DISTRIBUTIONAL EQUATION FOR LAGUERRE-HAHN FUNCTIONALS ON THE UNIT CIRCLE

A. BRANQUINHO AND M.N. REBOCHO

Abstract

Let u be a hermitian linear functional defined in the linear space of Laurent polynomials and F its corresponding Carathéodory function. We establish the equivalence between a Riccati differential equation with polynomial coefficients for $F, z A F^{\prime}=B F^{2}+C F+D$ and a distributional equation for $u, \mathcal{D}(A u)=B_{1} u^{2}+$ $C_{1} u+H_{1} \mathcal{L}$, where \mathcal{L} is the Lebesgue functional, and the polynomials B_{1}, C_{1}, D_{1} are defined in terms of the polynomials A, B, C, D.

Keywords: Hermitian functionals, measures on the unit circle, Carathéodory function, Laguerre-Hahn affine class on the unit circle, semi-classical functionals.
AMS Subject Classification (2000): Primary 33C47, 42C05.

1. Introduction

In this paper we introduce the concept of Laguerre-Hahn class of hermitian functionals on the unit circle. Let u be a hermitian regular linear functional defined in the linear space of Laurent polynomials and F the corresponding Carathéodory function. The functional u (respectively, the corresponding Carathéodory function, F) is said to be Laguerre-Hahn if F satisfies a Riccati differential equation with polynomial coefficients,

$$
\begin{equation*}
z A F^{\prime}=B F^{2}+C F+D, A \not \equiv 0 \tag{1}
\end{equation*}
$$

We shall call the set of all such functionals (respectively, Carathéodory function, $F)$ the Laguerre-Hahn class on the unit circle. We remark that the Laguerre-Hahn class on the unit circle can be regarded as an extension of the Laguerre-Hahn class on the real line, studied in [5, 7, 8].
If $B \equiv 0$ in (1) we obtain the Laguerre-Hahn affine class on the unit circle (see $[2,3]$). If $B \equiv 0$ and C, D specific polynomials, we obtain the semi-classical class on the unit circle (see $[2,6,11]$). Moreover, the LaguerreHahn class on the unit circle includes the class of second degree functionals on

[^0]the unit circle (see [4]) and includes, as we will see on section 3, the linearfractional transformations of Carathéodory functions which are LaguerreHahn.

Analogously to what has been done on the real case (cf. [7, 8]), we establish the equivalence between (1) and a distributional equation for the corresponding u,

$$
\begin{equation*}
\mathcal{D}(A u)=B_{1} u^{2}+C_{1} u+H_{1} \mathcal{L} \tag{2}
\end{equation*}
$$

where \mathcal{L} is the Lebesgue functional, and B_{1}, C_{1}, D_{1} polynomials defined in terms of A, B, C, D.
This paper is organized as follows. In section 2 we give the definitions and introduce some notations which will be used in the forthcoming sections. In section 3 we study the stability in the Laguerre-Hahn class, and give some examples of sequences of polynomial orthogonal with respect to a functional of Laguerre-Hahn type. In section 4 we state some auxiliary results which enable us to establish, in section 5 , the equivalence between (1) and (2).

2. Preliminaries and notations

Let $\Lambda=\operatorname{span}\left\{z^{k}: k \in \mathbb{Z}\right\}$ be the space of Laurent polynomials with complex coefficients, Λ^{\prime} its algebraic dual space, $\mathbb{P}=\operatorname{span}\left\{z^{k}: k \in \mathbb{N}\right\}$ the space of complex polynomials, and $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ (or, using the parametrization $z=e^{i \theta}, \mathbb{T}=\left\{e^{i \theta}: \theta \in[0,2 \pi[\})\right.$ the unit circle.
Let $u \in \Lambda^{\prime}$ be a linear functional. We denote by $\langle u, f\rangle$ the action of u over $f \in \Lambda$.

Given the sequence of moments $\left(c_{n}\right)$ of $u, c_{n}=\left\langle u, \xi^{-n}\right\rangle, n \in \mathbb{Z}, c_{0}=1$, the minors of the Toeplitz matrix are defined by

$$
\Delta_{-1}=1, \Delta_{0}=c_{0}, \Delta_{k}=\left|\begin{array}{ccc}
c_{0} & \cdots & c_{k} \\
\vdots & & \vdots \\
c_{-k} & \cdots & c_{0}
\end{array}\right|, k \in \mathbb{N}
$$

Definition 1 (cf. [10]). The linear functional u is:
a) hermitian if $c_{-n}=\overline{c_{n}}, \forall n \geq 0$;
b) regular or quasi-definite if $\Delta_{n} \neq 0, \forall n \geq 0$;
c) positive definite if $\Delta_{n}>0, \forall n \geq 0$.

As an example of hermitian functional we have the Lebesgue functional, \mathcal{L}, defined in terms of its moments by $\left\langle\mathcal{L}, \xi^{-n}\right\rangle=\delta_{0, n}, n \in \mathbb{Z}$.

If u is a positive definite hermitian functional, then there exists a non-trivial probability measure μ supported on the unit circle such that

$$
\left\langle u, \xi^{-n}\right\rangle=\int_{0}^{2 \pi} \xi^{-n} d \mu(\theta), \quad \xi=e^{i \theta}, \quad n \in \mathbb{Z}
$$

Definition 2. Let $\left\{\phi_{n}\right\}$ be a sequence of complex polynomials with $\operatorname{deg}\left(\phi_{n}\right)$ $=n$ and u a hermitian linear functional. We say that $\left\{\phi_{n}\right\}$ is a sequence of orthogonal polynomials with respect to u (or $\left\{\phi_{n}\right\}$ is a sequence of orthogonal polynomials on the unit circle) if

$$
\left\langle u, \phi_{n}(\xi) \overline{\phi_{m}}(1 / \xi)\right\rangle=K_{n} \delta_{n, m}, \xi=e^{i \theta}, K_{n} \neq 0, n, m \in \mathbb{N}
$$

If for each $n \in \mathbb{N}$ the leading coefficient ϕ_{n} is 1 , then $\left\{\phi_{n}\right\}$ is said to be a sequence of monic orthogonal polynomials and will be denoted by MOPS.

Remark. In the positive definite case, as the hermitian functional u has an integral representation in terms of a measure μ, we will also say that $\left\{\phi_{n}\right\}$ is orthogonal with respect to μ.
For a polynomial P with degree n, the reciprocal polynomial P^{*} is defined by $P^{*}(z)=z^{n} \bar{P}(1 / z)$. It is well known (see [10]) that a given sequence of complex polynomials $\left\{\phi_{n}\right\}$ is orthogonal on the unit circle if, and only if, $\left\{\phi_{n}\right\}$ satisfy a recurrence relation of the following type,

$$
\begin{equation*}
\phi_{n}(z)=z \phi_{n-1}(z)+a_{n} \phi_{n-1}^{*}(z), \quad n \geq 1 \tag{3}
\end{equation*}
$$

with $\left|a_{n}\right| \neq 1$, and initial conditions $\phi_{0}(z)=1, \phi_{-1}(z)=0$.
Given a sequence of monic orthogonal polynomials $\left\{\phi_{n}\right\}$ with respect to u, the sequence of associated polynomials of the second kind $\left\{\Omega_{n}\right\}$ is defined by

$$
\Omega_{0}(z)=1, \quad \Omega_{n}(z)=\left\langle u_{\theta}, \frac{e^{i \theta}+z}{e^{i \theta}-z}\left(\phi_{n}\left(e^{i \theta}\right)-\phi_{n}(z)\right)\right\rangle, n=1,2, \ldots,
$$

and verify $\phi_{n}^{*}(z) \Omega_{n}(z)+\phi_{n}(z) \Omega_{n}^{*}(z)=2 K_{n} z^{n}$, for all $n=1,2, \ldots$ (see for instance [10]).

We consider the formal series associated with the hermitian linear functional u,

$$
\begin{align*}
& F_{u}(z)=c_{0}+2 \sum_{k=1}^{+\infty} c_{k} z^{k},|z|<1 \tag{4}\\
& F_{u}(z)=-c_{0}-2 \sum_{k=1}^{+\infty} c_{-k} z^{-k},|z|>1 \tag{5}
\end{align*}
$$

Since, for each $\theta \in[0,2 \pi[$, the following expansions take place,

$$
\begin{aligned}
& \frac{e^{i \theta}+z}{e^{i \theta}-z}=1+2 \sum_{k=1}^{+\infty}\left(e^{i \theta}\right)^{-k} z^{k},|z|<1, \\
& \frac{e^{i \theta}+z}{e^{i \theta}-z}=-1-2 \sum_{k=1}^{+\infty}\left(e^{i \theta}\right)^{k} z^{-k},|z|>1
\end{aligned}
$$

then, taking into account the definition of the moments of u, formally we can write

$$
\begin{equation*}
\left\langle u_{\theta}, \frac{e^{i \theta}+z}{e^{i \theta}-z}\right\rangle=F_{u}(z), \quad z \in \mathbb{C} \backslash \mathbb{T} \tag{6}
\end{equation*}
$$

where $\left\langle u_{\theta},.\right\rangle$ denotes the action of u over the variable $\theta, \theta \in[0,2 \pi[$. Thus, we will also say that the series in (4), (5) formally correspond to the function F_{u} defined by (6).
In the positive definite case, F_{u} is the Carathéodory function corresponding to u, and is represented by

$$
F_{u}(z)=\int_{0}^{2 \pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} d \mu(\theta), \quad z \in \mathbb{C} \backslash \mathbb{T},
$$

where μ is the probability measure associated with u.
Next we see some operations in the linear space Λ^{\prime}. Given $u \in \Lambda^{\prime}, f, g \in \Lambda$, the functionals $f u$ and $\mathcal{D} u$, both elements of Λ^{\prime}, are defined by

$$
\langle f u, p\rangle=\langle u, f p\rangle, \quad\langle\mathcal{D} u, p\rangle=-i\left\langle u, \xi p^{\prime}\right\rangle, \quad p \in \Lambda
$$

thus, $\langle\mathcal{D}(g u), p\rangle=-i\left\langle u, \xi g p^{\prime}\right\rangle, p \in \Lambda$. We remark that if u is hermitian, then $\mathcal{D} u$ is also hermitian.

We consider the generating function of the moments for a hermitian functional, u, defined in $\mathbb{C} \backslash \mathbb{T}$ by

$$
\mathcal{F}_{u}(z)=\sum_{n=0}^{+\infty} c_{n} z^{n},|z|<1, \quad \mathcal{F}_{u}(z)=-\sum_{n=1}^{+\infty} c_{-n} z^{-n},|z|>1 .
$$

Then the following relation between the Carathéodory function and the generating function of the moments holds,

$$
\begin{equation*}
\mathcal{F}_{u}(z)=\frac{F_{u}(z)+1}{2}, \quad z \in \mathbb{C} \backslash \mathbb{T} . \tag{7}
\end{equation*}
$$

The next definition is the analogue of the definition given in [8] for the real case.

Definition 3. Let $u, v \in \Lambda^{\prime}$ be hermitian linear functionals and $\mathcal{F}_{u}, \mathcal{F}_{v}$ the corresponding generating functions of the moments. The product of u and v, $u v$, is the functional defined in terms of its moments by

$$
\begin{equation*}
(u v)_{n}=\sum_{\substack{\nu+k=n \\ \operatorname{sgn}(\nu)=\operatorname{sgn}(k)=\operatorname{sgn} n(n)}} u_{\nu} v_{k}, \quad n \in \mathbb{Z} \tag{8}
\end{equation*}
$$

that satisfies

$$
\begin{equation*}
\mathcal{F}_{u}(z) \mathcal{F}_{v}(z)=\mathcal{F}_{u v}(z) \tag{9}
\end{equation*}
$$

Remark. The functional $u v$ defined by (8) is hermitian.
As a consequence, we get the following result.
Lemma 1. Let u be a hermitian linear functional and F_{u} the corresponding formal Carathéodory function. Then,

$$
\begin{equation*}
\left(F_{u}\right)^{2}=2 F_{u^{2}}-2 F_{u}+1 \tag{10}
\end{equation*}
$$

Proof: Put $u=v$ in (9) and get, after using (7) that $F_{u^{2}}+1=\left(\left(F_{u}\right)^{2}+\right.$ $\left.2 F_{u}+1\right) / 2$, and the required follows.

3. Stability in the Laguerre-Hahn class on the unit circle. Examples.

We begin this section studying the stability of the Laguerre-Hahn Carathéodory functions under a special kind of linear-fractional transformations.

Theorem 1. Let F_{1} be a Carathéodory function satisfying a Riccati differential equations with polynomials coefficients,

$$
\begin{equation*}
A_{1} F_{1}^{\prime}=B_{1} F_{1}^{2}+C_{1} F_{1}+D_{1}, A_{1} \not \equiv 0 \tag{11}
\end{equation*}
$$

and F_{2} a linear-fractional transformation of F_{1} of the following type

$$
F_{2}=\frac{\alpha_{1}-\beta_{1} F_{1}}{-\alpha_{2}+\beta_{2} F_{1}}, \quad \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{P}, \alpha_{1} \beta_{2}-\alpha_{2} \beta_{1} \not \equiv 0
$$

Then, F_{2} satisfies

$$
\begin{equation*}
A_{2} F_{2}^{\prime}=B_{2} F_{2}^{2}+C_{2} F_{2}+D_{2} \tag{12}
\end{equation*}
$$

with

$$
\begin{align*}
A_{2} & =-\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right) A_{1} \not \equiv 0 \tag{13}\\
B_{2} & =\left(\alpha_{2} \beta_{2}^{\prime}-\alpha_{2}^{\prime} \beta_{2}\right) A_{1}+\alpha_{2}^{2} B_{1}+\alpha_{2} \beta_{2} C_{1}+\beta_{2}^{2} D_{1} \tag{14}\\
C_{2}= & \left(\alpha_{2} \beta_{1}^{\prime}+\alpha_{1} \beta_{2}^{\prime}-\alpha_{2}^{\prime} \beta_{1}-\alpha_{1}^{\prime} \beta_{2}\right) A_{1} \\
& \quad+2 \alpha_{1} \alpha_{2} B_{1}+\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right) C_{1}+2 \beta_{1} \beta_{2} D_{1} \tag{15}\\
& =\left(\alpha_{1} \beta_{1}^{\prime}-\alpha_{1}^{\prime} \beta_{1}\right) A_{1}+\alpha_{1}^{2} B+\alpha_{1} \beta_{1} C_{1}+\beta_{1}^{2} D_{1} \tag{16}
\end{align*}
$$

Thus, if F_{2} is a Carathéodory function, then F_{2} is Laguerre-Hahn.
Proof: We have $F_{2}=\frac{\alpha_{1}-\beta_{1} F_{1}}{-\alpha_{2}+\beta_{2} F_{1}}$ or equivalently $F_{1}=\frac{\alpha_{1}+\alpha_{2} F_{2}}{\beta_{1}+\beta_{2} F_{2}}$. By substituting $F_{1}=\frac{\alpha_{1}+\alpha_{2} F_{2}}{\beta_{1}+\beta_{2} F_{2}}$ in (11) we obtain (12) with coefficients given by (13)-(16). Thus, the assertion follows.

Next we see some examples of Laguerre-Hahn sequences.
Corollary 1. Let $\left\{\phi_{n}\right\}$ be a MOPS on $\mathbb{T},\left\{\Omega_{n}\right\}$ the sequence of associated polynomials of the second kind and F, F_{1} the corresponding Carathéodory functions. If F is Laguerre-Hahn and satisfies $z A F^{\prime}=B F^{2}+C F+D$, with $A \not \equiv 0$, then F_{1} is Laguerre-Hahn and satisfies $z A F_{1}^{\prime}=-D F_{1}^{2}-C F_{1}-B$.

Proof: It is well known that $\left\{\Omega_{n}\right\}$ is orthogonal with respect to $F_{1}=1 / F$, with F the Carathéodory function associated to $\left\{\phi_{n}\right\}$ (cf. for example [9]). Thus, the assertion follows from Theorem 1.

Definition 4 (Peherstorfer [9]). Let $\left\{\phi_{n}\right\}$ be a MOPS on the unit circle, $\left(a_{n}\right)$ the corresponding sequence of reflection coefficients and $N \in \mathbb{N}$. The sequence $\left\{\phi_{n}^{N}\right\}$ defined by (3) with $\phi_{n}^{N}(0)=a_{n+N}, n=0,1, \ldots$ is said to be the sequence of associated polynomials of $\left\{\phi_{n}\right\}$ of order N.

Let $\left\{\phi_{n}\right\}$ be a MOPS with respect to a Carathéodory function F and $\left\{\Omega_{n}\right\}$ be the sequence of orthogonal polynomials of the first kind. In [9] it is established that $\left\{\phi_{n}^{N}\right\}$ is orthogonal with respect to the Carathéodory function F^{N} given by

$$
\begin{equation*}
F^{N}=\frac{\left(\Omega_{N}-\Omega_{N}^{*}\right)+\left(\phi_{N}+\phi_{N}^{*}\right) F}{\left(\Omega_{N}+\Omega_{N}^{*}\right)+\left(\phi_{N}-\phi_{N}^{*}\right) F} \tag{17}
\end{equation*}
$$

and $\left(\Omega_{N}-\Omega_{N}^{*}\right)\left(\phi_{N}-\phi_{N}^{*}\right)-\left(\phi_{N}+\phi_{N}^{*}\right)\left(\Omega_{N}+\Omega_{N}^{*}\right)=-2 K_{N} z^{N} \not \equiv 0$.

Corollary 2. Let F be a Carathéodory function, $\left\{\phi_{n}\right\}$ the corresponding MOPS, $\left\{\Omega_{n}\right\}$ the sequence of associated polynomials of the second kind and F^{N} the Carathéodory function corresponding to the sequence of associated polynomials of $\left\{\phi_{n}\right\}$ of order $N,\left\{\phi_{n}^{N}\right\}$. If F is Laguerre-Hahn and satisfies

$$
z A F^{\prime}=B F^{2}+C F+D, A \not \equiv 0
$$

then F^{N} is Laguerre-Hahn and satisfies

$$
A_{N}\left(F^{N}\right)^{\prime}=B_{N}\left(F^{N}\right)^{2}+C_{N} F^{N}+D_{N},
$$

with $A_{N}=4 K_{N} z^{N+1} A \not \equiv 0$ and

$$
\begin{aligned}
B_{N}= & z A\left\{\left(\Omega_{N}+\Omega_{N}^{*}\right)^{\prime}\left(\phi_{N}-\phi_{N}^{*}\right)-\left(\phi_{N}-\phi_{N}^{*}\right)^{\prime}\left(\Omega_{N}+\Omega_{N}\right)^{*}\right\} \\
& +\left(\Omega_{N}+\Omega_{N}^{*}\right)^{2} B-\left(\Omega_{N}+\Omega_{N}^{*}\right)\left(\phi_{N}-\phi_{N}^{*}\right) C+\left(\phi_{N}-\phi_{N}^{*}\right)^{2} D, \\
C_{N}= & z A\left\{\left(\Omega_{N}-\Omega_{N}^{*}\right)\left(\phi_{N}-\phi_{N}^{*}\right)^{\prime}-\left(\Omega_{N}+\Omega_{N}^{*}\right)^{\prime}\left(\phi_{N}+\phi_{N}^{*}\right)\right\} \\
& -2\left(\Omega_{N}^{2}-\left(\Omega_{N}^{*}\right)^{2}\right) B+2\left(\phi_{N} \Omega_{N}+\phi_{N}^{*} \Omega_{N}^{*}\right) C-2\left(\phi_{N}^{2}-\left(\phi_{N}^{*}\right)^{2}\right) D, \\
D_{N}= & \left(\Omega_{N}-\Omega_{N}^{*}\right)^{2} B-\left(\Omega_{N}-\Omega_{N}^{*}\right)\left(\phi_{N}+\phi_{N}^{*}\right) C+\left(\phi_{N}+\phi_{N}^{*}\right)^{2} D .
\end{aligned}
$$

Proof: From (17) it follows that $F=\frac{\left(\Omega_{N}+\Omega_{N}^{*}\right) F^{N}-\left(\Omega_{N}-\Omega_{N}^{*}\right)}{\left(\phi_{N}+\phi_{N}^{*}\right)-\left(\phi_{N}-\phi_{N}^{*}\right) F^{N}}$, and using Theorem 1 the asssertion follows.

4. Auxiliary results

Next we establish results that will be used in next section. We consider hermitian linear functionals $u \in \Lambda$ and F_{u} the corresponding formal Carathéodory function defined by (6).

Lemma 2 (cf. [2]). Let u be a hermitian linear functional and A, B polynomials. Then, for all $z \in \mathbb{C} \backslash \mathbb{T}$,

$$
\begin{gather*}
\left\langle B(\xi) u, \frac{\xi+z}{\xi-z}\right\rangle=P_{u, B}(z)+B(z) F_{u}(z) \tag{18}\\
A(z) F_{u}^{\prime}(z)=-A^{\prime}(z) F_{u}(z)+Q_{u, A}(z)+\frac{1}{i z}\left\langle\mathcal{D}(A u), \frac{\xi+z}{\xi-z}\right\rangle \tag{19}
\end{gather*}
$$

where $P_{u, B}, Q_{u, A}$ are polynomials with $\operatorname{deg}\left(P_{u, B}\right)=\operatorname{deg}(B), \operatorname{deg}\left(Q_{u, A}\right)=$ $\operatorname{deg}(A)-1$, defined by

$$
\begin{align*}
& P_{u, B}(z)=\left\langle u, \frac{\xi+z}{\xi-z}(B(\xi)-B(z))\right\rangle \tag{20}\\
& Q_{u, A}(z)=-A^{\prime}(z)-\left\langle u, 2 \xi \sum_{k=2}^{\operatorname{deg}(A)} \frac{A^{(k)}(z)}{k!}(\xi-z)^{k-2}\right\rangle \tag{21}
\end{align*}
$$

Remark. From (20) and (21) follows $P_{u, B+\tilde{B}}=P_{u, B}+P_{u, \tilde{B}}, \quad P_{u, \alpha B}=\alpha P_{u, B}$, with $\alpha \in \mathbb{C}$ and $B, \tilde{B} \in \mathbb{P}$.

Lemma 3 (cf. [1]). Let $u \in \Lambda^{\prime}$ be a hermitian linear functional and A a polynomial. Then, $(A(z)+\bar{A}(1 / z)) u$ is hermitian.

Next lemma is a generalization of Theorem 3.4 of [1].
Lemma 4. Let u be a hermitian linear functional. If there exist polynomials A, B, C, H such that $\mathcal{D}(A u)=B u^{2}+C u+H \mathcal{L}$, with \mathcal{L} the Lebesgue functional, then

$$
\begin{equation*}
\mathcal{D}(A+\bar{A}) u=(B+\bar{B}) u^{2}+(C+\bar{C}) u+(H+\bar{H}) \mathcal{L} \tag{22}
\end{equation*}
$$

Conversely, if (22) holds, then u satisfies the distributional equation with polynomial coefficients

$$
\begin{equation*}
\mathcal{D}\left(A_{1} u\right)=B_{1} u^{2}+\left(C_{1}+i s A_{1}\right) u+H_{1} \mathcal{L} \tag{23}
\end{equation*}
$$

where $s=\max \{\operatorname{deg}(A), \operatorname{deg}(B), \operatorname{deg}(C), \operatorname{deg}(\underline{H})\}$, and the polynomials A_{1}, B_{1}, C_{1}, H_{1} are given by $A_{1}(z)=z^{s}(A(z)+\bar{A}(1 / z)), B_{1}(z)=z^{s}(B(z)+$ $\bar{B}(1 / z)), C_{1}(z)=z^{s}(C(z)+\bar{C}(1 / z)), H_{1}(z)=z^{s}(H(z)+\bar{H}(1 / z))$.

Proof: If $\mathcal{D}(A u)=B u^{2}+C u+H \mathcal{L}$, then

$$
\left\langle\mathcal{D}(A u), \xi^{k}\right\rangle=\left\langle B u^{2}+C u+H \mathcal{L}, \xi^{k}\right\rangle, \forall k \in \mathbb{Z} .
$$

Applying conjugates follows

$$
\left\langle\mathcal{D}(\bar{A} u), \xi^{-k}\right\rangle=\left\langle\bar{B} u^{2}+\bar{C} u+\bar{H} \mathcal{L}, \xi^{-k}\right\rangle, \forall k \in \mathbb{Z}
$$

Therefore, we obtain

$$
\left\langle\mathcal{D}((A+\bar{A}) u), \xi^{n}\right\rangle=\left\langle(B+\bar{B}) u^{2}+(C+\bar{C}) u+(H+\bar{H}) \mathcal{L}, \xi^{n}\right\rangle, \forall n \in \mathbb{Z}
$$

and (22) follows.

Conversely, if u satisfies (22), then we successively get for all $k \in \mathbb{Z}$

$$
\begin{aligned}
& \left\langle\mathcal{D}((A+\bar{A}) u), \xi^{k}\right\rangle=\left\langle(B+\bar{B}) u^{2}, \xi^{k}\right\rangle+\left\langle(C+\bar{C}) u, \xi^{k}\right\rangle+\left\langle(H+\bar{H}) \mathcal{L}, \xi^{k}\right\rangle \\
& -i k\left\langle u,(A(\xi)+\bar{A}(1 / \xi)) \xi^{k}\right\rangle=\left\langle u^{2},(B(\xi)+\bar{B}(1 / \xi)) \xi^{k}\right\rangle \\
& \quad+\left\langle(C(\xi)+\bar{C}(1 / \xi)) \xi^{k}\right\rangle+\left\langle\mathcal{L},(H(\xi)+\bar{H}(1 / \xi)) \xi^{k}\right\rangle
\end{aligned}
$$

Let $s=\max \{\operatorname{deg}(A), \operatorname{deg}(B), \operatorname{deg}(C), \operatorname{deg}(H)\}$, then the last equation is given by

$$
\begin{align*}
& -i k\left\langle u, \xi^{s}(A(\xi)+\bar{A}(1 / \xi)) \xi^{k-s}\right\rangle=\left\langle u^{2}, \xi^{s}(B(\xi)+\bar{B}(1 / \xi)) \xi^{k-s}\right\rangle \\
& +\left\langle u, \xi^{s}(C(\xi)+\bar{C}(1 / \xi)) \xi^{k-s}\right\rangle+\left\langle\mathcal{L}, \xi^{s}(H(\xi)+\bar{H}(1 / \xi)) \xi^{k-s}\right\rangle, \forall k \in \mathbb{Z} \tag{24}
\end{align*}
$$

If we write $m=k-s$ and define $A_{1}, B_{1}, C_{1}, H_{1}$ as in the statement of the lemma, the equation (24) is given by

$$
\begin{aligned}
& -i(s+m)\left\langle u, A_{1}(\xi) \xi^{m}\right\rangle \\
& \quad=\left\langle u^{2}, B_{1}(\xi) \xi^{m}\right\rangle+\left\langle u, C_{1}(\xi) \xi^{m}\right\rangle+\left\langle\mathcal{L}, H_{1}(\xi) \xi^{m}\right\rangle, \forall m \in \mathbb{Z}
\end{aligned}
$$

and so,

$$
\begin{aligned}
& -i m\left\langle u, A_{1}(\xi) \xi^{m}\right\rangle \\
& \quad=\left\langle u^{2}, B_{1}(\xi) \xi^{m}\right\rangle+\left\langle u,\left(C_{1}(\xi)+i s A_{1}(\xi)\right) \xi^{m}\right\rangle+\left\langle\mathcal{L}, H_{1}(\xi) \xi^{m}\right\rangle, \forall m \in \mathbb{Z}
\end{aligned}
$$

From the definition of \mathcal{D}, the previous equation is equivalent to

$$
\left\langle\mathcal{D}\left(A_{1} u\right), \xi^{m}\right\rangle=\left\langle B_{1} u^{2}, \xi^{m}\right\rangle+\left\langle\left(C_{1}+i s A_{1}\right) u, \xi^{m}\right\rangle+\left\langle H_{1} \mathcal{L}, \xi^{m}\right\rangle, \forall m \in \mathbb{Z}
$$

and we get (23).
Lemma 5. Let u be a hermitian linear functional and F_{u} the corresponding formal Carathéodory function. If F_{u} satisfies $z A F_{u}^{\prime}=B F_{u}^{2}+C F_{u}+D$ in $\mathbb{C} \backslash \mathbb{T}$, then u satisfies the distributional equation

$$
\begin{equation*}
\left\langle\mathcal{D}(A u)+L(\xi) u-2 i B(\xi) u^{2}, \frac{\xi+z}{\xi-z}\right\rangle=i H(z) \tag{25}
\end{equation*}
$$

with

$$
L=i\left(-z A^{\prime}+2 B-C\right), H=B-2 P_{u^{2}, B}+P_{u,-z A^{\prime}+2 B-C}-z Q_{u, A}+D .(26)
$$

Proof: If we use (19) and (10) in $z A F_{u}^{\prime}=B F_{u}^{2}+C F_{u}+D$ we get

$$
\begin{equation*}
\left(-z A^{\prime}+2 B-C\right) F_{u}-i\left\langle\mathcal{D}(A u), \frac{\xi+z}{\xi-z}\right\rangle=2 B F_{u^{2}}+B+D-z Q_{u, A} \tag{27}
\end{equation*}
$$

On the other hand, from (18) and (19) we know that,

$$
\begin{aligned}
\left(-z A^{\prime}\right. & +2 B-C) F_{u} \\
& =\left\langle\left(-\xi A^{\prime}(\xi)+2 B(\xi)-C(\xi)\right) u, \frac{\xi+z}{\xi-z}\right\rangle-P_{u,-z A^{\prime}+2 B-C}(z) \\
B F_{u^{2}} & =\left\langle B(\xi) u^{2}, \frac{\xi+z}{\xi-z}\right\rangle-P_{u^{2}, B},
\end{aligned}
$$

and substituting these two equations in (27) we get

$$
\begin{aligned}
\left\langle\mathcal{D}(A u)+i\left(-\xi A^{\prime}+2 B-\right.\right. & \left.C) u-2 i B u^{2}, \frac{\xi+z}{\xi-z}\right\rangle \\
& =i\left(B-2 P_{u^{2}, B}+P_{u,-z A^{\prime}+2 B-C}-z Q_{u, A}+D\right)
\end{aligned}
$$

Thus, we get (25) with L, H given in (26).
Theorem 2. Let u be a hermitian linear functional and F_{u} the corresponding formal Carathéodory function. If F_{u} satisfies

$$
z A F_{u}^{\prime}=B F_{u}^{2}+C F_{u}+D,|z|<1
$$

then u satisfies the distributional equation with polynomial coefficients

$$
\mathcal{D}\left(A_{1} u\right)=B_{1} u^{2}+\left(i s A_{1}-L_{1}\right) u+H_{1} \mathcal{L}
$$

where $s=\max \{\operatorname{deg}(A), \operatorname{deg}(B), \operatorname{deg}(L), \operatorname{deg}(H)\}$, and the polynomials A_{1}, B_{1}, L_{1}, H_{1} are given by $A_{1}(z)=z^{s}(A(z)+\bar{A}(1 / z)), B_{1}(z)=z^{s}(2 i B(z)+$ $\overline{2 i B}(1 / z)), L_{1}(z)=z^{s}(L(z)+\bar{L}(1 / z)), H_{1}(z)=z^{s}(i H(z)+\overline{i H}(1 / z))$, and L, H are defined in (26).
Proof: If F_{u} satisfies $z A F_{u}^{\prime}=B F_{u}^{2}+C F_{u}+D,|z|<1$, then, from Lemma 5, we obtain (25), $\left\langle\mathcal{D}(A u)+L(\xi) u-2 i B(\xi) u^{2}, \frac{\xi+z}{\xi-z}\right\rangle=i H(z)$. Applying conjugates and the transformation $Z=1 / z$ to previous equation we get $\left\langle\mathcal{D}(\bar{A} u)+\bar{L} u-\overline{2 i B} u^{2}, \frac{\bar{\xi}+1 / z}{\bar{\xi}-1 / z}\right\rangle=-i \bar{H}(1 / z)$. Since $-\frac{1 / \xi+1 / z}{1 / \xi-1 / z}=\frac{\xi+z}{\xi-z}$, we obtain

$$
\begin{equation*}
\left\langle\mathcal{D}(\bar{A} u)+\bar{L} u-\overline{2 i B} u^{2}, \frac{\xi+z}{\xi-z}\right\rangle=i \bar{H}(1 / z) . \tag{28}
\end{equation*}
$$

Summing (25) with (28) we get

$$
\left\langle\mathcal{D}((A+\bar{A}) u)+(L+\bar{L}) u-(2 i B+\overline{2 i B}) u^{2}, \frac{\xi+z}{\xi-z}\right\rangle=i(H(z)+\bar{H}(1 / z)) .
$$

Therefore, if we compute the moments of the hermitian functional

$$
\mathcal{D}((A+\bar{A}) u)+(L+\bar{L}) u-(2 i B+\overline{2 i B}) u^{2}
$$

(using the asymptotic expansion of $\frac{\xi+z}{\xi-z}$ in $|z|<1$ and in $|z|>1$) we get

$$
\mathcal{D}((A+\bar{A}) u)+(L+\bar{L}) u-(2 i B+\overline{2 i B}) u^{2}=(i H+\overline{i H}) \mathcal{L} .
$$

From Lemma 4 we obtain the required functional equation.
If we take $B=0$ in previous Theorem we obtain the result for the LaguerreHahn affine class.

Corollary 3. Let u be a hermitian linear functional. If F_{u} satisfies

$$
z A F_{u}^{\prime}=C F_{u}+D \quad \text { for } \quad|z|<1
$$

then u satisfies

$$
\mathcal{D}\left(A_{1} u\right)=\left(i s A_{1}-L_{1}\right) u+H_{1} \mathcal{L}
$$

where $s=\max \{\operatorname{deg}(A), \operatorname{deg}(L), \operatorname{deg}(H)\}$, and $A_{1}, B_{1}, L_{1}, H_{1}, L, H$ are given by $A_{1}(z)=z^{s}(A(z)+\bar{A}(1 / z)), L_{1}(z)=z^{s}(L(z)+\bar{L}(1 / z)), H_{1}(z)=z^{s}(i H+$ $\overline{i H}(1 / z)), L(z)=i\left(-z A^{\prime}(z)-C(z)\right), H(z)=P_{u,-z A^{\prime}-C}(z)-z Q_{u, A}(z)+$ $D(z)$.

5. The characterization theorem

Theorem 3. Let u be a hermitian linear functional and F_{u} the corresponding formal Carathéodory function. If u satisfies $\mathcal{D}(A u)=B u^{2}+C u+\xi H \mathcal{L}$, where \mathcal{L} is the Lebesgue functional, then F_{u} satisfies the differential equations, in $\mathbb{C} \backslash \mathbb{T}$,

$$
\begin{equation*}
z A F_{u}^{\prime}=-\frac{i B}{2} F_{u}^{2}+\left(-z A^{\prime}-i B-i C\right) F_{u}+\frac{i B}{2}-i P_{u^{2}, B}+z Q_{u, A}-i P_{u, C}+E \tag{29}
\end{equation*}
$$

with $E(z)=-2 i z H(z) \mathbb{I}(z)$, where $\mathbb{I}(z)=\left\{\begin{array}{ll}1 & , \\ 0 & |z|<1 \\ 0 & |z|>1\end{array}\right.$.
Conversely, if F_{u} satisfies the differential equations (29), then u satisfies the distributional equation

$$
\begin{equation*}
\mathcal{D}(A u)=B u^{2}+C u+\xi H \mathcal{L} \tag{30}
\end{equation*}
$$

where \mathcal{L} is the Lebesgue functional.
Proof: If we substitute $\mathcal{D}(A u)=B u^{2}+C u+\xi H \mathcal{L}$ in (19) we get

$$
\begin{aligned}
& z A(z) F_{u}^{\prime}(z) \\
& =-z A^{\prime}(z) F_{u}+z Q_{u, A}(z)-i\left\langle B u^{2}, \frac{\xi+z}{\xi-z}\right\rangle-i\left\langle C u, \frac{\xi+z}{\xi-z}\right\rangle-i\left\langle\xi H \mathcal{L}, \frac{\xi+z}{\xi-z}\right\rangle .
\end{aligned}
$$

From (18) follows

$$
\begin{align*}
z A(z) F_{u}^{\prime}=-z A^{\prime}(z) F_{u}+z Q_{u, A}(z) & -i\left(P_{u^{2}, B}+B(z) F_{u^{2}}\right) \\
& -i\left(P_{u, C}+C(z) F_{u}\right)-i\left\langle\xi H \mathcal{L}, \frac{\xi+z}{\xi-z}\right\rangle \tag{31}
\end{align*}
$$

Since $\left\langle\xi H \mathcal{L}, \frac{\xi+z}{\xi-z}\right\rangle=2 z H(z) \mathbb{I}(z)$ then, in $|z|<1$, (31) is equivalent to

$$
\begin{aligned}
z A(z) F_{u}^{\prime}=-i B(z) F_{u^{2}}+(- & \left.z A^{\prime}(z)-i C(z)\right) F_{u} \\
& +z Q_{u, A}(z)-i P_{u^{2}, B}(z)-i P_{u, C}(z)-2 i z H(z)
\end{aligned}
$$

and, in $|z|>1$, (31) is equivalent to

$$
\begin{aligned}
z A(z) F_{u}^{\prime}=-i B(z) F_{u^{2}}+\left(-z A^{\prime}(z)-\right. & i C(z)) F_{u} \\
& +z Q_{u, A}(z)-i P_{u^{2}, B}(z)-i P_{u, C}(z) .
\end{aligned}
$$

Using (10) we get (29).
We now prove the converse. If F satisfies

$$
\begin{aligned}
z A F_{u}^{\prime}=-\frac{i B}{2} F_{u}^{2}+\left(-z A^{\prime}-i B-i C\right) F_{u}+\frac{i B}{2} & -i P_{u^{2}, B} \\
& +z Q_{u, A}(z)-i P_{u, C}(z)+E(z),|z|<1
\end{aligned}
$$

then, from (25), we get

$$
\left\langle V, \frac{\xi+z}{\xi-z}\right\rangle=2 z H \mathbb{I}(z) \quad \text { with } \quad V=\mathcal{D}(A u)-B u^{2}-C u
$$

Using the asymptotic expansion of $\frac{\xi+z}{\xi-z}$, in $|z|<1$ and in $|z|>1$, the two previous equations are, respectively, equivalent to

$$
\begin{align*}
\left\langle V, 1+2 \sum_{k=1}^{+\infty} \xi^{-k} z^{k}\right\rangle & =2 z H(z), \quad|z|<1, \tag{32}\\
\left\langle V,-1-2 \sum_{k=1}^{+\infty} \xi^{k} z^{-k}\right\rangle & =0, \quad|z|>1 . \tag{33}
\end{align*}
$$

Writing $z H(z)=h_{1} z+\cdots+h_{l} z^{l}$ then, from (32) we get

$$
\begin{equation*}
\langle V, 1\rangle=0, \quad\left\langle V, \xi^{-k}\right\rangle=h_{k}, k=1, \ldots, l, \quad\left\langle V, \xi^{-k}\right\rangle=0, k \geq l+1 \tag{34}
\end{equation*}
$$

and, from (33) we get

$$
\begin{equation*}
\langle V, 1\rangle=0, \quad\left\langle V, \xi^{k}\right\rangle=0, k \geq 1 \tag{35}
\end{equation*}
$$

Finally, from (34) and (35), we conclude that $V=z H \mathcal{L}$ and (30) holds.
If we do $B=0$ in previous Theorem we get the following result to the Laguerre-Hahn affine class (see [2, 3]).

Corollary 4. Let u be a hermitian linear functional and F_{u} the corresponding formal Carathéodory function. If u satisfies $\mathcal{D}(A u)=C u+\xi H(\xi) \mathcal{L}$, then F_{u} is such that

$$
\begin{equation*}
z A(z) F_{u}^{\prime}(z)=\left(-z A^{\prime}(z)-i C(z)\right) F_{u}(z)+z Q_{u, A}(z)-i P_{u, C}(z)+E(z) \tag{36}
\end{equation*}
$$

for $z \in \mathbb{C} \backslash \mathbb{T}$, with $E(z)=-2 i z H(z) \mathbb{I}(z)$.
Conversely, if F_{u} satisfies (36), then u satisfies $\mathcal{D}(A u)=C u+\xi H(\xi) \mathcal{L}$.
As a consequence of previous Theorem, we get a characterization for semiclassical functionals (see [2]).

Corollary 5. Let u be a hermitian linear functional and F the corresponding formal Carathéodory function, satisfying a differential equation with polynomial coefficients

$$
\begin{equation*}
z A(z) F^{\prime}(z)=\left(-z A^{\prime}(z)-i C(z)\right) F(z)+P(z), \quad z \in \mathbb{C} \backslash \mathbb{T} \tag{37}
\end{equation*}
$$

A necessary and sufficient condition for u to be semi-classical and satisfy $\mathcal{D}(A u)=C u$ is that the polynomial P of (37) satisfy $P=z Q_{u, A}-i P_{u, C}$, where $Q_{u, A}$ and $P_{u, C}$ are given by (20) and (21).

References

[1] M. Alfaro and L. Moral, Quasi-orthogonality on the unit circle and semi-classical forms, Portugaliæ Mathematica, 51 (1) (1994), 47-62.
[2] A. Branquinho and M.N. Rebocho, Characterizations of Laguerre-Hahn affine orthogonal polynomials on the unit circle, to appear in J. Comput. Anal. Appl.
[3] A. Cachafeiro and C. Pérez, A study of the Laguerre-Hahn affine functionals on the unit circle, J. Comput. Anal. Appl., 6 (2) (2004), 107-123.
[4] A. Cachafeiro and C. Pérez, Second degree functionals on the unit circle, Integral Transforms and Special Functions, 15 (4) (2004), 281-294.
[5] A. Magnus, Riccati acceleration of the Jacobi continued fractions and Laguerre-Hahn orthogonal polynomials, in "Padé Approximation and its Applications", Proc. Bad Honnef 1983, Lect. Notes in Math. 1071 (H. Werner and H.T. Bunger, eds.), Springer-Verlag, Berlin, 1984, 213-230.
[6] F. Marcellán, Orthogonal polynomials and Toeplitz matrices: Some applications, in "Seminario Matemático García Galdeano" (M. Alfaro, ed.), Univ. Zaragoza, 1989, 31-57.
[7] P. Maroni, Le calcul des formes linéaires et les polynômes orthogonaux semi-classiques, in Lect. Notes in Math., vol. 1329, Springer Verlag, Berlin, 1988, 279-290.
[8] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. In "Orthogonal polynomials and their application" (C. Brezinski, L. Gori and A. Ronveux, eds.) J.C.Baltzer AG. Basel IMACS Annals on Computing and Applied Mathematics, 9 (1991), 95-130.
[9] F. Peherstorfer, A special class of polynomials orthogonal on the unit circle including the associated polynomials, Constr. Approx., 12 (2) (1996), 161-185.
[10] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Providence Rhode Island, 1975 (fourth edition).
[11] C. Tasis, Propriedades diferenciales de los polinomios ortogonales relativos a la circunferencia unidad, PhD Thesis, Universidad de Cantabria, 1989 (in spanish).
A. Branquinho

CMUC, Department of Mathematics, University of Coimbra, Largo D. Dinis, 3001-454 Coimbra, Portugal.
E-mail address: ajplb@mat.uc.pt
URL: http://www.mat.uc.pt/~ajplb
M.N. Rebocho

Department of Mathematics, University of Beira Interior, 6201-001 Covilhã, Portugal, CMUC, University of Coimbra, 3001-454 Coimbra, Portugal.
E-mail address: mneves@mat.ubi.pt

[^0]: Received November 15, 2007.
 This work was supported by CMUC/FCT. The second author was supported by FCT, with grant ref. SFRH/BD/25426/2005.

