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Abstract: As discovered recently, Li and Wang’s 1997 treatment of semicontinuity
for frames does not faithfully reflect the classical concept. In this paper we con-
tinue our study of semicontinuity in the pointfree setting. We define the pointfree
concepts of lower and upper regularizations of frame semicontinuous real functions.
We present characterizations of extremally disconnected frames in terms of these
regularizations that allow us to reprove, in particular, the insertion and extension
type characterizations of extremally disconnected frames due to Y.-M. Li and Z.-H.
Li [Algebra Universalis 44 (2000), 271–281] in the right semicontinuity context. It
turns out that the proof of the insertion theorem becomes very easy after having
established a number of basic results regarding the regularizations. Notably, our
extension theorem is a much strengthened version of Li and Li’s result and it is
proved without making use of the insertion theorem.
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1. Introduction
Ten years ago, Li and Wang [13] introduced pointfree lower and upper semi-

continuities for morphisms from certain frames of reals into arbitrary frames.
However, their concepts do not faithfully reflect the classical concepts of se-
micontinuity for real-valued functions. Indeed, it was shown in [14] that the
insertion theorem of Li and Wang, as stated in [13], is not correct in the sense
that it fails to capture the classical Katětov-Tong insertion theorem due to
the inappropriateness of the pointfree semicontinuities they introduced (see
[14, Example 4.2]). The discrepancy between their concepts and the usual
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topological ones has been fixed by the first and third named authors in [7]
who determined the concepts of pointfree semicontinuities that avoid the
shortcomings of the ones in [13].

With the semicontinuity notions of [13], Li and Li [12] went to charac-
terize extremally disconnected frames in terms of insertion and extension
theorems. The main scope of this paper is to reprove their characterizations
in the framework of the semicontinuities in the sense of [7]. In doing so we
first define a suitable notion of regularization of semicontinuous frame ho-
momorphisms. With this concept at hand, we can proceed similarly as in
the topological case developed in [10] and provide a true generalization of
the insertion theorem for extremally disconnected frames. Even if the semi-
continuities used in [12] continue to be incorrect, the insertion theorem of
[12] can be saved. This time (unlike the situation with the insertion theorem
of [13]) it is so due to the nature of the functions involved in the insertion
theorem. More precisely, we make the important observation that if a lower
semicontinuous map minorizes an upper semicontinuous one (both in the
sense of [13] and [12]), then this circumstance necessitates both the maps to
be semicontinuous in the right sense of [7] which is being used in this pa-
per. This observation renders the two insertion theorems (of [12] and of this
paper) equivalent. We also provide an extension theorem for extremally dis-
connected frames that strengthens the version in [12] and that, unlike [12], is
obtained by a direct argument that avoids reference to the insertion theorem.

2. Background on frames
Frames and locales. Pointfree topology deals with the category Frm of
frames and its dual, the category Loc of locales. The objects of the category
Frm are complete lattices L (with 1 and 0 as top and bottom, respectively)
in which

a ∧
∨

B =
∨
{a ∧ b : b ∈ B}

for all a ∈ L and B ⊆ L. Morphisms of Frm, called frame homomorphisms,
are maps between frames which preserve arbitrary joins (hence the top) and
finite meets (hence the bottom). The set of all morphisms from L into M is
denoted by Frm(L,M). One source of frames is given by the lattice OX of
all open subsets of a topological space X. The assignment X 7→ OX gives
rise to a contravariant functor O : Top → Frm which makes a continuous
map f : X → Y into the frame homomorphism Of : OY → OX determined
by Of(U) = f−1(U) for all U ∈ OY .
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Heyting operator. If L is a frame, then a ∧ (·) : L → L is
∨

-preserving
and, thus, has a right adjoint a → (·) : L → L satisfying

a ∧ c ≤ b iff c ≤ a → b.

Then
a → b =

∨
{c ∈ L : a ∧ c ≤ b}.

The map x 7→ (a → x) is order-preserving and the map x 7→ (x → a) is
order-reversing. In particular:

(H1) a ∧ (a → b) = a ∧ b,
(H2) (

∨
A) → b =

∧
a∈A(a → b),

for a, b ∈ L and A ⊆ L. The pseudocomplement of a ∈ L is a∗ = a → 0.
Then a∧ a∗ = 0, a ≤ a∗∗ and (

∨
A)∗ =

∧
a∈A a∗. Also, a ≤ b implies b∗ ≤ a∗.

In particular, a∗∗∗ = a.

Sublocales. The quotients in Frm (equivalently, the subobjects in Loc) are
called sublocales (see [8, page 50] and [15]). There are several equivalent
ways of describing them (cf. [15] or [16]). Here we use the approach of [15]:
an S ⊆ L is a sublocale of L if, given A ⊆ S and a ∈ L, one has

∧
A ∈ S

and a → s ∈ S for all s ∈ S. It determines the surjection (frame quotient)
cS : L → S given by

cS(x) =
∧
{s ∈ S : x ≤ s}.

Each sublocale S ⊆ L is a frame with the same meets as in L and with the
same Heyting operation →. In general, the bottom 0S of S may differ from
0, but 1 is always the top in S. The sublocales of L form a complete lattice
under inclusion in which {1} is the bottom. For any a ∈ L, the set

o(a) = {a → b : b ∈ L} = {b ∈ L : a → b = b}
is a sublocale of L and 0o(a) = a∗. It will be referred as an open sublocale of
L. Its corresponding frame quotient co(a) : L → 0(a) is given by

co(a)(x) = a → x.

Remarks 2.1. (1) The sublocale o(a) viewed as a quotient of L is isomorphic
to the quotient ↓a (with the quotient map x 7→ a ∧ x). The isomorphism
from o(a) to ↓a is given by (a → b) 7→ a ∧ (a → b) = a ∧ b.
(2) In S = o(a ∨ a∗), the bottom 0S = (a ∨ a∗)∗ = a∗ ∧ a∗∗ = 0. Also, a∗ and
a∗ → a belong to S and are complements to each other. Indeed, by (H2),

cS(a∗) = (a ∨ a∗) → a∗ = a∗ ∈ S
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and
cS(a) = (a ∨ a∗) → a = a∗ → a ∈ S.

Thus a∗ ∧ (a∗ → a) = a∗ ∧ a = 0 and

a∗ ∨S (a∗ → a) = cS(a∗) ∨S cS(a) = cS(a∗ ∨ a) = 1.

Lemma 2.2. If A ⊆ L and
∨

a∈A a∗ = 1, then
⋂

a∈A o(a) = {1}.

Proof : If x ∈ ⋂
a∈A o(a), then x = a → x ≥ a → 0 = a∗ for all a ∈ A. Thus

x ≥ ∨
a∈A a∗ = 1.

We will show later on, in a more specific context, that the reverse implica-
tion of Lemma 2.2 does not hold in general (see Example 3.10).

Other concepts will be recalled when actually needed. For more informa-
tion on frames and locales we refer to [8] and [16].

Note. Up to Section 5, L stands for an arbitrary frame.

3. Semicontinuity of real functions on frames

Recall that A ⊆ L generates L if each element of L is a join of a family
of meets of finite subsets of A. The category Frm being algebraic allows
definitions by generators and relations. In particular, one may define the
frame of reals in terms of the rationals in a constructive way:

Definition 3.1 ([1] and [2]). The frame of reals is the frame L(R) generated
by all ordered pairs (p, q), where p, q ∈ Q, subject to the following relations:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,
(R3) (p, q) =

∨{(r, s) : p < r < s < q},
(R4) 1 =

∨
p,q∈Q(p, q).

We write: (p,−) =
∨

q∈Q(p, q) and (−, q) =
∨

p∈Q(p, q).

Members of C(L) = Frm(L(R), L) are called continuous real functions [1]
on L.

Remark 3.2. Viewing (r,−) and (−, r) as primitive notions, the frame L(R)
can equivalently be described as the frame having generators of the form
(r,−) and (−, r) subject to the following relations (cf. [13]):
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(R1′) (−, r) ∨ (s,−) = 1, whenever s < r,
(R2′) (−, r) ∧ (s,−) = 0, whenever r ≤ s,
(R3′) (r,−) =

∨
s>r(s,−),

(R4′) (−, r) =
∨

s<r(−, s),
(R5′)

∨
r∈Q(r,−) = 1,

(R6′)
∨

r∈Q(−, r) = 1.

With (p, q) = (p,−) ∧ (−, q) (p < q) one goes back to (R1)–(R4).

The subframes of L(R) generated by the elements (r,−) satisfying (R3′)
and (R5′) (resp., (−, r) satisfying (R4′) and (R6′)) will be, respectively, de-
noted by

Lu(R) and Ll(R).

The study of semicontinuity for frames was undertaken by Li and Wang
[13] with the families

Frm(Lu(R), L) and Frm(Ll(R), L).

For why those two families are not the right pointfree counterparts of the sets
LSC(X,R) and USC(X,R) of all lower and upper semicontinuous real func-
tions on a topological spaceX we refer to [7, Corollary 4.3]. Before recalling
the adequate analogs of [7] we first state some properties of Frm(Lu(R), L)
and Frm(Ll(R), L).

Remarks 3.3. (1) With the pointwise partial order on Frm(Lu(R), L):

f1 ≤ f2 ⇔ f1(r,−) ≤ f2(r,−) for all r ∈ Q,

Frm(Lu(R), L) is closed under arbitrary nonempty joins and finite meets
which are pointwise too. E.g., if ∅ 6= F ⊆ Frm(Lu(R), L), then

(
∨
F)(r,−) =

∨

f∈F
f(r,−).

The constant map with value 1 is the top element, while there is no bottom
element in Frm(Lu(R), L).

(2) Frm(Ll(R), L) is partially ordered by the reverse pointwise ordering:

g1 ≤ g2 ⇔ g2(−, r) ≤ g1(−, r) for all r ∈ Q,

under which it is closed with respect to arbitrary nonempty meets and finite
joins. These operations are pointwise with respect to the reverse ordering.
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For example, given ∅ 6= G ⊆ Frm(Ll(R), L) one has

(
∧
G)(−, r) =

∨

g∈G
g(−, r).

The constant map with value 1 is the bottom element, while there is no top
element in Frm(Ll(R), L).

(3) A saving of effort will be achieved by making use of the isomorphism

−(·) : Frm(Lu(R), L) → Frm(Ll(R), L)

defined by
(−f)(−, r) = f(−r,−) for all r ∈ Q.

Remark 3.4. A morphism having Lu(R) or Ll(R) as a domain will be defined
on their generators. Such a map uniquely determines a frame homomorphism
if and only if it makes the relations holding for generators into identities on
the codomain frame. For example, (r,−) 7→ f(r,−) determines a frame
homomorphism f : Lu(R) → L if and only if f(r,−) =

∨
s>r f(s,−) and∨

r∈Q f(r,−) = 1 hold true (cf. (R3′) and (R5′)).

The following relations of minorization and majorization (see [14]) gen-
eralize the usual pointwise way of comparing members of LSC(X,R) and
USC(X,R) by overcoming the fact that members of Frm(Lu(R), L) and
Frm(Ll(R), L) have distinct domains.

Definition 3.5. Let f ∈ Frm(Lu(R), L) and g ∈ Frm(Ll(R), L). Then:

(1) f is said to minorize g (written: f C g) iff

f(r,−) ∧ g(−, r) = 0 for all r in Q.

(2) f is said to majorize g (written: f I g) iff

f(r,−) ∨ g(−, s) = 1 for all r < s in Q.

Thus f C g iff f(r,−) ≤ g(−, r)∗ for all r ∈ Q (we write g(−, r)∗ rather than
(g(−, r))∗). Also f C g iff −g C −f , and f I g iff −g I −f .

We eventually quote from [7] the definition of lower and upper semicon-
tinuities in pointfree topology. We note that the original formulation has
been phrased in [7] in terms of congruences. It will be stated here in terms
of sublocales.
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Definition 3.6 ([7]). (1) A lower semicontinuous real function (l.s.c. for
short) on L is a morphism f : Lu(R) → L such that⋂

r∈Q
o(f(r,−)) = {1}.

(2) An upper semicontinuous real function (u.s.c. for short) on L is a
morphism g : Ll(R) → L such that⋂

r∈Q
o(g(−, r)) = {1}.

The collections of all l.s.c. and u.s.c. real functions on L are denoted by
LSC(L) and USC(L), respectively. Clearly, f is l.s.c. if and only if −f is
u.s.c..

For more information on lower and upper semicontinuous real functions on
frames see [7] and [4].

Notation. Given g ∈ USC(L) and f ∈ LSC(L), we put

↓LSC(g) = {f ∈ LSC(L) : f C g} and ↑USC(f) = {g ∈ USC(L) : f C g}.
Furthermore, we put

LSC−(L) = {f ∈ LSC(L) : ↑USC(f) 6= ∅}
and

USC◦(L) = {g ∈ USC(L) : ↓LSC(g) 6= ∅}.
We observe that both LSC−(L) and USC◦(L) are lattices under the ordering
inherited from LSC(L) and USC(L).

Definition 3.7. Members of LSC−(L) (resp., USC◦(L)) are called proper
lower (resp., upper) semicontinuous real functions on L.

The following provides a link between the relation of minorization and the
algebraic conditions of Definition 3.6.

Lemma 3.8. Let f,−g ∈ Frm(Lu(R), L). Then the following hold:

(1) If f minorizes g, then
∨

r∈Q f(r,−)∗ = 1 =
∨

r∈Q g(−, r)∗.
(2) If f minorizes g, then f ∈ LSC(L) and g ∈ USC(L).
(3) g ∈ USC◦(L) if and only if

∨
r∈Q g(−, r)∗ = 1.

(4) f ∈ LSC−(L) if and only if
∨

r∈Q f(r,−)∗ = 1.

(5) f ∈ LSC−(L) if and only if −f ∈ USC◦(L).
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Proof : (1) We have f(r,−) ≤ g(−, r)∗ for all r ∈ Q, hence

1 =
∨

r∈Q
f(r,−) ≤ ∨

r∈Q
g(−, r)∗.

The second equality follows from the first, since −g C −f .
(2) By (1) and Lemma 2.2.
(3) Statement (1) yields the forward implication. For the backward one, as-
sume

∨
r∈Q g(−, r)∗ = 1. We construct a frame homomorphism h : Lu(R) →

L which minorizes g. We put

h(r,−) =
∨
s>r

g(−, s)∗

for all r ∈ Q. This assignment turns conditions (R3′) and (R5′) into identities
on L: ∨

s>r
h(s,−) =

∨
s>r

∨
t>s

g(−, t)∗ =
∨
t>r

g(−, t)∗ = h(r,−)

and ∨
r∈Q

h(r,−) =
∨

r∈Q

∨
s>r

g(−, s)∗ =
∨

r∈Q
g(−, r)∗ = 1.

So, h ∈ Frm(Lu(R), L). Clearly,

h(r,−) =
∨
s>r

g(−, s)∗ ≤ g(−, r)∗,

hence h C g.
(4) This is dual to (3) via f 7→ −f of (3) in Remarks 3.3.
(5) This follows immediately from (3) in Remarks 3.3.

Remark 3.9. We have the following chain of proper inclusions

LSC−(L) ⊂ LSC(L) ⊂ Frm(Lu(R), L)

and the same for the case of upper semicontinuity. Indeed, in [7] there is a
number of examples which show that the second inclusion is proper indeed. A
spatial example showing that the first inclusion is proper too is given below.

Example 3.10. Consider R+ = [0,∞[ with the usual topology and a l.s.c.
function f : R+ → R given by f(0) = 0 and f(x) = 1/x if x > 0. Put
L = OR+ and think of f as a morphism f : Lu(R) → L. Then

f(r,−) =





]0, 1
r [ if r > 0,

]0,∞[ if r = 0,

R+ if r < 0.
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If W ∈ ⋂
r∈Q o(f(r,−)), then

W = f(r,−) → W ⊇ f(r,−)∗ = ]1
r ,∞[ for all r > 0.

Thus ]0,∞[⊆ W . However ]0,∞[ 6= W because f(0,−) → ]0,∞[ = R+. Thus
W = R+, hence ⋂

r∈Q
o(f(r,−)) = {R+}

and f ∈ LSC(L). However,
⋃

r∈Q
f(r,−)∗ = ]0,∞[ 6= R+.

By Lemma 3.8 (4), the just proved inequality means that f /∈ LSC−(L).

4. Semicontinuous regularization

To provide motivation for regularizations of l.s.c. and u.s.c. real functions
on frames, let us have a look at the (classical) topological setting.

Discussion. (1) Each (not necessarily continuous) function h : X → R on
a topological space X admits a lower regularization h∗ : X → R (extended
reals) defined by h∗(x) =

∨{∧ f(U) : x ∈ U ∈ OX} for all x ∈ X. Then h∗
is the biggest lower semicontinuous minorant of h, i.e.,

h∗ =
∨
{f ∈ LSC(X,R) : f ≤ h}.

Moreover, for each r ∈ Q one has

h−1
∗ (]r,∞[) =

⋃
s>r

Int(h−1([s,−∞[)) =
⋃
s>r

(h−1(]−∞, s[))∗

(notice that in the frame OX the pseudocomplement U ∗ of an open U is
given by Int(X \ U)). All this means that h∗ takes values in R iff it has a
l.s.c. minorant iff

⋃
r∈Q(h−1(] − ∞, r[)∗ = X (cf. condition (3) of Lemma

3.8). Similar discussion applies to the upper regularization h∗ = −(−h)∗.
(2) It follows from the above formula that – in a pointfree setting – one

can without trouble produce lower regularizations of members of USC◦(L)
(and, dually, upper regularizations of members of LSC−(L)). So we shall do
in what follows. Such a machinery will be sufficient for the main purpose of
this paper.
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Lemma 4.1. Let g ∈ USC◦(L) and f ∈ LSC−(L). Then:

(1) LSC−(L) 3 ∨
(↓LSC (g)) C g.

(2) f C
∧

(↑USC (f)) ∈ USC◦(L).

Proof : To prove (1), we first note that h =
∨

(↓LSC (g)) is a morphism from
Lu(R) into L (Remarks 3.3 (1)). Also, h C g since

g(−, r) ∧ ∨
f∈↓LSC(g)

f(r,−) =
∨

f∈↓LSC(g)
(g(−r) ∧ f(r,−)) = 0.

By Lemma 3.8, h ∈ LSC−(L). Statement (2) is dual to (1).

Definition 4.2. Let

(·)◦ : USC◦(L) → LSC−(L)

and
(·)− : LSC−(L) → USC◦(L)

be defined by:

g◦ =
∨

(↓LSC (g)) and f− =
∧

(↑USC (f)).

Then g◦ is called the lower regularization of g and f− is called the upper
regularization of f .

Note that, by Lemma 4.1, (·)◦ and (·)− are well-defined and g◦ C g and f C
f−. Also, it is not difficult to check that f− = −(−f)◦ for all f ∈ LSC−(L).

Note. We have choosen to use g◦ and f− rather than the classical notation
g∗ and f ∗ (see Discussion above) in order to avoid confusion with the well
established notation (·)∗ and (·)∗ for morphisms in pointfree topology (cf. [8,
page 40]). An advantage of our notation is that it emphasizes the parallelism
between lower and upper regularizations and interior and closure operators
in topology. E.g., (1A)◦ = 1A◦ and (1A)− = 1A−.

Proposition 4.3. Let g ∈ USC◦(L) and f ∈ LSC−(L). Then:

(1) g◦(r,−) =
∨

s>r g(−, s)∗.
(2) f−(−, r) =

∨
s<r f(s,−)∗.

Proof : (1) We have shown within the proof of Lemma 3.8 that h : Lu(R) → L
defined by

h(r,−) =
∨
s>r

g(−, s)∗
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is proper l.s.c. and h C g. By the definition of g◦ one has h ≤ g◦. Since
g◦ C g, we have

g◦(r,−) =
∨
s>r

g◦(s,−) ≤ ∨
s>r

g(−, s)∗ = h(r,−).

Thus g◦ ≤ h and h = g◦ follows.
(2) By (1) and the fact that f− = −(−f)◦.

Remark 4.4. Notice that, classically, a pair (f, g) ∈ LSC(X,R)×USC(X,R),
in which f minorizes and majorizes g, yields a continuous function h = g = f .
In our pointfree setting the situation is more subtle. We have a bijection from
C(L) to

CL = {(f, g) ∈ LSC(L)× USC(L) : f C g and f I g}
given by

C(L) 3 h 7→ (h|Lu(R), h|Ll(R)) ∈ CL.

The inverse of this bijection is given by CL 3 (f, g) 7−→ h ∈ C(L) defined by

h(p, q) = f(p,−) ∧ g(−, q).

Notation. In the latter case we shall write

h = 〈f, g〉.
In actual fact, elements of the pair (f, g) ∈ CL uniquely determine each

other as the following proposition shows.

Proposition 4.5. Let f,−g ∈ LSC(L). If f minorizes and majorizes g, then
g = f− and f = g◦.

Proof : Clearly, g(−, r) =
∨

s<r g(−, s) ≤ ∨
s<r f(s,−)∗. If s < r, then

f(s,−)∗ = f(s,−)∗ ∧ 1
= f(s,−)∗ ∧ (f(s,−) ∨ g(−, r))
≤ g(−, r).

Hence
∨

s<r f(s,−)∗ ≤ g(−, r). Thus g = f−. Now, f = g◦ by what has just
been proved and the fact that −g minorizes and majorizes −f .

Proposition 4.6. Let g ∈ USC◦(L). Then the following hold:

(1) g◦−(−, r) =
∨

s<r g(−, s)∗∗ for all r ∈ Q.
(2) g◦− ≤ g.
(3) If g(−, r)∗ ∨ g(−, r)∗∗ = 1 for all r ∈ Q, then 〈g◦, g◦−〉 ∈ C(L).
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Proof : (1) For each r ∈ Q we have

g◦−(−, r) =
∨
s<r

g◦(s,−)∗ =
∨
s<r

(
∨
t>s

g(−, t)∗)∗

=
∨
s<r

∧
t>s

g(−, t)∗∗

≥ ∨
s<r

g(−, s)∗∗,

where the last inequality holds on account of s 7→ g(−, s)∗∗ being order-
preserving. On the other hand,

∧
t>s g(−, t)∗∗ ≤ g(−, p)∗∗ whenever s < p <

r. Consequently, we get

g◦−(−, r) =
∨
s<r

∧
t>s

g(−, t)∗∗ ≤ ∨
p<r

g(−, p)∗∗.

(2) By (1), we have g◦−(−, r) ≥ ∨
s<r g(−, s) = g(−, r), i.e. g◦− ≤ g.

(3) Since g◦ C g◦− always, it remains to show that g◦ I g◦−. Indeed, for each
p < s we have

g◦(p,−) ∨ g◦−(−, s) =
∨
q>p

g(−, q)∗ ∨ ∨
t<s

g(−, t)∗∗

≥ ∨
p<r<s

(g(−, r)∗ ∨ g(−, r)∗∗)

= 1.

Thus, g◦ majorizes g◦−.

The dual statement to Proposition 4.6 follows:

Proposition 4.7. Let f ∈ LSC−(L). Then the following hold:

(1) f−◦(r,−) =
∨

s>r f(s,−)∗∗ for all r ∈ Q.
(2) f ≤ f−◦.
(3) If f(r,−)∗ ∨ f(r,−)∗∗ = 1 for all r ∈ Q, then 〈f−◦, f−〉 ∈ C(L).

Definition 4.8 ([14]). For each a ∈ L we define the characteristic maps
ua ∈ USC◦(L) and la ∈ LSC−(L) by

ua(−, q) =





0 if q ≤ 0,

a if 0 < q ≤ 1,

1 if q > 1

and la(p,−) =





1 if p < 0,

a if 0 ≤ p < 1,

0 if p ≥ 1.
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Remark 4.9. One simply calculates that for each a, b ∈ L the following hold:
(1) (la)− = ua∗ and (ua)◦ = la∗.
(2) la C ub iff a ∧ b = 0.
(3) la I ub iff a ∨ b = 1.

Corollary 4.10. 〈la, ub〉 ∈ C(L) if and only if a and b are complements of
each other.

5. Extremally disconnected frames

A frame L is called extremally disconnected if and only if a∗ ∨ a∗∗ = 1 for
all a ∈ L (equivalently, if a∗ and a∗∗ are complements of each other for every
a).

Notation. When f,−g ∈ Frm(Lu(R), L), f C g and h ∈ C(L) is such that
f ≤ h|Lu(R) and h|Ll(R) ≤ g, we shall simply write

f ≤ h ≤ g.

Theorem 5.1. Let L be a frame. The following are equivalent:

(1) L is extremally disconnected.
(2) 〈g◦, g−◦〉 ∈ C(L) for all g ∈ USC◦(L).
(3) 〈f−◦, f−〉 ∈ C(L) for all f ∈ LSC−(L).
(4) If f ∈ LSC(L) minorizes g ∈ USC(L), then there exists an h ∈ C(L)

such that f ≤ h ≤ g.

Proof : (1) ⇒ (2) ⇔ (3): By Proposition 4.6 (3) we have the implication,
while the equivalence follows by duality.
(2) ⇒ (4): By f C g, g is proper u.s.c. (Lemma 3.8). By hypothesis,
〈g◦, g◦−〉 is continuous and we claim f ≤ 〈g◦, g◦−〉 ≤ g. Indeed, f ≤ g◦ and,
by Proposition 4.6 (2), g◦− ≤ g.
(4) ⇒ (1): Let a ∈ L. By Remark 4.9 (1), la∗∗ C ua∗ and by hypothesis,
there exists an h = 〈f, g〉 ∈ C(L) such that la∗∗ ≤ h ≤ ua∗. This means that
la∗∗ ≤ f C g, hence la∗∗ C g, i.e.,

g(−, 3
4) ≤ la∗∗(3

4 ,−)∗ = a∗∗∗ = a∗.

Similarly, f C g ≤ ua∗, hence f C ua∗. This means that

f(1
4 ,−) ≤ ua∗(−, 1

4)∗ = a∗∗.
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Since f I g, we conclude that

1 = g(−, 3
4) ∨ f(1

4 ,−) ≤ a∗ ∨ a∗∗.

This shows that L is extremally disconnected.

Remarks 5.2. (1) It follows from Lemma 3.8 that in the assertion (4) of
Theorem 5.1 one can equivalently replace the families LSC(L) and USC(L)
by either LSC−(L) and USC◦(L) or by Frm(Lu(R), L) and Frm(Ll(R), L).

(2) The equivalence between statements (1) and (4) (when phrased in terms
of Frm(Lu(R), L) and Frm(Ll(R), L)) is precisely [12, Theorem 2.2]. This
explains the equivalence of insertion theorems mentioned in the Introduction.
When applied to OX with X an extremally disconnected space, Theorem
5.2 reduces to [10, Proposition and Corollary 1]. Historically, the topological
version of statement (4) goes back to Stone [17] (see also [11]). Related
literature include [5], [6] and [9].

Corollary 5.3 (Urysohn’s type lemma). A frame L is extremally discon-
nected if and only if, whenever a ∧ b = 0 in L, there exists a continuous
h : L(R) → L such that la ≤ h ≤ ub.

Proof : ⇒: By Corollary 4.10, h = 〈la∗∗, ua∗〉 ∈ C(L). We claim la ≤ h ≤ ub.
Indeed, la ≤ la∗∗ and ua∗ ≤ ub since a ∧ b = 0.

⇐: Let a ∈ L. By hypothesis, there exists an h = 〈f, g〉 ∈ C(L) such that
la∗∗ ≤ 〈f, g〉 ≤ ua∗ and we conclude that L is extremally disconnected as in
the proof of (4) ⇒ (1) in Theorem 5.1.

Another corollary of Theorem 5.1 is a Tietze’s type extension theorem
characterizing extremally disconnected frames. Its topological version can
be found in the book of Gillman and Jerison [3] where it is deduced from
their Urysohn Extension Theorem. In a pointfree setting it appears in ([12,
Theorem 3.1]), in the context of the already mentioned incorrect semiconti-
nuity notions (see Introduction), as a consequence of the insertion theorem
of [12], but in a very weak form: the authors of [12] merely work with what
they call continuous chains, that is, frame homomorphisms with domain
being generated by elements (r,−) and (−, r), r ∈ Q, subject to relations
(R1′)–(R4′). Below we provide a strengthened version of it for continuous
bounded real functions. Our argument does not depend upon any insertion
theorem.
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Let S be a sublocale of L. One says that h ∈ C(L) is a continuous extension
of h ∈ C(S) if and only if the following diagram commutes

??
-´

´
´

´
´

´
3́

SL(R)

L

h

h cS

i.e. cS ◦ h = h.

Remarks 5.4. (1) Let a ∈ L. If each h ∈ C(↓a) extends continuously to
h ∈ C(L) (i.e., c↓a ◦ h = h where c↓a : L → ↓a is defined by c↓a(x) = a ∧ x),
then so does each member of C(o(a)). Indeed, by Remark 2.1 (1) there is a
frame isomorphism i : o(a) → ↓a determined by i(a → x) = a ∧ x. Thus, if
k ∈ C(o(a)), then there exists a k ∈ C(L) such that c↓a ◦ k = i ◦ k. Since
i ◦ co(a) = c↓a, it follows that co(a) ◦ k = i−1 ◦ i ◦ k = k.

(2) We will notationally distinguish the operations of taking pseudocomple-
ments in L and ↓a. The first is standardly denoted (·)∗, while the second
will be denoted by (·)¬. We note that x¬ = a ∧ x∗ for all x ∈ ↓a. Also
x¬¬ = a ∧ x∗∗ whenever x ∈ ↓a. Indeed,

x¬¬ = a ∧ (x¬)∗ = a ∧ (a ∧ x∗)∗ ≥ a ∧ (a∗ ∨ x∗∗) = a ∧ x∗∗.

Before continuing we observe that when L is extremally disconnected, we
already have the equality in the above calculation due to the dual De Morgan
law which characterizes extremal disconnectedness (see [8, page 101]). For
an arbitrary frame L we continue as follows: since a ∧ x∗ ∧ (a ∧ x∗)∗ = 0, it
follows that a∧ (a∧x∗)∗ ≤ x∗∗ and so x¬¬ ≤ a∧x∗∗. It may also be remarked
that we have thus proved that: a frame L is extremally disconnected if and
only if ↓a is extremally disconnected for any a ∈ L.

Recall that an h ∈ C(L) is said to be bounded if h(p, q) = 1 for some p < q
(or, equivalently, if h(−, p)∨h(q,−) = 0 for some p < q). In the sequel, C∗(L)
stands for all the bounded members of C(L) such that h(−, 0)∨h(1,−) = 0.

Theorem 5.5. For L a frame, the following are equivalent:

(1) L is extremally disconnected.
(2) For every open sublocale S of L, each h ∈ C∗(S) has a continuous

extension h ∈ C∗(L).
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Proof : (1) ⇒ (2): According to Remark 5.4 (1), consider

h = 〈h1, h2〉 ∈ C∗(↓ a).

We define f : Lu(R) → L by

f(r,−) =

{
h1(r,−) if r ≥ 0,

1 if r < 0.

It is easy to check that f ∈ LSC−(L), for it minorizes a morphism g : Ll(R) →
L given by g(−, r) = h2(−, r) if r ≤ 1, and g(−, r) = 1 otherwise. Indeed,
since h2(−, 0) = 0 = h1(1,−), we have

f(r,−) ∧ g(−, r) =





g(−, r) ≤ g(−, 0) = h2(−, 0) = 0 if r ≤ 0,

h1(r,−) ∧ h2(−, r) = 0 if 0 < r < 1,

f(r,−) ≤ f(1,−) = h1(1,−) = 0 if r ≥ 1.

By the equivalence (1) ⇔ (3) of Theorem 5.1, h = 〈f−◦, f−〉 ∈ C(L).

Claim 1: h ∈ C∗(L). Indeed, f−(−, 0) =
∨

s<0 f(s,−)∗∗ = 0 and

f−◦(1,−) =
∨
s>1

f(s,−)∗∗ =
∨
s>1

h1(s,−)∗∗ = 0.

Claim 2: c↓a ◦ f− = h2. Indeed, if r ≤ 0, then

c↓a ◦ f−(−, r) = a ∧ ∨
s<r

f(s,−)∗ = 0 = h2(−, r).

With r > 0 we have

c↓a ◦ f−(−, r) =
∨
s<r

(a ∧ f(s,−)∗)

=
∨
s<r

h1(s,−)¬

= h−1 (−, r)
= h2(−, r),

where h−1 = h2 by Proposition 4.5.

Claim 3: c↓a ◦ f−◦ = h1. Indeed, if r < 0, then

c↓a ◦ f−◦(r,−) = a ∧ ∨
s>r

f(s,−)∗∗ = a ∧ 1 = h1(r,−).
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With r ≥ 0 we have, by Remark 5.4 (2),

c↓a ◦ f−◦(r,−) = a ∧ ∨
s>r

f(s,−)∗∗

=
∨
s>r

(a ∧ h1(s,−)∗∗)

=
∨
s>r

h1(s,−)¬¬

= h−◦1 (r,−)
= h1(r,−),

since h−◦1 = h1 by Proposition 4.5 again.
Finally,

c↓a ◦ h = 〈c↓a ◦ f−◦, c↓a ◦ f−〉 = 〈h1, h2〉 = h.

(2) ⇒ (1): We have to show that a∗ ∨ a∗∗ = 1 for all a ∈ L. For this purpose
fix a and consider the open sublocale S = o(a ∨ a∗). By Remark 2.1 (2) and
Corollary 4.10,

h = 〈la∗→a, ua∗〉 ∈ C∗(S).

By hypothesis, there exists an h ∈ C∗(L) such that cS ◦ h = h. For all
0 < r < 1 we have

h(−, r) ≤ (a ∨ a∗) → h(−, r) = cS ◦ h(−, r) = h(−, r) = a∗.

By using (H1), we get

h(−, r) ≥ (a ∨ a∗) ∧ ((a ∨ a∗) → h(−, r))

= (a ∨ a∗) ∧ cS ◦ h(−, r)

= (a ∨ a∗) ∧ a∗ = a∗,

so that h(−, r) = a∗. Since

h(−, 1
4) ∧ h(1

4 ,−) = 0,

it follows that
h(1

4 ,−) ≤ h(−, 1
4)∗ = a∗∗.

Finally,
1 = h(−, 3

4) ∨ h(1
4 ,−) ≤ a∗ ∨ a∗∗.
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