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1. Introduction

1) Let (a, [, ]a) be the Lie algebra of a Lie group G. Let (G, β1) be a
connected and simply connected Lie group endowed with an invariant sym-
plectic structure β1 ∈ a

∗∧a
∗ and let r1 ∈ a∧a be the corresponding solution

to the Yang-Baxter-Equation (YBE) on (a, [, ]a). Let (a, [, ]a, εa = dc r1) be
the corresponding non-degenerate triangular Lie bialgebra. In [5] Drinfeld
obtains all the Invariant Star Products (ISPS) on (G, β1) (equivalently on
(a, [, ]a, εa = dc r1)) and a theorem showing that under equivalence [10] the
classifying set of all those ISPS is the Chevalley space β1+~·

∑

H2(a, IR)[[~]].
2) The aim of this paper is to obtain a classification theorem for all the

ISPS on any non-degenerate triangular finite dimensional Lie bialgebra over
IR when they are obtained following the Etingof-Kazhdan [9] theory of quanti-
zation of Lie bialgebras. This theory is very different from the one considered
in [5] but the classifying set for the set of ISPS is again β1+~·

∑

H2(a, IR)[[~]].
In case we consider the Knizhnik-Zamolodchikov associator [7], over the field
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2 C. MORENO AND J. TELES

C, we have seen [22] that the ISP J̃r1
obtained here and the ISP F (r1) ob-

tained by Drinfeld in [5] coincide modulo ~3. In two particular cases of
dimensions 2 and 4 for a, J̃r1

and F (r1) coincide modulo ~4.

3) The adjoint representation of G induces a representation on the Cheval-
ley complex H∗(a, IR) which is trivial. This classical theorem contains the
idea for the proof of our classification theorem 6.11. We may compare this
with the proofs in [19, 20] for the similar theorem in the quantization context
of [5].

We present here the proofs of most of the results obtained.
4) Similar results as in the Abstract can be obtained on a non-degenerate

triangular deformation Lie bialgebra, [6, 7], (at ≡ a ⊗K K[[t]], [, ]at
, εat

=
dc(t)r1(t)) over K[[t]] of the non-degenerate triangular Lie bialgebra (a, [, ]a, εa =
dcr1) over a field of characteristic zero K. In this case we need to observe that
a) K[[t]] is a local ring and a Principal Ideal Domain; b) the symmetric al-
gebra of the K[[t]]-module a[[t]] is the algebra of divided powers Γ(at), in
the sense of [3], over the K[[t]]-module at; c) this symmetric algebra is iso-
morphic to the algebra of symmetric tensors TS(a[[t]])[4]; d) the Hochschild
cohomology H∗(Ua[[t]]) of the coalgebra Ua[[t]] over K[[t]] is

∧

(a[[t]]) [3].

2. Some notations

1) Definitions and notations are those of [5, 7, 15, 16]. A finite dimen-
sional Lie bialgebra over IR is denoted by the symbol (a, [, ]a, εa) where εa

is a 1-cocycle in the Chevalley cohomology on (a, [, ]a) with respect to the
ada- representation. When it is quasitriangular we write εa = dcr1, where
dc is the coboundary in the above cohomology, r1 ∈ a ⊗ a is a solution to
CYBE, [r1, r1] = 0 on (a, [, ]a) and r1 + σ(r1) is ada-invariant where σ is the
permutation (12). In case r1 is skew-symmetric, it is a triangular Lie bial-
gebra and if moreover det(r1) 6= 0 we call it a non-degenerate triangular Lie
bialgebra. If (a, [, ], εa) is a Lie bialgebra we denote its quasitriangular double
Lie bialgebra as the set (a ⊕ a

∗, [, ]a⊕a∗, εa⊕a∗ = dcr), where r ∈ (a ⊕ a
∗)⊗2 is

the invariant canonical element [2]. The element Ω = r + σ(r) is symmetric
and ada⊕a∗-invariant.

2) The symbol
(

a[[~]], [, ]a[[~]]

)

will denote the Lie algebra over the ring
IR[[~]] obtained from the Lie algebra (a, [, ]a) over IR by the extension of
scalars IR → IR[[~]]. (a⊕ a

∗)[[~]] will denote the Lie algebra (bialgebra) over
IR[[~]] which is the extension of the Lie bialgebra (a⊕ a

∗, [, ]a⊕a∗, εa⊕a∗ = dcr)
over IR. It is obvious that Ω = r + σ(r) ∈ (a ⊕ a

∗)⊗2[[~]] is ada[[~]] invariant
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and that these Lie-algebras over IR[[~]] are deformations algebras [7] of their
corresponding Lie-algebras over IR.

3) Let rt = r1 + r2t + r3t
2 + · · · ∈ a ∧ a be an analytic function on a

neighborhood of 0 ∈ IR defining a non-degenerate, rank(r1) = dim a, solu-
tion of the CYBE [rt, rt] = 0 on the Lie algebra (a, [, ]a) over IR. For each
t, (a, [, ]a, εa = dcrt) is then a non-degenerate triangular Lie bialgebra on

MR. The symbol
(

a ⊕ a
∗
rt
, [, ]a⊕a∗rt

, εa⊕a∗rt
= dc r

)

will denote the correspond-

ing quasitriangular double Lie bialgebra on IR. Let µrt
: ∧2

a −→ ∧2
a
∗ be the

linear isomorphism defined by the Poisson cocycle rt. It induces an isomor-
phism between Poisson and Chevalley cohomology spaces [14]. Let (G, βt) be
the corresponding connected and simply-connected Lie group endowed with
the invariant symplectic structure βt = µrt

(rt).
4) Let r~ = r1+r2~+r3~

2+· · · ∈ (a∧a)[[~]] be an invertible element solu-
tion of the CYBE [r~, r~] = 0 on

(

a[[~]], [, ]a[[~]]

)

. The set
(

a[[~]], [, ]a[[~]], εa[[~]] = dcr~)
)

will denote the corresponding triangular non-degenerate Lie bialgebra over
IR[[~]] and its quasitriangular double Lie bialgebra will be denoted by
(

(a ⊕ a
∗
r~

)[[~]], [, ](a⊕a∗r~
) , εa⊕a∗r~

= dcr
)

. In this situation, let µr~
be the iso-

morphism similar to µrt
in 3).

5) We fix [9] a Lie associator Φ = exp P (~t12, ~t23) over IR.

3. Finite dimensional Etingof-Kazhdan quantization the-

ory.

3.1. Quantization of the pair (a⊕ a
∗; r). From theorem A” in [7], we can

deduce the following:

Theorem 3.1. [7] Let (a, [, ]a, εa), (a ⊕ a
∗, [, ]a⊕a∗, εa⊕a∗ = dcr) and Ω =

r+σ(r) be as in section 2, 1). Let Φ = exp P (~Ω12, ~Ω23) ∈ U(a⊕ a
∗)⊗3[[~]].

Let (U(a⊕a
∗)[[~]], ·,∆0, ǫ0, S0) be the usual Hopf universal enveloping algebra.

Write Φ =
∑

iXi ⊗ Yi ⊗ Zi and c =
∑

iXi · S0(Yi) · Zi. Then the set
(

U(a ⊕ a
∗)[[~]]; ·; 1; ∆0; ǫ0; Φ;S0;α = c−1; β = 1;R = e

~

2Ω
)

is a quasitriangular quasi-Hopf QUE-algebra whose classical limit [7] is (a⊕
a
∗; Ω).

The existence of the antipode follows from Theorem 1.6 in [7]. From Propo-
sitions 1.1 and 1.3 in [7] and from [11] it can be taken, [22], as the triple
(S0;α = c−1; β = 1).
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To quantize the pair (a ⊕ a
∗; r) is to obtain a quasitriangular-Hopf QUE-

algebra over IR[[~]] such that its classical limit is that pair. A main theorem
in this direction is the following (see also [8]):

Theorem 3.2. [9] Let (a, [, ]a, εa), (a ⊕ a
∗, [, ]a⊕a∗, εa⊕a∗ = dcr) and Ω =

r + σ(r) be as in section 2, 1). Let M± be the a ⊕ a
∗-modules with one

generator 1± and defined as follows: M+ = Ua
∗ · 1+, Ua · 1+ = 0 and

M− = Ua · 1−, Ua
∗ · 1− = 0. Then

1) The equalities i±(1±) = 1± ⊗ 1± define unique a ⊕ a
∗-module mor-

phisms i± : M± −→M± ⊗M±.

2) The equality φ(1) = 1+ ⊗ 1− defines a unique a⊕ a
∗-module morphism

φ : U(a ⊕ a
∗) −→M+ ⊗M−. φ is an isomorphism.

3) There exists an element J =
∑

ui ⊗ vi ∈ (U(a⊕ a
∗)[[~]])⊗̂2 with (id⊗

ǫ0)J = 1 = (ǫ0 ⊗ id)J such that when twisting [6, 7] the quasitriangular
quasi-Hopf algebra of theorem 3.1 via J−1 one obtains a quasitriangular Hopf
QUE-algebra, (U(a⊕ a

∗)[[~]]; ·; 1; ∆; ǫ0;S;R), which is a quantization of pair
(a ⊕ a

∗; r). The element J is

J = (φ−1 ⊗ φ−1)
(

Φ−1
1,2,34 ◦ Φ2,3,4 ◦ σ23 ◦ e

~

2Ω23 ◦ Φ−1
2,3,4 ◦ Φ1,2,34(i+ ⊗ i−)(φ(1))

)

,

and when writing Q =
∑

S0(ui) · vi, u ∈ a ⊕ a
∗ it is

∆(u) = J−1 · ∆0(u) · J, S(u) = Q−1 · S0(u) ·Q, R = σ(J−1) · e
~

2Ω · J

and Φ verifies the following equalities

Φ · (∆0 ⊗ id)(J) · (J ⊗ 1) = (1⊗∆0)(J) · (1⊗ J), R = 1⊗ 1 + ~r mod ~2.

This quasitriangular Hopf QUE-algebra will be denoted by A(a⊕a∗)[[~]],Ω,J−1.

3.2.Quantization of quasitriangular Lie bialgebras. 1) Let (a, [, ]a, εa =
dcr1) be a quasitriangular Lie bialgebra. Consider the following linear iso-
morphisms θ+, θ− : a ⊗ a −→ Hom(a∗, a) defined by

θ+(x⊗ y)(x∗) = x · x∗(y) θ−(x⊗ y)(x∗) = x∗(x) · y.

Write a± = Im θ±(r1) ⊆ a. The notion of the rank of r1 allows us to assert:
a) the subspaces Imθ±(r1) = a± associated with r1 ∈ a⊗a are canonically

isomorphic to (Imθ∓(r1))
∗ ≡ a

∗
∓.

b) r1 ∈ a+ ⊗ a− and r1 =
∑

i ai ⊗ bi, where ai ∈ a+ and bi ∈ a−, ∀ i =
{1, 2, · · · , rank(r1)}.
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c) the mapping χr1
: a

∗
+ → a− defined by χr1

(x∗) =
∑

i x
∗(ai) · bi is an

isomorphism.
As r1 is a solution of the CYBE, a+ and a− are Lie subalgebras of a, a

result from [12].
Using the isomorphism χr1

it is possible to define a Lie algebra structure
on a

∗
+ by [, ]∗

a+
= χ−1

r1
◦ [, ]a− ◦ (χr1

⊗ χr1
). Then we have

Theorem 3.3. The Lie algebra structures [, ]a∗+ on a
∗
+ and [, ]a+

on a+ are
compatible in the sense of Drinfeld (see [15, 16]). The mapping εa+

= φt :
a+ −→ a+ ⊗ a+ where φ(ξ1 ⊗ ξ2) = [ξ1; ξ2]a∗+ is then a 1-cocycle on (a+, [, ]a+

).
The set (a+, [, ]a+

, εa+
= φt) is a Lie bialgebra whose quasitriangular double

Lie bialgebra is (a+ ⊕ a
∗
+, [, ]a+⊕a

∗

+
, εa+⊕a

∗

+
= dcr+), where r+ is the invariant

canonical element.

From [12, 9] it follows

Proposition 3.4. The mapping π̃ : a+ ⊕ a
∗
+ −→ a, defined as π̃(x; ξ) =

x + χr1
(ξ) is a Lie-bialgebra-morphism. That is, a Lie-algebra morphism

verifying dcr1 ◦ π̃ = (π̃ ⊗ π̃) ◦ dcr+. Moreover (π̃ ⊗ π̃)r+ = r1. The symbol
π̃ will also denote the unique algebra morphism π̃ : U(a+ ⊕ a

∗
+) −→ U(a)

defined by the Lie algebra morphism π̃.

2) From theorems 3.1, 3.3 and proposition 3.4 it is possible to obtain a
quantization of the pair (a, r1 + σ(r1)). With the obvious notations we have

Theorem 3.5. Let (a+ ⊕ a
∗
+, [, ]a+⊕a

∗

+
, εa+⊕a

∗

+
= dc r+) be the quasitriangular

Lie bialgebra in theorem 3.3. Let (Ua[[~]], ·, 1,∆a, ǫa, Sa) be the usual Hopf
universal enveloping algebra. Let

(

U(a+ ⊕ a
∗
+)[[~]], ·, 1,∆+

0 , ǫ
+
0 ,Φ

+, S+
0 , α

+ = (c+)−1, β+ = 1, R+
0 = e

~

2Ω+

)

,

be the quasitriangular quasi-Hopf algebra in theorem 3.1 whose classical limit
is the pair (a+ ⊕ a

∗
+,Ω+). Then we have the equalities : (π̃ ⊗ π̃) ◦ ∆+

0 =

∆a ◦ π̃; π̃ ◦ S+
0 = Sa ◦ π̃ and putting Φ̃+ = (π̃ ⊗ π̃)Φ+, Ra = (π̃ ⊗ π̃)R+

0 , the

set (Ua[[~]], ·, 1,∆a, ǫa, Φ̃
+, Sa, α̃ = (π̃(c+))−1, β̃ = 1, Ra) is a quasitriangular

quasi-Hopf QUE-algebra whose classical limit is the pair (a, r1 + σ(r1)).

The above results allow us to obtain a quantization of the pair (a, r1). With
the obvious notations the result can be stated as follows [9] (see also [22]):



6 C. MORENO AND J. TELES

Theorem 3.6. Let (a, [, ]a, εa = dcr1) be a quasitriangular Lie bialgebra. Let
(a+ ⊕ a

∗
+, [, ]a+⊕a

∗

+
, εa+⊕a

∗

+
= dc r+) be the quasitriangular Lie bialgebra in the-

orem 3.3. Let (U(a+ ⊕ a
∗
+)[[~]], ·, 1; ε+

0 ; ∆+, S+, R+) be the quasitriangular

Hopf QUE algebra obtained as in theorem 3.2, 3). Write J̃+
r1

= (π̃ ⊗ π̃)J+.

We have the equality

Φ̃+
1,2,3 · (∆a ⊗ id)J̃+

r1
· (J̃+

r1
⊗ 1) = (id⊗ ∆a)J̃

+
r1
· (1 ⊗ J̃+

r1
).

Write again J̃r1
=

∑

pi⊗qi; a ∈ Ua, Q̃ =
∑

Sa(pi) ·qi. The set (Ua[[~]], ·, 1,
∆̃, ǫ̃ = ǫa, S̃, R̃) where

∆̃(a) = (J̃+
r1

)−1 · ∆a(a) · J̃
+
r1

; ǫa; R̃ = (π̃ ⊗ π̃)R+; S̃(a) = Q̃−1 · Sa(a) · Q̃

is a quasitriangular Hopf QUE-algebra which is a quantization of the pair
(a; r1), and has been obtained by a twist, [6] , via the element (J̃+

r1
)−1 from

the quasitriangular quasi-Hopf algebra in theorem 3.5.

4. Quantization of non-degenerate triangular Lie bialge-

bras

1) In case of a non-degenerate triangular Lie bialgebra (a, [, ]a, εa = dcr1),
we have rank(r1) = dim a, r1 ∈ ∧2(a). Also a+ = a− = a as Lie algebras,
(π̃⊗ π̃)Ω+ = (π̃⊗ π̃)(r1 +σ(r1)) = 0 and we get the equality εa+

= εa = dcr1.

Definition 4.1. [1, 5, 19, 17]) An ISP on a non-degenerate triangular Lie
bialgebra (a, [, ]a, εa = dcr1) is any element F =

∑∞
0 Fk · ~k ∈ Ua

⊗2[[~]]
verifying the following equalities:

1) (ǫa ⊗ id)F = (id⊗ ǫa)F = 1 ⊗ 1;
2) F − σ(F ) = r1~ mod~2;
3) (∆a ⊗ 1)F · (F ⊗ 1) = (1 ⊗ ∆a)F · (1 ⊗ F ).

Theorem 3.6 allows us to obtain an ISP on any non-degenerate triangular
Lie bialgebra. In fact it allows us to obtain, modulo equivalence, all of them,
as we will see in section 6.
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Theorem 4.2. Suppose in Theorem 3.6 that (a, [, ]a, εa = dcr1) is a non-
degenerate triangular Lie bialgebra. Then

Φ̃ = (π̃ ⊗ π̃ ⊗ π̃)Φ = 1 ⊗ 1 ⊗ 1.

1) (ǫa ⊗ id)J̃r1 = (id⊗ ǫa)J̃r1 = 1 ⊗ 1.

2) J̃r1
= 1 ⊗ 1 + 1

2
r1~ + · · ·

3) (∆a ⊗ 1)J̃r1
· (J̃r1

⊗ 1) = (1 ⊗ ∆a)J̃r1
· (1 ⊗ J̃r1

).

4) R̃ = (π̃ ⊗ π̃)R = σ(J̃−1
r1

) · (1 ⊗ 1) · J̃r1
= 1 ⊗ 1 + r1~ + · · ·

In particular J̃r1
is an ISP on (a, [, ]a, εa = dcr1.)

The triangular Hopf QUE algebra (Ua[[~]], ·, 1, ∆̃, ǫ̃ = ǫa, S̃, R̃), denoted by
A

a[[~]],J̃−1
r1

, which is obtained by a twist via J̃−1
r1

from the trivial triangular

Hopf QUE algebra (Ua[[~]], ·, 1,∆a, ǫa, Sa, Ra = 1⊗1) is a quantization of the
pair (a; r1).

2) The above proposition shows how to obtain an ISP on (G, βt) as in
3) Section 2. The following proposition will show that if we put ~ in place
of t in this star product we have again an ISP but this time on the Lie
group (G, β1). In this way we don’t get all the ISPS on (G, β1) but if we now
replace the above r~ coming from rt by any element in (a∧a)[[~]] of the form
r~ = r1 + · · · ∈ (a ∧ a)[[~]] we obtain, up to equivalence, all the (ISP’s) on
(G, β1).

Proposition 4.3. Let
(

(a ⊕ a
∗
r~

)[[~]], [, ]a⊕a∗r~

, εa⊕a∗r~

= dcr
)

and r~ ∈ (a ∧

a)[[~]] be as in Section 2, 4) . For any N ∈ IN there exists an analytic
function in a neighborhood of t = 0, rN

t = r1 + r2t + r3t
2 + · · · ∈ a ∧ a and

a solution of YBE on (a, [, ]a), such that when replacing t by ~ in the above
series expansion rN

t and r~ coincide up to order N.

Proof:

In the Poisson cohomology on the Lie algebra (a[[~]], [, ]a[[~]]) the element
β~ = β1+β2~+β3~

2+· · · ∈ (a∗∧a
∗)[[~]] defined as β~ = µr~

(r~) is a Chevalley
2-cocycle. The polynomial βN

t = β1+β2t+β3t
2+· · ·+βN−1t

N ∈ a
∗∧a

∗ is also a
Chevalley 2-cocycle on (a, [, ]a). The corresponding element rN

t = r1+r2t+· · ·
satisfies YBE on (a, [, ]a) and when we replace ~ in place of t it coincides with
r~ up to term N.

3) From theorem 3.1 we may deduce, in the obvious notations,
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Theorem 4.4. Let
(

a ⊕ a
∗
rt
, [, ]a⊕a∗rt

, εa⊕a∗rt
= dc r

)

over IR be as in Section 2,

3). The set

(U(a ⊕ a
∗
rt
)[[~]], ·t, 1,∆

t
0, ǫ

t
0,Φrt

, St
0, α

t = c−1
t , βt = 1, Rt

0 = e
~

2Ωt),

where ct =
∑

iXi·tS
t
0(Yi)·tZi, with Φrt

=
∑

iX
t
i⊗Y

t
i ⊗Z

t
i , is a quasitriangular

quasi-Hopf QUE algebra over IR[[~]] with the pair (a⊕ a
∗
rt
,Ωt) as its classical

limit.

From theorem 4.4 and proposition 4.3 we can prove

Theorem 4.5. Let
(

a ⊕ a
∗
r~

[[~]], [, ]a⊕a∗r~

, εa⊕a∗r~

= dc r
)

over IR[[~]] be as in

Section 2, 4). The set
(

U(a ⊕ a
∗
r~

)[[~]], ·~, 1,∆
~
0, ǫ0,Φr~

, S~
0 , α

~ = c−1
~ , β~ = 1, R~

0 = e
~

2Ω~

)

is then a quasitriangular quasi-Hopf QUE algebra over IR[[~]], where c~ =
∑

iX
~
i ·~ S

~
0 (Y ~

i ) ·~ Z
~
i with Φr~

=
∑

iX
~
i ⊗ Y ~

i ⊗Z~
i and S~

0 is the antipode of
U(a ⊕ a

∗
r~

[[~]]).

Proof:

This theorem follows from Theorem A” in [7]. In view of the next sections we
want to obtain it from theorem 4.4 by quantizing first the Lie groups (G, βt).
All the elements in the above set in the theorem are well defined with the
corresponding meanings on U(a⊕ a

∗
r~

)[[~]] and can be seen as those obtained
from the corresponding ones in theorem 4.4 if we use the full-meaning trick
of putting ~ in place of t. To prove that this set defines a quasitriangular
quasi-Hopf QUE algebra over IR[[~]] we need to prove the equalities which
define this structure [6, 7]. These equalities are satisfied in the case of rt.
This means that for each one of them and when an ordered basis is used in
U(a⊕a

∗
rt
) an infinite set of polynomials in the components of rt are zero. But

the set of these components is characterized just by the algebraic equations
characterizing a solution of YBE. As a consequence we can see that the
corresponding equalities are also satisfied if we replace everywhere t by ~,
and of course also in the products of elements in the above basis, that is rt
by the corresponding solution r~ of YBE on (a[[~]], [, ]a[[~]]). Then applying
Proposition 4.3 we get the theorem.

4) Theorem 3.2 allows us to write
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Theorem 4.6. Let
(

a ⊕ a
∗
rt
, [, ]a⊕a∗rt

, εa⊕a∗rt
= dc r

)

over IR be as in Section

2, 3). Write Jrt
=

∑

i ui ⊗ vi ∈ U(a ⊕ a
∗
rt
)⊗

2

[[~]] where

Jrt
= (φ−1

t ⊗ φ−1
t )

(

(Φ−1
rt

)1,2,34 ◦(Φrt
)2,3,4 ◦ σ23 ◦ e

~

2 (Ωt)23 ◦ (Φ−1
rt

)2,3,4◦

◦(Φrt
)1,2,34◦ ◦(i+ ⊗ i−) ◦ φt(1))

is the corresponding element to the one introduced in theorem 3.2, part 3).
In the present case we have written φt : U(a ⊕ a

∗
rt
) −→ M rt

+ ⊗ M rt

− for
the morphism φ. The element Jrt

satisfies the equalities (id ⊗ ǫt0)Jrt
= 1 =

(ǫt0 ⊗ id)Jrt
and when twisting the quasitriangular quasi-Hopf QUE-algebra

in theorem 4.4 via J−1
rt

one obtains a quasitriangular Hopf QUE-algebra
(

U(a ⊕ a
∗
rt
)[[~]], ·t, 1,∆t, ǫt ≡ ǫt0, St, Rt

)

over IR[[~]] whose classical limit is the
pair (a ⊕ a

∗
rt
; rt) and which will be denoted by A

a⊕a∗rt
[[~]],Ωt,J

−1
rt
. If we write

Qt =
∑

i S
t
0(ui) ·t vi the above defining elements are

∆t(u) = J−1
rt

·t ∆
t
0(u) ·t Jrt

; St(u) = Q−1
t ·tS

t
0(u) ·tQt;Rt = σ(Jrt

)−1 ·t e
~

2Ωt ·t Jrt
,

and Φrt
satisfies the following equalities

Φrt
·t(∆

t
0⊗id)(Jrt

)·t(Jrt
⊗1) = (1⊗∆t

0)(Jrt
)·t(1⊗Jrt

);Rt = 1⊗1+~rt mod ~2.

The next theorem can be proved from theorem 4.6 in a similar way as
theorem 4.5. See also Lemma 4.8.

Theorem 4.7. The set (U(a ⊕ a
∗
r~

)[[~]], ·~, 1,∆~, ǫ0, S~, R~) is a quasitrian-
gular Hopf QUE algebra over IR[[~]]. Its defining elements are the following

∆~(a) = J−1
r~

·~ ∆~
0(a) ·~ Jr~

, S~(a) = Q−1
~ ·~ S

~
0 (a) ·~ Q~,

R~ = σ(J−1
r~

) ·~ e
~

2Ω ·~ Jr~
,

where Q~ =
∑

i
S~

0 (pi) ·~ qi, Jr~
=

∑

i
pi⊗qi, a ∈ U(a⊕a

∗
r~

)[[~]] and Φr~
satisfies

the following equalities

Φr~
·~(∆

~
0⊗id)(Jr~

)·~(Jr~
⊗1) = (1⊗∆~

0)(Jr~
)·~(1⊗Jr~

);R~ = 1⊗1+~r~mod ~2.

This quasitriangular Hopf QUE algebra over IR[[~]] is therefore obtained
from the quasitriangular quasi-Hopf algebra in theorem 4.5 via the element

J−1
r~

∈ ̂U(a ⊕ a∗r~
)⊗̂ ̂U(a ⊕ a∗r~

). Its classical limit is the quasitriangular Lie
bialgebra (a ⊕ a

∗
r1
, [, ]a⊕a∗r1

, ε = dcr). We denote it by A
a⊕a∗r~

,Ω,J−1
r~

.
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5) The following two lemmas will be needed.
Choose an ordered basis {ea} in a, and its dual basis {ea} in a

∗. Then we
can construct ordered bases in a⊕ a

∗
rt
, Ua, Ua

∗, U(a⊕ a
∗
rt
)⊗2. We can prove

Lemma 4.8. [22] Let rt = r1 + r2t + r3 t
2 + · · · ∈ a ∧ a be as in Section 2,

3). The element Jrt
∈ U(a ⊕ a

∗
rt
)⊗2[[~]] in Theorem 4.6 can be written as

Jrt
= 1 ⊗ 1 +

1

2
r ~ +

∑

k≥2

(

r
i1j1
t . . . r

il(k)jl(k)

t Qi1,...,il(k),j1,...,jl(k),k

)

~k,

where Qi1,...,il(k),j1,...,jl(k),k ∈ U(a ⊕ a
∗
rt
)⊗2 is a (finite) linear combination of

tensor products of elements in the above ordered basis. rt is manifested in
every element of the ordered basis through the product in U(a ⊕ a

∗
rt
) but it

does not appear in the coefficients defining Qi1,...,il(k),j1,...,jl(k),k.

Proof:

From the expression of J on theorem 3.2 and because Φ = 1⊗ 1⊗ 1 +O(~2)
we have

Jrt
= (φ−1

t ⊗ φ−1
t )

(

(1 +
~

2
Ω23)(1+ ⊗ 1− ⊗ 1+ ⊗ 1−)

)

mod ~2

=
(

(φ−1
t ⊗ φ−1

t ) (1+ ⊗ 1− ⊗ 1+ ⊗ 1−)+

+
1

2
(φ−1

t ⊗ φ−1
t ) (1+ ⊗ r12(1− ⊗ 1+) ⊗ 1−) ~

)

mod ~2

=

(

1 ⊗ 1 +
1

2
r~

)

mod ~2.

In the expression for Jrt
the coefficient of ~k, for k ≥ 2, is an element in

U(a ⊕ a
∗
rt
) ⊗ U(a ⊕ a

∗
rt
) which depends on rt (by the brackets on Φrt

and by
the products on U(a ⊕ a

∗
rt
)), so is of the form

r
i1j1
t . . . r

il(k)jl(k)

t Qi1,...,il(k),j1,...,jl(k),k,

where Qi1,...,il(k),j1,...,jl(k),k ∈ U(a⊕ a
∗
rt
)⊗U(a⊕ a

∗
rt
) only depends on rt through

the products on the enveloping algebra U(a ⊕ a
∗
rt
) in the ordered basis.

As the product in Ua is independent of rt, applying π̃t ⊗ π̃t to Jrt
and then

putting t = ~, we can also prove

Lemma 4.9. [22] Let rt = r1 + r2t + r3 t
2 + · · · ∈ ∧2(a) be as in Section 2,

3). Write rl = rab
l ea ⊗ eb, r

ab
l + rba

l = 0, l = 1, 2, 3, · · · . Let π̃t be the Lie
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bialgebra morphism defined in proposition 3.4 and define J̃rt
= (π̃t ⊗ π̃t)Jrt

,
J̃r~

= (J̃rt
) |t→~∈ (Ua)⊗2[[~]]. Write it as a formal power series in ~. The

element J̃r~
can be written as

J̃r~
= 1 ⊗ 1 +

1

2
r1~ +

∞
∑

R=2

( 1

2
rR +

∑

i2,j2,...iR,jR

(
∑

Ai2,j2
(R),...,AiRjR

(R)

(ri2j2
1 )Ai2j2

(R) . . . (riRjR

R−1)
AiRjR

(R)Hi2,...,iR,j2,...,jR,Ai2j2
(R),...,AiRjR

(R),R) ) ~R,

where Hi2,...,iR,j2,...,jR,Ai2j2
(R),...,AiRjR

(R),R ∈ (Ua)⊗2 is a (finite) linear combi-
nation of tensor products of elements in the above ordered basis and it is
independent of rl, l = 1, 2, 3, . . .

6) From lemma 4.9 we obtain the following proposition and corollary
which will be applied in the next section.

Proposition 4.10. [22] Let rt = r1 +r2 t+r3 t
2 + · · · ∈ Λ2(a) be as in Section

2, 3). Let (a, [, ]a, εa = dcrt) be the non-degenerate triangular Lie bialgebra

defined by rt. Let
(

Ua[[~]], ·, ∆̃t, S̃t, R̃t

)

be the triangular Hopf QUE-algebra

whose classical limit is the pair (a; rt) and was obtained in theorem 4.2 from
the usual triangular Hopf algebra (Ua[[~]], ·, ∆a, Sa, Ra = 1) by a twist via
(J̃rt

)−1. Consider, as before, the element J̃r~
= (J̃rt

) |t→~∈ Ua[[~]]⊗̂Ua[[~]].
Then the following equalities hold:

(a) (∆a ⊗ id)J̃r~
·~ (J̃r~

⊗ 1) = (1 ⊗ ∆a)J̃r~
·~ (id⊗ J̃r~

);
(b) J̃r~

= 1 ⊗ 1 + 1
2r1 ~ + 0(~2).

Let us define ∆(a) = (J̃r~
)−1 ·~ ∆a(a) ·~ J̃r~

, R = (σJ̃r~
)−1 ·~ (1 ⊗ 1) ·~ J̃r~

and S(a) = Q−1 ·~ Sa(a) ·~Q, where Q =
∑

Sa(ai) ·~ bi, J̃r~
=

∑

ai⊗ bi; ai, bi ∈
Ua[[~]]. The set (Ua[[~]], ·~,∆, S, R) is then a triangular Hopf QUE algebra
obtained twisting the usual triangular Hopf algebra (Ua[[~]], ·,∆a, Sa, Ra = 1 ⊗ 1)
via the element (J̃r~

)−1 ∈ Ua[[~]]⊗̂Ua[[~]]. We write it as A
a[[~]],(J̃r

~
)−1.

Corollary 4.11. Let r′t = r1+r2t+r3t
2 + · · ·+rk−1t

k−2 +(rk +sk)t
k−1+ · · · ∈

Λ2(a) be another element. Let J̃r′
~

be the star product determined by r′t in the

similar way as J̃r~
was from rt. Then J̃r~

and J̃r′
~

coincide up to order k − 1
and

(

J̃r′
~

)

k
−

(

J̃r~

)

k
=

1

2
sk.
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5. ISP F determines r~ ∈ (a ⊗ a)[[~]].
J̃Φ
r~

and F are equivalent.

Let F ∈ Ua[[~]]⊗̂Ua[[~]] be an ISP on the non-degenerate triangular Lie
bialgebra (a, [, ]a, εa = dc r1). Let Aa[[~]],F−1 be the triangular Hopf QUE al-
gebra obtained by a twist via F−1 from the trivial triangular Hopf QUE
algebra (U(a)[[~]], ·, 1,∆a, Sa, Ra = 1 ⊗ 1) . It is then a quantization of the
pair (a, r1).

The following proposition does not depend on any specific context of quan-
tization [19] but only on the notion of deformation of associative algebras
[10], the fact that Hochschild cohomology spaces of coalgebra (Ua, IR) are
Hk(Ua) = Λk

a, k ∈ N, [3], and the Hochschild cohomological [18] interpre-
tation of the Quantum Yang Baxter equation.

Proposition 5.1. [18] Let F =
∑∞

i Fi ~i and F ′ =
∑∞

i F ′
i ~i be ISP on

(a, [, ]a, εa = dc r1). Let Aa[[~]],F−1 and Aa[[~]],F ′−1 be as before in this section.
Suppose that F and F ′ coincide up to order k, i.e. F ′

l = F ′
l , l = 1, 2, · · · , k.

Then: a) there exist hk+1 ∈ a∧ a and Ek+1 ∈ Ua such that F ′
k+1 −Fk+1 =

hk+1 + dHEk+1 where dH is the coboundary operator in the Hochschild co-
homology of Ua ; b) hk+1 is not only a Hochschild 2-cocycle but also a
Poisson 2-cocycle relative to the invariant Poisson structure defined by the
element r1 ∈ a ∧ a.

Again, the above Hochschild cohomology spaces and proposition 5.1 play a
central role in the proof of the next theorem. In the context of quantification
in [9] the next theorem corresponds to a main theorem by Drinfeld in the
context of quantification in [5] and in [19, 20] there is a proof of this Drinfeld
theorem. See the References in [20] for a similar theorem about Star Products
on general symplectic manifolds and [13] on Poisson manifolds.

Theorem 5.2. Fix a Lie associator Φ. Let Aa[[~]],F−1 be as defined at the
beginning of this section. We have:

(a) There exist elements r~ = r1 + r2~ + r3~
2 + · · · ∈ (∧2

a)[[~]] and Er~ =
1 +Er~

1 ~ + · · · + Er~

n ~n + · · · ∈ Ua[[~]] such that

F = ∆a((E
r~)−1) ·~ J̃

Φ
r~
·~ (Er~ ⊗ Er~);

i.e., F and J̃Φ
r~

are equivalent ISPS over the non-degenerate triangular Lie
bialgebra (a, [, ]a, εa = dc r1).
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(b) The triangular Hopf QUE algebras Aa[[~]],F−1 and A
a[[~]],(J̃Φ

r~
)
−1 are iso-

morphic.

Proof:

(a) We construct an analytic function

rt(n) = r1 +
∞

∑

l=2

rl(n)tl−1 ∈ ∧2(a)

which is a non-degenerate solution of CYBE and we prove that J̃Φ
r~(n) and F

are equivalent at order n, n ∈ IN, by induction on the order of equivalence.
The results comes from that equivalence.

(i) Let J̃r~(1) be the star product obtained from the E-K quantization
(proposition 4.10), determined by the CYBE solution rt(1) = r1.

As Aa[[~]],F−1 is a quantization of the given Lie bialgebraR = 1⊗1+r1~+. . . ,
and because it is the twist of the usual triangular Hopf QUE algebra (Ra =
1 ⊗ 1) we have

F1 − σF1 = r1 (5.1)

and, by construction,

(J̃r~(1))1 =
1

2
r1. (5.2)

The associative property at order 1 for F and J̃r~(1) is dHF1 = 0 and

dH(J̃r~(1))1 = 0, dH being the Hochschild cohomology operator. Therefore,

dH((J̃r~(1))1 − F1) = 0, i.e., (J̃r~(1))1 − F1 is a Hochschild 2-cocycle. The
2-cocycle condition implies that there exist h1 ∈ a∧a and E1 ∈ Ua such that

(J̃r~(1))1 − F1 = h1 + dHE1. (5.3)

On the other hand, from (5.1) and (5.2), and because (J̃r~(1))1 is skew-

symmetric, we conclude that F1−(J̃r~(1))1 = σ(F1−(J̃r~(1))1), i.e., F1−(J̃r~(1))1

is symmetric. As h1 is the skew-symmetric part in (5.3), we get h1 = 0 and

(J̃r~(1))1 − F1 = dHE1. (5.4)

J̃r~(1) and F are equivalent to order 1 (Er~(1) = 1 + E1~).

(ii) J̃r~(1) and F being equivalent to order 1, we know (Gerstenhaber [10])

that (J̃r~(1))2−F2+G2(E1, (J̃r~(1))1, F1) is a Hochschild 2-cocycle. Then, there
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exist h2 ∈ a ∧ a and E2 ∈ Ua such that

(J̃r~(1))2 − F2 +G2(E1, (J̃r~(1))1, F1) =
1

2
h2 + dHE2. (5.5)

Put Er~(2) = 1 + E1~ + E2~
2 ∈ Ua[[~]] and consider the star product,

equivalent to F , F
′(1) = ∆a((E

r~(2))−1) · F · (Er~(2) ⊗ Er~(2)).
At first order, the equivalence condition is

F
′(1)
1 − F1 = dHE1, (5.6)

and, from (5.4), we conclude that F
′(1)
1 = (J̃r~(1))1.

At order 2, the equivalence can be written in the form

F
′(1)
2 − F2 +G2(E1, F

′(1)
1 , F1) = dHE2 (5.7)

but, as F
′(1)
1 = (J̃r~(1))1, we get G2(E1, F

′(1)
1 , F1) = G2(E1, (J̃r~(1))1, F1) and,

comparing (5.5) with (5.7), we obtain

F
′(1)
2 = (J̃r~(1))2 −

1

2
h2. (5.8)

As (J̃r~(1))1 = F
′(1)
1 , h2 is a Poisson 2-cocycle ([19]), so that β2 = µr1(h2)

is an invariant De Rham (or Chevalley) 2-cocycle, where µr1
is the isomor-

phism defined before. We consider β1 = µr1
(r1) ∈ a

∗ ∧ a
∗ (equivalent to

(r1)
ab(β1)ac = δb

c) and define βt(2) = β1 + β2t (dcβt = 0 and β1 is non-
degenerate). Let us define rt(2) = r1(2) +

∑

k≥2 rk(2)tk−1 ∈ a ∧ a[[t]], by

µ−1
rt(2)(βt(2)) = rt(2). Then, r1(2) = r1 = r1(1) and r2(2) = −µ−1

r1
(β2) = −h2

and [rt(2), rt(2)] = 0, rt(2) is a solution of the CYBE.
Let J̃r~(2) be the star product determined following Etingof-Kazhdan by

the element rt(2), after t = ~, as in proposition 4.10. We have, also from
proposition 4.10, that (J̃r~(2))1 = (J̃r~(1))1 and (J̃r~(2))2 = (J̃r~(1))2 + 1

2r2(2) =

(J̃r~(1))2 −
1
2
h2. Thus, (J̃r~(2))1 = F

′(1)
1 = (J̃r~(1))1, and from (5.8), we have

(J̃r~(2))2 = F
′(1)
2 . Replacing these equalities in the expressions (5.6) and (5.7),

we get

(J̃r~(2))1 − F1 = dHE1

(J̃r~(2))2 − F2 +G2(E1, (J̃r~(2))1, F1) = dHE2.

So, F is equivalent to J̃r~(2), to order 2, J̃r~(2) being the star product deter-

mined by rt(2), with µ−1
rt(2)(βt(2)) = rt(2) and βt(2) = β1 + µr1

(h2)t.



THE SET OF INVARIANT STAR PRODUCTS ON TRIANGULAR LIE BIALGEBRAS 15

(iii) Using the induction hypothesis, and following the same steps, we con-
clude the proof.

(b) this part follows from part a) and [7] page 841, Remark 2.

As a consequence we have the following isomorphisms (see also [21]):

Corollary 5.3. Let Φ,Φ′ be two Lie associators. Let Aa[[~]],F−1 be given as
in the theorem. Let r~, r

′
~ ∈ (∧2

a)[[~]] the elements respectively determined
in the theorem by the pairs (Φ;Aa[[~]],F−1) and (Φ′;Aa[[~]],F−1). Then we have

Aa[[~]],F−1

isom
≈ A

a[[~]],(J̃Φ
r~
)
−1

isom
≈ A

a[[~]],(J̃Φ′

r~
)
−1

6. Invariant star products on (a, [, ]a, εa = dcr1)
1) We now develop what we wrote in 3) at the Introduction. We need

the following proposition:

Proposition 6.1. [22] Let Γ be a set. Let (a, [, ]a, ε = dcrs) be a non-
degenerate triangular Lie bialgebra, s ∈ Γ. Let ϕ1

s : a −→ a a Lie algebra
isomorphisms ∀ s ∈ Γ. Let r′s be the element in a∧a defined by r′s = (ϕ1

s⊗ϕ
1
s)rs.

a) The set (a, [, ]a, ε
′
a

= dcr
′
s) is a non-degenerate triangular Lie bialgebra.

b) The transposed map (ϕ1
s)

t : a
∗
r′s
−→ a

∗
rs

is a Lie algebra isomorphism.

c) The pair (ϕ1
s;ϕ

2
s = ((ϕ1

s)
t)−1), s ∈ Γ, defines a Lie bialgebra isomor-

phism between the Lie bialgebra a⊕a
∗
rs

(the classical double of the Lie bialgebra
(a, [, ]a, εa = dcrs)) and the Lie bialgebra a ⊕ a

∗
r′s

(the classical double of the

Lie bialgebra (a, [, ]a, ε
′
a

= dcr
′
s)). Furthermore, this isomorphism sends the

canonical element r into itself.

Corollary 6.2. [22] a) Under the hypothesis of the proposition let βs =
µrs

(rs), β
′
s = µr′s(r

′
s). Then (ϕ2

s ⊗ ϕ2
s)βs = β ′

s.

b) Conversely, let (a, [, ]a, ε = dcrs) and (a, [, ]a, ε
′
a

= dcr
′
s) be non-degenerate

triangular Lie bialgebras. Let βs and β ′
s be as in a). Let ϕ1

s : a −→ a be a
Lie algebra isomorphism and ϕ2

s = ((ϕ1
s)

t)−1. Suppose that (ϕ2
s ⊗ ϕ2

s)βs = β ′
s.

Then, (ϕ1
s ⊗ ϕ1

s)rs = r′s.

2) Let (a, [, ]a) be a Lie algebra over IR. Consider the following Lie-algebra
isomorphisms: ϕ1

t = exp(t · adXt
) where Xt = X1 +X2t+X3t

2 + · · · ∈ a is an
analytic function in a neighborhood of 0 ∈ IR. Then ϕ2

t = exp(−t · adt

Xt
) =

exp(t · ad∗Xt
). Our interest is in the map ϕ2

t ⊗ ϕ2
t = exp(ad∗tXt

)⊗
2

. We have

ϕ2
t ⊗ ϕ2

t = exp(ad∗tXt
⊗ 1 + 1 ⊗ ad∗tXt

) and then
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Proposition 6.3. Let βt = β1 + β2t + β3t
2 + · · · ∈ ∧2(a∗) be an analytic

function in a neighborhood of 0 ∈ IR defining a non-degenerate 2-cocycle ∀ t.
β1, β2, · · · ∈ ∧2(a∗) are then 2-cocycles and β1 is non-degenerate. Let Xt be
as before. Then we obtain

exp(ad∗tXt
)⊗

2

(βt) = exp(ad∗tXt
⊗ 1 + 1 ⊗ ad∗tXt

)(βt) = βt + dcαt,

where αt = α1t+α2t
2+α3t

3+· · · ∈ a
∗ is an analytic function in a neighborhood

of 0 ∈ IR given by

αk =
k

∑

j=1

(

k−j+1
∑

i=1

1

i!

∑

a1+···+ai=k−j+1

a1,...,ai≥1

(

(−1)i+1(iXa1
βj) · adXa2

· · · adXai

)

)

.

Proof:

The first terms of the series are:

exp(ad∗tXt
⊗ 1 + 1 ⊗ ad∗tXt

)(β1) = β1 + (1 ⊗ ad∗X1
+ ad∗X1

⊗ 1)(β1)t+

+

(

(1 ⊗ ad∗X2
+ ad∗X2

⊗ 1) +
1

2!
(1 ⊗ ad∗X1

+ ad∗X1
⊗ 1)2

)

(β1)t
2 + · · · ,

because

exp(ad∗tXt
⊗ 1 + 1 ⊗ ad∗tXt

) =

= 1 ⊗ 1 +
∑

p≥1







p
∑

i=1

1

i!

∑

a1+···+ai=p

a1,...,ai≥1

i
∏

j=1

(1 ⊗ ad∗Xaj
+ ad∗Xaj

⊗ 1)






tp. (6.9)

For any ea, eb ∈ a elements in a basis, we have
〈

(1 ⊗ ad∗X1
+ ad∗X1

⊗ 1)(β1); ea ⊗ eb

〉

= −〈β1; (1 ⊗ adX1
+ adX1

⊗ 1)ea ⊗ eb〉

= −〈β1; ea ⊗ [X1, eb] + [X1, ea] ⊗ eb〉

= −X i
1C

t
ib(β1)at −X i

1C
k
ia(β1)kb

= X i
1C

k
ab(β1)ki

= (−iX1
β1)([ea, eb])

= 〈dc(iX1
β1); ea ⊗ eb〉 ,

where we used that β1 is a 2-cocycle (β1([x, y], z)+β1([y, z], x)+β1([z, x], y) =
0, x, y, z ∈ a), Ck

ab are the structure constants of the Lie algebra a in a basis
{ei} and dcα(ea ⊗ eb) = −α([ea, eb]).
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So, we obtain

(1 ⊗ ad∗X1
+ ad∗X1

⊗ 1)(β1) = d(iX1
β1), (6.10)

for any cocycle β1 and any X1 ∈ a.
With a similar computation, for any X1, X2 ∈ a, we get

(1⊗ad∗X2
+ad∗X2

⊗1) ·(1⊗ad∗X1
+ad∗X1

⊗1)(β1) = dc (−(iX1β1) · adX2) . (6.11)

By (6.10) and (6.11), we have

exp(ad∗tX ⊗ 1 + 1 ⊗ ad∗tX)(β1) = β1 + dc(iX1
β1)t+

+

(

dc(iX2
β1) +

1

2!
dc(−(iX1

β1) · adX1
)

)

t2 + . . .

By induction it is possible to prove that, for any n, X1, X2, . . . , Xn ∈ a and
any cocycle β1,

(1 ⊗ ad∗Xn
+ ad∗Xn

⊗ 1) · · · (1 ⊗ ad∗X2
+ ad∗X2

⊗ 1) · (1 ⊗ ad∗X1
+ ad∗X1

⊗ 1)β1 =

= dc

(

(−1)n+1(iX1
β1) · adX2

· · · · adXn−1
· adXn

)

.

With this result, and from (6.9), it is clear that

exp(ad∗tXt
⊗ 1 + 1 ⊗ ad∗tXt

)(β1) = β1 + dcγt,

where γt = γ1t+ γ2t
2 + . . . is the 1-cochain given by

γk =
k

∑

i=1

1

i!

∑

a1+···+ai=k

a1,...,ai≥1

(

(−1)i+1(iXa1
β1) · adXa2

· · · adXai

)

.

Since, for each t, Xt ∈ a and exp(adtXt
) : a −→ a, we have exp(ad∗tXt

) :
a
∗ −→ a

∗, i.e., β1 + dcγt ∈ a
∗, so dcγt ∈ a

∗, for each t.
Applying this result to the cocycles β1, β2, β3, . . . , we get the expression

given.

A converse of proposition 6.3 is:

Proposition 6.4. Let βt = β1 + β2t + β3t
2 + · · · ∈ ∧2(a∗) as in proposition

6.3. Let αt = α1t+α2t
2+α3t

3+ · · · ∈ a
∗ be an analytic function. Define β ′

t =
βt+dcαt. Then, there exists a unique Xt = X1+X2t+X3t

2+· · · ∈ a, analytic,
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such that exp(ad∗tXt
)⊗

2

(βt) = β ′
t, where Xp = −(ωp ⊗ 1)r1 = −χr1

(ωp), r1 =

µ−1
r1

(β1), ω1 = α1 and, for p ≥ 2,

ωp =αp −

p
∑

i=2

1

i!

∑

a1+···+ai=p

a1,...,ai≥1

(

(−1)i+1(iXa1
β1) · adXa2

· · · adXai

)

−

p
∑

j=2

(

p−j+1
∑

i=1

1

i!

∑

a1+···+ai=p−j+1

a1,...,ai≥1

(

(−1)i+1(iXa1
βj) · adXa2

· · · adXai

)

)

.

Proof:

By the previous theorem, we know that, for any Xt ∈ a in the above form,
we have

exp(ad∗tXt
)⊗

2

(βt) = βt + dcαt,

where αt = α1t+α2t
2+· · · ∈ a

∗ is the 1-cochain of theorem 6.3. The question
now is to know if it is possible to determine Xt = X1 + X2t + X3t

2 + . . .

in such a way that this 1-cochain αt is equal to the 1-cochain given αt =
α1t+ α2t

2 + . . . . The elements X1, X2, · · · ∈ a must satisfy

α1 = iX1
β1

α2 = iX2
β1 −

1

2!
(iX1

β1) · adX1
+ iX1

β2.

Since β1 is non-degenerate, the first equality has a (unique) solution

X1 = −(α1 ⊗ 1)r1 = −χr1
(α1),

where r1 = µ−1
r1

(β1) and χr1 is the map defined before.
From the second equality, X1 is known and β1 being non-degenerate, we

obtain

X2 = −χr1

(

α2 +
1

2!
(iX1

β1) · adX1
− iX1

β2

)

.

Suppose now that we know X1, X2, . . . , Xp−1. Putting αp equal to the ex-
pression given in theorem 6.3 with k = p and separating some terms of the
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sum, we obtain

αp = iXp
β1 +

p
∑

i=2

1

i!

∑

a1+···+ai=p

a1,...,ai≥1

(

(−1)i+1(iXa1
β1) · adXa2

· · · adXai

)

+

+

p
∑

j=2







p−j+1
∑

i=1

1

i!

∑

a1+···+ai=p−j+1

a1,...,ai≥1

(

(−1)i+1(iXa1
βj) · adXa2

· · · adXai

)






. (6.12)

Consider the 1-cochain

ωp = αp −

p
∑

i=2

1

i!

∑

a1+···+ai=p

a1,...,ai≥1

(

(−1)i+1(iXa1
β1) · adXa2

· · · adXai

)

−

p
∑

j=2







p−j+1
∑

i=1

1

i!

∑

a1+···+ai=p−j+1

a1,...,ai≥1

(

(−1)i+1(iXa1
βj) · adXa2

· · · adXai

)






, p ≥ 2.

We may say that, knowing X1, X2, . . . , Xp−1, ωp is determined.
Again, as β1 is non-degenerate, we can compute Xp, using ωp and the

equality (6.12):

Xp = −χr1
(ωp) = −(ωp ⊗ 1)r1.

By the bijectivity between β ′
t and Xt is is easy to see that if one of them is

convergent so is the other.

3) We need to relate the Etingof-Kazhdan quantization of classical dou-
bles with the isomorphisms between these doubles. Even if the following
proposition could be expected its proof is not trivial.

Proposition 6.5. [22] Let (a, [, ]a, εa = dcrs) and (a, [, ]a, ε
′
a

= dcr
′
s) be non-

degenerate triangular Lie bialgebras, s ∈ Γ, whose quasitriangular double Lie-
bialgebras are respectively (a⊕a

∗
rs
, [, ]a⊕a∗rs

, εa⊕a∗rs
= dcr) and (a⊕a

∗
rs
, [, ]a⊕a∗rs

, εa⊕a∗rs
=

dcr). Let (ϕ1
s;ψs) : a⊕ a

∗
rs
−→ a⊕ a

∗
r′s

be a Lie algebra isomorphism such that

ϕ1
s : a −→ a and ψs : a

∗
rs

−→ a
∗
r′s

are Lie algebra isomorphisms. Let ϕ̃1
s,

ψ̃s be the extensions of ϕ1
s and ψs to homomorphisms Ua[[~]] −→ Ua[[~]]

and Ua
∗
rs
[[~]] −→ Ua

∗
r′s
[[~]] respectively. Let X ∈ U(a ⊕ a

∗
rs
)⊗

2

. Let φrs
be

the a ⊕ a
∗
rs
-module isomorphism from U(a ⊕ a

∗
rs
) to M rs

+ ⊗ M rs

− such that
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φrs

(

1U(a⊕a∗rs
)

)

= 1rs

+ ⊗ 1rs

− and similarly for φr′s.( See the definition of φ in

theorem 3.2 ). Then we have

φ−1
r′s

[(

(ϕ̃1
s; ψ̃s)

⊗2

(X)
)

· (1
r′s
+ ⊗ 1

r′s
−)

]

=
(

(ϕ̃1
s; ψ̃s) ◦ φ

−1
rs

)

(X · (1rs

+ ⊗ 1rs

−)).

If in the expression of J given in theorem 3.2 we take into account the
above proposition and also that a Lie associator determines Φ = eP (~Ω12,~Ω23)

we arrive [22] to:

Proposition 6.6. Hypotheses are as in the above proposition and suppose
moreover that (ϕ1

s;ψs)⊗(ϕ1
s;ψs) Ω = Ω. Denote by Jr′s and Jrs

the correspond-

ing elements in theorem 3.2. Then we have the equality Jr′s = (ϕ̃1
s; ψ̃s)

⊗2

Jrs
. In

particular this proposition is valid for the Lie bialgebra isomorphism (ϕ1
s;ϕ

2
s)

constructed in proposition 6.1 and those in propositions 6.3 and 6.4 .

We can also prove the following:

Proposition 6.7. Let (a, [, ]a, εa = dcrs) and (a, [, ]a, ε
′
a

= dcr
′
s) be non-

degenerate triangular Lie bialgebras, s ∈ Γ. Let ϕ1
s : a −→ a be a Lie algebra

isomorphism such that r′s = (ϕ1
t ⊗ ϕ1

s)rs and let (ϕ1
s;ϕ

2
s) be the Lie bialge-

bra isomorphism between the corresponding classical doubles constructed in
proposition 6.1. Then we have

π̃′s ◦ (ϕ1
s;ϕ

2
s) = ϕ1

s ◦ π̃s,

where π̃ is defined in Proposition 3.4.

4) Using propositions 6.1, 6.6, 6.7 and corollary 6.2 we can prove:

Theorem 6.8. Let J̃r~
and J̃r′

~
be invariant star products on a non-degenerate

triangular Lie bialgebra over IR, (a, [, ]a, εa = dcr1), and determined as in
lemma 4.9 and propositions 4.10, respectively by non-degenerate skew-symmetric
solutions r~ = r1 + · · · and r′~ = r1 + · · · of YBE on Lie algebra over
IR[[~]],

(

a[[~]], [, ]a[[~]]

)

. Let µr~
(r~) = β~ = β1 + β2~ + · · · ∈ (a∗ ∧ a

∗)[[~]]
and µr′

~
(r′~) = β ′

~ = β1 + β ′
2~ + · · · ∈ (a∗ ∧ a

∗)[[~]]. Suppose that the cocycles
β~ = µr~

(r~) = β1 + β2~ + . . . and β ′
~ = µr′

~
(r′~) = β1 + β ′

2~ + . . . belong to
the same cohomological class, i.e., that β ′

~ = β~ + dcα~ for some 1-cochain

α~ = α1~ + α2~
2 + · · · ∈ a

∗[[~]]. Then, J̃r~
and J̃r′

~
are equivalent ISP.

Proof:

The elements J̃rt
and J̃r′t are defined by

J̃rt
= (π̃t ⊗ π̃t)Jrt

, J̃r′t = (π̃′t ⊗ π̃′t)Jr′t,
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where Jrt
and Jr′t are the elements in U(a ⊕ a

∗
rt
)⊗

2

[[~]] and U(a ⊕ a
∗
r′t
)⊗

2

[[~]],
respectively, defined in theorem 3.2.

Since βt, β
′
t ∈ ∧2(a∗) belong to the same cohomological class, by theorem

6.4, there exists a Xt = X1 +X2t+ · · · ∈ a such that

exp(ad∗tXt
)⊗

2

(βt) ≡ (ϕ2
t )

⊗2

βt = β ′
t.

By proposition 6.2, ϕ1
t = ((exp(ad∗tXt

))−1)t = exp(adtXt
) is a Lie algebra

isomorphism a −→ a such that (ϕ1
t ⊗ ϕ1

t )rt = r′t, where rt = µ−1
rt

(βt) and

r′t = µ−1
r′t

(β ′
t). By proposition 6.1, (ϕ1

t ;ϕ
2
t ) is a Lie bialgebra isomorphism

between a⊕a
∗
rt

and a⊕a
∗
r′t

such that (ϕ1
t ;ϕ

2
t )

⊗2

r = r, where r is the canonical

element in (a ⊕ a
∗) ⊗ (a ⊕ a

∗). So, (ϕ1
t ;ϕ

2
t )

⊗2

Ω = Ω.
Then, we have

J̃r′t = (π̃′t ⊗ π̃′t)Jr′t = (ϕ̃1
t ⊗ ϕ̃1

t )J̃rt
,

using propositions 6.6 and 6.7.
Putting t = ~, we obtain J̃r′

~
= (ϕ̃1

~ ⊗ ϕ̃1
~)J̃r~

, or, equivalently, J̃−1
r′

~

=

(ϕ̃1
~ ⊗ ϕ̃1

~)J̃
−1
r~
. The map ϕ1

~ = exp(ad~X~
) : a[[~]] −→ a[[~]] is obviously a

morphism (in fact, an isomorphism) of Lie algebras over IR[[~]] (where the
Lie algebra structure on a[[~]] is the trivial one of (a, IR) by extension of the
ring of the scalars from IR to IR[[~]]) and, considering u = 1 and the last
equality, we may apply proposition 3.9 in [6].

Then, the extension ϕ̃1
~ : U(a[[~]]) −→ U(a[[~]]) is a morphism of triangular

Hopf QUE algebras A
a[[~]],J̃−1

r~

−→ A
a[[~]],J̃−1

r′
~

. The pairs (ϕ1
~, 1) and (λ1, u1)

determine the same morphism if, and only if, λ1 = exp(−~ adv) ◦ ϕ
1
~ and

u1 = e~v, for some v ∈ a[[~]]. Putting v = Xt |t=~, we obtain λ1 = 1,
u1 = e~X~ and

J̃−1
r′

~

= (u1 ⊗ u1) ·~ J̃
−1
r~

·~ ∆a(u1)
−1.

This last equality is equivalent to

J̃r′
~

= ∆a(u1) ·~ J̃r~
·~ (u−1

1 ⊗ u−1
1 ),

and u−1
1 defines an equivalence between the invariant star products J̃r~

and
J̃r′

~
on (a, [, ]a, εa = dcr1).

Before proving the converse result we need the following lemma.
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Lemma 6.9. Suppose that in theorem 6.8

β~ = µr~
(r~) = β1 + β2~ + · · · + βR−1t

R−2 + βR~R−1 + . . .

β ′
~ = µr′

~
(r′~) = β1 + β2~ + · · · + βR−1~

R−2 + (βR + dcαR−1)~
R−1 + . . . ,

where αR−1 is a 1-cochain. This means that β~ and β ′
~ are equal except in

the term of order R− 1. Then, J̃r~
and J̃r′

~
are equivalent,

J̃r′
~

= ∆a(E)−1 ·~ J̃r~
·~ (E ⊗ E),

and the element E = 1 + E1~ + E2~
2 + · · · + ER−1~

R−1 + . . . which defines
this equivalence verifies

E1 = 0, E2 = 0, . . . , ER−2 = 0, ER−1 = χr1
(αR−1) = µ−1

r1
(αR−1).

Proof:

Consider the elements β~ and β ′
~ obeying the above conditions. One of the

steps of the proof of theorem 6.8 is to find the element Xt = X1+X2t+X3t
2+

· · · +XR−1t
R−2 + . . . of theorem 6.4. For the elements βt and β ′

t considered,
this element will be

X1 = 0, X2 = 0, . . . , XR−2 = 0, XR−1 = −χr1
(αR−1).

Then, the element E will be, in view of the same proof, the following:

E = u−1
1 = (e~X~)−1 = 1 + 0~ + · · · + 0~R−2 + χr1

(αR−1)~
R−1 + · · · .

Lemma 6.9 and Hochschild cohomology properties allow us to prove

Theorem 6.10. Let J̃r~
and J̃r′

~
as in a) Theorem 6.8. Suppose J̃r~

and J̃r′
~

are equivalent. Then, β~ and β ′
~ belong to the same cohomological class, i.e.,

there exists a formal 1-cochain α~ = α1~ + α2~
2 + · · · ∈ a

∗[[~]] such that
β ′

~ = β~ + dcα~.

Proof:

If J̃r~
and J̃r′

~
are equivalent ISP, there exists E(1) = 1+E

(1)
1 ~+E

(1)
2 ~2+· · · ∈

Ua[[~]] such that

J̃r′
~

= ∆a(E
(1))−1 ·~ J̃r~

·~ (E(1) ⊗ E(1)).

At order 1, this equivalence may be written as (J̃r′
~
)1−(J̃r~

)1 = dHE
(1)
1 , where

dH is the Hochschild cohomology operator and E
(1)
1 ∈ Ua. But, in this case,
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(J̃r′
~
)1 = (J̃r~

)1 = 1
2r1. So, we have dHE

(1)
1 = 0, which implies that E

(1)
1 ∈ a.

Therefore, ∆a(E
(1)
1 ) = E

(1)
1 ⊗ 1 + 1 ⊗E

(1)
1 .

At order 2, there exists E
(1)
2 ∈ Ua such that

(J̃r′
~
)2 − (J̃r~

)2 +G2(E
(1)
1 , (J̃r′

~
)1, (J̃r~

)1) = dHE
(1)
2 , (6.13)

where, for k = 2, 3, . . . ,

Gk(E1, . . . , Ek−1, F
′
1, . . . , F

′
k−1, F1, . . . , Fk−1) =

=
∑

i+j=k

i,j≥1

(

∆a(Ei) · F
′
j − Fi · (1 ⊗ Ej) − Fi · (Ej ⊗ 1)

)

−
∑

i+j=k

i,j≥1

(Ei ⊗ 1) · (1 ⊗ Ej)−

−
∑

i+j+l=k

i,j,l≥1

Fi · (Ej ⊗ 1) · (1 ⊗ El).

Since (J̃r′
~
)1 = (J̃r~

)1 = 1
2r1, we have

G2(E
(1)
1 , (J̃r′

~
)1, (J̃r~

)1) =

= ∆a(E
(1)
1 ) ·

1

2
r1 −

1

2
r1 · (1 ⊗E

(1)
1 +E

(1)
1 ⊗ 1) − E

(1)
1 ⊗ E

(1)
1

= −
1

2
dr1

PE
(1)
1 − E

(1)
1 ⊗ E

(1)
1 .

The skew-symmetric part of G2(E
(1)
1 , (J̃r′

~
)1, (J̃r~

)1) is −1
2d

r1

PE
(1)
1 , where dr1

P is

the Poisson cohomology operator. We know that (J̃r′
~
)2 − (J̃r~

)2 = 1
2(r

′
2 − r2).

So, the equality between the skew-symmetric parts of both sides of (6.13)
leads to

r′2 = r2 + dr1

PE
(1)
1 . (6.14)

Let βt = µrt
(rt) = β1+β2t+. . . and β ′

t = β
(1)
t = µr′t(r

′
t) = β1+β

′
2t+β

′
3t

2+. . . .

Using (6.14), we get β ′
2 − β2 = −µr1(r

′
2 − r2) = −µr1(d

r1

PE
(1)
1 ) = dc(µr1(E

(1)
1 ))

(the last equality, using relation µ ◦ (−dP ) = dc ◦ µ). This means that there

exists a 1-cochain α1 = µr1
(E

(1)
1 ) such that β ′

2 = β2 + dcα1.

Consider now the following elements:

β
(2)
t = β1 + β2t+ β ′

3t
2 + β ′

4t
3 + . . . and r

(2)
t = µ−1

r
(2)
t

(β
(2)
t ).

The elements β
(2)
t and β ′

t belong to the same formal cohomological class. By
theorem 6.8, the star products J̃

r
(2)
~

and J̃r′
~

are equivalent, and the element
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u(2) which defines the equivalence

J̃r′
~

= ∆a(u
(2))−1 · J̃

r
(2)
~

· (u(2) ⊗ u(2)),

equivalent also to

J̃
r
(2)
~

= ∆a(u
(2)) · J̃r′

~
· ((u(2))−1 ⊗ (u(2))−1)

satisfies (by the previous lemma)

u(2) = 1 + µ−1
r1

(α1)~ + · · · = 1 + E
(1)
1 ~ + · · · .

But, as J̃r~
and J̃r′

~
are also equivalent, we obtain

J̃
r
(2)
~

= ∆a(u
(2)) · ∆a(E

(1))−1 · J̃r~
· (E(1) ⊗E(1)) · ((u(2))−1 ⊗ (u(2))−1)

= ∆a(E
(1) · (u(2))−1)−1 · J̃r~

· ((E(1) · (u(2))−1) ⊗ (E(1) · (u(2))−1)),

i.e., the element E(2) = E(1) ·(u(2))−1 ∈ Ua[[~]] defines an equivalence between
J̃r~

and J̃
r
(2)
~

at any order, and we may compute the first terms of E(2):

E(2) = 1 + (E
(1)
1 −E

(1)
1 )~ +E

(2)
2 ~2 + · · · = 1 + 0~ + E

(2)
2 ~2 + · · · .

Since r
(2)
t = r1 + r2t+ r

(2)
3 t2 + . . . and rt = r1 + r2t+ r3t

2 + . . . , we have

(

J̃
r
(2)
~

)

1
=

(

J̃r~

)

1
,

(

J̃
r
(2)
~

)

2
=

(

J̃r~

)

2
and

(

J̃
r
(2)
~

)

3
−

(

J̃r~

)

3
=

1

2
(r

(2)
3 − r3).

But J̃r~
and J̃

r
(2)
~

are equivalent. So, they are equivalent at order 2. This

means that there exists an element E
(2)
2 ∈ Ua such that

(

J̃
r
(2)
~

)

2
−

(

J̃r~

)

2
+G2

(

E
(2)
1 ,

(

J̃
r
(2)
~

)

1
,
(

J̃r~

)

1

)

= dHE
(2)
2 .

Since E
(2)
1 = 0, we have G2

(

E
(2)
1 ,

(

J̃
r
(2)
~

)

1
,
(

J̃r~

)

1

)

= 0 and so dHE
(2)
2 = 0,

which implies that E
(2)
2 belongs to a.

The equivalence at order 3 means that there exists E
(2)
3 ∈ Ua such that

(

J̃
r
(2)
~

)

3
−

(

J̃r~

)

3
+G3

(

E
(2)
1 , E

(2)
2 ,

(

J̃
r
(2)
~

)

1
,
(

J̃r~

)

1
,
(

J̃
r
(2)
~

)

2
,
(

J̃r~

)

2

)

= dHE
(2)
3 .

(6.15)
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Since E
(2)
1 = 0 and

(

J̃
r
(2)
~

)

1
=

(

J̃r~

)

1
, we obtain

G3

(

E
(2)
1 , E

(2)
2 ,

(

J̃
r
(2)
~

)

1
,
(

J̃r~

)

1
,
(

J̃
r
(2)
~

)

2
,
(

J̃r~

)

2

)

=

= ∆a(E
(2)
2 ) ·

(

J̃r~

)

1
−

(

J̃r~

)

1
· (1 ⊗E

(2)
2 ) −

(

J̃r~

)

1
· (E

(2)
2 ⊗ 1).

The skew-symmetric part of this element is

AG3

(

E
(2)
1 , E

(2)
2 ,

(

J̃
r
(2)
~

)

1
,
(

J̃r~

)

1
,
(

J̃
r
(2)
~

)

2
,
(

J̃r~

)

2

)

= −
1

2
dr1

PE
(2)
2 .

The equality of the skew-symmetric parts of both sides of (6.15) leads to

r
(2)
3 = r3 + dr1

PE
(2)
2 .

Thus,

β ′
3 − β3 = β

(2)
3 − β3 = −µr1

(r
(2)
3 − r3) = −µr1

(dr1

PE
(2)
2 ) = dc(µr1

(E
(2)
2 )).

This means that there exists a 1-cochain α2 = µr1
(E

(2)
2 ) such that

β ′
3 = β3 + dcα2.

Using the induction hypothesis, and following the same steps, we conclude
the proof.

Combining the last two theorems we obtain the following result, similar in
Etingof-Kazhdan quantization theory to the one by Drinfeld in [5].

Theorem 6.11. Let J̃r~
and J̃r′

~
be as in a) Theorem 6.8. Then, J̃r~

and

J̃r′
~

are equivalent ISP if, and only if, β~ and β ′
~ belong to the same formal

cohomological class. In other words, J̃r~
and J̃r′

~
are equivalent ISP if, and

only if, there exists a formal 1-cochain α~ = α1~ + α2~
2 + . . . such that

β ′
~ = β~ + dcα~.

Theorem 6.11 and Remark 2) in page 841 of [7] allow us to obtain

Theorem 6.12. Two triangular Hopf QUE-algebras A
a[[~]],J̃−1

r~

and A
a[[~]],J̃−1

r′
~

are isomorphic if, and only if, there exists an isomorphism of Lie algebras
λ : a[[~]] −→ a[[~]] over MR[[~]] such that (λ2 ⊗ λ2)β~ and β ′

~ belong to the
same cohomological class where β~ = µr~

(r~), β
′
~ = µr′

~
(r′~) and λ2 = (λ−1)t.
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Proof:

If the pair (λ, u) defines an isomorphism between the triangular Hopf QUE
algebras (see proposition 3.9 in [6]), in particular, the map Ad(u)◦ λ̃ satisfies
the following equality

(Ad(u) ◦ λ̃) ⊗ (Ad(u) ◦ λ̃)Rr~ = Rr′
~.

We know that Rr~ = 1 + r1~ +O(~2) and Rr′
~ = 1+ r1~ +O(~2). Computing

the coefficients of ~ at both sides of last equality, we obtain

(λ⊗ λ)r1 = r1 mod ~.

So, (λ⊗ λ)(r~) = r1 + r′′2~ + r′′3~2 + · · · . Denote this element by r′′~ (it is also
a solution of CYBE). We know also that

J̃−1
r′

~

= (u⊗ u) · (λ̃⊗ λ̃)
(

J̃−1
r~

)

· ∆a(u)
−1. (6.16)

Consider the invariant star product J̃r′′
~

defined through the E-K quantiza-
tion. By proposition 6.6, since (λ⊗ λ)(r~) = r′′~, we have

(λ, λ2)⊗
2

Jr~
= Jr′′

~
,

where λ2 = (λ−1)t. Using proposition 6.7, we obtain

(λ̃⊗ λ̃)J̃r~
= J̃r′′

~
.

Taking inverses at both sides of (6.16), we obtain

J̃r′
~

= ∆a(u) · (λ̃⊗ λ̃)
(

J̃r~

)

· (u−1 ⊗ u−1)

= ∆a(u) · J̃r′′
~
· (u−1 ⊗ u−1).

This means that J̃r′
~

and J̃r′′
~

are equivalent star products. By theorem 6.10,
β ′

~ = µr′
~
(r′~) and β ′′

~ = µr′′
~
(r′′~) belong to the same formal cohomological class.

Since (λ ⊗ λ)r~ = r′′~, by proposition 6.2, we get β ′′
~ = (λ−1)t ⊗ (λ−1)tβ~ =

(λ2 ⊗ λ2)β~ and we conclude that β ′
~ and (λ2 ⊗ λ2)β~ belong to the same

formal cohomological class.

If ((ϕ1)−1)t ⊗ ((ϕ1)−1)tβ~ = β ′′
~ and β ′

~ belong to the same cohomological

class, then, by theorem 6.8, J̃r′′
~

and J̃r′
~

are equivalent star products, where

r′′~ = µ−1
r′′

~

(β ′′
~). This means that there exists an element u ∈ Ua[[~]], u ≡

1mod ~, such that
J̃r′

~
= ∆a(u)

−1 · J̃r′′
~
· (u⊗ u),
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equivalent also to

J̃−1
r′

~

= (u−1 ⊗ u−1) · J̃−1
r′′

~

· ∆a(u). (6.17)

Since (ϕ1 ⊗ ϕ1)r~ = r′′~ (see proposition 6.2), we have, by propositions 6.6
and 6.7,

J̃r′′
~

= (ϕ̃1 ⊗ ϕ̃1)J̃r~
.

Substituting this in (6.17), we obtain

J̃−1
r′

~

= (u−1 ⊗ u−1) · (ϕ̃1 ⊗ ϕ̃1)
(

J̃−1
r~

)

· ∆a(u).

Considering λ1 = ϕ1 and u1 = u−1, the pair (λ1, u1) defines an isomorphism
between A

a[[~]],J̃−1

r′
~

and A
a[[~]],J̃−1

r~

(see proposition 3.9 in [6]).

5) From the above results and Remark 2) in page 841 of [7] we may also
prove :

Proposition 6.13. Let A
a⊕a∗r~

,Ω,J−1
r~

and A
a⊕a

∗

r′
~

,Ω,J−1
r′
~

be quasitriangular Hopf

QUE algebras over IR[[~]] which are quantizations, as in theorem 4.7, of
the quasitriangular Lie bialgebra (a ⊕ a

∗
r1
, [, ]a⊕a∗r1

, εa⊕a∗r1
= dcr). Let β~ =

µr~
(r~) = β1 + β2~ + . . . and β ′

~ = µr′
~
(r′~) = β1 + β ′

2~ + . . . . If β~ and β ′
~

belong to the same cohomological class, then A
a⊕a∗r~

,Ω,J−1
r~

and A
a⊕a

∗

r′
~

,Ω,J−1
r′
~

are

isomorphic.

Proof:

If βt and β ′
t belong to the same cohomological class, by theorem 6.4, there

exists a unique element Xt = X1 +X2t+ · · · ∈ a, such that

exp(ad∗tXt
)⊗

2

βt = β ′
t.

Using proposition 6.2 with ϕ2
t = exp(ad∗tXt

), there exists an isomorphism

ϕ1
t = ((ϕ2

t )
t)−1 : a −→ a of Lie algebras such that (ϕ1

t ⊗ϕ
1
t )rt = r′t. By propo-

sition 6.1, this pair (ϕ1
t ;ϕ

2
t ) defines an isomorphism from the Lie bialgebra

a ⊕ a
∗
rt

to the Lie bialgebra a ⊕ a
∗
r′t

and sends the canonical element r of the

vector space (a⊕a
∗)⊗

2

to itself. Thus, (ϕ1
t ;ϕ

2
t ) also will send Ω into Ω, where

Ω = r12 + r21. Applying now proposition 6.6, we have

Jr′t = (ϕ̃1
t ; ϕ̃

2
t )

⊗2

Jrt
,

where ϕ̃1
t and ϕ̃2

t are extensions of ϕ1
t and ϕ2

t to homomorphisms Ua[[~]] −→
Ua[[~]] and Ua

∗
rt
[[~]] −→ Ua

∗
r′t
[[~]], respectively. Putting t = ~ it is clear
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that (ϕ1
~, ϕ

2
~) defines an isomorphism a ⊕ a

∗
r~

−→ a ⊕ a
∗
r′

~

and the elements

Jr′
~

= Jr′t |t=~, Jr~
= Jrt

|t=~. We obtain the equality

Jr′
~

= (ϕ̃1
~; ϕ̃

2
~)

⊗2

Jr~
.

Using an analogous proposition to proposition 3.9 in [6] with λ = (ϕ1
~;ϕ

2
~)

and u = 1, we conclude that the map

(ϕ̃1
~;ϕ

2
~) = (ϕ̃1

~; ϕ̃
2
~) : Û(a ⊕ a

∗
r~

) −→ Û(a ⊕ a
∗
r′

~

)

is an isomorphism A
a⊕a∗r~

,Ω,J−1
r~

−→ A
a⊕a

∗

r′
~

,Ω,J−1
r′
~

.

About the converse of this proposition, we have [22] some examples of
isomorphisms where [β~] 6= [β ′

~].
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Departamento de F́ısica Teórica II, Universidad Complutense, E-28040 Madrid, Spain.

Joana Teles

CMUC, Department of Mathematics, University of Coimbra, Coimbra, Portugal

E-mail address : jteles@mat.uc.pt


