RIEMANN-HILBERT PROBLEM ASSOCIATED WITH ANGELESCO SYSTEMS

A. BRANQUINHO, U. FIDALGO PRIETO AND A. FOULQUIÉ MORENO

ABSTRACT: Angelesco systems of measures with Jacobi type weights are considered. For such systems, strong asymptotic development expressions for sequences of associated Hermite-Padé approximants are found. In the procedure, an approach from Riemann-Hilbert Problem plays a fundamental role.

AMS SUBJECT CLASSIFICATION (2000): Primary 41A21,42C05.

1. The statement of the Riemann-Hilbert problem

Let $\Delta_j = [c_{1,j}, c_{2,j}] \subset \mathbb{R}$, j = 1, 2, be two intervals which are symmetric with respect to the origin. This means that $c_{1,1} = -c_{2,2}$ and $c_{1,2} = -c_{2,1}$. For each j = 1, 2, we take a holomorphic function h_j , on a neighborhood \mathcal{V}_{h_j} of Δ_j , i.e. $h_j \in H(\mathcal{V}_{h_j})$. Let us define the system of measures (σ_1, σ_2) where σ_1 and σ_2 have the differential form

$$d\sigma_j(x) = \frac{h_j(x)dx}{\sqrt{(x - c_{1,j})(c_{2,j} - x)}}, \quad x \in \Delta_j, \quad j = 1, 2.$$

This system (σ_1, σ_2) belongs to the class of Angelesco systems introduced by Angelesco in [1]. Fix a multi-index $\mathbf{n} = (n_1, n_2)$, we say that a polynomial $Q_{\mathbf{n}} \neq 0$ is a type II multiple-orthogonal polynomial corresponding to a system (σ_1, σ_2) , if deg $Q_{\mathbf{n}} \leq |\mathbf{n}| = n_1 + n_2$ and $Q_{\mathbf{n}}$ satisfies the following orthogonality conditions

$$\int_{\Delta_j} x^{\nu} Q_{\mathbf{n}}(x) d\sigma_j(x) = 0, \quad \nu = 0, \dots, n_j - 1, \quad j = 1, 2.$$

It is well known that for any multi-index $\mathbf{n} = (n_1, n_2)$, the polynomial Q_n has exactly $n_1 + n_2$ simple zeros lying in $\overset{\circ}{\Delta}_1 \cup \overset{\circ}{\Delta}_2$, where $\overset{\circ}{\Delta}_j$ denotes the interior set of Δ_j , j = 1, 2. Our propose in the present article consists in obtaining results about the strong asymptotic development of sequences of multi-orthogonal

Received October 26, 2007.

The work of the first author was supported by CMUC/FCT, the work of the second author was supported by grant SFRH/BPD/31724/2006 from Fundação para a Ciência e a Tecnologia and the work of the third author was supported by UI Matemática e Aplicações from University of Aveiro.

polynomials $\{Q_n : n \in \mathbb{Z}^2\}$. An effective method for such study with this kind of "very well" measures, is analyzing of the Riemann-Hilbert problem for multi-orthogonal polynomials, which was introduced in [5]. Let us consider a 3×3 square matrix, Y, whose entries are complex functions $Y_{s,k} : \mathbb{C} \to \mathbb{C}$, s, k = 1, 2, 3. Given a point $x \in \overset{\circ}{\Delta}_1 \cup \overset{\circ}{\Delta}_2$, the following matricial limits, where $z \in \mathbb{C} \setminus (\Delta_1 \cup \Delta_2)$ tending to x, represent the formal pontual limits of all entries of Y at the same time:

$$\lim_{z \to x} Y(z) = Y_{+}(x), \quad \Im m(z) > 0$$

$$\lim_{z \to x} Y(z) = Y_{-}(x), \quad \Im m(z) < 0.$$

Let $\delta_{s,k}$ denote the Kroneker delta function. Let us look for a matrix function Y which satisfies the following conditions:

- (1) The entries of Y, $Y_{s,k}$, belongs to $H(\mathbb{C} \setminus (\Delta_1 \cup \Delta_2))$, which we write as $Y \in H(\mathbb{C} \setminus (\Delta_1 \cup \Delta_2))$;
- (2) For each Δ_j , j = 1, 2, the so called jump condition takes place

$$Y_{+}(x) = Y_{-}(x) \begin{pmatrix} 1 & \frac{2\pi i \delta_{1,j} h_{1}(x) dx}{\sqrt{(x-c_{1,1})(c_{2,1}-x)}} & \frac{2\pi i \delta_{2,j} h_{2}(x) dx}{\sqrt{(x-c_{1,2})(c_{2,2}-x)}} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad x \in \stackrel{\circ}{\Delta}_{j};$$

(3) Given a multi-index $\mathbf{n} = (n_1, n_2)$, we require the following asymptotic condition at infinity,

$$Y(z) \begin{pmatrix} z^{-|\boldsymbol{n}|} & 0 & 0\\ 0 & z^{n_1} & 0\\ 0 & 0 & z^{n_2} \end{pmatrix} = \mathbb{I} + \mathcal{O}(1/z) \quad \text{as} \quad z \to \infty,$$

where \mathbb{I} is the identity matrix with rank 3;

(4) For each i, j = 1, 2, we set the following behavior around the endpoints $c_{i,j}$,

$$Y(z) = \mathcal{O} \begin{pmatrix} 1 & \delta_{2,j} + \frac{\delta_{1,j}}{\sqrt{|z-c_{i,j}|}} & \delta_{1,j} + \frac{\delta_{2,j}}{\sqrt{|z-c_{i,j}|}} \\ 1 & \delta_{2,j} + \frac{\delta_{1,j}}{\sqrt{|z-c_{i,j}|}} & \delta_{1,j} + \frac{\delta_{2,j}}{\sqrt{|z-c_{i,j}|}} \\ 1 & \delta_{2,j} + \frac{\delta_{1,j}}{\sqrt{|z-c_{i,j}|}} & \delta_{1,j} + \frac{\delta_{2,j}}{\sqrt{|z-c_{i,j}|}} \end{pmatrix}$$

This problem, which consists in finding the matrix function Y, was called in [5] a Riemann-Hilbert problem for type II multiple orthogonal polynomials, and

for the system of measures (σ_1, σ_2) , RHP in short. The solution Y is unique and has the form

$$Y(z) = \begin{pmatrix} Q_{\mathbf{n}}(z) & -\int_{\Delta_{1}} Q_{\mathbf{n}}(x) \frac{d\sigma_{1}(x)}{z-x} & -\int_{\Delta_{2}} Q_{\mathbf{n}} \frac{d\sigma_{2}(x)}{z-x} \\ d_{1}Q_{\mathbf{n}_{-}^{1}}(z) & -\int_{\Delta_{1}} Q_{\mathbf{n}_{-}^{1}}(x) \frac{d\sigma_{1}(x)}{z-x} & -\int_{\Delta_{2}} Q_{\mathbf{n}_{-}^{1}} \frac{d\sigma_{2}(x)}{z-x} \\ d_{2}Q_{\mathbf{n}_{-}^{2}}(z) & -\int_{\Delta_{1}} Q_{\mathbf{n}_{-}^{2}}(x) \frac{d\sigma_{1}(x)}{z-x} & -\int_{\Delta_{2}} Q_{\mathbf{n}_{-}^{2}} \frac{d\sigma_{2}(x)}{z-x} \end{pmatrix}$$
(1)

with $d_i^{-1} = -\int_{\Delta_i} x^{n_i - 1} Q_{\boldsymbol{n}_-^i}(x) d\sigma_i(x)$, i = 1, 2, and if $\boldsymbol{n} = (n_1, n_2)$, $\boldsymbol{n}_-^1 = (n_1 - 1, n_2)$ and $\boldsymbol{n}_-^2 = (n_1, n_2 - 1)$.

The key of our procedure is based in finding the relationship between Y and a matrix function R which is the solution of another RHP with the following formulation. Suppose that γ is a closed simple and smooth contour on the complex plane \mathbb{C} , then find a matrix function, R, such that:

- (1) $R : \mathbb{C} \to \mathbb{C}^{3 \times 3}$ belongs to $H(\mathbb{C} \setminus \gamma)$; (2) $R_{+}(\xi) = R_{-}(\xi)V_{\boldsymbol{n}}(\xi), \ \xi \in \gamma$;
- (3) $R(z) \to \mathbb{I}$ as $z \to \infty$,

where V_n is a 3×3 matrix function, which is called the jump matrix.

Given an arbitrary 3×3 matrix function $K = [K_{s,k}]_{s,k}$, s, k = 1, 2, 3, defined on a open set $\Omega \subset \mathbb{C}$ let us denote by ||K|| (respectively, $||K||_{\Omega}$) the matrix infinity norm which consists in the maximum sum of row's entries modulus, defined for 3×3 matrices, i.e.

$$||K|| = \max_{s=1,2,3} \sum_{k=1}^{3} |K_{s,k}|, \text{ (respectively, } ||K||_{\Omega} = \sup_{\Omega} ||K||)$$

Theorem 1 (See Theorem 3.1 in [7]). Suppose that Ω is an open set containing γ . In condition (2) of the RHP for R, let us require for $V_n \in H(\Omega)$ that there exist constants C and $\delta_n > 0$ for which

$$\|V_{\boldsymbol{n}} - \mathbb{I}\|_{\Omega} < \delta_{\boldsymbol{n}}.$$

Then, any solution of the RHP for R satisfies that

$$||R(z) - \mathbb{I}|| < C ||V_{\mathbf{n}} - \mathbb{I}||_{\Omega} \quad for \ every \quad z \in \mathbb{C} \setminus \gamma.$$

Notice that if we know the relationship between R and Y and if we can also describe the development of R when $|\mathbf{n}| \to \infty$, we would have a description for the development of all entries of Y when $|\mathbf{n}| \to \infty$, particularly for $Y_{1,1}(z) = Q_{\mathbf{n}}(z)$.

The RHP for Y is not normalized in the sense that the conditions (3) at infinity for Y and R are different. In order to normalize the RHP, we are going to modify Y in such a way that we set another RHP with the same contours (possibly different jump conditions), for which the solution tends to the identity matrix as $z \to \infty$. For normalizing we need to take into account the behavior of Y(z) for large z. This behavior depends on the distribution of the zeros of the multiple-orthogonal polynomials. The zero distribution of the orthogonal polynomials is usually given by an extremal problem in logarithmic potential theory. In section 2 we introduce some concepts and results which we will need about this theory and we will normalized the Riemann-Hilbert problem at infinity. In section 3 such a Riemann-Hilbert problem with oscillatory and exponentially decreasing jumps can be analyzed by using the steepest descent method introduced by Deift and Zhou (see [3, 4]).

2. The equilibrium problem and the normalization at infinity

Let us fix $j \in \{1, 2\}$. $\mathcal{M}_{1/2}(\Delta_j)$ denotes the set of all finite Borel measures whose supports, i.e. supp (·), are contained in Δ_j with total variation 1/2. Take $\mu_j \in \mathcal{M}_{1/2}(\Delta_j)$ and define its logarithmic potential as follows

$$V^{\mu_j}(z) = \int \log \frac{1}{|z-x|} d\mu_j(x), \qquad z \in \mathbb{C}.$$

For each pair of measures (μ_1, μ_2) , where $\mu_j \in \mathcal{M}_{1/2}(\Delta_j)$, j = 1, 2, we define the quantities

$$m_j(\mu_1,\mu_2) = \min_{x \in \Delta_j} \left(2V^{\mu_j}(x) + V^{\mu_k}(x) \right), \quad j,k = 1,2, \quad j \neq k.$$

The following Proposition is deduced immediately from the results of [6].

Proposition 1. There exists a unique pair $(\bar{\mu}_1, \bar{\mu}_2) \in \mathcal{M}_{1/2}(\Delta_1) \times \mathcal{M}_{1/2}(\Delta_2)$, which satisfies for j, k = 1, 2

$$2V^{\bar{\mu}_j}(x) + V^{\bar{\mu}_k}(x) = m_j(\bar{\mu}_1, \bar{\mu}_2) = m_j, \quad x \in \text{supp}(\bar{\mu}_j) = \Delta_j, \quad j \neq k.$$

For each j = 1, 2 the measure $\bar{\mu}_j$ has the following differential form

$$d\bar{\mu}_1(x) = \frac{\rho_1(x)dx}{\sqrt{(x-c_{1,1})(c_{2,1}-x)}}, \qquad d\bar{\mu}_2(x) = \frac{\rho_2(x)dx}{\sqrt{(x-c_{1,2})(c_{2,2}-x)}},$$

where $\rho_j \in H(\mathcal{V}_{\rho_j})$, with \mathcal{V}_{ρ_j} denoting an open set which contains Δ_j .

The pair $(\bar{\mu}_1, \bar{\mu}_2)$ is called extremal or equilibrium pair of measures with respect to (Δ_1, Δ_2) . Let us denote for each j = 1, 2 the analytic potentials

$$g_j(z) = \int_{\Delta_j^*} \log(z - x) d\bar{\mu}_j(x) = -V^{\bar{\mu}_j}(z) + i \int_{\Delta_j^*} \arg(z - x) d\mu_j(x) \,,$$

where Δ_j^* is the support of the extremal measure, $\bar{\mu}_j$, that coincides in our case with Δ_j , for j = 1, 2. Substituting the potential logarithmic in Proposition 1 we obtain for each j, k = 1, 2 with $j \neq k$ that

$$-[g_{j+} + g_{j-}](x) - g_{k-}(x) = m_j, \quad x \in \Delta_j$$

Observe that

$$(g_{j+} - g_{j-})(x) = \begin{cases} 0 & \text{if } c_{2,j} \le x \\ i\pi & \text{if } c_{1,j} \ge x \\ 2i\pi \int_x^{c_{2,j}} d\bar{\mu}_j(t) & \text{if } x \in \Delta_j \end{cases}$$

In what follows all the multi-indices will have the form $\boldsymbol{n} = (n, n)$. Let us introduce the matrices

$$G(z) = \begin{pmatrix} e^{-2n(g_1(z)+g_2(z))} & 0 & 0\\ 0 & e^{2ng_1(z)} & 0\\ 0 & 0 & e^{2ng_2(z)} \end{pmatrix}, \quad L = \begin{pmatrix} 1 & 0 & 0\\ 0 & e^{-2nm_1} & 0\\ 0 & 0 & e^{-2nm_2} \end{pmatrix}.$$
(2)

We define the matrix function $T = LYGL^{-1}$, where L, G are as in (2) and Y is given by (1). Hence T is the unique solution of the RHP:

(1)
$$T \in H(\mathbb{C} \setminus (\overset{\circ}{\Delta}_1 \cup \overset{\circ}{\Delta}_2));$$

(2) $T_+(x) = T_-(x)M(x), x \in \Delta_1 \cup \Delta_2;$
(3) $T(z) = \mathbb{I} + \mathcal{O}(1/z) \text{ as } z \to \infty;$

(4) T and Y have the same behavior on the endpoints of the intervals Δ_j , for j = 1, 2,

where the jump matrix M has the form

$$M(x) = \begin{pmatrix} e^{-2ni\pi \int_x^{c_{2,j}} d\bar{\mu}_j(t)} & 2\delta_{j,1}\pi iw_1(x) & 2\delta_{j,2}\pi iw_2(x) \\ 0 & e^{2n\delta_{j,1}i\pi \int_x^{c_{2,1}} d\bar{\mu}_1(t)} & 0 \\ 0 & 0 & e^{2n\delta_{j,2}i\pi \int_x^{c_{2,2}} d\bar{\mu}_2(t)} \end{pmatrix}, \quad x \in \stackrel{\circ}{\Delta}_j.$$

3. The opening of the lens

For each j = 1, 2, let ϕ_j denote the function defined by

$$\phi_j(z) = i\pi \int_z^{c_{2,j}} d\bar{\mu}_j(t) \quad \text{for} \quad z \in \mathcal{V}_j = \mathcal{V}_{\rho_j}(\Delta_j^*) \cap \mathcal{V}_{h_j}(\Delta_j) \,.$$

Notice that $\phi_{j+}(x) = i\pi \int_x^{c_{2,j}} d\bar{\mu}_j(t)$ is purely imaginary and its derivative

$$\phi'_{j+}(x) = -i\pi \frac{\rho_j(x)}{\sqrt{(x-c_{1,j})(c_{2,j}-x)}}$$

where $-\pi \rho_j(x)/\sqrt{(x-c_{1,j})(c_{2,j}-x)} < 0$, $x \in \Delta_j$. Rewrite $\phi_j(z) = U_j(z) + iV_j(z) \in H(\mathcal{V}_j)$. By the Cauchy-Riemann conditions we have that the real part of ϕ_j , $\Re e \phi_j$, is an increasing function on any point $z \in \mathcal{V}_j$ with $\Im m(z) > 0$. Since $\Re e \phi_j$ is zero in Δ_j , it is positive in such point. Notice $\phi_{j+}(x) = -\phi_{j-}(x)$, $x \in \overset{\circ}{\Delta}_j$, hence we can proceed analogously when $\Im m(z) < 0$.

We analyze the jump function in Δ_j , i.e.

$$M(x) = \begin{pmatrix} e^{-2n\phi_{j+}(x)} & 2\pi i\delta_{j,1}w_1(x) & 2\pi i\delta_{j,2}w_2(x) \\ 0 & e^{-2\delta_{j,1}n\phi_{1-}(x)} & 0 \\ 0 & 0 & e^{-2\delta_{j,2}n\phi_{2-}(x)} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{\delta_{j,1}e^{-2n\phi_{1-}(x)}}{2\pi iw_1(x)} & 1 & 0 \\ -\frac{\delta_{j,2}e^{-2n\phi_{2-}(x)}}{2\pi iw_2(x)} & 0 & 1 \end{pmatrix}$$
$$\times \begin{pmatrix} 0 & 2\pi i\delta_{j,1}w_1(x) & 2\pi i\delta_{j,2}w_2(x) \\ -\frac{\delta_{1,j}}{2\pi iw_1(x)} & \delta_{j,2} & 0 \\ -\frac{\delta_{2,j}}{2\pi iw_2(x)} & 0 & \delta_{j,1} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -\frac{\delta_{j,1}e^{-2n\phi_{1+}(x)}}{2\pi iw_1(x)} & 1 & 0 \\ -\frac{\delta_{j,2}e^{-2n\phi_{2+}(x)}}{2\pi iw_2(x)} & 0 & 1 \end{pmatrix}.$$

Now we are going to follow an analogous procedure as in section 9 of [7]. Let us fix a $\delta > 0$ such that the intervals $[c_{1,j} - \delta, c_{1,j}]$ and $[c_{2,j}, c_{2,j} + \delta]$ are subsets of \mathcal{V}_j , j = 1, 2, and for each interval let us define two curves Σ_{j+} , Σ_{j-} in \mathcal{V}_j , which goes from $c_{1,j}$ to $c_{2,j}$, where $\Sigma_{j\pm} = [c_{1,j} - \delta, c_{1,j}] \cup \Sigma_{j\pm}^* \cup [c_{2,j}, c_{2,j} + \delta]$, with the elements of the curves $\Sigma_{j\pm}^*$ satisfying that if $z \in \Sigma_{j\pm}^*$, then $0 < \pm \Im m(z)$ (cf. Figure 1). Set $\Gamma_{j\pm}$ the domains that lie between $\Sigma_{j\pm}$ and Δ_j . Let us introduce the matrix function S, defined by

$$S(z) = T \begin{pmatrix} 1 & 0 & 0 \\ \mp \frac{\delta_{1,j} e^{-2n\phi_{1-}(z)}}{2\pi i w_1(z)} & 1 & 0 \\ \mp \frac{\delta_{2,j} e^{-2n\phi_{2-}(z)}}{2\pi i w_2(z)} & 0 & 1 \end{pmatrix}, \quad z \in \Gamma_{j\pm}, \text{ and } S \equiv T, \text{ outside.}$$
(3)

Hence on open intervals $]c_{1,j}-\delta, c_{1,j}[$ and $]c_{2,j}, c_{2,j}+\delta[$ there are two combined jumps. For the function w_j we have that

$$w_{j+}(x) = -w_{j-}(x), \quad x \in \mathbb{R} \cap \mathcal{V}(\Delta_j) \setminus \Delta_j, \quad j = 1, 2.$$

Observe that

$$\begin{pmatrix} 1 & 0 & 0 \\ \frac{\delta_{j,1}e^{-2n\phi_1}}{2\pi i w_{1-}} & 1 & 0 \\ \frac{\delta_{j,2}e^{-2n\phi_2}}{2\pi i w_{2-}} & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \frac{\delta_{j,1}e^{-2n\phi_1}}{2\pi i w_{1+}} & 1 & 0 \\ \frac{\delta_{j,2}e^{-2n\phi_2}}{2\pi i w_{2+}} & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \left(\frac{1}{w_{1-}} + \frac{1}{w_{1+}}\right) \frac{\delta_{1,j}e^{-2n\phi_1}}{2\pi i} & 1 & 0 \\ \left(\frac{1}{w_{2-}} + \frac{1}{w_{2+}}\right) \frac{\delta_{2,j}e^{-2n\phi_1}}{2\pi i} & 0 & 1 \end{pmatrix} = \mathbb{I},$$

which means that S, defined by (3), is analytic function across $]c_{1,j} - \delta, c_{1,j}[$ and $]c_{2,j}, c_{2,j} + \delta[, j = 1, 2$. Let $\gamma_j, j = 1, 2$, be closed contours with the clockwise direction, such that for each $j = 1, 2, \gamma_j = \sum_{j=1}^* \bigcup \sum_{j=1}^*$. We have changed the direction of the curve $\sum_{j=1}^*$. The function S satisfies the RHP:

(1) $S \in H(\mathbb{C} \setminus \bigcup_{j=1,2} (\Delta_j \cup \gamma_j));$

(2) The jump conditions for j = 1, 2 are,

$$S_{+}(x) = S_{-}(x) \begin{pmatrix} 0 & 2\delta_{1,j}\pi iw_{1}(x) & 2\delta_{2,j}\pi iw_{2}(x) \\ -\frac{\delta_{1,j}}{2\pi iw_{1}(x)} & \delta_{2,j} & 0 \\ -\frac{\delta_{2,j}}{2\pi iw_{2}(x)} & 0 & \delta_{1,j} \end{pmatrix} \text{ if } x \in \mathring{\Delta}_{j},$$

$$S_{+}(z) = S_{-}(z) \begin{pmatrix} 1 & 0 & 0 \\ \frac{\pm \delta_{1,j}e^{-2n\phi_{1}(z)}}{2\pi iw_{1}(z)} & 1 & 0 \\ \frac{\pm \delta_{2,j}e^{-2n\phi_{2}(z)}}{2\pi iw_{2}(z)} & 0 & 1 \end{pmatrix} \text{ if } z \in \gamma_{j} \cap \{\pm \Im m \, z < 0\};$$

(3) $S(z) = \mathbb{I} + \mathcal{O}(1/z)$ as $z \to \infty$;

(4) The conditions for the endpoints are the same as for T.

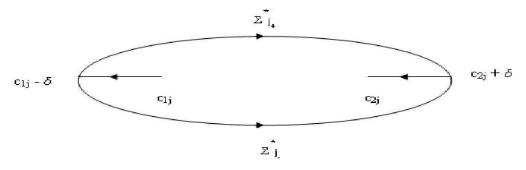


FIGURE 1. Opening of lens

Now, we consider the limiting problem, because for the matrix S the jump matrix function on each γ_j for j = 1, 2 tends to the identity matrix when $|\mathbf{n}| \to \infty$. We look for the matrix function N which satisfies the following RHP:

- (1) $N \in H(\mathbb{C} \setminus (\Delta_1 \cup \Delta_2));$
- (2) The jump conditions in Δ_j for j = 1, 2 are,

$$N_{+}(x) = N_{-}(x) \begin{pmatrix} 0 & 2\delta_{1,j}\pi iw_{1}(x) & 2\delta_{2,j}\pi iw_{2}(x) \\ -\frac{\delta_{1,j}}{2\pi iw_{1}(x)} & \delta_{2,j} & 0 \\ -\frac{\delta_{2,j}}{2\pi iw_{2}(x)} & 0 & \delta_{1,j} \end{pmatrix}; \quad (4)$$

(3) $N(z) = \mathbb{I} + \mathcal{O}(1/z)$ as $z \to \infty$;

(4) N satisfies the same conditions for the endpoints as S.

Set N = KD, where D is a diagonal matrix function and $K = [K_{k,l}]_{k,l}$, k, l = 1, 2, is the solution of the RHP:

(1) $K \in H(\mathbb{C} \setminus (\Delta_1 \cup \Delta_2));$

(2) The jump conditions in $\tilde{\Delta}_j$ for j = 1, 2 are, because of (4),

$$K_{+}(x) = K_{-}(x) \begin{pmatrix} 0 & \frac{2\delta_{1,j}\pi i}{\sqrt{(c_{2,1}-x)(x-c_{1,1})}} & \frac{2\delta_{2,j}\pi i}{\sqrt{(c_{2,2}-x)(x-c_{1,2})}} \\ \frac{-\delta_{1,j}\sqrt{(c_{2,1}-x)(x-c_{1,1})}}{\frac{2\pi i}{2\pi i}} & \delta_{2,j} & 0 \\ \frac{-\delta_{2,j}\sqrt{(c_{2,2}-x)(x-c_{1,2})}}{2\pi i} & 0 & \delta_{1,j} \end{pmatrix};$$
(5)

(3) $K(z) = \mathbb{I} + \mathcal{O}(1/z)$ as $z \to \infty$;

(4) K and N have the same conditions for the endpoints.

Analogously to the ideas in [2], let us choose the branches of the square root which glue along the intervals Δ_j , j = 1, 2, i.e.

$$\left(\sqrt{(x-c_{2,j})(x-c_{1,j})}\right)_{+} = -\left(\sqrt{(x-c_{2,j})(x-c_{1,j})}\right)_{-}, \ x \in \overset{\circ}{\Delta}_{j}, \ j = 1, 2.$$

For each i = 1, 2, 3, we rewrite (5) as

$$\begin{cases} \left(\frac{\sqrt{(z-c_{2,1})(z-c_{1,1})}}{2\pi}K_{i,2}(z)\right)_{\pm}(x) = (K_{i,1}(z))_{\mp}(x) \\ (K_{i,3})_{+}(x) = (K_{i,3})_{-}(x) \end{cases}, \quad x \in \mathring{\Delta}_{1}$$

$$\begin{cases} \left(\frac{\sqrt{(z-c_{2,2})(z-c_{1,2})}}{2\pi}K_{i,3}(z)\right)_{\pm}(x) = (K_{i,1}(z))_{\mp}(x) \\ (K_{i,2})_{\pm}(x) = (K_{i,2})_{-}(x) \end{cases}, \quad x \in \mathring{\Delta}_{2}$$

and we denote

$$\psi_0^i(z) = K_{i,1}(z)$$
, and $\psi_j^i(z) = \frac{\sqrt{(z - c_{2,j})(z - c_{1,j})}}{2\pi} K_{i,j+1}(z)$, $j = 1, 2$.

Then from the relations (5), we may interpret each row i = 1, 2, 3 of such matrix K as a function defined on a Riemann surface. Let \mathcal{R} define the Riemann surface which has two cuts. One of them connects the two branch points $c_{1,1}$ and $c_{2,1}$ with the cut in the interval $\Delta_1 = [c_{1,1}, c_{2,1}]$. The other cut is made in the interval $\Delta_2 = [c_{1,2}, c_{2,2}]$, to connect the two other branch points $c_{1,2}$ and $c_{2,2}$. The sheet \mathcal{R}_0 is glued to another sheet \mathcal{R}_1 along the cut Δ_1 , and \mathcal{R}_0 is also glued to \mathcal{R}_2 along the interval Δ_2 . Let us denote by ψ^i , i = 1, 2, 3, three multi-valued function $\psi^i = (\psi^i_0, \psi^i_1, \psi^i_2)$, such that its components ψ^i_l , i = 1, 2, 3, l = 0, 1, 2, map the corresponding sheet \mathcal{R}_l on \mathbb{C} , and satisfy for j = 1, 2

$$\psi_{0\pm}^{i}(x) = \psi_{j\mp}^{i}(x), \quad x \in \overset{\circ}{\Delta}_{j}, \quad \psi_{j}^{i}(z) = \mathcal{O}(1) \quad \text{as} \quad z \to c_{k,j}, \quad k = 1, 2; \quad (6)$$

for $j, k = 1, 2, \psi_0^i(x) = \mathcal{O}(1)$, as $z \to c_{k,j}$; around the infinity, and j = 1, 2,

$$\psi_0^i(z) = \delta_{i,1} + \mathcal{O}(1/z) , \quad \psi_j^i(z) = z\delta_{i,j+1} + \mathcal{O}(1) \quad \text{as} \quad z \to \infty .$$

The equalities (6) are equivalent to

$$(\psi_0^i \psi_j^i)_+(x) = (\psi_0^i \psi_j^i)_-(x), \quad x \in \overset{\circ}{\Delta}_j, \quad j = 1, 2$$

From Liouville's theorem, it is easy to see that $(\psi_0^i \psi_1^i \psi_2^i)(z) \equiv 1, z \in \overline{\mathbb{C}}$. This implies that $\psi_l^i, l = 0, 1, 2, i = 1, 2, 3$, do not become zero. Hence

$$(\psi_0^i \psi_k^i)(z) = \frac{1}{\psi_l^i(z)} \in H\left(\overline{\mathbb{C}} \setminus \Delta_l\right), \quad l, k = 1, 2, \quad l \neq k, \quad i = 1, 2, 3.$$

We obtain that for each l = 1, 2, that is $x \in \Delta_l$,

$$\psi_{0+}^{i}(x)\psi_{k}^{i}(x) = \frac{1}{\psi_{l+}^{i}(z)}$$
 or equivalently $(\psi_{l+}^{i}\psi_{l-}^{i})(x) = \frac{1}{\psi_{k}^{i}(x)}.$

That yields to the problems for ψ_l^i , l = 1, 2:

• $\psi_l^i \in H(\overline{\mathbb{C}} \setminus \Delta_l);$

•
$$(\psi_{l+}^i\psi_{l-}^i)(x) = 1/\psi_k^i(x), \quad x \in \check{\Delta}_l;$$

• $\psi_l^i(z) = z\delta_{i,l+1} + \mathcal{O}(1) \text{ as } z \to \infty;$
• $\psi_l^i(z) = \mathcal{O}(1) \text{ as } z \to c_{k,l}, \ k = 1, 2.$

This problem is equivalent to the system of integral equations:

$$\psi_0^i(z) = \frac{1}{\psi_1^i(z)\psi_2^i(z)}$$

 $\psi_l^i(z)$

$$= \exp\left(\frac{\sqrt{(z-c_{1,l})(z-c_{2,l})}}{2\pi} \int_{\Delta_l} \frac{\log\psi_k^i(x)}{\sqrt{(x-c_{1,l})(c_{2,l}-x)}} \frac{dx}{z-x} + \delta_{i,l+1}g_{\Delta_l}(z)\right),$$

for l = 1, 2, with $z \in \overline{\mathbb{C}} \setminus \overset{\circ}{\Delta}_l$, and g_{Δ_j} is the analytic function which tends to ∞ as $\log z$, and whose real part vanishes in Δ_j , j = 1, 2

Let us find the diagonal 3×3 matrix function D with diagonal elements D_0, D_1, D_2 , such that $N(z) \equiv K(z)D(z)$. The conditions (5) yield that entries of D must satisfy the following conditions

$$\begin{cases} h_j(x)D_{0\pm}(x) = D_{j\mp}(x) \\ D_{k+}(x) = D_{k-}(x) \end{cases} \quad \text{when} \quad x \in \overset{\circ}{\Delta}_j, \quad j, k = 1, 2, \quad k \neq j. \end{cases}$$

Analogously to the function ψ_l^i , we obtain the following problem for the entries of D:

i) $(D_0D_1D_2) \equiv 1$, which implies that for each $l = 0, 1, 2, D_l$ does not become zero;

ii)
$$D_l \in H(\overline{\mathbb{C}} \setminus \Delta_l), \ l = 1, 2;$$

iii)
$$(D_{l+}D_{l-})(x) = h_s(x)/(D_s(x)), \quad s = 1, 2, \quad s \neq l, \quad x \in \overset{\circ}{\Delta}_l, \ l = 1, 2;$$

iv) $D_l(z) = 1 + \mathcal{O}(1/z) \text{ as } z \to \infty, \ l = 1, 2,$
v) $D_l(z) = \mathcal{O}(1) \text{ as } z \to \infty, \ k = 1, 2, l = 1, 2;$

v) $D_l(z) = \mathcal{O}(1)$ as $z \to c_{k,l}, k = 1, 2, l = 1, 2$.

This problem is equivalent to the following system of integral equations where l = 1, 2,

$$D_{l}(z) = \exp\left(\frac{\sqrt{(z-c_{1,l})(z-c_{2,l})}}{2\pi}\int_{\Delta_{l}}\frac{\log\left(\frac{D_{k}(x)}{h_{k}(x)}\right)}{\sqrt{(x-c_{1,l})(c_{2,l}-x)}}\frac{dx}{z-x}\right)$$
$$D_{0}(z) = \frac{1}{D_{1}(z)D_{2}(z)} \quad \text{with} \quad z \in \overline{\mathbb{C}} \setminus \overset{\circ}{\Delta_{l}}.$$

Let us take the three multi-valued function $(D_0(z), D_1(z), D_2(z))$. Notice that for each l = 0, 1, 2, the function D_l is another function which maps the sheet \mathcal{R}_l on \mathbb{C} . In our case the components of functions $(D_0(z), D_1(z), D_2(z))$ satisfy the conditions iv) and v) required for D_l , l = 0, 1, 2. Finally the matrix function N has the form

$$N(z) = \begin{pmatrix} (D_0\psi_0^1)(z) & \frac{(D_1\psi_1^1)(z)}{\sqrt{(x-c_{1,1})(c_{2,1}-x)}} & \frac{(D_2\psi_2^1)(z)}{\sqrt{(x-c_{1,2})(c_{2,2}-x)}}\\ (D_0\psi_0^2)(z) & \frac{(D_1\psi_1^2)(z)}{\sqrt{(x-c_{1,1})(c_{2,1}-x)}} & \frac{(D_2\psi_2^2)(z)}{\sqrt{(x-c_{1,2})(c_{2,2}-x)}}\\ (D_0\psi_0^3)(z) & \frac{(D_1\psi_1^3)(z)}{\sqrt{(x-c_{1,1})(c_{2,1}-x)}} & \frac{(D_2\psi_2^3)(z)}{\sqrt{(x-c_{1,2})(c_{2,2}-x)}} \end{pmatrix}.$$
(7)

We define $R(z) = S(z)N^{-1}(z)$. Since S and N have the same jump across Δ_j , j = 1, 2, hence $R_+(x) = R_-(x)$ for $x \in \overset{\circ}{\Delta}_j$, j = 1, 2. From the definition of R, and the endpoint conditions for N, we can also deduce that $c_{i,k}$, i, k = 1, 2, are a removable singularity. Hence R is an analytic function across the full intervals Δ_1 and Δ_2 , and it has jumps on the curve γ . Then we have the following RHP for R:

- (1) $R \in H(\mathbb{C} \setminus (\gamma_1 \cup \gamma_2));$
- (2) The jump conditions are for j = 1, 2

$$R_{+}(z) = R_{-}(z) \begin{pmatrix} 1 & 0 & 0 \\ \pm \frac{\delta_{j,1}e^{-2n_{1}\phi_{1}(z)}}{2\pi i w_{1}(z)} & 1 & 0 \\ \pm \frac{\delta_{j,2}e^{-2n_{2}\phi_{2}(z)}}{2\pi i w_{2}(z)} & 0 & 1 \end{pmatrix} \quad \text{if} \quad z \in \gamma_{j} \cap \{\pm \Im m \, z < 0\};$$

$$(3) R(z) = \mathbb{I} + \mathcal{O}(1/z).$$

Observe that matrix function R satisfies the hypothesis of the Theorem 1. Then uniformly for $z \in \mathbb{C} \setminus (\gamma_1 \cup \gamma_2)$, we have that $R(z) = \mathbb{I} + \mathcal{O}(e^{c|\boldsymbol{n}|})$, with c > 0 and

$$\begin{split} Y(z) &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{|\boldsymbol{n}|m_1} & 0 \\ 0 & 0 & e^{|\boldsymbol{n}|m_2} \end{pmatrix} \left(\mathbb{I} + \mathcal{O}\left(e^{-c|\boldsymbol{n}|}\right) \right) \\ & \times N(z) \begin{pmatrix} e^{|\boldsymbol{n}|(g_1+g_2)}(z) & 0 & 0 \\ 0 & e^{-|\boldsymbol{n}|(m_1+g_1(z))} & 0 \\ 0 & 0 & e^{-|\boldsymbol{n}|(m_2+g_2)(z)} \end{pmatrix} \,, \end{split}$$

where N is given by (7).

Finally, we state the main result of this paper.

Theorem 2.

$$Y_{1,1}(z) = Q_{\mathbf{n}}(z) = D_0(z)\psi_0^1(z)e^{|\mathbf{n}|(g_1+g_2)(z)} \left(1 + \mathcal{O}\left(e^{-c|\mathbf{n}|}\right)\right) ,$$

as $|\boldsymbol{n}| \to \infty$.

References

- M.A. ANGELESCO, Sur deux extensions des fractions continues algébraiques, C.R. Acad. Sci. Paris, 18 (1919), 262-263.
- [2] A.I. APTEKAREV AND W. VAN ASSCHE, Scalar and matrix Riemann-Hilbert approach to the strong asymptotics of Padé approximants and complex orthogonal polynomials with varying weight, J. of Approx. Theory, **129** (2004), 129-166.
- [3] P. DEIFT, X. ZHOU, A steepest descent method for oscillatory Riemann-Hilbert problems, Bull. Amer. Math. Soc. 26 (1992), 119-123.
- [4] P. DEIFT, X. ZHOU, A steepest descent method for oscillatory Riemann-Hilbert problems, Asymptotic for the MKdV equation, Ann. of Math. (2) 137 (1993), 295-368.
- [5] J.S. GERONIMO, A.B.J. KUIJLAARS AND W. VAN ASSCHE, Riemann-Hilbert Problems for Multiple Orthogonal Polynomials, Russian Acad. Sci. Sb. Math. 77 (1994), 367-384.
- [6] A.A. GONCHAR AND E.A. RAKHMANOV, On Convergence of Simoultaneous Padé Approximants for Systems of Functions of Markov Type, Proceedings of the Steklov Institute of Mathematics, 3 (1983), 31-50.
- [7] A.B.J. KUIJLAARS, Riemann-Hilbert analysis for orthogonal polynomials, In Orthogonal Polynomials and Special Functions (E. Koelink and W. Van Asshe, eds.), Lect. Notes Math., 1817, Springer-Verlag, Berlin, 2003, 167-210.

A. Branquinho

CMUC, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COIMBRA, LARGO D. DINIS, 3001-454 COIMBRA, PORTUGAL.

E-mail address: ajplb@mat.uc.pt *URL*: http://www.mat.uc.pt/~ajplb

U. FIDALGO PRIETO

Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III, Avenida de la Universidad 30, 28911 Leganés-Madrid, Spain.

E-mail address: ulisesfidalgoprieto@yahoo.es

A. Foulquié Moreno Departamento de Matemática, Universidade de Aveiro, Campus de Santiago 3810, Aveiro, Portugal.

E-mail address: foulquie@mat.ua.pt