RIEMANN-HILBERT PROBLEM ASSOCIATED WITH ANGELESCO SYSTEMS

A. BRANQUINHO, U. FIDALGO PRIETO AND A. FOULQUIÉ MORENO

Abstract

Angelesco systems of measures with Jacobi type weights are considered. For such systems, strong asymptotic development expressions for sequences of associated Hermite-Padé approximants are found. In the procedure, an approach from Riemann-Hilbert Problem plays a fundamental role.

AMS Subject Classification (2000): Primary 41A21,42C05.

1. The statement of the Riemann-Hilbert problem

Let $\Delta_{j}=\left[c_{1, j}, c_{2, j}\right] \subset \mathbb{R}, j=1,2$, be two intervals which are symmetric with respect to the origin. This means that $c_{1,1}=-c_{2,2}$ and $c_{1,2}=-c_{2,1}$. For each $j=1,2$, we take a holomorphic function h_{j}, on a neighborhood $\mathcal{V}_{h_{j}}$ of Δ_{j}, i.e. $h_{j} \in H\left(\mathcal{V}_{h_{j}}\right)$. Let us define the system of measures $\left(\sigma_{1}, \sigma_{2}\right)$ where σ_{1} and σ_{2} have the differential form

$$
d \sigma_{j}(x)=\frac{h_{j}(x) d x}{\sqrt{\left(x-c_{1, j}\right)\left(c_{2, j}-x\right)}}, \quad x \in \Delta_{j}, \quad j=1,2 .
$$

This system $\left(\sigma_{1}, \sigma_{2}\right)$ belongs to the class of Angelesco systems introduced by Angelesco in [1]. Fix a multi-index $\boldsymbol{n}=\left(n_{1}, n_{2}\right)$, we say that a polynomial $Q_{n} \not \equiv 0$ is a type II multiple-orthogonal polynomial corresponding to a system $\left(\sigma_{1}, \sigma_{2}\right)$, if $\operatorname{deg} Q_{n} \leq|\boldsymbol{n}|=n_{1}+n_{2}$ and $Q_{\boldsymbol{n}}$ satisfies the following orthogonality conditions

$$
\int_{\Delta_{j}} x^{\nu} Q_{n}(x) d \sigma_{j}(x)=0, \quad \nu=0, \ldots, n_{j}-1, \quad j=1,2 .
$$

It is well known that for any multi-index $\boldsymbol{n}=\left(n_{1}, n_{2}\right)$, the polynomial $Q_{\boldsymbol{n}}$ has exactly $n_{1}+n_{2}$ simple zeros lying in $\stackrel{\circ}{\Delta}_{1} \cup \stackrel{\circ}{\Delta}_{2}$, where $\stackrel{\circ}{\Delta}_{j}$ denotes the interior set of $\Delta_{j}, j=1,2$. Our propose in the present article consists in obtaining results about the strong asymptotic development of sequences of multi-orthogonal

[^0]polynomials $\left\{Q_{n}: \boldsymbol{n} \in \mathbb{Z}^{2}\right\}$. An effective method for such study with this kind of "very well" measures, is analyzing of the Riemann-Hilbert problem for multi-orthogonal polynomials, which was introduced in [5]. Let us consider a 3×3 square matrix, Y, whose entries are complex functions $Y_{s, k}: \mathbb{C} \rightarrow \mathbb{C}$, $s, k=1,2,3$. Given a point $x \in \stackrel{\circ}{\Delta}_{1} \cup \stackrel{\circ}{\Delta}_{2}$, the following matricial limits, where $z \in \mathbb{C} \backslash\left(\Delta_{1} \cup \Delta_{2}\right)$ tending to x, represent the formal pontual limits of all entries of Y at the same time:
\[

$$
\begin{aligned}
& \lim _{z \rightarrow x} Y(z)=Y_{+}(x), \quad \Im m(z)>0 \\
& \lim _{z \rightarrow x} Y(z)=Y_{-}(x), \quad \Im m(z)<0
\end{aligned}
$$
\]

Let $\delta_{s, k}$ denote the Kroneker delta function. Let us look for a matrix function Y which satisfies the following conditions:
(1) The entries of $Y, Y_{s, k}$, belongs to $H\left(\mathbb{C} \backslash\left(\Delta_{1} \cup \Delta_{2}\right)\right)$, which we write as $Y \in H\left(\mathbb{C} \backslash\left(\Delta_{1} \cup \Delta_{2}\right)\right)$;
(2) For each $\Delta_{j}, j=1,2$, the so called jump condition takes place

$$
Y_{+}(x)=Y_{-}(x)\left(\begin{array}{ccc}
1 & \frac{2 \pi i \delta_{1, j} h_{1}(x) d x}{\sqrt{\left(x-c_{1,1}\right)\left(c_{2,1}-x\right)}} & \frac{2 \pi i \delta_{2, j} h_{2}(x) d x}{\sqrt{\left(x-c_{1,2}\right)\left(c_{2,2}-x\right)}} \\
0 & 1 & 1
\end{array}\right), \quad x \in \stackrel{\circ}{\Delta}_{j} ;
$$

(3) Given a multi-index $\boldsymbol{n}=\left(n_{1}, n_{2}\right)$, we require the following asymptotic condition at infinity,

$$
Y(z)\left(\begin{array}{ccc}
z^{-|n|} & 0 & 0 \\
0 & z^{n_{1}} & 0 \\
0 & 0 & z^{n_{2}}
\end{array}\right)=\mathbb{I}+\mathcal{O}(1 / z) \quad \text { as } \quad z \rightarrow \infty
$$

where \mathbb{I} is the identity matrix with rank 3 ;
(4) For each $i, j=1,2$, we set the following behavior around the endpoints $c_{i, j}$,

$$
Y(z)=\mathcal{O}\left(\begin{array}{lll}
1 & \delta_{2, j}+\frac{\delta_{1, j}}{\sqrt{\left|z-c_{i, j}\right|}} & \delta_{1, j}+\frac{\delta_{2, j}}{\sqrt{\left|z-c_{i, j}\right|}} \\
1 & \delta_{2, j}+\frac{\delta_{1, j}}{\sqrt{\left|z-c_{i, j}\right|}} & \delta_{1, j}+\frac{\delta_{\delta_{j, j}}}{\sqrt{\left|z-c_{i, j}\right|}} \\
1 & \delta_{2, j}+\frac{\delta_{1, j}}{\sqrt{\left|z-c_{i, j}\right|}} & \delta_{1, j}+\frac{\delta_{2, j}}{\sqrt{\left|z-c_{i, j}\right|}}
\end{array}\right) .
$$

This problem, which consists in finding the matrix function Y, was called in [5] a Riemann-Hilbert problem for type II multiple orthogonal polynomials, and
for the system of measures (σ_{1}, σ_{2}), RHP in short. The solution Y is unique and has the form

$$
Y(z)=\left(\begin{array}{ccc}
Q_{n}(z) & -\int_{\Delta_{1}} Q_{n}(x) \frac{d \sigma_{1}(x)}{z-x} & -\int_{\Delta_{2}} Q_{n} \frac{d \sigma_{2}(x)}{z-x} \tag{1}\\
d_{1} Q_{n_{-}^{1}}(z) & -\int_{\Delta_{1}} Q_{n_{-}}(x) \frac{d \sigma_{1}(x)}{z-x} & -\int_{\Delta_{2}} Q_{n_{-}^{1}} \frac{d \sigma_{2}(x)}{z-x} \\
d_{2} Q_{n_{-}^{2}}^{2}(z) & -\int_{\Delta_{1}} Q_{n_{-}^{2}}(x) \frac{d \sigma_{1}(x)}{z-x} & -\int_{\Delta_{2}} Q_{n_{-}^{2}}^{2} \frac{d \sigma_{2}(x)}{z-x}
\end{array}\right)
$$

with ${d_{i}}^{-1}=-\int_{\Delta_{i}} x^{n_{i}-1} Q_{n_{-}^{i}}(x) d \sigma_{i}(x), i=1,2$, and if $\boldsymbol{n}=\left(n_{1}, n_{2}\right), \boldsymbol{n}_{-}^{1}=$ $\left(n_{1}-1, n_{2}\right)$ and $\boldsymbol{n}_{-}^{2}=\left(n_{1}, n_{2}-1\right)$.

The key of our procedure is based in finding the relationship between Y and a matrix function R which is the solution of another RHP with the following formulation. Suppose that γ is a closed simple and smooth contour on the complex plane \mathbb{C}, then find a matrix function, R, such that:
(1) $R: \mathbb{C} \rightarrow \mathbb{C}^{3 \times 3}$ belongs to $H(\mathbb{C} \backslash \gamma)$;
(2) $R_{+}(\xi)=R_{-}(\xi) V_{n}(\xi), \xi \in \gamma$;
(3) $R(z) \rightarrow \mathbb{I}$ as $z \rightarrow \infty$,
where V_{n} is a 3×3 matrix function, which is called the jump matrix.
Given an arbitrary 3×3 matrix function $K=\left[K_{s, k}\right]_{s, k}, s, k=1,2,3$, defined on a open set $\Omega \subset \mathbb{C}$ let us denote by $\|K\|$ (respectively, $\|K\|_{\Omega}$) the matrix infinity norm which consists in the maximum sum of row's entries modulus, defined for 3×3 matrices, i.e.

$$
\left.\|K\|=\max _{s=1,2,3} \sum_{k=1}^{3}\left|K_{s, k}\right|, \quad \text { (respectively, } \quad\|K\|_{\Omega}=\sup _{\Omega}\|K\|\right) .
$$

Theorem 1 (See Theorem 3.1 in [7]). Suppose that Ω is an open set containing γ. In condition (2) of the RHP for R, let us require for $V_{n} \in H(\Omega)$ that there exist constants C and $\delta_{n}>0$ for which

$$
\left\|V_{n}-\mathbb{I}\right\|_{\Omega}<\delta_{n}
$$

Then, any solution of the RHP for R satisfies that

$$
\|R(z)-\mathbb{I}\|<C\left\|V_{n}-\mathbb{I}\right\|_{\Omega} \quad \text { for every } \quad z \in \mathbb{C} \backslash \gamma
$$

Notice that if we know the relationship between R and Y and if we can also describe the development of R when $|\boldsymbol{n}| \rightarrow \infty$, we would have a description for the development of all entries of Y when $|\boldsymbol{n}| \rightarrow \infty$, particularly for $Y_{1,1}(z)=Q_{n}(z)$.

The RHP for Y is not normalized in the sense that the conditions (3) at infinity for Y and R are different. In order to normalize the RHP, we are going to modify Y in such a way that we set another RHP with the same contours (possibly different jump conditions), for which the solution tends to the identity matrix as $z \rightarrow \infty$. For normalizing we need to take into account the behavior of $Y(z)$ for large z. This behavior depends on the distribution of the zeros of the multiple-orthogonal polynomials. The zero distribution of the orthogonal polynomials is usually given by an extremal problem in logarithmic potential theory. In section 2 we introduce some concepts and results which we will need about this theory and we will normalized the Riemann-Hilbert problem at infinity. In section 3 such a Riemann-Hilbert problem with oscillatory and exponentially decreasing jumps can be analyzed by using the steepest descent method introduced by Deift and Zhou (see [3, 4]).

2. The equilibrium problem and the normalization at infinity

Let us fix $j \in\{1,2\} . \mathcal{M}_{1 / 2}\left(\Delta_{j}\right)$ denotes the set of all finite Borel measures whose supports, i.e. $\operatorname{supp}(\cdot)$, are contained in Δ_{j} with total variation $1 / 2$. Take $\mu_{j} \in \mathcal{M}_{1 / 2}\left(\Delta_{j}\right)$ and define its logarithmic potential as follows

$$
V^{\mu_{j}}(z)=\int \log \frac{1}{|z-x|} d \mu_{j}(x), \quad z \in \mathbb{C}
$$

For each pair of measures $\left(\mu_{1}, \mu_{2}\right)$, where $\mu_{j} \in \mathcal{M}_{1 / 2}\left(\Delta_{j}\right), j=1,2$, we define the quantities

$$
m_{j}\left(\mu_{1}, \mu_{2}\right)=\min _{x \in \Delta_{j}}\left(2 V^{\mu_{j}}(x)+V^{\mu_{k}}(x)\right), \quad j, k=1,2, \quad j \neq k
$$

The following Proposition is deduced immediately from the results of [6].
Proposition 1. There exists a unique pair $\left(\bar{\mu}_{1}, \bar{\mu}_{2}\right) \in \mathcal{M}_{1 / 2}\left(\Delta_{1}\right) \times \mathcal{M}_{1 / 2}\left(\Delta_{2}\right)$, which satisfies for $j, k=1,2$

$$
2 V^{\bar{\mu}_{j}}(x)+V^{\bar{\mu}_{k}}(x)=m_{j}\left(\bar{\mu}_{1}, \bar{\mu}_{2}\right)=m_{j}, \quad x \in \operatorname{supp}\left(\bar{\mu}_{j}\right)=\Delta_{j}, \quad j \neq k .
$$

For each $j=1,2$ the measure $\bar{\mu}_{j}$ has the following differential form

$$
d \bar{\mu}_{1}(x)=\frac{\rho_{1}(x) d x}{\sqrt{\left(x-c_{1,1}\right)\left(c_{2,1}-x\right)}}, \quad d \bar{\mu}_{2}(x)=\frac{\rho_{2}(x) d x}{\sqrt{\left(x-c_{1,2}\right)\left(c_{2,2}-x\right)}}
$$

where $\rho_{j} \in H\left(\mathcal{V}_{\rho_{j}}\right)$, with $\mathcal{V}_{\rho_{j}}$ denoting an open set which contains Δ_{j}.

The pair $\left(\bar{\mu}_{1}, \bar{\mu}_{2}\right)$ is called extremal or equilibrium pair of measures with respect to $\left(\Delta_{1}, \Delta_{2}\right)$. Let us denote for each $j=1,2$ the analytic potentials

$$
g_{j}(z)=\int_{\Delta_{j}^{*}} \log (z-x) d \bar{\mu}_{j}(x)=-V^{\bar{\mu}_{j}}(z)+i \int_{\Delta_{j}^{*}} \arg (z-x) d \mu_{j}(x),
$$

where Δ_{j}^{*} is the support of the extremal measure, $\bar{\mu}_{j}$, that coincides in our case with Δ_{j}, for $j=1,2$. Substituting the potential logarithmic in Proposition 1 we obtain for each $j, k=1,2$ with $j \neq k$ that

$$
-\left[g_{j+}+g_{j-}\right](x)-g_{k-}(x)=m_{j}, \quad x \in \Delta_{j} .
$$

Observe that

$$
\left(g_{j+}-g_{j-}\right)(x)=\left\{\begin{array}{lll}
0 & \text { if } \quad c_{2, j} \leq x \\
i \pi & \text { if } \quad c_{1, j} \geq x \\
2 i \pi \int_{x}^{c_{2, j}} d \bar{\mu}_{j}(t) & \text { if } \quad x \in \Delta_{j}
\end{array}\right.
$$

In what follows all the multi-indices will have the form $\boldsymbol{n}=(n, n)$. Let us introduce the matrices

$$
G(z)=\left(\begin{array}{ccc}
e^{-2 n\left(g_{1}(z)+g_{2}(z)\right)} & 0 & 0 \tag{2}\\
0 & e^{2 n g_{1}(z)} & 0 \\
0 & 0 & e^{2 n g_{2}(z)}
\end{array}\right), \quad L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{-2 n m_{1}} & 0 \\
0 & 0 & e^{-2 n m_{2}}
\end{array}\right) .
$$

We define the matrix function $T=L Y G L^{-1}$, where L, G are as in (2) and Y is given by (1). Hence T is the unique solution of the RHP:
(1) $T \in H\left(\mathbb{C} \backslash\left(\stackrel{\circ}{\Delta}_{1} \cup \stackrel{\circ}{\Delta}_{2}\right)\right)$;
(2) $T_{+}(x)=T_{-}(x) M(x), x \in \Delta_{1} \cup \Delta_{2}$;
(3) $T(z)=\mathbb{I}+\mathcal{O}(1 / z)$ as $z \rightarrow \infty$;
(4) T and Y have the same behavior on the endpoints of the intervals Δ_{j}, for $j=1,2$,
where the jump matrix M has the form

$$
M(x)=\left(\begin{array}{ccc}
e^{-2 n i \pi \int_{x}^{c_{2, j}} d \bar{\mu}_{j}(t)} & 2 \delta_{j, 1} \pi i w_{1}(x) & 2 \delta_{j, 2} \pi i w_{2}(x) \\
0 & e^{2 n \delta_{j, i} i \pi \int_{x}^{c_{2,1}} d \bar{\mu}_{1}(t)} & 0 \\
0 & 0 & e^{2 n \delta_{j, 2} i \pi \int_{x}^{c_{2,2}} d \bar{\mu}_{2}(t)}
\end{array}\right), \quad x \in \stackrel{\circ}{\Delta}_{j} .
$$

3. The opening of the lens

For each $j=1,2$, let ϕ_{j} denote the function defined by

$$
\phi_{j}(z)=i \pi \int_{z}^{c_{2, j}} d \bar{\mu}_{j}(t) \quad \text { for } \quad z \in \mathcal{V}_{j}=\mathcal{V}_{\rho_{j}}\left(\Delta_{j}^{*}\right) \cap \mathcal{V}_{h_{j}}\left(\Delta_{j}\right)
$$

Notice that $\phi_{j+}(x)=i \pi \int_{x}^{c_{2, j}} d \bar{\mu}_{j}(t)$ is purely imaginary and its derivative

$$
\phi_{j+}^{\prime}(x)=-i \pi \frac{\rho_{j}(x)}{\sqrt{\left(x-c_{1, j}\right)\left(c_{2, j}-x\right)}},
$$

where $-\pi \rho_{j}(x) / \sqrt{\left(x-c_{1, j}\right)\left(c_{2, j}-x\right)}<0, \quad x \in \Delta_{j}$.
Rewrite $\phi_{j}(z)=U_{j}(z)+i V_{j}(z) \in H\left(\mathcal{V}_{j}\right)$. By the Cauchy-Riemann conditions we have that the real part of ϕ_{j}, $\Re e \phi_{j}$, is an increasing function on any point $z \in \mathcal{V}_{j}$ with $\Im m(z)>0$. Since $\Re e \phi_{j}$ is zero in Δ_{j}, it is positive in such point. Notice $\phi_{j+}(x)=-\phi_{j-}(x), x \in \stackrel{\circ}{\Delta}_{j}$, hence we can proceed analogously when $\Im m(z)<0$.
We analyze the jump function in Δ_{j}, i.e.

$$
\begin{aligned}
& M(x)=\left(\begin{array}{ccc}
e^{-2 n \phi_{j+}(x)} & 2 \pi i \delta_{j, 1} w_{1}(x) & 2 \pi i \delta_{j, 2} w_{2}(x) \\
0 & e^{-2 \delta_{j, 1} n \phi_{1}(x)} & 0 \\
0 & 0 & e^{-2 \delta_{j, 2} n \phi_{2-}(x)}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{\delta_{j, 1} e^{-2 n \phi_{1}-(x)}}{2 \pi i w_{1}(x)} & 1 & 0 \\
-\frac{\delta_{j, 2} e^{-2 n n \phi_{2}-(x)}}{2 \pi i w_{2}(x)} & 0 & 1
\end{array}\right) \\
& \times\left(\begin{array}{ccc}
0 & 2 \pi i \delta_{j, 1} w_{1}(x) & 2 \pi i \delta_{j, 2} w_{2}(x) \\
-\frac{\delta_{1, j}}{2 \pi w_{1}(x)} & \delta_{j, 2} & 0 \\
-\frac{\delta_{2, j}}{2 \pi i w_{2}(x)} & 0 & \delta_{j, 1}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{\delta_{j, 1} e^{-2 n \phi_{1}(x)}}{2 \pi i w_{1}(x)} & 1 & 0 \\
-\frac{\delta_{j, 2} e^{-2 n \phi_{2}+(x)}}{2 \pi i w_{2}(x)} & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Now we are going to follow an analogous procedure as in section 9 of [7]. Let us fix a $\delta>0$ such that the intervals $\left[c_{1, j}-\delta, c_{1, j}\right]$ and $\left[c_{2, j}, c_{2, j}+\delta\right]$ are subsets of $\mathcal{V}_{j}, j=1,2$, and for each interval let us define two curves Σ_{j+}, Σ_{j-} in \mathcal{V}_{j}, which goes from $c_{1, j}$ to $c_{2, j}$, where $\Sigma_{j \pm}=\left[c_{1, j}-\delta, c_{1, j}\right] \cup \Sigma_{j \pm}^{*} \cup\left[c_{2, j}, c_{2, j}+\delta\right]$, with the elements of the curves $\Sigma_{j \pm}^{*}$ satisfying that if $z \in \Sigma_{j \pm}^{*}$, then $0< \pm \Im m(z)$ (cf. Figure 1). Set $\Gamma_{j \pm}$ the domains that lie between $\Sigma_{j \pm}$ and Δ_{j}. Let us introduce the matrix function S, defined by

$$
S(z)=T\left(\begin{array}{ccc}
1 & 0 & 0 \tag{3}\\
\mp \frac{\delta_{1, j} e^{-2 n \phi_{1}-(z)}}{2 \pi i w_{1}(z)} & 1 & 0 \\
\mp \frac{\delta_{2, j} e^{-2 n \phi_{2}-(z)}}{2 \pi i w_{2}(z)} & 0 & 1
\end{array}\right), \quad z \in \Gamma_{j \pm}, \quad \text { and } S \equiv T, \quad \text { outside. }
$$

Hence on open intervals $] c_{1, j}-\delta, c_{1, j}[$ and $] c_{2, j}, c_{2, j}+\delta[$ there are two combined jumps. For the function w_{j} we have that

$$
w_{j+}(x)=-w_{j-}(x), \quad x \in \mathbb{R} \cap \mathcal{V}\left(\Delta_{j}\right) \backslash \Delta_{j}, \quad j=1,2
$$

Observe that

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{\delta_{j, 1} e^{-2 n \phi_{1}}}{2 \pi i w_{1}} & 1 & 0 \\
\frac{\delta_{j, 2} e^{-2 n \phi_{2}}}{2 \pi i w_{2-}} & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{\delta_{j, 1} e^{-2 n \phi_{1}}}{2 \pi i w_{1}+} & 1 & 0 \\
\frac{\delta_{j, 2} e^{2 n \phi_{2}}}{2 \pi i w_{2+}} & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\left(\frac{1}{w_{1-}}+\frac{1}{w_{1+}}\right. \\
\left(\frac{1}{w_{2-}}+\frac{1}{w_{2+}}\right) \frac{\delta_{1, j} e^{-2 n \phi_{1}}}{2 \pi i} & 1 & 0 \\
\frac{\delta_{2, j} e^{-2 n \phi_{1}}}{2 \pi i} & 0 & 1
\end{array}\right)=\mathbb{I},
$$

which means that S, defined by (3), is analytic function across $] c_{1, j}-\delta, c_{1, j}[$ and $] c_{2, j}, c_{2, j}+\delta\left[, j=1,2\right.$. Let $\gamma_{j}, j=1,2$, be closed contours with the clockwise direction, such that for each $j=1,2, \gamma_{j}=\Sigma_{j-}^{*} \cup \Sigma_{j+}^{*}$. We have changed the direction of the curve Σ_{j+}^{*}. The function S satisfies the RHP:
(1) $S \in H\left(\mathbb{C} \backslash \cup_{j=1,2}\left(\Delta_{j} \cup \gamma_{j}\right)\right)$;
(2) The jump conditions for $j=1,2$ are,

$$
\begin{aligned}
& S_{+}(x)=S_{-}(x)\left(\begin{array}{ccc}
0 & 2 \delta_{1, j} \pi i w_{1}(x) & 2 \delta_{2, j} \pi i w_{2}(x) \\
-\frac{\delta_{1, j}}{2 \pi i w_{1}(x)} & \delta_{2, j} & 0 \\
-\frac{\delta_{2, j}}{2 \pi i w_{2}(x)} & 0 & \delta_{1, j}
\end{array}\right) \text { if } x \in \stackrel{\circ}{\Delta}_{j}, \\
& S_{+}(z)=S_{-}(z)\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{ \pm \delta_{1, j} e^{-2 n \phi_{1}(z)}}{2 \pi i_{1}(z)} & 1 & 0 \\
\frac{ \pm \delta_{2, j} e^{2}-2 \phi_{2}(z)}{2 \pi i w_{2}(z)} & 0 & 1
\end{array}\right) \text { if } z \in \gamma_{j} \cap\{ \pm \Im m z<0\} ;
\end{aligned}
$$

(3) $S(z)=\mathbb{I}+\mathcal{O}(1 / z)$ as $z \rightarrow \infty$;
(4) The conditions for the endpoints are the same as for T.

Figure 1. Opening of lens

Now, we consider the limiting problem, because for the matrix S the jump matrix function on each γ_{j} for $j=1,2$ tends to the identity matrix when $|n| \rightarrow \infty$. We look for the matrix function N which satisfies the following RHP:
(1) $N \in H\left(\mathbb{C} \backslash\left(\Delta_{1} \cup \Delta_{2}\right)\right)$;
(2) The jump conditions in $\grave{\Delta}_{j}$ for $j=1,2$ are,

$$
N_{+}(x)=N_{-}(x)\left(\begin{array}{ccc}
0 & 2 \delta_{1, j} \pi i w_{1}(x) & 2 \delta_{2, j} \pi i w_{2}(x) \tag{4}\\
-\frac{\delta_{1, j}}{2 \pi u_{2 j}(x)} & \delta_{2, j} & 0 \\
-\frac{\delta_{2}}{2 \pi i w_{2}(x)} & 0 & \delta_{1, j}
\end{array}\right) ;
$$

(3) $N(z)=\mathbb{I}+\mathcal{O}(1 / z)$ as $z \rightarrow \infty$;
(4) N satisfies the same conditions for the endpoints as S.

Set $N=K D$, where D is a diagonal matrix function and $K=\left[K_{k, l}\right]_{k, l}$, $k, l=1,2$, is the solution of the RHP:
(1) $K \in H\left(\mathbb{C} \backslash\left(\Delta_{1} \cup \Delta_{2}\right)\right)$;
(2) The jump conditions in $\grave{\Delta}_{j}$ for $j=1,2$ are, because of (4),

$$
K_{+}(x)=K_{-}(x)\left(\begin{array}{ccc}
0 & \frac{2 \delta_{1, j} \pi i}{\sqrt{\left(c_{2,1}, x\right)\left(x-c_{1,1}\right)}} & \frac{2 \delta_{2, j} \pi i}{\sqrt{\left(c_{2,2}-x\right)\left(x-c_{1,2}\right)}} \tag{5}\\
\frac{-\delta_{1, j} \sqrt{\left(c_{2,2}-x\right)\left(x-c_{1,1)}\right)}}{\left(\delta_{2, j} \sqrt{\left(c_{2,2}-x\right)\left(x-c_{1,2}\right)}\right.} & \delta_{2, j} & 0 \\
\frac{-\delta_{i}}{2 \pi i} & \delta_{1, j}
\end{array}\right) ;
$$

(3) $K(z)=\mathbb{I}+\mathcal{O}(1 / z)$ as $z \rightarrow \infty$;
(4) K and N have the same conditions for the endpoints.

Analogously to the ideas in [2], let us choose the branches of the square root which glue along the intervals $\Delta_{j}, j=1,2$, i.e.

$$
\left(\sqrt{\left(x-c_{2, j}\right)\left(x-c_{1, j}\right)}\right)_{+}=-\left(\sqrt{\left(x-c_{2, j}\right)\left(x-c_{1, j}\right)}\right)_{-}, x \in{\stackrel{\circ}{\Delta_{j}}}_{j}, j=1,2 .
$$

For each $i=1,2,3$, we rewrite (5) as

$$
\left\{\begin{array}{l}
\left(\frac{\sqrt{\left(z-c_{2,1}\right)\left(z-c_{1,1}\right)}}{2 \pi} K_{i, 2}(z)\right)_{ \pm}(x)=\left(K_{i, 1}(z)\right)_{\mp}(x) \\
\left(K_{i, 3}\right)_{+}(x)=\left(K_{i, 3}\right)_{-}(x)
\end{array} \quad, \quad x \in \stackrel{\circ}{\Delta}_{1}\right.
$$

$$
\left\{\begin{array}{l}
\left(\frac{\sqrt{\left(z-c_{2,2}\right)\left(z-c_{1,2}\right)}}{2 \pi} K_{i, 3}(z)\right)_{ \pm}(x)=\left(K_{i, 1}(z)\right)_{\mp}(x) \quad, \quad x \in \stackrel{\circ}{\Delta}_{2} \\
\left(K_{i, 2}\right)_{+}(x)=\left(K_{i, 2}\right)_{-}(x)
\end{array}\right.
$$

and we denote

$$
\psi_{0}^{i}(z)=K_{i, 1}(z), \quad \text { and } \quad \psi_{j}^{i}(z)=\frac{\sqrt{\left(z-c_{2, j}\right)\left(z-c_{1, j}\right)}}{2 \pi} K_{i, j+1}(z), j=1,2
$$

Then from the relations (5), we may interpret each row $i=1,2,3$ of such matrix K as a function defined on a Riemann surface. Let \mathcal{R} define the Riemann surface which has two cuts. One of them connects the two branch points $c_{1,1}$ and $c_{2,1}$ with the cut in the interval $\Delta_{1}=\left[c_{1,1}, c_{2,1}\right]$. The other cut is made in the interval $\Delta_{2}=\left[c_{1,2}, c_{2,2}\right]$, to connect the two other branch points $c_{1,2}$ and $c_{2,2}$. The sheet \mathcal{R}_{0} is glued to another sheet \mathcal{R}_{1} along the cut Δ_{1}, and \mathcal{R}_{0} is also glued to \mathcal{R}_{2} along the interval Δ_{2}. Let us denote by $\psi^{i}, i=1,2,3$, three multi-valued function $\psi^{i}=\left(\psi_{0}^{i}, \psi_{1}^{i}, \psi_{2}^{i}\right)$, such that its components $\psi_{l}^{i}, i=1,2,3, l=0,1,2$, map the corresponding sheet \mathcal{R}_{l} on \mathbb{C}, and satisfy for $j=1,2$

$$
\begin{equation*}
\psi_{0 \pm}^{i}(x)=\psi_{j \mp}^{i}(x), \quad x \in \stackrel{\circ}{\Delta}_{j}, \quad \psi_{j}^{i}(z)=\mathcal{O}(1) \quad \text { as } \quad z \rightarrow c_{k, j}, \quad k=1,2 ; \tag{6}
\end{equation*}
$$

for $j, k=1,2, \psi_{0}^{i}(x)=\mathcal{O}(1)$, as $z \rightarrow c_{k, j}$; around the infinity, and $j=1,2$,

$$
\psi_{0}^{i}(z)=\delta_{i, 1}+\mathcal{O}(1 / z), \quad \psi_{j}^{i}(z)=z \delta_{i, j+1}+\mathcal{O}(1) \quad \text { as } \quad z \rightarrow \infty
$$

The equalities (6) are equivalent to

$$
\left(\psi_{0}^{i} \psi_{j}^{i}\right)_{+}(x)=\left(\psi_{0}^{i} \psi_{j}^{i}\right)_{-}(x), \quad x \in \stackrel{\circ}{\Delta}_{j}, \quad j=1,2
$$

From Liouville's theorem, it is easy to see that $\left(\psi_{0}^{i} \psi_{1}^{i} \psi_{2}^{i}\right)(z) \equiv 1, z \in \overline{\mathbb{C}}$. This implies that $\psi_{l}^{i}, l=0,1,2, i=1,2,3$, do not become zero. Hence

$$
\left(\psi_{0}^{i} \psi_{k}^{i}\right)(z)=\frac{1}{\psi_{l}^{i}(z)} \in H\left(\overline{\mathbb{C}} \backslash \Delta_{l}\right), \quad l, k=1,2, \quad l \neq k, \quad i=1,2,3
$$

We obtain that for each $l=1,2$, that is $x \in \stackrel{\circ}{\Delta}_{l}$,

$$
\psi_{0+}^{i}(x) \psi_{k}^{i}(x)=\frac{1}{\psi_{l+}^{i}(z)} \quad \text { or equivalently } \quad\left(\psi_{l+}^{i} \psi_{l-}^{i}\right)(x)=\frac{1}{\psi_{k}^{i}(x)}
$$

That yields to the problems for $\psi_{l}^{i}, l=1,2$:

- $\psi_{l}^{i} \in H\left(\overline{\mathbb{C}} \backslash \Delta_{l}\right)$;
- $\left(\psi_{l+}^{i} \psi_{l-}^{i}\right)(x)=1 / \psi_{k}^{i}(x), \quad x \in \stackrel{\circ}{\Delta}_{l}$;
- $\psi_{l}^{i}(z)=z \delta_{i, l+1}+\mathcal{O}(1)$ as $z \rightarrow \infty$;
- $\psi_{l}^{i}(z)=\mathcal{O}(1)$ as $z \rightarrow c_{k, l}, k=1,2$.

This problem is equivalent to the system of integral equations:

$$
\begin{aligned}
& \psi_{0}^{i}(z)=\frac{1}{\psi_{1}^{i}(z) \psi_{2}^{i}(z)} \\
& \psi_{l}^{i}(z) \\
= & \exp \left(\frac{\sqrt{\left(z-c_{1, l}\right)\left(z-c_{2, l}\right)}}{2 \pi} \int_{\Delta_{l}} \frac{\log \psi_{k}^{i}(x)}{\sqrt{\left(x-c_{1, l}\right)\left(c_{2, l}-x\right)}} \frac{d x}{z-x}+\delta_{i, l+1} g_{\Delta_{l}}(z)\right)
\end{aligned}
$$

for $l=1,2$, with $z \in \overline{\mathbb{C}} \backslash \stackrel{\circ}{\Delta}_{l}$, and $g_{\Delta_{j}}$ is the analytic function which tends to ∞ as $\log z$, and whose real part vanishes in $\Delta_{j}, j=1,2$

Let us find the diagonal 3×3 matrix function D with diagonal elements D_{0}, D_{1}, D_{2}, such that $N(z) \equiv K(z) D(z)$. The conditions (5) yield that entries of D must satisfy the following conditions

$$
\left\{\begin{array}{l}
h_{j}(x) D_{0 \pm}(x)=D_{j \mp}(x) \\
D_{k+}(x)=D_{k-}(x)
\end{array} \quad \text { when } \quad x \in \stackrel{\circ}{\Delta}_{j}, \quad j, k=1,2, \quad k \neq j\right.
$$

Analogously to the function ψ_{l}^{i}, we obtain the following problem for the entries of D :
i) $\left(D_{0} D_{1} D_{2}\right) \equiv 1$, which implies that for each $l=0,1,2, D_{l}$ does not become zero;
ii) $D_{l} \in H\left(\overline{\mathbb{C}} \backslash \Delta_{l}\right), l=1,2$;
iii) $\left(D_{l+} D_{l-}\right)(x)=h_{s}(x) /\left(D_{s}(x)\right), \quad s=1,2, \quad s \neq l, \quad x \in \stackrel{\circ}{\Delta}_{l}, l=1,2$;
iv) $D_{l}(z)=1+\mathcal{O}(1 / z)$ as $z \rightarrow \infty, l=1,2$,
v) $D_{l}(z)=\mathcal{O}(1)$ as $z \rightarrow c_{k, l}, k=1,2, l=1,2$.

This problem is equivalent to the following system of integral equations where $l=1,2$,

$$
\begin{aligned}
D_{l}(z) & =\exp \left(\frac{\sqrt{\left(z-c_{1, l}\right)\left(z-c_{2, l}\right)}}{2 \pi} \int_{\Delta_{l}} \frac{\log \left(\frac{D_{k}(x)}{h_{k}(x)}\right)}{\sqrt{\left(x-c_{1, l}\right)\left(c_{2, l}-x\right)}} \frac{d x}{z-x}\right) \\
D_{0}(z) & =\frac{1}{D_{1}(z) D_{2}(z)} \quad \text { with } \quad z \in \overline{\mathbb{C}} \backslash \stackrel{\circ}{\Delta}_{l}
\end{aligned}
$$

Let us take the three multi-valued function $\left(D_{0}(z), D_{1}(z), D_{2}(z)\right)$. Notice that for each $l=0,1,2$, the function D_{l} is another function which maps the sheet \mathcal{R}_{l} on \mathbb{C}. In our case the components of functions $\left(D_{0}(z), D_{1}(z), D_{2}(z)\right)$ satisfy the conditions iv) and v) required for $D_{l}, l=0,1,2$. Finally the matrix function N has the form

$$
N(z)=\left(\begin{array}{lll}
\left(D_{0} \psi_{0}^{1}\right)(z) & \frac{\left(D_{1} \psi_{1}^{1}\right)(z)}{\sqrt{\left(x-c_{1,1}\right)\left(c_{2,1}-x\right)}} & \frac{\left(D_{2} \psi_{2}^{1}\right)(z)}{\sqrt{\left(x-c_{1,2}\right)\left(c_{2,2}-x\right)}} \tag{7}\\
\left(D_{0} \psi_{0}^{2}\right)(z) & \frac{\left(D_{1} \psi_{1}^{2}\right)(z)}{\sqrt{\left(x-c_{1,1}\right)\left(c_{2,1}-x\right)}} & \frac{\left(D_{2} \psi_{2}^{2}\right)(z)}{\sqrt{\left(x-c_{1,2}\right)\left(c_{2,2}-x\right)}} \\
\left(D_{0} \psi_{0}^{3}\right)(z) & \frac{\left(D_{1} \psi_{1}^{3}\right)(z)}{\sqrt{\left(x-c_{1,1}\right)\left(c_{2,1}-x\right)}} & \frac{\left(D_{2} \psi_{2}^{2}\right)(z)}{\sqrt{\left(x-c_{1,2}\right)\left(c_{2,2}-x\right)}}
\end{array}\right) .
$$

We define $R(z)=S(z) N^{-1}(z)$. Since S and N have the same jump across $\stackrel{\circ}{\Delta}_{j}$, $j=1,2$, hence $R_{+}(x)=R_{-}(x)$ for $x \in \stackrel{\circ}{\Delta}_{j}, j=1,2$. From the definition of R, and the endpoint conditions for N, we can also deduce that $c_{i, k}, i, k=1,2$, are a removable singularity. Hence R is an analytic function across the full intervals Δ_{1} and Δ_{2}, and it has jumps on the curve γ. Then we have the following RHP for R :
(1) $R \in H\left(\mathbb{C} \backslash\left(\gamma_{1} \cup \gamma_{2}\right)\right)$;
(2) The jump conditions are for $j=1,2$

$$
R_{+}(z)=R_{-}(z)\left(\begin{array}{ccc}
1 & 0 & 0 \\
\pm \frac{\delta_{j, 1} e^{-2 n_{1} \phi_{1}(z)}}{2 \pi i i_{1}(z)} & 1 & 0 \\
\pm \frac{\delta_{j, 2} e^{-2 n p_{2} \phi_{2}(z)}}{2 \pi i w_{2}(z)} & 0 & 1
\end{array}\right) \quad \text { if } \quad z \in \gamma_{j} \cap\{ \pm \Im m z<0\}
$$

(3) $R(z)=\mathbb{I}+\mathcal{O}(1 / z)$.

Observe that matrix function R satisfies the hypothesis of the Theorem 1. Then uniformly for $z \in \mathbb{C} \backslash\left(\gamma_{1} \cup \gamma_{2}\right)$, we have that $R(z)=\mathbb{I}+\mathcal{O}\left(e^{c|n|}\right)$, with $c>0$ and

$$
\begin{aligned}
Y(z)= & \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{|\boldsymbol{n}| m_{1}} & 0 \\
0 & 0 & e^{|\boldsymbol{n}| m_{2}}
\end{array}\right)\left(\mathbb{I}+\mathcal{O}\left(e^{-c|\boldsymbol{n}|}\right)\right) \\
& \times N(z)\left(\begin{array}{ccc}
e^{|n|\left(g_{1}+g_{2}\right)}(z) & 0 & 0 \\
0 & e^{-|\boldsymbol{n}|\left(m_{1}+g_{1}(z)\right)} & 0 \\
0 & 0 & e^{-|n|\left(m_{2}+g_{2}\right)(z)}
\end{array}\right),
\end{aligned}
$$

where N is given by (7).
Finally, we state the main result of this paper.

Theorem 2.

$$
Y_{1,1}(z)=Q_{\boldsymbol{n}}(z)=D_{0}(z) \psi_{0}^{1}(z) e^{|\boldsymbol{n}|\left(g_{1}+g_{2}\right)(z)}\left(1+\mathcal{O}\left(e^{-c|\boldsymbol{n}|}\right)\right)
$$

as $|\boldsymbol{n}| \rightarrow \infty$.

References

[1] M.A. Angelesco, Sur deux extensions des fractions continues algébraiques, C.R. Acad. Sci. Paris, 18 (1919), 262-263.
[2] A.I. Aptekarev and W. Van Assche, Scalar and matrix Riemann-Hilbert approach to the strong asymptotics of Padé approximants and complex orthogonal polynomials with varying weight, J. of Approx. Theory, 129 (2004), 129-166.
[3] P. Deift, X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems, Bull. Amer. Math. Soc. 26 (1992), 119-123.
[4] P. Deift, X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems, Asymptotic for the MKdV equation, Ann. of Math. (2) 137 (1993), 295-368.
[5] J.S. Geronimo, A.B.J. Kuijlaars and W. Van Assche, Riemann-Hilbert Problems for Multiple Orthogonal Polynomials, Russian Acad. Sci. Sb. Math. 77 (1994), 367-384.
[6] A.A. Gonchar and E.A. Rakhmanov, On Convergence of Simoultaneous Padé Approximants for Systems of Functions of Markov Type, Proccedings of the Steklov Institute of Mathematics, 3 (1983), 31-50.
[7] A.B.J. Kuljlaars, Riemann-Hilbert analysis for orthogonal polynomials, In Orthogonal Polynomials and Special Functions (E. Koelink and W. Van Asshe, eds.), Lect. Notes Math., 1817, Springer-Verlag, Berlin, 2003, 167-210.
A. Branquinho

CMUC, Department of Mathematics, University of Coimbra, Largo D. Dinis, 3001-454 Coimbra, Portugal.
E-mail address: ajplb@mat.uc.pt
URL: http://www.mat.uc.pt/~ajplb
U. Fidalgo Prieto

Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III, Avenida de la Universidad 30, 28911 Leganés-Madrid, Spain.
E-mail address: ulisesfidalgoprieto@yahoo.es
A. Foulquié Moreno

Departamento de Matemática, Universidade de Aveiro, Campus de Santiago 3810, Aveiro, Portugal.
E-mail address: foulquie@mat.ua.pt

[^0]: Received October 26, 2007.
 The work of the first author was supported by CMUC/FCT, the work of the second author was supported by grant $\mathrm{SFRH} / \mathrm{BPD} / 31724 / 2006$ from Fundação para a Ciência e a Tecnologia and the work of the third author was supported by UI Matemática e Aplicações from University of Aveiro.

