PRIESTLEY SPACES: THE THREEFOLD WAY

MARGARIDA DIAS

ABSTRACT: Three different ways of describing Priestley spaces are presented: as the objects of a category which arises in the equivalence induced by an adjunction $F \dashv U : Ord Top^{op} \rightarrow \mathcal{L}at$, as limits of (suitable) finite topologically-discrete preordered spaces (i.e. as profinite preorders) and as the 2-compact ordered spaces, in the sense of Engelking and Mrówka [5], three situations where, for discrete-ordered topological spaces, one obtains Stone spaces instead of Priestley spaces.

KEYWORDS: ordered (preordered) topological spaces, Priestley spaces. AMS SUBJECT CLASSIFICATION (2000): 18D30, 18A20, 18C20.

0. Introduction

A Stone space is a compact, Hausdorff and totally disconnected space. The full subcategory of Top whose objects are the Stone spaces will be denoted by Stone. An ordered topological space is a triple (X, τ, \leq) where X is a set, τ is a topology and \leq is an partial order on X. They are the objects of the category OrdTop whose morphisms are the continuous maps which preserve the order and the same for $\mathcal{P}reordTop$.

An ordered topological space (X, τ, \leq) is called *totally order-disconnected* if for $x, x' \in X$ such that $x' \not\leq x$ there exists a closed and open (clopen, for short) decreasing subset U of X (i.e. if $y \leq x \in U$ then $y \in U$) containing x but not x'. The compact topological spaces with a partial order which are totally order-disconnected are called the *Priestley spaces*. The full subcategory of OrdTop whose objects are the Priestley spaces will be denoted by PSp. The full subcategory of $\mathcal{P}reordTop$ with objects the Stone spaces with a preorder which are totally preordered-disconnected, in the obvious sense, will be denoted by $\mathcal{P}reord\mathcal{P}$.

A lattice is a partially ordered set with meets and joins of finite subsets, including $\wedge \emptyset = 1, \forall \emptyset = 0$. Homomorphisms of lattices are functions that preserve finite meets and joins and so, in particular, preserve 1 and 0. Let $\mathcal{L}at$ denote the category of lattices and lattice homomorphisms. The full

Received September 20, 2007.

The author gratefully acknowledges financial support from FCT/Centro de Matemática da Universidade de Coimbra .

subcategory of $\mathcal{L}at$ with objects the distributive lattices will be denoted by $\mathcal{D}\mathcal{L}at$. By $\mathcal{B}ool$ we denote the full subcategory of $\mathcal{D}\mathcal{L}at$ with objects the Boolean algebras.

We deviate from important sources like L. Nachbin [8] and others. These define a preordered (ordered) topological spaces X as being a topological space with an order whose graph is closed in $X \times X$. However, for Priestley spaces (X, τ, \leq) this holds, i.e. the order relation is always closed in $X \times X$.

1. The duality induced by $F \dashv U : \mathfrak{O}rd\mathfrak{T}op^{op} \to \mathfrak{L}at$

In this section, using well-known results (see e.g. [4]), we show that Priestley duality, as well as Stone duality, arise as the largest equivalences induced by dual adjunctions between OrdTop and $\mathcal{L}at$, in the first case, and Top and $\mathcal{L}at$, in the second one.

We recall that an adjunction $F \dashv U : \mathcal{A} \to \mathcal{B}(\eta, \varepsilon)$, between categories \mathcal{A} and \mathcal{B} induces an equivalence between the full subcategories \mathcal{A}_0 of \mathcal{A} and \mathcal{B}_0 of \mathcal{B} where

$$\mathcal{A}_0 = Fix\varepsilon \equiv \{A \in \mathcal{A} | \varepsilon_A \text{ is an isomorphism} \}$$

 $\mathcal{B}_0 = Fix\eta \equiv \{B \in \mathcal{B} | \eta_B \text{ is an isomorphism}\}\$

Let 2_l be the two chain 0 < 1 and 2_{do} be 2_l with the discrete topology. The contravariant hom functors $Hom(-, 2_l) : \mathcal{L}at \to Set$ and $Hom(-, 2_{do}) : Ord\mathcal{T}op \to Set$ can be lifted to $Ord\mathcal{T}op$ and to $\mathcal{L}at$, respectively. Indeed, for a lattice L, we take

$$F(L) = (\mathcal{F}_p(L), \tau, \subseteq),$$

the set of all prime filters of L, identifying each $f \in Hom(L, 2_l)$ with the prime filter $f^{-1}(1)$, with the topology whose subbasis of open subsets is the set

$$S = \{U_b | b \in L\} \cup \{\mathcal{F}_p(L) - U_b | b \in L\} \text{ with } U_b = \{F \in \mathcal{F}_p(L) | b \in F\}.$$
(1)

For an ordered topological space X, we take

$$U(X) = (DClopen(X), \cap, \cup),$$

the (distributive) lattice of all clopen decreasing subsets of X, identifying each $g \in Hom(X, 2_{do})$ with the decreasing clopen set $g^{-1}(0)$.

The functor F is left adjoint to $U : Ord Top^{op} \to \mathcal{L}at$, where the components of the unit $\eta_L : L \to UF(L)$ and co-unit $\varepsilon_X : X \to FU(X)$ are defined by $\eta_L(a) = \Gamma_a = \{F \in \mathcal{F}_p(L) | a \in F\}$ and $\varepsilon_X(x) = \Sigma_x = \{A \in DClopen(X) | x \in A\}$, respectively.

Proposition 1. An ordered topological space X is a Priestley space if and only if ε_X is an isomorphism.

Proof: The implications follow from the well-know facts:

(i) $(\mathcal{F}_p(L), \tau, \subseteq)$ is a Priestley space for every distributive lattice L.

(ii) If X is a Priestley space then ε_X is an isomorphism.

Proposition 2. A lattice L is distributive if and only if η_L is an isomorphism.

Proof: . The "only if" and the "if" part are immediate consequences of the following:

(i) $U(X) = (DClopen(X), \cap, \cup)$ is a distributive lattice for every space X. (ii) If L is a distributive lattice then η_L is an isomorphism.

Consequently, the dual adjunction between OrdTop and $\mathcal{L}at$ induces a dual equivalence between the categories $Fix\varepsilon = \mathcal{P}Sp$ and $Fix\eta = \mathcal{D}\mathcal{L}at$ as displayed in the diagram

which is the well-known Priestley duality.

Also the Stone duality arises from a the dual adjunction between Top , that can be considered as the category of discretely ordered topological spaces, and $\operatorname{\mathcal{L}at}$. The adjunction is defined by lifting to Top and to $\operatorname{\mathcal{L}at}$ the functors $Hom(-, 2_l) : \operatorname{\mathcal{L}at} \to \operatorname{Set}$ and $Hom(-, 2_d) : \operatorname{Ord}\operatorname{Top} \to \operatorname{Set}$, where 2_d is the two point discrete space. In this case, for a topological space X, U(X) = $(Clopen(X), \cap, \cup)$ is the set of its clopen subsets which is a Boolean algebra, and, for each Boolean algebra B, the set $F(B) = \mathcal{F}_p(L)$ of its prime filters with the topology defined by (1), is a Stone space.

In a completely analogous way, the dual adjunction $F \dashv U : \Im op \to \mathcal{L}at$ induces a duality between $Fix\varepsilon =$ Stone that $Fix\eta =$ Bool.

2. Priestley Spaces are Profinite Preorders

Priestley spaces are the profinite orders: they are exactly the limits of finite topologically-discrete ordered spaces, the later being essentially the objects of $\mathcal{P}os_f$. This follows from the fact that the embedding of $\mathcal{P}os_f \to \mathcal{P}Sp$ is (equivalent) to the procompletion of $\mathcal{P}os_f$ ([7], Corollary 3.3 (ii)). It also follows from 4.6 and 4.7 in [6].

Here we are going to show that the Priestley spaces are limits of finite preordered spaces that we specify next.

It is well-known that the profinite spaces (= limits of finite topologicallydiscrete sets) are exactly the Stone spaces (See e.g. Theorem 3.4.7 of [2]). There Borceux and Janelidze consider, for each $X \in Stone$, the set \mathcal{R} of all equivalence relations R on X such that the topological quotient space is finite and has the discrete topology.

Considering the set \mathcal{R} , ordered by inclusion, as a category, the functor $D: \mathcal{R} \to Stone$, defined on objects by D(R) = X/R, and its limit $(\lambda_R: L \to X/R)_{R \in \mathcal{R}}$, it is proved there that the unique morphism $\varphi: X \to L = LimD$ such that $\lambda_R \circ \varphi = p_R$, for every $R \in \mathcal{R}$, is an homeomorphism.

To find an ordered version of this result we have to consider a more general setting than \mathcal{PSp} . We are going to show that the profinite preorders are exactly the objects of the full subcategory $\mathcal{P}reord\mathcal{P}$ of $\mathcal{P}reord\mathcal{T}op$ with objects the Stone spaces equipped with a preorder with respect to which they are totally preordered-disconnected.

We first give an example to show that, even for $X \in \mathfrak{PS}p$, the relation induced in X/R by transitive closure is not, in general, an order relation.

Example 3. Let \mathbb{N}_{∞} be the Alexandroff compactification of \mathbb{N} (the discrete space of natural numbers) equipped with the order $\{(1, a) | a \in \mathbb{N}_{\infty}\} \cup \{(2, 3)\} \cup \Delta_{\mathbb{N}_{\infty}}$ and $f : \mathbb{N}_{\infty} \to \{0, 1\}$ defined by

$$f(n) = \begin{cases} 1 & \text{if } n = 1, 3\\ 0 & \text{otherwise} \end{cases}$$

Considering in X/R, where R is the equivalence relation induced in X by f, the induced relation by transitive closure, X/R is not ordered. In fact, 0 < 1 in X/R, because 2 < 3 in \mathbb{N}_{∞} and f(2) = 0, f(3) = 1, and 1 < 0 in X/R because 1 < 2 in \mathbb{N}_{∞} and f(1) = 1, f(2) = 0.

It is an easy exercise to show that the category $\mathcal{P}reord\mathcal{P}$ is complete. We show now that a preordered topological space is an object of $\mathcal{P}reord\mathcal{P}$ if and only if it is the limit of finite topologically-discrete preordered spaces.

Proposition 4. Preord P is the category of profinite preorders.

Proof: Discrete finite preordered spaces are totally disconnected with respect to every preorder. Since $\mathcal{P}reord\mathcal{P}$ is complete, one of the implications is trivial.

Conversely, let $X \in \mathcal{P}reord\mathcal{P}$ and \mathcal{R} the set of all equivalence relations Ron X such that the topological quotient space with respect to the canonical projection $p_R : X \to X/R$ is finite, discrete and preordered by the transitive closure of $p_R \times p_R(\preceq_X)$.

For $D_o: \mathcal{R} \to \mathcal{P}reord\mathcal{P}$ defined by $D_o(R) = X/R$, let $(\lambda_R: L \to X/R)_{R \in \mathcal{R}}$ be the limit of D_o in $\mathcal{P}reord\mathcal{P}$ and φ the unique morphism such that $\lambda_R \circ \varphi = p_R$ for every $R \in \mathcal{R}$.

We know that φ is an homeomorphism. So, we have just to prove that φ is an order isomorphism, that is that

$$\varphi(x) \preceq \varphi(x') \Rightarrow x \preceq x'.$$

Let us assume that $x \not\preceq x'$. Then, as X is totally preordered disconnected, there exists a clopen decreasing subset U of X such that $x' \in U$ and $x \notin U$.

Let us take R_U the equivalence relation on X corresponding to the partition

$$X = U \cup (X - U),$$

therefore, $R_U \in \mathcal{R}$, $[x]_{R_U} = X - U$, $[x']_{R_U} = U$ and $[x]_{R_U} \not\preceq [x']_{R_U}$. Indeed, if $[x]_{R_U} \preceq [x']_{R_U}$ then there would exists a finite sequence

$$x_1 \preceq x_1', \ x_2 \preceq x_2', \ \dots \ x_n \preceq x_n'$$

such that $[x]_{R_U} = [x_1]_{R_U}, [x'_i]_{R_U} = [x_{i+1}]_{R_U}$ for i = 1, 2, ..., n-1 and $[x']_{R_U} = [x'_n]_{R_U}$.

But, since $X/R_U = \{X - U, U\}$, we would have, for same $1 \leq k < n$, $x_k \in X - U$ and $x_{k+1} \in U$ with $x_k \leq x_{k+1}$ what it would imply that $x_k \in U$, because U is a decreasing subset, so we would have a contradiction.

Thus, we showed that there exists a equivalence relation R_U on X such that $[x]_{R_U} \not\preceq [x']_{R_U}$, therefore $\varphi(x) \not\preceq \varphi(x')$ and this concludes the proof.

The way $\mathcal{P}reord\mathcal{P}$ sits between $\mathcal{P}Sp$ and $\mathcal{P}reord\mathcal{T}op$ is studied in [3]: $\mathcal{P}Sp$ is a regular-epireflective subcategory of $\mathcal{P}reord\mathcal{P}$ (2.6) and $\mathcal{P}reord\mathcal{P}$ is an

bireflective subcategory of $\mathcal{P}reordStone$ (2.4), the later being reflective in $\mathcal{P}reordTop$ as it follows from the reflectiveness of the topological side.

From the above we obtain our claim. More precisely, we conclude the following:

Corollary 5. A preordered topological space X is a Priestley space if and only if the limit object of $D_o : \mathcal{R} \to \operatorname{Preord}\mathcal{P}$ is an ordered space.

3. Priestley spaces are the 2-compact ordered spaces

For a topological space E and a set S we denote by E^S the product of S copies of E.

Let E be an Hausdorff space.

Using the terminology introduced by Engelking and Mrówka in [5], the *E*completely regular spaces and the *E*-compact spaces are the subspaces and the closed subspaces of some power of E, respectively.

We are going to consider the full subcategories of $\mathcal{T}op$, $\mathcal{CR}eg_E$, with objects the *E*-completely regular and $\mathcal{C}omp_E$ with objects the *E*-compact spaces.

If, furthermore, E is equipped with an order, that is, E is an ordered Hausdorff space, then $Ord CReg_E$ and $Ord Comp_E$ denote the full subcategories of Ord Top which objects are subspaces and closed subspaces of some power of E, respectively, with the induced order.

If E = I, the unit interval with usual topology and trivial order, then $CReg_E$ is the category of Tychonoff spaces and $Comp_E$ is the category of compact spaces. If $E = I_o$, the space I with the usual order, then $OrdCReg_E$ and $OrdComp_E$ are, respectively, the categories of completely regular ordered spaces and compact ordered spaces, as defined in [8]. In both cases we have well-known reflections.

We are going to describe the reflection R of $Ord CReg_E$ in $Ord Comp_E$, for an arbitrary ordered Hausdorff space E.

Proposition 6. For every Hausdorff ordered space E, $OrdComp_E$ is a reflective subcategory of $OrdCReg_E$.

Proof: Let X be an E-completely regular ordered space and S be the set of the continuous and order-preserving maps for X in E, that is S = OrdTop(X, E). We have the commutative diagram

where s are continuous and an order-preserving maps, p_s are the corresponding projections and $\varphi = ev_{X,s}$ is the induced map, the evaluation map, which is defined by $\varphi(x) = (s(x))_{s \in S}$. Then, being a subspace of some power of E, X is also a subspace of E^S and so it is isomorphic to $\varphi(X)$.

We define R(X) as the closure $\overline{\varphi(X)}$ of $\varphi(X)$ in E^S . Consequently, R(X) is an object of the category $Ord Comp_E$.

For a morphism $f: X \to Y$ in $\mathcal{O}rd\mathcal{CR}eg_E$, we have the following diagram

where $S' = \bigcirc rd \Im op(Y, E)$ and $q \in S'$. So $q \circ f \in S$, then there exists a unique morphism $h : \prod_S E \to \prod_{S'} E$, defined by $h((e_s)_{s \in S}) = (\hat{e}_{s'})_{s' \in S'}$ where $\hat{e}_{s'} = e_{s' \circ f}$, such that $p_q \circ h = p_{q \circ f}$. Therefore, $h(\varphi(X)) \subseteq \overline{h(\varphi(X))} \subseteq \overline{\varphi(Y)}$, that is $h(R(X)) \subseteq R(Y)$, and so the restriction h' of h to R(X) is a continuous order-preserving map from R(X) to R(Y) such that $h' \circ \eta_X = \eta_Y \circ f$,

If Y is a closed subspace of $E^{S'}$, then $Y \cong \varphi(Y) \cong \overline{\varphi(Y)} = R(Y)$ and η_Y is an isomorphism. For $\overline{f} = \eta_Y^{-1} \circ h'$ we have that $\overline{f} \circ \eta_X = f$ and the morphism \overline{f} is unique because η_X , being a dense map in $\mathcal{O}rd\mathcal{H}aus$, is an epimorphism. Therefore $\mathcal{O}rd\mathcal{C}omp_E$ is a reflective subcategory of $\mathcal{O}rd\mathcal{C}\mathcal{R}eg_E$.

Examples

(1) (i) Taking E = I = [0, 1] with the trivial order, we have

$$\mathbb{C}Reg_I \xrightarrow{\beta} \mathbb{C}omp_I$$

where $\mathbb{C}Reg_I$ is the category of Tychonoff spaces, $\mathbb{C}omp_I$ is the category of compact Hausdorff spaces and $R = \beta$ is the Stone - Čech compactification.

(ii) Let $E = 2_d$ the discrete topological space with two points. Then

$$\mathbb{CR}eg_{2_d} \xrightarrow{\zeta} \mathbb{C}omp_{2_d}$$

where $\mathbb{CR}eg_{2_d}$ is the category of Hausdorff zero-dimensional spaces, $\mathbb{C}omp_{2_d}$ is the category of Stone spaces and $R = \zeta$ is the reflection, as proved by Banaschewski in [1].

(2) (i) Taking $E = I_o = [0, 1]$ we have

$$\mathbb{O}rd\mathbb{C}\mathbb{R}eg_{I_o} \xrightarrow{\beta_o} \mathbb{O}rd\mathbb{C}omp_{I_o}$$

where $Ord CReg_{I_o}$ is the category of completely regular ordered spaces, $Ord Comp_{I_o}$ is the category of compact ordered spaces and $R = \beta_o$ is the Nachbin - Stone - Čech ordered compactification [8].

(ii) Let $E = 2_{do}$ be the two chain with discrete topology. There is a reflection

$$\mathfrak{O}rd\mathfrak{CR}eg_{2_{do}} \xrightarrow{\zeta_o} \mathfrak{O}rd\mathfrak{C}omp_{2_{do}}$$

that gives us a new way to describe the Priestley spaces.

Theorem 7. $\mathfrak{PS}p$ is the category $\mathfrak{Ord}\mathfrak{C}omp_{2_{do}}$.

Proof: For each set S, 2_{do}^S is a Priestley space and so is each closed subset of powers of 2_{do} , because closed subspaces of compact spaces are compact and subspaces of totally order disconnected spaces are totally order disconnected.

Conversely, each Priestley space is a closed subspace of some power of 2_{do} . Indeed, let X be a Priestley space. For $S = OrdTop(X, 2_{do})$ we consider the commutative diagram

Let $x, x' \in X$ such that $x \neq x'$, then $x \not\leq x'$ or $x' \not\leq x$.

If $x \not\leq x'$ then there exists a clopen decreasing subset U of X such that $x' \in U$ and $x \notin U$. Then $x' \in U$ with U clopen decreasing subset of X and $x \in (X - U)$ with X - U a clopen increasing subset of X. Hence, there exists a morphism $s_0 : X \to 2_{do}$ in S such that $s_0(U) = 0$ e $s_0(X - U) = 1$. Therefore $e(x) = (s(x))_{s \in S} \neq e(x') = (s(x'))_{s \in S}$ and so φ is injective. Indeed we proved more than that: we really proved that if $x \not\leq x'$ then $e(x) \not\leq e(x')$, that is that $\varphi : X \to e(X)$ is an order isomorphism.

Thus, the Priestley space X is isomorphic to the space e(X) which is a compact subspace of the Hausdorff space 2_{do}^{S} , and so e(X) is closed of 2_{do}^{S} . Therefore, X being a closed subspace of a power of 2_{do} belongs to $Ord Comp_{2_{do}}$.

References

- [1] B. Banaschewski, Über nulldimensionale Räume, Math. Nache 13, (1955), 129-140.
- [2] F. Borceux and J. Janelidze, *Galois Theories*, Cambridge University Press (2001).
- [3] M. Dias and M. Sobral, Descent for Priestley Spaces, Appl. Categor. Struct 14, (2006), 229-241.
- [4] B. A. Davey and H. A. Priestley, *Introduction to Lattices and Order*, Cambridge Mathematical Texbooks (1990).
- [5] R. Engelking and S. Mróka, On E-compact spaces, Bull Sér, Sci Math. Astronom. Phys (1958), 429-436.
- [6] D. Hofmann, On a generalization of the Stone-Weierstrass Theorem, Appl. Categ. Struct 10 (2002), 569-592.
- [7] P. Jonhstone, *Stone Spaces*, Cambridge University Press (1992).
- [8] L. Nachbin, Topology and order, Van Nostrand, Princeton, Toronto, New York, London (1965).
- [9] R. C. Walter, The Stone-Čech Compactification, Springer-Verlag Berlin Heidellberg New York (1974).

MARGARIDA DIAS

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DOS AÇORES, 9501-801 PONTA DELGADA, POR-TUGAL

CMUC, CENTRE OF MATHEMATICS OF THE UNIVERSITY OF COIMBRA, 3001-454 COIMBRA, PORTU-GAL

E-mail address: mdias@notes.uac.pt