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Abstract: A matrix whose entries are +, − or 0 is said a sign pattern. The inertia
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1. Introduction
In the literature, the study of combinatorial and qualitative information

based on the signs of the entries of a matrix has attracted much attention.
A matrix whose entries are from the set {+,−, 0} is called a sign pattern
(matrix ). For each n × n sign pattern A there is a natural class of real
matrices whose entries have the signs indicated by A, i.e., the sign pattern
class of a sign pattern A is defined by

Q(A) = {B | sign B = A} .

We are interested in symmetric matrices and in the sign symmetric classes

QSY M(A) = {B | sign B = A and B = BT} .

Define the inertia of an n-by-n real symmetric matrix H as the triple
In(H) = (π, ν, δ), where π is the number of positive eigenvalues, ν is the
number of negative eigenvalues and δ = n − π − ν the number of the zero
eigenvalues. For a symmetric sign pattern A, we define the inertia (set) of A
to be

In(A) = { In(B) | B ∈ QSY M(A)} .

We say that the sign pattern A requires unique inertia and is sign nonsingular
if every real matrix in QSY M(A) has the same inertia and is nonsingular,
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respectively. If two sign patterns A1 and A2 are congruent, i.e., if for all
B1 ∈ QSY M(A1) and B2 ∈ QSY M(A2) there exists a nonsingular real matrix
S such that B1 = SB2S

T , then we say that A1 and A2 are sign congruent
and write A1 ≈ A2.

By Sylvester’s law of inertia we may say that two congruent sign patterns
have the same inertia set. For example, the symmetric sign pattern




0 + +
+ + 0
+ 0 0




is sign congruent to 


0 0 +
0 + 0
+ 0 0




and, therefore, it requires unique inertia (2, 1, 0) and, consequently, it is sign
nonsingular. On the other hand, the sign pattern




+ + +
+ + 0
+ 0 −




is sign congruent to 

∗ 0 0
0 + 0
0 0 −


 ,

where ∗ is 0, + or −, and, therefore, it requires the inertia set {(1, 1, 1),
(1, 2, 0), (2, 1, 0)}.

A diagonal sign pattern where each of whose entries is + or − is called a
signature pattern. The square of a signature pattern is a signature pattern
with all diagonal entries equal to +. A sign pattern with exactly one entry
in each row and each column equal to + and all other entries equal to 0
is called a permutation pattern. Two congruent sign patterns by the way
of a signature pattern or of a permutation pattern are called, respectively,
signature congruent or permutation congruent patterns.

An n×n symmetric sign pattern A = (aij) is associated with the undirected
graph G on vertices 1, . . . , n having an edge between vertices i and j if and
only if i 6= j and aij 6= 0. We often write A = A(G) and we simply say that
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G is the graph of the sign pattern A. If the graph of A is a tree, we say A is
a tree (or acyclic) sign pattern.

A vertex of G with degree 1 is said terminal. If a vertex has degree at least
2 and it is incident in a terminal vertex, then it is called a foot of the graph.

Recently the inertia sets of some types of symmetric sign patterns, namely
stars, double stars, 2−generalized stars and paths, were considered by dif-
ferent authors, cf. [4, 8, 9, 10, 12, 13, 14]. Using some matrix results, da
Fonseca [6] considered several results on tridiagonal matrices. In this paper
we present an algorithm that allows us to compute the inertia set of any
symmetric sign pattern whose graph is a tree, using mainly tools well known
from congruences between matrices (cf., e.g., Cain and Marques de Sá [1, 2]
or da Fonseca [5]).

2. Tree sign patterns
In this section, we give an algorithm to compute the inertia set of any

symmetric sign pattern whose associated graph is a tree. Notice that given
any symmetric tree sign pattern, the inertia set does not depend on the sign
of the off-diagonal elements, since two sign patterns under these conditions
are signature congruent. Henceforth, we may consider all off diagonal entries
as +.

We start by considering a symmetric sign pattern whose graph is a star,
following the ideas developed in [6].

Set (∗|∗, . . . , ∗) for the main diagonal of a sign pattern A when it contains
at least one zero not in the first position.

Theorem 2.1 ([6, 13]). Up to permutation congruence, signature congruence,
and negation, a symmetric star sign pattern

A =




∗ + + · · · +
+ ∗
+ ∗
... . . .
+ ∗




n×n

, (2.1)

where each diagonal entry is 0, + or −, requires unique inertia if and only
if the main diagonal A is

(∗|∗, . . . , ∗) or (¦, +, . . . , +) ,

where ¦ is 0 or −.



4 C.M. DA FONSECA AND RICARDO MAMEDE

Proof : With the exception of the (1, 1)-entry, if one of the diagonal entries
is zero, then

A ≈
(

0 +
+ 0

)
⊕



∗

. . .
∗




n−2×n−2

,

and therefore A requires unique inertia.
Suppose now that all diagonal entries are nonzero, possibly with the ex-

ception of the (1, 1)-entry. Then, we get

A ≈ (∗)⊕


∗

. . .
∗




n−1×n−1

.

In this case, A requires unique inertia if and only if all the diagonal entries
different from the (1, 1)-entry have the same sign and the (1, 1)-entry has a
sign different from the other diagonal elements or is equal to 0.

From the proof above we get immediately the following result.

Corollary 2.2 ([13]). Let A be an n× n symmetric star sign pattern having
the form (2.1), and suppose that A has unique inertia.

(1) If the diagonal of A has the form (∗|∗, . . . , ∗), then In(A) = (`+1, s+
1, n−`−s−2), where ` and s are, respectively, the number of positive
and negative entries in the last n− 1 diagonal positions of A.

(2) If the diagonal of A has the form (¦, +, . . . , +), with ¦ equal to 0 or
−, then In(A) = (n− 1, 1, 0).

In particular, if a n × n symmetric star sign pattern A has all diagonal
entries equal to zero, then In(A) = (1, 1, n − 2). It also follows from the
proof of Theorem 2.1 that if the main diagonal of an n × n symmetric star
sign pattern A, up to permutation congruence, signature congruence, and
negation, neither it is (∗|∗, . . . , ∗), nor it is

(0, +, . . . , +) or (−, +, . . . , +),

then

In(A) = {(π + 1, ν, 0), (π, ν + 1, 0), (π, ν, 1)} ,

where π and ν are, respectively, the number of + and − in the last n − 1
diagonal entries of A.
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We can now state the algorithm which will be used in all results of the
paper.

Algorithm For the general case, let us assume that A(G) is a symmetric sign
pattern of order n, whose graph G is a tree. Identify the foot of G incident
on the largest number of terminal vertices. If there is more than one, one can
choose arbitrarily one of them. Reorder, if necessary, the indices of G in such
a way that the vertex, say k, is the chosen foot and let that terminal vertices
are k + 1, . . . , n. Denoting by H subgraph of G, with vertices k, k + 1, . . . , n,
which is a star, we get

A ≈




¦
A(G \H)

...
¦

¦ · · · ¦ ∗ + · · · +
+ ∗
+ .. .
+ ∗




, (2.2)

where each ∗ is 0, + or −, and each ¦ is 0 or +.
If the diagonal of A(H) has the form (∗|∗, . . . , ∗), we can obtain

A ≈ A(G \H)⊕ A(H),

and, therefore,

In(A) = In(A(G \H)) + In(A(H)) ,

repeating now the procedure for A(G \H).
Otherwise, we get

A ≈ A((G \H) ∪ {k})⊕ A(H \ {k}),
and

In(A) = In(A((G \H) ∪ {k})) + In(A(H \ {k})),
where A(H \{k}) is a diagonal sign pattern, repeating now the procedure for
A((G \H) ∪ {k}). Notice that the sign of the diagonal entry in the position
k may vary from the original sign.

Iterating this process a sufficient number of times, we eventually obtain

A ≈ A1 ⊕ · · · ⊕ Ar ,
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where each Ai is either a star sign pattern or a diagonal sign pattern. Hence-
forth,

In(A) = In(A1) + · · ·+ In(Ar).

Notice that since an n×n symmetric star sign pattern B with all the diag-
onal elements equal to zero has inertia In(B) = (1, 1, n− 2), it follows from
the algorithm above that the inertia of a tree sign pattern whose diagonal
elements are all zero is In(A) = (`, `, n−2`), where ` is the number of iterated
steps in the algorithm above.

For example, consider the following symmetric sign pattern

A =




+ + + +
+ −
+ +
+ − + + +

+ +
+ 0
+ −




,

whose graph is

•6 •4 •1
•3

•
2

•
5

•7

.....................................................................................................................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.......

..............................................................................................................................................................................................................................................

......................................................................................................................... ...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

.......

Following the algorithm described above, we get

A ≈



+ + +
+ −
+ +


⊕

(
0 +
+ 0

)
⊕

(
+ 0
0 −

)
,

and, therefore, the inertia set of A is

In(A) = In




+ + +
+ −
+ +


 + (2, 2, 0) .

Finally, by Theorem 2.1, we get

In




+ + +
+ −
+ +


 = {(1, 1, 1), (2, 1, 0), (1, 2, 0)} ,
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and

In(A) = {(3, 3, 1), (4, 3, 0), (3, 4, 0)} .

Still with the same graph, considering the sign pattern

B =




+ + + +
+ −
+ +
+ − + + +

+ +
+ −
+ −




,

we get

B ≈




+ + + +
+ −
+ +
+ ∗


⊕




+
−

−


 ,

and since

In




+ + + +
+ −
+ +
+ ∗


 = {(1, 2, 1), (1, 3, 0), (2, 1, 1), (2, 2, 0), (3, 1, 0)} ,

we reach the set of inertias:

In(B) = {(2, 4, 1), (2, 5, 0), (3, 3, 1), (3, 4, 0), (4, 3, 0)} .

Finally, considering the symmetric sign pattern

C =




0 + + ∗
+ 0
+ 0
∗ 0 + + +

+ 0
+ 0
+ 0




,

whose diagonal elements are all zero, and following the algorithm, we get

In(C) = (1, 1, 1) + (1, 1, 2) = (2, 2, 3) .
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In the next sections, we will show how the algorithm described here can be
used to give straightforward proofs of the main results provided in [3, 4, 9, 10].

3. Symmetric n-star sign patterns
Let us define the symmetric n-star sign pattern

An =




B1 J1
J t

1 B2 J2

J t
2

. . . . . .

. . . . . . Jn−1
J t

n−1 Bn




, (3.1)

where each Bi is an `i × `i symmetric star sign pattern with `i > 1, and, for
i = 1, . . . , n− 1, Ji is the `i × `i+1 sign pattern having the sign + is position
(1, 1), and 0 elsewhere. For each i = 1, . . . , n, di denotes the diagonal of Bi.

Theorem 3.1. The symmetric n-star sign pattern (3.1) requires unique in-
ertia if and only if, up to permutation congruence, signature congruence and
negation, for each k = n, . . . , 1, dk = (∗|∗, . . . , ∗) or dk = (¦, +, . . . , +) and,
in this last case, dk−1 = (∗|∗, . . . , ∗) or dk−1 = (¦′,−, . . . ,−), where ¦ is 0 or
−, and ¦′ is 0 or +.

Proof : (⇐) The proof will be handle by induction over n ≥ 1. When n = 1
the result was proved in Theorem 2.1. So, let n ≥ 2 and consider the diagonal
dn. If dn = (∗|∗, . . . , ∗), then by our algorithm we get

An ≈ An−1 ⊕
(

0 +
+ 0

)
⊕



∗2

. . .
∗s


 ,

where An−1 is the symmetric (n − 1)-star sign pattern with diagonal blocks
B1, . . . , Bt−1. By induction, An−1 has unique inertia and, thus, also An has
unique inertia. If dn = (¦, +, . . . , +), again by the algorithm, we get

An ≈




B1 J1

J t
1

. . . . . .

. . . . . . J ′n−2
J
′t
n−2 B′

n−1


⊕




+
.. .

+


 ,

where B′
n−1 is the symmetric star sign pattern obtained from Bn−1 by adding

the sign − in the last diagonal position. Notice that if dn−1 = (∗|∗, . . . , ∗),
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then the main diagonal of B′
n−1 is also of the same form, and if dn−1 =

(¦′,−, . . . ,−), then the diagonal of B′
n−1 still have this pattern. Thus, by

induction we find that An has unique inertia.
(⇒) Without loss of generality, assume that up to permutation congruence,

signature congruence and negation, neither dn = (∗|∗, . . . , ∗) nor is dn =
(¦, +, . . . , +). Then, by the algorithm,

An ≈




B1 J1

J t
1

. . . . . .

. . . . . . J ′n−2
J
′t
n−2 B′

n−1


⊕



∗2

. . .
∗s


 , (3.2)

with B′
n−1 the symmetric star sign pattern obtained from Bn−1 by adding ∗ in

the last diagonal position, where ∗ may be 0, + or −. If d′n−1 = (∗|∗, . . . , ∗),
we get

An ≈




B1 J1

J t
1

. . . . . .

. . . . . . Jn−3

J t
n−3 Bn−2


⊕

(
0 +
+ 0

)
⊕




∗′2
. . .

∗′r
∗


⊕



∗2

. . .
∗s


 ,

and therefore, An does not require unique inertia. In any other case, choosing
appropriately the sign of ∗, the same reasoning also shows that An does
not require unique inertia. Finally, note that a similar situation occurs if
dn = (¦, +, . . . , +) and neither dn−1 = (∗|∗, . . . , ∗) nor dn−1 = (¦′,−, . . . ,−),
where ¦ is 0 or −, and ¦′ is 0 or +.

The characterization of 2-star sign patterns requiring unique inertia, estab-
lished by Yanling in [14], is now a particular case of the previous theorem.

Corollary 3.2 ([14]). The symmetric 2-star sign pattern

A2 =

(
B1 J1
J t

1 B2

)
, (3.3)

requires unique inertia if and only if, up to permutation congruence, signature
congruence and negation, the main diagonal has one of the following forms:

d1 = (∗|∗, . . . , ∗); d2 = (∗|∗, . . . , ∗) , (¦, +, . . . , +; 0,−, . . . ,−) ,

d1 = (¦, +, . . . , +); d2 = (∗|∗, . . . , ∗) , (¦, +, . . . , +; +,−, . . . ,−) ,

where ∗ can be 0, + or −, and ¦ is 0 or −.
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From the proof of Theorem 3.1 for n = 2 and Corollary 2.2, it is now easy
to give the inertia set of a symmetric 2-star sign pattern that requires unique
inertia.

Corollary 3.3 ([14]). Let A be an n×n symmetric 2-star sign pattern having
the form (3.3), and suppose that A requires unique inertia. Let ` = |{i : ai =
+ and 2 ≤ i ≤ `1}|, `′ = |{i : ai = + and `1 + 2 ≤ i ≤ n}|, s = |{i : ai =
− and 2 ≤ i ≤ `1}|, and s′ = |{i : ai = − and `1 + 2 ≤ i ≤ n}|. If the
diagonal of A has the form:

(1) d1 = (∗|∗, . . . , ∗) and d2 = (∗|∗, . . . , ∗), then In(A) = (` + `′ + 2, s +
s′ + 2, n− `− `′ − s− s′ − 4);

(2) d1 = (¦, +, . . . , +) and d2 = (∗|∗, . . . , ∗), then In(A) = (`1 + `′, s′ +
2, `2 − `′ − s′ − 2);

(3) (¦, +, . . . , +; 0,−, . . . ,−), then In(A) = (`1, `2, 0);
(4) (¦, +, . . . , +; +,−, . . . ,−), then In(A) = (`1, `2, 0).

Next we will give a new example which can be easily generalized.

4. An example of generalized star sign pattern
Let

A =




a1 + +
+ a2 + · · · +

+ a3
... . . .
+ am−1

+ am + · · · +
+ am+1
... . . .
+ an




, (4.1)

be an n × n symmetric generalized star sign pattern, with n ≥ 3, where
n −m + 1 ≥ m − 1, m > 4 and each ai is 0, + or −, for i = 1, . . . , n. The
graph of A is:

•2 •1 •m
....................................................................................................................................

•m + 1

•m + 2

•n
•
...

............
............
............
............
............
............
............
............
.......

..................................
..................................

..........
.................................................................................................

•3
•4

•m− 1

•
...

............
............

............
............

............
............

............
............

.......

..................................
..................................

..........
.................................................................................................

(4.2)
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Setting S2 = G(A)\{1,m, m+1, . . . , n} and Sm = G(A)\{1, 2, . . . , m−1},
we define d2 and dm the main diagonals of the star sign patterns A(S2) and
A(Sm), respectively.

Theorem 4.1. The symmetric generalized star sign pattern (4.1) requires
unique inertia if and only if, up to permutation congruence, signature con-
gruence and negation, the main diagonal has one of the following forms:

(1) d2 = (∗|∗, . . . , ∗) and dm = (∗|∗, . . . , ∗);
(2) a1 = +, d2 = (¦, + . . . , +) and dm = (∗|∗, . . . , ∗);
(3) a1 = 0 and dm = (∗|∗, . . . , ∗);
(4) (¦′; ¦, + . . . , +; ¦, +, . . . , +);
(5) a1 = ¦′, d2 = (∗|∗, . . . , ∗) and dm = (¦, +, . . . , +);
(6) a1 = 0, d2 = (∗|∗, . . . , ∗) and dm = (∗, . . . , ∗, +,−),

where each ∗ is 0, + or −, ¦ is 0 or −, and ¦′ is 0 or +.

Proof : If dm = (∗|∗, . . . , ∗), then by the algorithm,

A ≈ A′ ⊕
(

0 +
+ 0

)
⊕




am+1
. . .

an−1


 ,

where A′ is a symmetric star sign pattern whose graph is the star, subgraph
of (4.2), with central vertex 2 and terminal vertices 1, 3, . . . , m− 1. Thus, A
requires unique inertia if and only if (1), (2) and (3) are verified.

When dm = (¦, +, . . . , +), the application of the algorithm provides

A ≈ A′ ⊕



+
.. .

+


 ,

where

A′ =




a1 + +
+ a2 + · · · +

+ a3
...

. . .
+ am−1

+ −



≈




a1 + +
+ −
+ a2 + · · · +

+ a3
...

. . .
+ am−1




(4.3)

is a symmetric 2-star sign pattern whose graph is the subgraph of (4.2) with
vertices 1, . . . , m. By Theorem 3.1, A requires unique inertia if and only if
d2 = (∗|∗, . . . , ∗) or is equal to (¦, +, . . . , +) and a1 = 0, +.
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Finally, when d3 = (∗, . . . , ∗, +,−), we may write

A ≈ A′′ ⊕



am+1
. . .

an−1


 ,

where A′′ differs from matrix A′ in (4.3) only in the last diagonal position,
which can be 0, + or −. Thus, again by Theorem 3.1, we conclude that A
has unique inertia if and only if d2 = (∗|∗, . . . , ∗) and a1 = 0.

5. Symmetric 2-generalized star sign patterns
We turn now our attention to symmetric 2-generalized star sign patterns

which have the following form

A =




a1 + 0 + 0 · · · + 0
+ a2 + 0 0 · · · 0 0
0 + a3 0 0 · · · 0 0
+ 0 0 a4 + · · · 0 0
0 0 0 + a5 · · · 0 0
...

...
...

...
... . . . ...

...
+ 0 0 0 0 · · · am +
0 0 0 0 0 · · · + am+1




, (5.1)

for some odd integer m + 1 ≥ 3. The graph of such sign pattern is

•1
•2

•3

•
4

•
5

•
m •

m + 1

•
..................

...............
...............

...............
...............

...............
...........
...............

...............
...............

...............
...............

......

..................................
..................................

........................
..................................

..............................

............................................................................................................................................................

(5.2)

Let H = {a2i+1 : i = 0, 1, . . .} denote the set of all odd diagonal entries of
A.

Using our algorithm, we an give a straightforward proof of the main result
in [8].

Theorem 5.1 ([8]). Let A be a symmetric 2-generalized star sign pattern
having the form (5.1). Then A requires unique inertia if and only if H has
at most one nonzero element, or H has at least two nonzero elements, all
having the same sign, and a2ia2i+1 ≤ 0, for all i.
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Proof : We start by noticing that if am+1 = 0, then, following our main pro-
cedure, we have

A ≈ A′ ⊕
(

0 +
+ 0

)
,

where A′ is a symmetric 2-generalized star sign pattern whose graph is the
subgraph of (5.2) with vertices 1, . . . , m − 1. Thus, if all elements of H are
zero, or if the only nonzero element of H is a1, then A requires unique inertia.
The same is true if H has one and only one nonzero element, say + 6= a1,
since then we get

A ≈



0 + 0
+ a2 +
0 + +


⊕

(
0 +
+ 0

)
⊕ · · · ⊕

(
0 +
+ 0

)
.

Therefore, without loss of generality, let us assume that all elements of H
are +, and a2ia2i+1 ≤ 0, for all i. Following the algorithm, we have

A ≈ A′ ⊕ (+),

where A′ is associated with the subgraph G′ of (5.2) of by the vertices
1, . . . , m, and whose (m,m) diagonal element is −. Reordering the vertices
of G′, we get

A′ ≈




a1 + 0 0 · · · + 0
+ − 0 0 · · · 0 0
+ 0 a2 + · · · 0 0
0 0 + a3 · · · 0 0
...

...
... . . . ...

...
+ 0 0 0 · · · am−2 +
0 0 0 0 · · · + am−1




.

Repeating the process above, we eventually obtain

A ≈ B ⊕ (+)⊕ · · · ⊕ (+) ,

where B is a (m
2 + 1) × (m

2 + 1) symmetric star sign pattern with diagonal
(+,−, . . . ,−). By Theorem 2.1, A has unique inertia.

Reciprocally, it is clear from the description above that if H has two
nonzero elements with different signs, or has a nonzero element a2i+1 such
that a2ia2i+1 > 0, then A does not require unique inertia.

This proof allows us to identify the inertia set of a 2-generalized star sign
pattern that requires unique inertia.
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Corollary 5.2 ([8]). Let A be a (m + 1)× (m + 1) symmetric 2-generalized
star sign pattern having the form (5.1), and requiring unique inertia.

(1) If H has no nonzero elements, then In(A) = (m
2 , m

2 , 1).
(2) If H has exactly one + (resp., −), then In(A) = (m

2 + 1, m
2 , 0) (resp.,

In(A) = (m
2 , m

2 + 1, 0)).
(3) If H has at least two +’s (resp., −), and a2ia2i+1 ≤ 0 for all i, then

In(A) = (m
2 + 1, m

2 , 0) (resp., In(A) = (m
2 , m

2 + 1, 0)).

6. Symmetric tridiagonal sign patterns
Let us consider the n× n (n ≥ 3) symmetric tridiagonal sign pattern

A∗ =




∗ +
+ ∗ +

+ .. . . . .
. . . . . . +

+ ∗




,

where each diagonal entry is 0, + or −. The graph of a tridiagonal sign
pattern is the path

•1 •2 •3.............................................................................................................................................. . . . •n− 1 •n.......................................................................

Write A∗ = (aij). If i is odd (even), we say that the diagonal entry aii is
in a odd (even) diagonal position. If i < j, we say that aii and ajj are in
ascending positions. Moreover, if i is odd and j is even, we say that aii and
ajj are in odd-even ascending positions. If i < j < k, i and k are odds and j
is even, we say that aii, ajj and akk are in odd-even-odd ascending positions.

The following result, proved in [6, 10, 13], can be easily obtained using our
algorithm.

Theorem 6.1 ([6, 10, 13]). Let A∗ = (aij) be an n×n symmetric tridiagonal
sign pattern. Then,

(1) if n is even, A∗ has unique inertia if and only if there are no two +
nor two − diagonal entries in A∗ in odd-even ascending positions. In
this case, In(A) = (n

2 ,
n
2 , 0);

(2) if n is odd, A∗ has unique inertia if and only if there are no simul-
taneous + and − in odd diagonal positions, and neither three + nor
three − diagonal entries are in odd-even-odd ascending positions, re-
spectively. In this case In(A∗) = (n+1

2 , n−1
2 , 0) if there are + in odd
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positions, In(A∗) = (n−1
2 , n+1

2 , 0) if there are − in odd positions, and

In(A∗) = (n−1
2 , n−1

2 , 1) if there are neither + nor − in odd positions.

Proof : (1) If ann is zero then, following the procedure described in the pre-
vious section, we have

A∗ ≈ A′
∗ ⊕

(
0 +
+ 0

)
,

where A′
∗ = (aij), for all i, j = 1, . . . , n− 2. By induction, we find

In(A∗) = In(A′
∗) + (1, 1, 0) =

(n

2
,
n

2
, 0

)
.

Otherwise, assume that ann = + (the proof is analogous if ann = −), and
notice that this means that all odd diagonal entries of A∗ are 0 or−. Applying
our algorithm, we get A∗ ≈ A′

∗ ⊕ [+], where A′
∗ = (a′ij) with a′ij = aij, for

all i, j = 1, . . . , n − 1, except for the diagonal entry n − 1, where we have
a′n−1,n−1 = −. Now, if a′n−2,n−2 = −, then all odd diagonal entries of A′

∗
must be zero. In this case, reordering the indices of G \ {n} and applying
algorithm to the corresponding matrix, we get

A′
∗ ≈

(
0 +
+ 0

)
⊕ · · · ⊕

(
0 +
+ 0

)
⊕ (−),

and therefore, In(A∗) = In(A′
∗) + (1, 0, 0) = (n

2 ,
n
2 , 0). Finally, if a′n−2n−2 is 0

or +, the algorithm gives A′
∗ ≈ A′′

∗ ⊕ (−), where A′′
∗ = (a′′ij), with a′′ij = aij,

for all i, j = 1, . . . , n−2. By induction, we have In(A∗) = In(A′′
∗)+(0, 1, 0)+

(1, 0, 0) = (n
2 ,

n
2 , 0).

Conversely assuming the existence of two + diagonal entries in A∗ in odd-
even ascending positions, say 2k + 1 and 2k′, then, by algorithm 1, we may
write A∗ ≈ A′

∗⊕B1⊕· · ·⊕Br, where A′
∗ = (a′ij) is the tridiagonal sign pattern

of order 2k + 2, with a′ij = aij for 1 ≤ i, j ≤ 2k + 1, and a′2k+2,2k+2 = +, and

each Bi = (+)⊕ (−) or Bi =

(
0 +
+ 0

)
. By the main algorithm, we get

A′
∗ ≈




. . . . . .

. . . a2k,2k ±
± ∗ 0

0 +


 ,
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where ∗may be 0, + or−. Choosing appropriately the sign of ∗, we eventually
get

A′
∗ ≈

( ∗ 0
0 +

)
⊕B′

1 ⊕ · · · ⊕B′
s,

where each B′
i is a diagonal sign pattern of order 2. Thus, A∗ has not unique

inertia.

(2) The only if condition is similar to the only if condition in (1).
Reciprocally, we start noticing that if all diagonal odd positions are 0, then

by our algorithm, we get

A∗ ≈ (0)⊕
(

0 +
+ 0

)
⊕ · · · ⊕

(
0 +
+ 0

)
,

and thus In(A∗) = (n−1
2 , n−1

2 , 1). Otherwise, assume that there is at least one
+ or − diagonal entry in an odd position, but not both in odd positions, and
neither three + nor three − diagonal entries are in odd-even-odd ascending
positions, respectively. The result is clear for n = 3. So, let n > 3, and
consider ann = 0. In this case, following the algorithm, we get

A∗ ≈ A′
∗ ⊕

(
0 +
+ 0

)
,

where A′
∗ = (aij)1≤i,j≤n−2, and the result follows by induction. Next, suppose

ann = + (the proof is analogous if an,n = −). Notice that if an−1,n−1 = +,
then all odd diagonal entries in A∗ must be equal to 0. In this case, we get
A∗ ≈ A′

∗⊕ (+), where A′
∗ = (a′ij) is a tridiagonal sign pattern of order n− 1,

satisfying a′ij = aij for all 1 ≤ i, j ≤ n − 2, and an−1,n−1 may be 0, + or −.
Therefore, by (a) we get

In(A∗) = In(A′
∗) + (1, 0, 0) =

(
n + 1

2
,
n− 1

2
, 0

)
.

Finally, if an−1,n−1 is 0 or −, then we get A∗ ≈ A′
∗⊕ (+), where A′

∗ = (a′ij) is
a tridiagonal sign pattern of order n− 1, satisfying a′ij = aij for all 1 ≤ i, j ≤
n − 2, and an−1,n−1 = −. Noticing that aii 6= −, for all odd 1 ≤ i ≤ n − 1,
again by (a) we find that

In(A∗) = In(A′
∗) + (1, 0, 0) =

(
n + 1

2
,
n− 1

2
, 0

)
.
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