.2. Measurement of Permeability and Pressure Drop through Foam

The developed foam can have application as an oil–air separator; hence, to support its
functionality, the measurement of its permeability and pressure drop through it is necessary.
Permeability is a property of porous materials which indicates the ease of flow of fluids
through them. Since the porosity of foam varies at the different processing stages of the
foam, it is also necessary to evaluate permeability at those stages.

Tadrist et al. [30] derived the relationship between the pressure drop (dp), the porosity
(ε) of the medium and an average particle diameter (dP) using Equation (3).

dP
dX

= A
(
1−ε)2

ε3dP
2 µV + B

(1−ε)
ε3dP

ρV2 (3)
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A and B are the constants which differ according to the porous medium. For the Ni-Cr
foam porous medium, the values of A and B can be taken as 100 and 1.0, respectively. µ, V
indicates dynamic viscosity and velocity of the fluid, dX represents thickness of the foam
and ρ-density of the fluid.

The relationship between particle diameter (dp) and pore size (d) of the foam is given
by Equation (4).

dp= 1.5
1−ε

ε
d (4)

The relationship between permeability (K), theoretical porosity (ε) and particle diame-
ter (dp) is given by Equation (5).

K =
dp

2ε3

A(1−ε)2 (5)

3. Results and Discussion
3.1. Surface Morphology and Process Capability of ELN- and UAEPN-Coated PU Foams

In order to examine the ligament cross-section of the foam and to evaluate the coating
thickness, SEM analysis was used. Figure 4 shows the surface morphology and the strut
thickness of the ELN- and UAEPN-coated foams, and the process capability of the ELN
and UAEPN processes. It can be noted from the results that ELN-coated foam has strut
thickness in the range of 115–125 µm and that of the UAEPN-coated foam is in the range of
160–180 µm. As the strut thickness of the PU precursor was 100–110 µm, these morphology
results indicate that the thickness of the coating after the ELN process was around 15–25 µm
and after the UAEPN process it was around 40–60 µm. To evaluate the process capability of
the ELN and UAEPN processes, 10 different foam samples of the same size were considered
and coated using the same process parameters. It was observed from the results that the
minimum weight gain after the ELN process was around 2 g and after the UAEPN process
it was around 42 g. Thus, from this study, it can be concluded that the selected process
parameters can be treated as the ideal parameters.
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3.2. Surface Morphology and Process Capability of Chromized Foam

In order to confirm that the developed foam has good mechanical properties, it was
necessary to examine the strut integrity in all the stages of development. Figure 5 shows
the morphology and strut integrity of chromized foam. It was observed from the results
that the chromized foam did not have any strut disconnections or failures; hence, it was
confirmed that the chromizing process did not destroy the strut integrity. The chromized
foam had strut thickness of around 250–260 µm and a minimum weight gain of 6.75 g. All
the results evaluated for the process capability of the chromizing process showed consistent
and promising results. Hence, the chromizing process can be used to deposit the chromium
on the sintered Ni foam.
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3.3. EDS and XRD Analysis of Ni-Cr Alloy Foam

To evaluate the bonding and the phase formations between the Ni and Cr elements,
EDS and XRD analyses were performed on the foam. Figure 6 shows the line scanning and
EDS spectrum of developed Ni-Cr alloy foam. It can be noted from the results that the Ni
and Cr elements were uniformly distributed throughout the foam and the weight% of Ni
was 71.56, Cr was 22.65 and oxygen was 2.17. This result indicated that, though the bonding
occurred between the Ni and Cr elements, oxidation of Cr also happened. This oxidation
phenomena can be attributed to an improper inert-gas flow during chromizing and can
be controlled by a thorough cleaning of the furnace and sample, and by maintaining the
argon gas flow rate at 2 bar. EDS analysis alone is not sufficient to confirm the bonding
between the Ni and Cr elements; hence, to confirm the bonding and to estimate the phase
formations, XRD analysis was used. The results were compared with reference patterns
in X’Pert HighScore and confirmed the formation of Ni2Cr and Ni2Cr4O7 compounds. In
addition, to support the results, the XRD spectrum of the developed foam was compared
with a Ni-Cr (60:40%) solid sample. It can be observed from the results that major peaks
of both spectrums were matching and, hence, it should be concluded that the developed
foam has good bonding between Ni and Cr. It can also be noted from the XRD results
that the Ni-Cr foam had body-centered cubic structure. Thus, the results confirmed the
complete diffusion of face-centered Cr elements into the body-centered Ni foam and the
bonding between them. Since the developed foam had a good amount of Cr, it can be used
for corrosion-resistance and electrical-resistance applications.
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3.4. Compressive Strength of Ni-Cr Alloy Foam

To study the non-linear compressive behavior of the developed foam, a uniaxial
compression test was carried out using a UTM. The deformation of the Ni-Cr foam can be
described using three stages. The first stage is called the linear elasticity portion, and in
this region the deformation behavior follows Hooke’s law. The second stage is called the
collapse plateau. Here, the plastic deformation and the fracture of cell walls progresses
simultaneously until a distinct peak followed by a small stress drop occurs. It can be
seen from Figure 7 that the stress generated in the foam is increased up to some plastic
deformation stress and then becomes constant. This region of constant stress is called the
crush plateau region and it defines the behavior of an ideal energy absorber.

The third stage of deformation is called the densification of the foam. Once the applied
stress exceeds the crush plateau region, the foam will start to compress at a constant stress
up to 35%–50% of strain. The densification region of the curve acts as a safety backup zone
in energy-absorption applications and it allows unexpected energy to be absorbed with an
increasing resistance to the impact loads. It is observed from the results that the maximum
compressive strength of the developed foam was 10.21 MPa at a maximum displacement of
0.8. Table 2 compares the compressive strength and porosity% of the developed foam with
other foams. It can be concluded that the developed Ni-Cr foam has better compressive
properties and porosity than the earlier developed foams and thus can have better potential
applications than the alternative materials.
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Table 2. Comparison of compressive strength and porosity with earlier studies.

Type of Foam Max Compressive
Strength Porosity% References

Ni-Cr alloy foam 10.21 MPa 91% Current study
Ni-Cr-Fe alloy foam 3.5 MPa 85% [15]
AZ91 Mg alloy foam 2.2 MPa 83% [17]

SS316L open-cell foam 3.0 MPa 80% [5]
Open-cell copper foam 0.7 MPa 93% [2]

3.5. Porosity of Foam at Different Processing Stages

In order to examine the effects of the coating techniques on the microstructure of the
PU precursor, the porosity% was calculated at different processing stages of the Ni-Cr alloy
foam. The theoretical porosity of the developed foam was determined by Equation (1)
and the water displacement method. It can be observed from Figure 8 that the porosity%
of the foam is decreased from the ELN stage to the UAEPN stage, and then again to
the chromizing stage. This change in porosity% can be attributed to an increase in strut
thickness from the ELN stage to the chromizing stage. During the sintering process, the
bonding between plated Ni particles happens and thus a negligible decrease in the porosity
% can be observed.

3.6. Permeability and Pressure Drop of Ni-Cr Alloy Foam

In order to estimate the ease of turbonycoil flow through the developed foam, per-
meability was calculated at different processing stages of the foam. It can be noted from
the results that the permeability decreased from the precursor foam to the UAEPN foam,
and then again to the chromized foam. This decrease can be attributed to a decrease in the
porosity% with the increase in strut thickness. It is observed from Figure 9 that the foam
had good permeability at all the stages of processing; hence, it can be concluded from the
study that the developed foam can be used for filtering applications.
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Though the porosity% and permeability values are satisfactory, the pressure drop
through the filtering medium should also be satisfactory to be used in applications as an
oil–air separator or filtering media. Hence, the pressure drop through the developed Ni-Cr
alloy foam was calculated using Equation (3). For the calculations, turbonycoil dynamic
viscosity was considered as 2.544 × 10−5 poise. Turbonycoil was supplied to the foam from
a height of 220 mm with a velocity of 0.62 m/s and flow rate of 250 mL/s. It was observed
from the results that, for a porosity of 0.91, the pressure drop through the developed Ni-Cr
alloy foam was 0.0258%. This pressure drop is negligible; hence, it can be concluded from
the study that the developed foam can be used in applications as a filtering medium.

4. Conclusions

The methodology adopted to synthesize a Ni-Cr alloy foam was discussed. Coating
techniques such as electroless Ni coating, ultrasonic-assisted electroplating, polyurethane
burn-out and sintering, and pack-cementation techniques were discussed. The surface mor-
phology, coating thickness, theoretical porosity, permeability and pressure drop through
foam were analyzed. The following are some of the conclusions from the study.

The ELN technique was used to metallize the precursor and resulted in a minimum
weight gain of 2 g and a coating thickness of 15–20 µm.
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The UAEPN technique ensured the uniform deposition of Ni throughout the ELN-
coated foam and showed a minimum weight gain of 42 g and a coating thickness of
40–60 µm.

The chromizing process was evaluated for uniform deposition of Cr and resulted in a
minimum weight gain of 6.75 g.

The XRD spectrum confirmed the bonding between the Ni and Cr elements and the
phase formation of Ni2Cr.

The developed Ni-Cr foam had a porosity of 91% and a permeability of 1.0032 × 10−8 m2.
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