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Universidade de Coimbra
Preprint Number 07–41

POINTFREE FORMS OF DOWKER AND MICHAEL
INSERTION THEOREMS
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1. Introduction

Theorems on the existence of continuous real functions on normal spaces
rank among the fundamental results in point-set topology. They can, for in-
stance, be divided into three groups: separation theorems (such as Urysohn’s
lemma), extension theorems (such as Tietze’s theorem), and insertion theo-
rems. The latter theorems are the strongest ones in the sense that they yield
the former as very easy corollaries. It is therefore of importance to consider
them in the more general setting of pointfree topology. This paper is a se-
quel to the authors’ earlier papers regarding pointfree insertion (see [25], [14],
[15] and [16]). For the reader’s convenience we first record the three basic
insertion theorems of Katětov-Tong [19, 29], Dowker [5] and Michael [24].

Theorem A. (Katětov-Tong) A topological space X is normal if and only

if, given h, g : X → R such that h ≤ g, h is upper semicontinuous and g is

lower semicontinuous, there is a continuous f : X → R such that h ≤ f ≤ g.

Received December 21, 2007.
The first and the second named authors acknowledge financial support from the Ministry of

Education and Science of Spain and FEDER under grant MTM2006-14925-C02-02. The third
named author acknowledges financial support from the Centre of Mathematics of the University
of Coimbra/FCT.

1
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Theorem B. (Dowker) A topological space X is normal and countably para-

compact if and only if, given h, g : X → R such that h < g, h is upper semi-

continuous and g is lower semicontinuous, there is a continuous f : X → R

such that h < f < g.

Theorem C. (Michael) A topological space X is perfectly normal if and only

if, given h, g : X → R such that h ≤ g, h is upper semicontinuous and g is

lower semicontinuous, there is a continuous f : X → R such that h ≤ f ≤ g

and h(x) < f(x) < g(x) whenever h(x) < g(x).

In pointfree setting, Theorem A has first been investigated by Li and Wang
[23] with, however, some discrepancy between topological and frame semicon-
tinuities. Right frame semicontinuities and right pointfree version of Theorem
A have been fixed by Picado [25] and Gutiérrez Garćıa and Picado [14].

In this paper, we aim to provide some forms of Theorems B and C for,
respectively, normal countably paracompact spaces and perfectly normal
spaces. In the pointfree setting the situation becomes much more complex
than in the topological case and we have not been able to provide point-
free assertions corresponding exactly to insertion statements of Theorems B
and C. For instance, in both cases we assume h = 0. It should however be
emphasized that both Theorems B and C easily follow from their pointfree
versions established in this paper. These versions are corollaries of a rather
general insertion lemma related to an arbitrary frame L with a certain ex-
tra order ⋐ which in turn is an abstract version of a result of Gutiérrez
Garćıa and Kubiak [13] concerning a normal topology OX with U ⋐ V iff
int(X\U) ∪ V = X. We also establish some natural results regarding per-
fectly normal frames. These include separation and extension theorems for
perfectly normal spaces. We have not been able to deduce them from our
pointfree Michael theorem. These are deduced from our general insertion
lemma.

2. Background in frames

I. Frames and locales. The category Frm of frames has as objects those
complete lattices L in which

a ∧
∨

B =
∨
{a ∧ b : b ∈ B}
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for all a ∈ L and B ⊆ L. Morphisms, called frame homomorphisms, are
those maps between frames that preserve arbitrary joins (hence 1, the top)
and finite meets (hence 0, the bottom). The set of all morphisms from L into
M is denoted by Frm(L, M). The category of locales is the opposite category
of Frm.

Motivating example: the lattice OX of all open subsets of a space X is
a frame and if f : X → Y is a map, then Of : OY → OX defined by
Of(U) = f−1(U) is a frame homomorphism.

II. Heyting operator. With L a frame and a ∈ L, the map a ∧ (·) : L →
L preserves arbitrary joins and so has a right adjoint a → (·) : L → L

determined by c ≤ a → b iff a ∧ c ≤ b. Thus, a → b =
∨
{c ∈ L : a ∧ c ≤ b}.

For all a, b, c ∈ L and B ⊆ L the following hold:

(H1) a → b = a → (a ∧ b),
(H2) a ∧ b = a ∧ c iff a → b = a → c,
(H3) a →

∧
B =

∧
b∈B(a → b).

The pseudocomplement of a ∈ L is a∗ = a → 0. Clearly, a ∧ a∗ = 0.

III. Sublocales. An S ⊆ L is a sublocale of L if, given A ⊆ S and a ∈ L,
one has

∧
A ∈ S and a → s ∈ S for all s ∈ S (see [18, p. 50] and [26]). Each

sublocale S ⊆ L is a frame itself with ∧ and → of L (the top of S is 1, while
the bottom 0S of S may differ from 0). It determines the surjection (frame
quotient) cS : L → S given by cS(x) =

∧
{s ∈ S : x ≤ s}. The sublocales of

L form a complete lattice (S(L),⊆) with {1} being the bottom 0, L being
the top 1, and in which, given {Sj : j ∈ J} ⊆ S(L), one has

∧
j∈J

Sj =
⋂
j∈J

Sj and
∨
j∈J

Sj = {
∧

A : A ⊆
⋃
j∈J

Sj}.

Then S(L) is a co-frame.
For any a ∈ L, the sets

o(a) = {a → b : b ∈ L} and c(a) = ↑a

are sublocales of L called, respectively, open and closed. Clearly, the quo-
tients co(a) and cc(a) are given by

co(a)(x) = a → x and cc(a)(x) = a ∨ x.

Properties 2.1. We shall freely use the following properties:

(1) o(a) ⊆ o(b) iff a ≤ b,
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(2) o(
∨

A) =
∨

a∈A o(a),
(3) c(a) ⊆ o(b) iff a ∨ b = 1 iff c(b) ⊆ o(a),
(4) o(a) and c(a) are complemented to each other.

IV. The frame of reals. A G ⊆ L generates L if each element of L is a join
of finite meets of G. Being algebraic, the category Frm allows definitions by
generators and relations. Using this, one can constructively define the frame
of reals in terms of Q [9]. Following the more recent detailed description in
[2], the frame of reals L(R) is one generated by G ⊆ Q × Q satisfying the
following relations:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,

(R3) (p, q) =
∨
{(r, s) : p < r < s < q},

(R4) 1 =
∨

p,q∈Q(p, q).

We write: (p,−) =
∨

q>p(p, q) and (−, q) =
∨

p<q(p, q).

A morphism having L(R) as a domain will be defined on the sets of their
generators. Such a map uniquely determines a frame homomorphism if and
only if it makes the relations holding for generators into identities (see [2] for
details).

V. The lattice-ordered ring C(L). Members of

C(L) = Frm(L(R), L)

are called continuous real functions [2] on L. The lattice-ordered ring struc-
ture of Q goes over to C(L) [7]. The following material comes from Ba-
naschewski [2, Sect. 4].

Let 〈p, q〉 = {r ∈ Q : p < r < q}, let ⋄ ∈ {+, ·, max, min}, and let
〈r, s〉 ⋄ 〈t, u〉 = {x ⋄ y : x ∈ 〈r, s〉 and y ∈ 〈t, u〉}. Given f1, f2, f ∈ C(L) and
r ∈ Q, we define

(f1 ⋄ f2)(p, q) =
∨

〈r,s〉⋄〈t,u〉⊆〈p,q〉

(f1(r, s) ∧ f2(t, u)),

(−f)(p, q) = f(−q,−p),

r(p, q) =

{
1 if r ∈ 〈p, q〉,

0 otherwise.
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These operations satisfy all the lattice-ordered ring axioms in Q so that
(C(L), +, ·,≤) becomes a lattice-ordered ring with unit 1 where f1 ≤ f2 iff
max(f1, f2) = f2. It is well known that for all p, q ∈ Q:

f1 ≤ f2 ⇔ f1(p,−) ≤ f2(p,−) ⇔ f2(−, q) ≤ f1(−, q).

Let X be a topological space and let C(X) be the ring of all continuous
real-valued functions on X. Then there is an isomorphism C(OX) → C(X)

determined by taking an f to f̃ such that p < f̃(x) < q iff x ∈ f(p, q) (cf.
[2, p. 38]). This is the machinery which will convert our pointfree assertions
into the topological ones when L = OX.

Remark 2.2. For all a ∈ L and ⋄ ∈ {+, max, min} one obviously has:

cc(a) ◦ (f1 ⋄ f2) = (cc(a) ◦ f1) ⋄ (cc(a) ◦ f2).

We shall only use products of the form r · f denoted just by rf . Also, we do
not distinguish in notation between the constants r having different range
frames. In particular, cc(a) ◦ (rf) = r(cc(a) ◦ f) and cc(a) ◦ r = r.

We may also use the real unit interval frame (cf. [2]):

L([0, 1]) = ↑((−, 0) ∨ (1,−)).

There is of course an obvious bijection

Frm(L([0, 1]), L) ≃ {f ∈ C(L) : 0 ≤ f ≤ 1}
= {f ∈ C(L) : f(−, 0) ∨ f(1,−) = 0}.

VI. Generating continuous real functions on frames. A scale (de-
scending trail in [2]) in L is a map ϕ : Q → L such that ϕ(r) ∨ ϕ∗(s) = 1
whenever r < s, and

∨
ϕ(Q) = 1 =

∨
ϕ∗(Q) where ϕ∗ = (·)∗ ◦ ϕ. In what

follows we write ϕr rather than ϕ(r).

Lemma 2.3. [2, Lemma 2] Each scale ϕ in L generates a continuous f :
L(R) → L defined by

f(p, q) =
∨
{ϕr ∧ ϕ∗

s : p < r < s < q}.

Lemma 2.4. If ϕ is a scale that generates a continuous f : L(R) → L, then:

(1) f(p,−) =
∨

r>p ϕr for all p ∈ Q,

(2) f(−, q) =
∨

s<q ϕ∗
s for all q ∈ Q.
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Proof : To show (1), we calculate

f(p,−) =
∨

q>p

∨
p<r<s<q ϕr ∧ ϕ∗

s

=
∨

q>p

(∨
p<r ϕr ∧

∨
s<q ϕ∗

s

)

=
∨

p<r ϕr ∧
∨

q>p

∨
s<q ϕ∗

s

=
∨

p<r ϕr ∧
∨

s∈Q ϕ∗
s

=
∨

p<r ϕr,

and similarly for (2).

VII. The upper frame of reals and lower semicontinuity. Let Lu(R)
be the subframe of L(R) generated by {(r,−) : r ∈ Q}. A lower semicon-

tinuous real function on L (see [14]) is a morphism g : Lu(R) → L such that∧
r∈Q o(g(r,−)) = 0. The collection of all lower semicontinuous real functions

on L is denoted by LSC(L) and is partially ordered by:

g1 ≤ g2 ⇔ g1(r,−) ≤ g2(r,−) for all r ∈ Q.

Notation. Given f ∈ C(L) and g ∈ LSC(L), we write

f ≤ g

if and only if
f|Lu(R) ≤ g.

We shall be concerned with members of g ∈ Frm(Lu(R), L) which satisfy

g(1,−) = 0 and g(r,−) = 1 for all r < 0,

i.e. 0 ≤ f ≤ 1.

Remark. If g : Lu(R) → L satisfies the above boundary conditions, then it is
lower semicontinuous, since

∧
r∈Q o(g(r,−)) ≤ o(g(1,−)) = o(0) = 0.

Following [25], for each a ∈ L we define the characteristic function la :
Lu(R) → L by

la(p,−) =





1 if p < 0,

a if 0 ≤ p < 1,

0 if p ≥ 1.

Clearly, 0 ≤ la ≤ 1 is lower semicontinuous.
Other concepts will be defined when actually needed. For more information

on frames and locales we refer to [18] and [27].



POINTFREE FORMS OF DOWKER AND MICHAEL INSERTION THEOREMS 7

3. An insertion lemma for frames with an extra order

Sometimes, a complete lattice carries an extra order which is stronger than
the lattice order. That extra order may have various names (modulo some
conditions): proximity relation [11], strong inclusion [1], multiplicative aux-
iliary order [10], etc. Conditions (K0)–(K4) which follow are equivalent to
the relation ρ investigated by Katětov [19] (cf. [17], [20] and [28]).

Definition 3.1. A binary relation ⋐ on a frame L is called a Katětov relation

[21] if it satisfies the following conditions:

(K0) a ⋐ b implies a ≤ b,
(K1) a ≤ b ⋐ c ≤ d implies a ⋐ d,
(K2) a, b ⋐ c implies a ∨ b ⋐ c,
(K3) a ⋐ b, c implies a ⋐ b ∧ c,
(K4) a ⋐ b implies a ⋐ c ⋐ b for some c ∈ L. (Interpolation property)

We shall say that the Katětov relation ⋐ is strong [22] if

(K5) a ⋐ b implies a ≺ b, where

a ≺ b iff a∗ ∨ b = 1,

and is called the well-inside order.

Notation. Given A ⊆ L and b ∈ L we write A ≺ b whenever a ≺ b for all
a ∈ A.

Recall that a frame L is called normal if, given a, b ∈ L with a ∨ b = 1,
there exist u, v ∈ L such that a ∨ u = 1 = b ∨ v and u ∧ v = 0. Equivalently,
L is normal iff, whenever a ∨ b = 1, there is an u ∈ L such that a ∨ u = 1
and u ≺ b.

Examples 3.2. Among the frames with a strong Katětov relation are the
following ones:

(1) Each normal frame L with the well-inside order. It is normality of L

which guarantees the interpolation property (K4) (see [27]).
(2) In a frame L, a is really inside b, written a ≺≺ b , if there exists a

family {ϕr : r ∈ Q∩ [0, 1]} such that a ≤ ϕr ≤ b and ϕr ≺ ϕs if r < s.
If L is completely regular, i.e. b =

∨
a≺≺b a for all b ∈ L, then ≺≺ is a

strong Katětov relation (see [18]).
(3) Each continuous frame with a multiplicative way below relation (see

[10]).
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In [13], there is an insertion lemma holding for normal topologies L = OX

with U ⋐ V iff U ⊆ V . It continues to hold for arbitrary frames with a
strong Katětov relation:

Lemma 3.3. (Insertion Lemma) Let L be a frame endowed with a strong

Katětov relation ⋐ and let g : Lu(R) → L be lower semicontinuous with

0 ≤ g ≤ 1. Let (an) be a non-decreasing sequence in L such that:

(1) an ⋐ g( 1
n
,−) for each n ∈ N,

(2)
∨

n an = g(0,−).

Then there exists a continuous f : L(R) → L such that 0 ≤ f ≤ g and

g(0,−) = f(0,−).

Remark. We could write g(0,−) ≤ f(0,−), since the reverse inequality holds
on account of f ≤ g.

Proof : We need a family {ϕq : q ∈ (0, 1) ∩ Q} such that
{

ϕq ⋐ ϕr, if r < q,

an ⋐ ϕq ⋐ g( 1
n
,−), if q ∈ [ 1

n+1 ,
1
n
).

First, make Q ∩ (0, 1) into a sequence (qn). The union
⋃

m∈N[ 1
m+1 ,

1
m

) =
(0, 1), being disjoint, uniquely determines a sequence (µn) in N such that

µn = m iff qn ∈ [ 1
m+1 ,

1
m

).

One has: ql < qn implies µl ≥ µn. After these preparations, for each n ≥ 2
we shall inductively construct a family Φn = {ϕqi

: i < n} ⊆ L such that:
{

ϕqi
⋐ ϕqj

, if qj < qi and i, j < n,

aµi
⋐ ϕqi

⋐ g( 1
µi

,−), if i < n.
(In)

The existence of ϕq1
satisfying (I2) follows from the interpolation property

of ⋐. Suppose now that Φn has already been defined and satisfies (In).
Distinguish three cases:
Case 1. If ql = max{qi : i < n} < qn, then µl ≥ µn and

aµn
= u ⋐ w = ϕql

∧ g( 1
µn

,−).

Case 2. If qn < qr = min{qi : i < n}, then µr ≤ µn and

aµn
∨ ϕqr

= u ⋐ w = g( 1
µn

,−).
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Case 3. If ql < qn < qr, then µl ≥ µn ≥ µr and

aµn
∨ ϕqr

= u ⋐ w = ϕql
∧ g( 1

µn
,−).

In all cases, select ϕqn
with u ⋐ ϕqn

⋐ w. Then Φn+1 satisfies (In+1).
Now, let ϕq = 0 for all q ≥ 1 and ϕq = 1 for all q ≤ 0. Then ϕ : Q → L

with ϕ(q) = ϕq is a scale and, thus, determines a continuous f : L(R) → L

by

f(p, q) =
∨

p<r<s<q

ϕr ∧ ϕ∗
s.

Actually, 0 ≤ f ≤ 1 as

f(1,−) =
∨
1<r

ϕr = 0 =
∨
s<0

ϕ∗
s = f(−, 0).

Also, we have f|Lu(R) ≤ h. Indeed, f(p,−) = 1 = g(p,−) if p < 0, while

f(p,−) = 0 = g(p,−) if p ≥ 1. If 0 ≤ p < q < 1, then ϕq ≤ g( 1
m

,−) ≤ g(q,−)

where q ∈ [ 1
m+1 ,

1
m

). So,

f(p,−) =
∨
p<q

ϕq ≤
∨
p<q

g(q,−) ≤ g(p,−).

Finally, since asn
≤ ϕqn

whenever qn ∈ [ 1
sn+1 ,

1
sn

), we get

f(0,−) =
∨
0<q

ϕq ≥
∨
n

an = g(0,−).

This lemma will have many important consequences. To state our first
corollary we recall that a ∈ L is a cozero element [2] if there is an f ∈ C(L)
such that a = f((−, 0) ∨ (0,−)). The set of all cozero elements of L will be
denoted by Coz L.

Corollary 3.4. [3, Prop. 1] Let L be a frame and a ∈ L. If there exists a non-

decreasing sequence (an) such that an ≺≺ a and
∨

n an = a, then a ∈ Coz L.

Recall that a sublocale is Gδ, respectively, Fσ (or is a Gδ-sublocale, re-
spectively, Fσ-sublocale) if it is a countable meet (resp., join) of open (resp.,
closed) sublocales.

Recall also that, given an S ∈ S(L), f : L(R) → L is called a continuous

extension of f : L(R) → S iff the following diagram commutes
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?
-

�
�

�
�

�
�

�3

SL(R)

L

f

f
cS

i.e. cS ◦ f = f .

Proposition 3.5. Let L be a normal frame. For each a ∈ L the following

are equivalent:

(1) c(a) is a Gδ-sublocale.

(2) o(a) is a Fσ-sublocale.

(3) There is a countable B ⊆ L such that a =
∨

B and B ≺ a.

(4) For each continuous f : L(R) → c(a) with 0 ≤ f ≤ 1 there exists a

continuous extension f to L such that f(0, 1) ∈ c(a).
(5) a ∈ Coz L.

Proof : (1) ⇒ (2): Since S(L) is a co-frame, the second De Morgan law
(
∧

i Si)
∗ =

∨
i S

∗
i holds. Therefore,

o(a) = c(a)∗ = (
∧
n

o(bn))
∗ =

∨
n

c(bn).

(Note that normality is not used in the proof.)

(2) ⇒ (3): Assume o(a) =
∨

d∈D c(d) with a countable D ⊆ L. Then c(d) ⊆
o(a), hence a∨d = 1 for all d. By normality of L there exists B = {bd : d ∈ D}
such that d ∨ bd = 1 (hence c(d) ⊆ o(bd)) and bd ≺ a (hence

∨
B ≤ a). So,

o(a) =
∨

d∈D

c(d) ⊆
∨

d∈D

o(bd) = o(
∨

B).

i.e., a ≤
∨

B. We have shown that a =
∨

B and B ≺ a.

(3) ⇒ (4): Write B = {bn : n ∈ N} and let f ∈ c(c(a)) with 0 ≤ f ≤ 1.
By the localic Tietze’s extension theorem (see, e.g., [4], [30] or [25]), there
exists a continuous f1 : L(R) → L with 0 ≤ f1 ≤ 1 and cc(a) ◦ f1 = f . Since

a = la(0,−) = la(
1
n
,−) for all n, we have
∨

n∈N

bn = la(0,−) and bn ≺ la(
1
n
,−)

Since la is lower semicontinuous, by Lemma 3.3 there is a continuous f2 :
L(R) → L such that 0 ≤ f2 ≤ la and a = la(0,−) = f2(0,−). As in [13], we
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now define f : L(R) → L by

f = 1
2(max(f1 − f2,0) + min(f1 + f2,1)).

Clearly, 0 ≤ f ≤ 1. We now show that f is the required extension of f . For
this purpose observe first that cc(a) ◦ f2 = 0. Indeed,

cc(a) ◦ f2(p, q) = a ∨ f2(p, q)
= f2((0,−) ∨ (p, q))

=

{
1, if p < 0 < q,

a, otherwise

= 0(p, q)

(cf. Remark 2.2). Since cc(a)◦f1 = f and cc(a)◦f2 = 0 we have (using Remark
2.2 again):

cc(a) ◦ f = 1
2(max(f − 0,0) + min(f + 0,1)) = f.

Finally, we prove that a ≤ f(0, 1). Since f ≥ 1
2 min(f2,1), we have

f(0,−) ≥ (1
2 min(f2,1))(0,−) = min(f2,1)(0,−) = f2(0,−) = a.

Since f ≤ max(1 − f2,0), we get

f(−, 1) ≥ max(1 − f2)(−, 1)
=

∨
r∈Q 1(−, r) ∧ f2(r − 1,−)

=
∨

r>1 f2(r − 1,−)
= f2(0,−)
= a.

Thus, f(0, 1) ∈ c(a).

(4) ⇒ (5): Consider f = 0 with values in c(a). With f : L(R) → L satisfying
0 ≤ f ≤ 1, cc(a)◦f = f and f(0, 1) ≥ a we get f(0, 1) = a∨f(0, 1) = f(0, 1) =
a, hence a ∈ Coz L.

(5) ⇒ (1): Let a = f((−, 0) ∨ (0,−)) for some continuous f : L(R) → L.
Take

an = f( 1
n
, 1

n
) and bn = f((−,− 1

n
) ∨ ( 1

n
,−))

for all n ∈ N. Since a ∨ an = 1, it follows that c(a) ⊆ o(an) and, thus,

c(a) ⊆
∧

n∈N

o(an).
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For the reverse inclusion, let d ∈
∧

n o(an), i.e. an → d = d for all n. Since
an ∧ bn = 0 ≤ d, it follows that an ≤ bn → d = d and so a =

∨
n bn ≤ d.

Hence d ∈ c(a).

4. Perfectly normal frames

Perfect normality in pointfree topology was first considered by Charalam-
bous [4] in the context of σ-frames. Recall that a lattice L with countable
joins and finite meets is a σ-frame if finite meets distribute over countable
joins. In [4], a σ-frame L is called perfectly normal if it is normal and for each
a ∈ L there exists a sequence (an) in L such that for all b, c ∈ L: b∧a = c∧a

iff b∨an = c∨an for all n. Gilmour [12] observed that in the class of σ-frames
perfect normality and regularity are equivalent concepts. Recall that a [σ-
]frame is regular if for each a ∈ L there exists a [countable] subset B ⊆ L

such that a =
∨

B and B ≺ a.
As we shall see soon, when applied to arbitrary frames, the Charalambous’

concept nevertheless yields the right notion of perfect normality (which of
course is no longer equivalent to regularity). However, we adopt the following
more natural definition of perfect normality for frames (cf. assertion (3) of
Proposition 3.3 and [8, 1.5.K]).

Definition 4.1. A frame L is called perfectly normal if for each a ∈ L there
is a countable subset B ⊆ L such that a =

∨
B and B ≺ a.

Each perfectly normal frame is regular. Next, we gather together some
characterizations of perfect normality. Part of them comes from Proposition
3.5, but we also add some new ones. We note that with L a σ-frame, the
equivalence of (1) (with regularity instead of perfect normality) and (2) given
below was proved by Gilmour [12, Prop. 1.1].

Proposition 4.2. The following are equivalent for a frame L:

(1) L is perfectly normal.

(2) [Charalambous’ condition] L is normal and for each a ∈ L there is

a countable D ⊆ L such that for each b, c ∈ L the following hold:

b ∧ a = c ∧ a ⇔ b ∨ d = c ∨ d for all d ∈ D.

(3) L is normal and each closed sublocale is Gδ.

(4) L is normal and each open sublocale is Fσ.

(5) L is normal and Coz L = L.
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(6) [Tietze-type theorem] Given a closed sublocale S, each continuous f :
L([0, 1]) → S extends continuously to an f : L([0, 1]) → L such that

f(0, 1) ∈ S.

(7) [Vedenisoff = Urysohn-type lemma] Given a, b ∈ L with a ∨ b = 1,
there exists a continuous f : L([0, 1]) → L such that f(0,−) = a and

f(−, 1) = b.

Proof : (1) ⇒ (2): For the normality let a∨ b = 1 in L. By perfect normality
of L, there are non-decreasing sequences (an) and (bn) such that a =

∨
n an,

b =
∨

n bn, an ≺ a and bn ≺ b for all n. Define

u =
∨

n∈N

(a∗n ∧ bn) and v =
∨

n∈N

(an ∧ b∗n).

We have

a ∨ u =
∨

n∈N

((a ∨ a∗n) ∧ (a ∨ bn)) = a ∨ b = 1

and precisely in the same way, we have b ∨ v = 1. In order to show that
u∧ v = 0 it suffices to check (using the frame distribution law) that for all n

and m on has

c = (a∗n ∧ bn) ∧ (am ∧ b∗m) = 0.

Indeed, if n ≤ m, then c ≤ bn ∧ b∗n = 0. Similarly, if n > m, then c ≤
a∗m ∧ am = 0.

The additional condition is rather obvious: Let a =
∨

A with A ≺ a. It
suffices to observe that D = {x∗ : x ∈ A} does the job. Let us check the
implication (⇐). Assume b ∨ x∗ = c ∨ x∗ for all x ∈ A. Then

b ∧ a =
∨

x∈A

b ∧ x =
∨

x∈A

((b ∨ x∗) ∧ x) =
∨

x∈A

((c ∨ x∗) ∧ x) =
∨

x∈A

c ∧ x = c ∧ a.

(2) ⇒ (1): Let a ∈ L. Put b = 1 and c = a (cf. [12]). Let (dn) be the
sequence given by hypothesis. Then dn ∨ a = 1 for all n. By normality there
exists an A = {an : n ∈ N} ⊆ L such that dn ∨ an = 1 = a ∨ a∗n for all n.
Thus, an ≺ a and

∨
A ≤ a. Moreover, dn ∨

∨
A = 1 = dn ∨ a. Thus, by

hypothesis, a ∧
∨

A = a, i.e., a ≤
∨

A.

(1) ⇔ (3) ⇔ (4) ⇔ (5) ⇔ (6): See Proposition 3.5.
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(6) ⇒ (7): Let a ∨ b = 1. Define f : L(R) → c(a ∧ b) by

f(p, q) =





a, if 0 ≤ p < 1 < q,

b, if p < 0 < q ≤ 1,

1, if p < 0 < 1 < p,

a ∧ b, otherwise.

Note that f defines a frame homomorphism precisely because a ∨ b = 1.
Then 0 ≤ f ≤ 1 and f extends continuously to an f with 0 ≤ f ≤ 1 and
a ∧ b ≤ f(0, 1). Thus,

a = f(0,−) = (cc(a∧b) ◦ f)(0,−) = (a ∧ b) ∨ f(0,−) = f(0,−)

and, similarly, b = f(−, 1) = f(0,−)

(7) ⇒ (1): Let b = 1 and a ∈ L be arbitrary. With the hypothesized f , put
an = f( 1

n
,−) for all n ∈ N. Then a =

∨
n an and

a ∨ a∗n = f(0,−) ∨ (f( 1
n
,−))∗ ≥ f(0,−) ∨ f(−, 1

n
) = 1 for all n ∈ N.

Now it is obvious that perfect normality implies complete regularity. In-
deed, we have shown that in a perfectly normal L one has Coz L = L, while
L is completely regular iff it is generated by CozL (see [2, Corollary 2]).

Regarding hereditariness, we have: perfect normality ⇒ hereditary nor-
mality ⇒ normality. In fact, the following holds (see also [15, Proposition
3.1]):

Proposition 4.3. Any sublocale of a perfectly normal frame is perfectly nor-

mal.

Proof : Let S be a sublocale of a perfectly normal frame L. For each a ∈ S

there is a countable B ⊆ L such that a =
∨

B and B ≺ a. It follows that
a = cS(

∨
B) =

∨
S cS(B) and

1 = cS(1) = cS(b∗ ∨ a) = cS(b∗) ∨S cS(a) = cS(b∗) ∨S a.

Since cS(b∗)∧ cS(b) = cS(b∗∧ b) = cS(0) = 0S, it follows that cS(b∗) ≤ cS(b)∗S

and so cS(b)∗S ∨S a = 1 (where (−)∗S means the pseudocomplement in S).
Consequently, the countable subset cS(B) is the desired set in S.
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5. Two insertion theorems for frames

In this section we prove the two pointfree forms of Dowker’s and Michael’s
insertion theorems.

Before formulating our pointfree version of Dowker’s insertion theorem, we
introduce some notation. Given g ∈ LSC(L) and f ∈ C(L), we put

ι(f, g) =
∨

r∈Q

f(−, r) ∧ g(r,−).

We write f < g iff ι(f, g) = 1. Clearly 0 < g iff g(0,−) = 1.

Remark 5.1. When applied to L = OX, one gets ι(f, g) = X iff f̃(x) < g̃(x)

for all x ∈ X where f̃ and g̃ are the real-valued functions on X associated
to f and g.

According to [6], a frame L is countably paracompact if each countable cover
of L has a locally finite refinement. Rather than recalling the definition of the
latter concept, we just quote the following characterization which is enough
for our purpose. Before doing this, we recall that A ⊆ L is a cover if

∨
A = 1.

A cover (aj)j∈J is shrinkable [6] if there is a cover (bj)j∈J such that bj ≺ aj

for all j ∈ J .

Proposition 5.2. [6, Prop. 7] A frame L is countably paracompact if and

only if each countable non-decreasing cover is shrinkable.

Proposition 5.3. Each perfectly normal frame is countably paracompact.

Proof : Let L be perfectly normal and let (cn) be a non-decreasing cover. By
perfect normality, for each n there exists a family {bn,m : m ∈ N} such that
cn =

∨
m∈N bn,m and bn,m ≺ cn. Let an =

∨
i,j≤n bi,j for each n. The sequence

(an) is a non-decreasing cover which shrinks (cn):

an =
∨

i,j≤n

bi,j ≺
∨
i≤n

ci = cn and
∨

n∈N

an =
∨

n∈N

∨
i,j≤n

bi,j =
∨

n∈N

cn = 1.

We can prove now the following result with the help of Lemma 3.3.

Proposition 5.4. If L is normal and countably paracompact frame, then for

each lower semicontinuous g : Lu(R) → L with 0 < g ≤ 1, there exists a

continuous f : L(R) → L such that 0 < f ≤ g.
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Proof : We have 1 = g(0,−) =
∨

n g( 1
n
,−), a countable non-decreasing open

cover. By Proposition 5.2 there is a cover (cn) such that c∗n ∨ g( 1
n
,−) = 1 for

each n ∈ N. Put an =
∨

i≤n ci for each n. The sequence (an) is non-decreasing
and is a cover, for one has

∨
n

an =
∨
n

∨
i≤n

ci =
∨
n

cn = 1.

In particular,
∨

n an = g(0,−) and

an =
∨
i≤n

ci ≺
∨
i≤n

g(1
i
,−) = g( 1

n
,−).

The required f ≤ g with f(0,−) = g(0,−) = 1 is given by Lemma 3.3.

Even if Proposition 5.4 looks quite modest in comparison with its classical
counterpart, when applied to OX for a normal and countably paracompact
space X it nevertheless yields the harder part of Dowker’s theorem. We shall
refer to Theorem A (Katětov-Tong) as is, for instance, the case in [19].

Corollary 5.5. (Dowker [5]) A space X is normal and countably paracompact

if and only if, whenever h, g : X → R are such that h < g, h is upper

semicontinuous and g is lower semicontinuous, there is a continuous f :
X → R such that h < f < g.

Proof : We prove the only if part. Consider the normal and countably para-
compact frame OX. We may assume h, g : X → [0, 1]. Thus 0 < g − h and
by (the spatial version of) Theorem 5.4 there is a continuous k : X → [0, 1]
such that 0 < k ≤ g − h. Since h + k

2 ≤ g − k
2 , by Theorem A there is a

continuous f : X → [0, 1] such that h + k
2 ≤ f ≤ g− k

2 . Since k > 0, we have
h < f < g.

In the class of normal frames we can formulate an iff criterion for the strict
insertion which resembles classical Dowker’s result in a better way:

Theorem 5.6. (Insertion theorem) For L a normal frame, the following are

equivalent:

(1) L is countably paracompact.

(2) For each lower semicontinuous g : Lu(R) → L with 0 < g ≤ 1, there

exists a continuous f : L(R) → L such that 0 < f < g.
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Proof : (1) ⇒ (2): Let g : Lu(R) → L lower semicontinuous with 0 < g ≤ 1.
Then, by Proposition 5.4 there exists a continuous f1 : L(R) → L such that
0 < f1 ≤ g. Then f = 1

2f1 : L(R) → L is such that 0 < f < g. Indeed

f(0,−) = 1
2f1(0,−) = f1(0,−) = 1 and

ι(f, g) =
∨

r∈Q

f(−, r) ∧ g(r,−)

=
∨

r∈Q f1(−, 2r) ∧ g(r,−)
=

∨
0<r

f1(−, 2r) ∧ g(r,−)

≥
∨

0<r g(r, 2r)
= g(0,−) = 1.

(2) ⇒ (1): Let (cn) be a non-decreasing cover. Define g : Lu(R) → L by

g(p,−) =





1 if p ≤ 0,

cn if 1
n+1 ≤ p < 1

n
,

0 if p ≥ 1.

Clearly, 0 < g ≤ 1 is lower semicontinuous and there exists a continuous
f : L(R) → L such that 0 < f < g. Let an = f( 1

n
,−) for each n. The

sequence (an) is a cover which shrinks (cn):

an = f( 1
n
,−) ≺ f( 1

n+1 ,−) ≤ g( 1
n+1 ,−) = cn

and ∨
n

an = f(0,−) = 1.

Now we move to the case of Michael insertion theorem.

Theorem 5.7. (Insertion theorem) For L a frame, the following are equiv-

alent:

(1) L is perfectly normal.

(2) L is normal and for each g : Lu(R) → L lower semicontinuous with

0 ≤ g ≤ 1 there exists a continuous f : L(R) → L such that 0 ≤ f ≤ g

and f(0,−) = g(0,−).

Proof : (1) ⇒ (2): For each n ∈ N there exists a family {bn,m : m ∈ N} such
that

g( 1
n
,−) =

∨
m∈N

bn,m and bn,m ≺ g( 1
n
,−).
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Put an =
∨

i,j≤n bi,j for each n. The sequence (an) is non-decreasing and
∨

n∈N

an =
∨

n∈N

∨
i,j≤n

bi,j = g(0,−)

as well as
an =

∨
i,j≤n

bi,j ≺
∨
i≤n

g(1
i
,−) = g( 1

n
,−).

The required assertion follows by Lemma 3.3 applied to the well-inside rela-
tion ≺.

(2) ⇒ (1): Let a ∈ L. Then 0 ≤ la and there exists a continuous real function
f on L such that 0 ≤ f ≤ la and f(0,−) = la(0,−) = a. Thus, a ∈ Coz L.
By Proposition 3.5, L is perfectly normal.

Applied to OX for a perfectly normal space X, Theorem 5.7, also with the
help of Theorem A, yields Theorem C.

Corollary 5.8. (Michael [24]) A space X is perfectly normal if and only if,

whenever h, g : X → R are such that h ≤ g, h is upper semicontinuous

and g is lower semicontinuous, there is a continuous f : X → R such that

h ≤ f ≤ g and h(x) < f(x) < g(x) whenever h(x) < g(x).

Proof : We prove the only if part. Without loss of generality we assume
h, g : X → [0, 1] and h ≤ g. Then g − h is lower semicontinuous and
by (the spatial version of) Theorem 5.7 there is a continuous k : X →
[0, 1] such that 0 ≤ k ≤ g − h and (g − h)−1(0, +∞) = k−1(0, +∞). Since
h + k

2 ≤ g − k
2 , by Theorem A there is a continuous f : X → [0, 1] such that

h ≤ h + k
2 ≤ f ≤ g − k

2 ≤ g. Finally, if h(x) < g(x), then k(x) > 0 and thus
h(x) < f(x) < g(x).
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[14] J. Gutiérrez Garćıa, J. Picado, On the algebraic representation of semicontinuity, J. Pure

Appl. Algebra 210 (2007) 299–306.
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