ONE SIZE RESOLVABILITY OF GRAPHS

S. KWANCHARONE, V. SAENPHOLPHAT AND C.M. DA FONSECA

Abstract: For an ordered set $W=\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ of vertices in a connected graph G and a vertex v of G, the code of v with respect to W is the k-vector

$$
C_{W}(v)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \cdots, d\left(v, w_{k}\right)\right) .
$$

The set W is a one size resolving set for G if (1) the size of subgraph $\langle W\rangle$ induced by W is one and (2) distinct vertices of G have distinct code with respect to W. The minimum cardinality of a one size resolving set in graph G is the one size resolving number, denoted by or (G). A one size resolving set of cardinality $\operatorname{or}(G)$ is called an or-set of G. We study the existence of or-set in graphs and characterize all nontrivial connected graphs G of order n with $\operatorname{or}(G)=n$ and $n-1$.

Keywords: Resolving set, one size resolving set.
AMS Subject Classification (2000): 05C12.

1. Introduction

The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. For an ordered set $W=$ $\left\{w_{1}, w_{2}, \cdots, w_{k}\right\} \subseteq V(G)$ and a vertex v of G, we refer to the k-vector

$$
C_{W}(v)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \cdots, d\left(v, w_{k}\right)\right)
$$

as the code of v with respect to W. The set W is called a resolving set for G if distinct vertices of G have distinct codes. A resolving set containing a minimum number of vertices is called a minimum resolving set or a basis for G. The dimension, $\operatorname{dim}(G)$, is the number of vertices in a basis for G. If $\operatorname{dim}(G)=k$, then G is called a k-dimensional graph.

The concept of resolving set and minimum resolving set have previously appeared in the literature. In the decisive paper [10], Slater first introduced these notions using locating set for what we have called resolving set. He referred to the cardinality of a minimum resolving set in a graph G as its

[^0]location number, and the code of a vertex with respect to W as the W location of that vertex. With respect to a tree T, with leaves $L_{1}, L_{2}, \cdots, L_{k}$, where e_{i} is the number of branch paths in T that are in L_{i}, and where E is the set of endpoints, with $|E| \geq 3$, Slater proved that
$$
\operatorname{dim}(T)=|E|-k,
$$
and S is a basis for T if and only if it consists of exactly one vertex for each L_{i} $(1 \leq i \leq k)$. Slater described the usefulness of these ideas when working with U.S. sonar and coast guard Loran (Long range aids to navigation) stations.

Harary and Melter [8] discovered these concepts independently as well but used the term metric dimension rather than location number, the terminology that we have adopted. These authors showed that every tree has a metric basis containing endvertices only, and established an algorithm for finding a metric basis of a tree producing a formula for its metric dimension.
Later on, in another valuable paper [11], Slater return to this topic. For a a graph G, he called a subset of vertices, D, as a locating-dominating set, or simply an LD-set, if for any two vertices v and w not in $D, N_{D}(v)$ is distinct from $N_{D}(w)$, where $S_{D}(v)$ denotes the set of neighbors of v in D. The order of the smallest LD-set in G was called the location-domination number and by denoted by $\mathrm{RD}(G)$. A reference-dominating set, or simply an RD-set, is an LD-set with $\mathrm{RD}(G)$ elements. Then he provided several results pertaining to that parameter, presenting some sharp Nordhaus-Gaddum type results. If the order of G is $p \geq 2$, Slater proved that $\operatorname{RD}(G)+\operatorname{RD}(\bar{G}) \leq 2 p-1$ and $\mathrm{RD}(G) \mathrm{RD}(\bar{G}) \leq p(p-1)$. Some additional results include a general bound for $\mathrm{RD}(G)$ depending on the order of the graph and the maximum degree as well as the location-domination number for several classes of graphs.
Some of those concepts were rediscovered by Johnson [9] of the Pharmacia Company while attempting to develop a capability of large datasets of chemical graphs. A basic problem in chemistry is to provide mathematical representations for a set of chemical compounds in a way that gives distinct representations to distinct compounds. The structure of a chemical compound is represented by a labeled graph whose vertex and edge labels specify the atom and bond types, respectively. Thus, a graph-theoretic interpretation of this problem is to provide representations for the vertices of a graph in such a way that distinct vertices have distinct representations. This is the subject of the papers $[1,2,4]$. It was noted in [7, cf. p. 204] that determining the dimension of a graph is an NP-complete problem. Directed graphs with
dimension 1 are characterized by Chartrand, Raines and Zhang in [5]. They proved that if the outdegree of every vertex of a connected oriented graph D of order n is at least 2 and $\operatorname{dim}(D)$ is defined, then $\operatorname{dim}(D) \leq n-3$ and this bound is sharp.

We refer to the reader-friendly book [3] for graph theory notation and terminology not described here.

If G is a nontrivial connected graph of order n, then $1 \leq \operatorname{dim}(G) \leq n-1$. Connected graphs of order $n \geq 2$ with dimension 1 or $n-1$ are characterized in $[8,10,11]$.
Theorem A Let G be a connected graph of order $n \geq 2$.
(a) Then $\operatorname{dim}(G)=1$ if and only if $G=P_{n}$, the path of order n.
(b) Then $\operatorname{dim}(G)=n-1$ if and only if $G=K_{n}$, the complete graph of order n.

The resolving sets whose vertices are "independent" to one another have been studied in [6]. An independent resolving set W in a connected G is both resolving and independent. This is, a resolving set W of G is independent if the subgraph $\langle W\rangle$ induced by W is an empty subgraph of G. The cardinality of a minimum independent resolving set, ir-set, in a graph G is the independent resolving number ir (G).

In this paper, we study those resolving sets of graph whose vertices are "almost independent" to one another.

Definition 1.1. A set W of G is a one size resolving set if
(1): the size of subgraph $\langle W\rangle$ induced by W is one and
(2): distinct vertices of G have distinct code with respect to W.

The minimum cardinality of a one size resolving set in graph G is the one size resolving number, denoted by $\operatorname{or}(G)$. A one size resolving set of cardinality $\operatorname{or}(G)$ is called an or-set of G. Let G be a connected graph of order n containing an or-set. Since the size of induced subgraph by or-set is one, it follows that

$$
\begin{equation*}
2 \leq \text { or }(G) \leq n . \tag{1}
\end{equation*}
$$

To illustrate this concept, consider the graph G of Figure 1. The set $\{u, v\}$ where u is one of $\left\{v_{1}, v_{2}\right\}$ and v is one of $\left\{v_{4}, v_{5}\right\}$ is a basis for G and so $\operatorname{dim}(G)=2$. However, $\{u, v\}$ is not a one size resolving set for G. In fact,
the set $W=\left\{v_{1}, v_{4}, v_{5}\right\}$ is an or-set with codes of the vertices of G with respect to W as

$$
\begin{aligned}
C_{W}\left(v_{1}\right)= & (0,2,2), C_{W}\left(v_{2}\right)=(2,2,2), C_{W}\left(v_{3}\right)=(1,1,1), \\
& C_{W}\left(v_{4}\right)=(2,0,1), C_{W}\left(v_{5}\right)=(2,1,0)
\end{aligned}
$$

which the size of $\langle W\rangle$ induced by W is one. We can show that G contains no 2-element or-set and so or $(G)=3$.

Figure 1. A graph G with $\operatorname{dim}(G)=2$ and $\operatorname{or}(G)=3$.
Also, as an example, the only induced subgraph of the complete graph K_{4} of size one consists of two vertices. Thus or $\left(K_{4}\right)$ is not defined. Figure 2 shows the 3 -regular graphs $K_{4}, K_{3,3}$ and the Peterson graph P. A resolving set of $K_{3,3}$ contains at least two vertices from each partite sets of $K_{3,3}$. Since the induced subgraph of at least two vertices from each partite sets of $K_{3,3}$ has a size at least four, it follows that or $\left(K_{3,3}\right)$ does not exist, however or (P) exists. In Figure 2, the solid vertices represent an or-set for the Peterson graph P.

Figure 2. Three 3-regular graphs
Two vertices u and v in a connected graph G are distance similar if $d(u, x)=d(v, x)$ for all $x \in V(G)-\{u, v\}$. For a vertex v in a graph G, let $N[v]$ be the set $N(v) \cup\{v\}$, where $N(v)$ simply denotes $N_{G}(v)$. Two vertices u and v in a connected graph are distance similar if and only if
(1): $u v \in E(G)$ and $N(u)=N(v)$ or
(2): $u v \in E(G)$ and $N[u]=N[v]$.

Distance similarity in graph G is an equivalence relation on $V(G)$. As we will see, the following observation turns out quite useful.

Claim 1.2. If U is a distance similar equivalence class in a connected graph G with $|U|=p \geq 2$, then every resolving of G contains at least $p-1$ vertices from U. Then if G has k distance similar equivalence classes and $\operatorname{or}(G)$ is defined, therefore

$$
n-k \leq \operatorname{dim}(G) \leq \operatorname{or}(G)
$$

There exist graphs G such that every or-set of G must contain all vertices of some distance similar equivalence class. For example, let G be the graph as shown in Figure 3 obtained form $K_{2, p}$, whose partite sets are $\{x, y\}$ and $U=\left\{u_{1}, u_{2}, \cdots, u_{p}\right\}$ with $p \geq 4$, by adding vertices $v_{1}, v_{2}, \cdots, v_{p^{\prime}}$ with $p^{\prime} \geq 4$ and for $1 \leq i \leq p^{\prime}$, the pendant edges $x v_{i}$ and edge $v_{1} v_{2}$. Then G contains three distance similar equivalence classes of cardinality at least 2 namely $U, V=\left\{v_{1}, v_{2}\right\}$ and $V^{\prime}=\left\{v_{3}, v_{4}, \cdots, v_{p^{\prime}}\right\}$. Since every or-set of G has the form $\left(U \cup V \cup V^{\prime}\right)-\{w\}$, for some $w \in U \cup V^{\prime}$, it follows that every or-set of G contains V and either U or V^{\prime}.

Figure 3. The graph G with or-set $\left(U \cup V \cup V^{\prime}\right)-\{w\}$ for some $w \in U \cup V^{\prime}$

If U is a distance similar equivalence class of a connected graph G, then either U is an independent set in G or the subgraph $\langle U\rangle$ induced by U is complete in G. Thus we have the following observation.

Claim 1.3. Let G be a connected graph and let U be a distance similar equivalence class in a connected graph G with $|U| \geq 4$. If U is not independent in G, then $\operatorname{or}(G)$ is not defined.

2. One size resolving sets in some well-known graphs

In this section, we determine the existence of one size resolving sets in some well-known classes of graphs.

Proposition 2.1. For a path P_{n} of order $n \geq 2$, or $\left(P_{n}\right)=2$.
Proof. Let $P_{n}: v_{1}, v_{2}, \cdots, v_{n}$ be a path of order $n \geq 2$ and let $W=$ $\left\{v_{1}, v_{2}\right\}$. We have $C_{W}\left(v_{1}\right)=(0,1), C_{W}\left(v_{2}\right)=(1,0), C_{W}\left(v_{i}\right)=(i-1, i-2)$ for $3 \leq i \leq n$. Therefore, W is a resolving set. Moreover, it follows by (1) that or $\left(P_{n}\right)=2$.

Proposition 2.2. For a cycle C_{n} of order $n \geq 3$, or $\left(C_{n}\right)=2$.
Proof. Let $C_{n}: v_{1}, v_{2}, \cdots, v_{n}, v_{1}$ be a cycle of order $n \geq 3$ and let $d=$ $\left\lfloor\frac{n+1}{2}\right\rfloor$, where $\lfloor x\rfloor$ denotes the smallest integer greater than or equal to x. We consider two cases according the parity of n.

Case 1. n is odd. Let $W=\left\{v_{1}, v_{n}\right\}$. Then subgraph $\langle W\rangle$ induced by W is P_{2}. Since

$$
C_{W}\left(v_{i}\right)= \begin{cases}(i-1, i) & \text { for } 1 \leq i \leq d-1 \\ (i-1, i-1) & \text { for } i=d, \text { and } \\ (n-i+1, n-i) & \text { for } d+1 \leq i \leq n\end{cases}
$$

it follows that W is a one size resolving set.
Case 2. n is even. Let $W=\left\{v_{1}, v_{n}\right\}$. Then subgraph $\langle W\rangle$ induced by W is P_{2}. Since

$$
C_{W}\left(v_{i}\right)= \begin{cases}(i-1, i) & \text { for } 1 \leq i \leq d-1 \\ (i-1, n-i) & \text { for } i=d, \text { and } \\ (n-i+1, n-i) & \text { for } d+1 \leq i \leq n\end{cases}
$$

it follows that W is a one size resolving set. Thus it implies that or $\left(C_{n}\right)=2$.
Theorem 2.3. If G is a complete graph of order $n \geq 3$, then or (G) exists if and only if $G=K_{3}$. Furthermore, or $\left(K_{3}\right)=2$.

Proof. It is not difficult to see that the theorem is true for a complete graph of order 3 . Let us assume that G is a complete graph of order $n \geq 4$.

Then it follows by Theorem A that the size of subgraph induced by any resolving set of G is greater than one. Thus or (G) does not exist.

Theorem 2.4. Let $K_{r, s}$ be a complete bipartite graph with $1 \leq r \leq s$. Then

$$
\text { or }\left(K_{r, s}\right) \text { exists if and only if } 1 \leq r \leq s \leq 2 \text {. }
$$

Furthermore, or $\left(K_{r, s}\right)=2$ for $1 \leq r \leq s \leq 2$.
Proof. It is an immediate consequence of Propositions 2.1 and 2.2 that or $\left(K_{r, s}\right)$ exists for $1 \leq r \leq s \leq 2$. Reciprocally, let $K_{r, s}$ be a complete bipartite graph with $1 \leq r \leq s$ and $r, s \notin\{1,2\}$. let $U=\left\{u_{1}, u_{2}, \cdots, u_{r}\right\}$ and $V=\left\{v_{1}, v_{2}, \cdots, v_{s}\right\}$ be partite sets of $K_{r, s}$. Without loss generality, we assume that $s \geq 3$. Let W be an or-set of $K_{r, s}$. Then it follows from Claim 1.2 that W contains at least $s-1$ vertices from V. Since subgraph $\langle V\rangle$ induced by V is an empty graph, it follows that W contains at least one vertex from U. However, the size of subgraph $\langle W\rangle$ induced by W is greater than one, which is a contradiction.

3. Realizable results

As we have noticed, $2 \leq \operatorname{or}(G) \leq n$, for all connected graphs G of order $n \geq 2$ such that $\operatorname{or}(G)$ exist. We are able to characterize all nontrivial connected graphs with one size resolving number n and $n-1$ as following.

Theorem 3.1. Let G be a nontrivial connected graph of order n, then

$$
\operatorname{or}(G)=n \text { if and only if } G=P_{2} .
$$

Proof. Let $G=P_{2}$. From Proposition 2.1, it follows that or $(G)=2=n$. Conversely, let G be a connected graph of order $n \geq 2$ and $\operatorname{or}(G)=n$ and let W be an or-set of G with $|W|=|V(G)|=n$. Since the size of subgraph $\langle W\rangle$ induced by W is one and G is a connected graph, it follows that $|W|=|V(G)|=2$. Thus G is a path of order 2 .
It is an immediate consequence of Theorem 3.1 that if G is a connected graph of order $n \geq 3$, then $\operatorname{or}(G) \leq n-1$.
Theorem 3.2. Let G be a nontrivial connected graph of order $n \geq 3$, then

$$
\text { or }(G)=n-1 \text { if and only if } G=P_{3} \text { or } K_{3} \text {. }
$$

Proof. Let $G=P_{3}$ or K_{3}. By Proposition 2.1 and Theorem 2.3, it follows that $\operatorname{or}(G)=2=n-1$. To verify the converse, suppose that G is a connected graph of order $n \geq 3$ and $\operatorname{or}(G)=n-1$. For $n=3$, it is straightforward
to show that $G=P_{3}$ or K_{3}. Thus we may assume that $n \geq 4$, Let W be an or-set of G and let $V(G)-W=\{x\}$. Let u, v be adjacent vertices in subgraph $\langle W\rangle$ induced by W. Then x is adjacent to every independent vertex of $W-\{u, v\}$ and at least one of $\{u, v\}$, say u. Let $W^{\prime}=W-\{x, y\}$ where y is one of $W-\{u, v\}$. Since $d(u, x)=1$ and $d(u, y)=2$, it follows that $C_{W^{\prime}}(x) \neq C_{W^{\prime}}(y)$ and so W^{\prime} is a one size resolving set of G with cardinality $n-2$ which is impossible.

By Theorems 3.1 and 3.2, we have a following consequence.
Corollary 3.3. Let G be a nontrivial connected graph of order $n \geq 4$, then

$$
2 \leq \text { or }(G) \leq n-2 .
$$

Finally, we provide sufficient and conditions for a pair k, n positive integers, with $k \leq n$, to be realizable as the one size resolving number and order of some connected graph, respectively.

Theorem 3.4. For each pair k, n of positive integers with $k \leq n$, there exists a connected graph G of order n with $\operatorname{or}(G)=k$ if and only if $(k, n)=(n-1,3)$ or $(n, 2)$ or $2 \leq k \leq n-2$.

Proof. By Theorems 3.1 and 3.2 and Corollary 3.3, it only remains to show that, for $n \geq 4$ and $2 \leq k \leq n-2$, that there exists a connected graph G of order n with or $(G)=k$. For $k=2$, let $G=C_{n}$ and so or $(G)=2$. We now assume that $n \geq 5$ and $3 \leq k \leq n-2$. Let G be a graph obtained from paths $P: u_{1}, u_{2}$ and $Q: v_{1}, v_{2}, \cdots, v_{n-k}$ and $k-2$ new vertices $w_{1}, w_{2}, \cdots, w_{k-2}$ by joining each u_{i} and w_{j} to v_{1} for $i=1,2$ and $1 \leq j \leq k-2$. Thus G is a connected graph of order n as shown in Figure 4.

Figure 4. Graph G

First, we show that $\operatorname{or}(G) \leq k$. Let $W=\left\{u_{1}, u_{2}, w_{1}, w_{2}, \cdots, w_{k-2}\right\}$. Since the size of subgraph $\langle W\rangle$ induced by W is one and $C_{W}\left(v_{i}\right)=(i, i, \cdots, i)$ for $1 \leq i \leq n-k$, it follows that W is a one size resolving set of G. We now continue showing that or $(G) \geq k$. Assume to the contrary, that or $(G) \leq k-1$. Let W^{\prime} be an or-set of G. Then $\left|W^{\prime}\right| \leq k-1$. Since $V(P)$ is a distance similar equivalence class in a connected graph G, it follows by Claim 1.2 that W contains at least one vertex from $V(P)$, say u_{1}. We consider two cases according the parity of k.

Case 1. $k=3$. Then $\left|W^{\prime}\right| \leq k-1=2$. Since the size of subgraph $\left\langle W^{\prime}\right\rangle$ induced by W^{\prime} must be one and $\left|W^{\prime}\right| \leq k-1$, it follows that W^{\prime} is either $V(P)$ or $\left\{u_{1}, v_{1}\right\}$. However, $d\left(v_{2}, w\right)=d\left(w_{1}, w\right)$ for each w in W^{\prime}, which is a contradiction.

Case 2. $k \geq 4$. Since $\left\{w_{1}, w_{2}, \cdots, w_{k-2}\right\}$ is a distance similar equivalence class in a connected graph G, it follows by Claim 1.2 that W^{\prime} contains at least $k-3$ from $\left\{w_{1}, w_{2}, \cdots, w_{k-2}\right\}$, with out loss of generality, say w_{i} for $1 \leq i \leq k-3$. Since the size of subgraph $\left\langle W^{\prime}\right\rangle$ induced by W^{\prime} must be one and $\left|W^{\prime}\right| \leq k-1$, it follows that $W^{\prime}=V(P) \cup\left\{w_{1}, w_{2}, \cdots, w_{k-3}\right\}$. However, $C_{W^{\prime}}\left(v_{2}\right)=C_{W^{\prime}}\left(w_{k-2}\right)=(2,2, \cdots, 2)$, which is a contradiction.

From the previews two cases, it follows by cases 1 and 2 that $\operatorname{or}(G) \geq k$ and therefore or $(G)=k$.

4. Open questions

After the introduction of the concept of $\operatorname{or}(G)$ some questions naturally arise, specially the ones connected with well-known graph parameters. Among others, we leave to the reader the following open problems.
4.1.: For a pair of integers a and b with $1 \leq a \leq b$, is there a connected graph G with $\operatorname{dim}(G)=a$ and $\operatorname{or}(G)=b$?
4.2.: What is relationship between $\operatorname{ir}(G)$ and or (G) ?
4.3.: What is boundary of or (G) in terms of other parameters such as clique numbers, diameter of graph?

References

[1] P. Buczkowski, G. Chartrand, C. Poisson, and P. Zhang On k-dimensional graphs and their bases. Period. Math. Hungar. 46 (2003) 9-15.
[2] G. Chartrand, L. Eroh, M.A. Johnson, and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105 (2000) 99-113
[3] G. Chartrand and L. Lesniak, Graphs \& Digraphs, third edition. CRC Press, Boca Raton, FL (1996).
[4] G. Chartrand, C. Poisson, and P. Zhang, Resolvability and the upper dimension of graph. Comput. Math. Appl. 39 (2000), 19-28.
[5] G. Chartrand, M. Raines, and P. Zhang, The directed distance dimension of oriented graphs. Math. Bohem. 125 (2000) 155-168.
[6] G. Chartrand, V. Saenpholphat, and P. Zhang, The independent resolving number of a graph. Math. Bohem. 4 (2003) 379-393.
[7] M. R. Garey and D.D. Johnson, Computers and Intractability: A Guide to the Theory of NP-conpleteness. Greeman, New York, 1979.
[8] F. Harary and R.A. Melter, On the metric dimension of a graph. Ars Combin. 2 (1976) 191-195.
[9] M.A. Johnson, Browsable structure-activity datasets. Advances in Molecular Similarity (R. Carbó-Dorca and P. Mezey, eds.). JAI Press, Connecticut, (1998), 153-170.
[10] P.J. Slater, Leaves of trees. Congress. Numer. 14 (1975) 549-559.
[11] P.J. Slater, Dominating and reference sets in graphs. J. Math. Phys. Sci. 22 (1988) 445-455.
S. Kwancharone

Department of Mathematics, Srinakharinwirot University, Bangkok 10110, Thailand
E-mail address: sk_todday@hotmail.com
V. SaEnpholphat

Department of Mathematics, Srinakharinwirot University, Bangkok 10110, Thailand
E-mail address: doctornoot@hotmail.com
C.M. DA Fonsect

CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, PortuGAL
E-mail address: cmf@mat.uc.pt

[^0]: Received 26 March, 2008.
 Research supported by the Project for the Promotion of Science and Mathematics Talented Teachers, Srinakharinwirot University.

 Research supported by Srinakharinwirot University Budget 064/2007, the Thailand Research Fund and Commission on Higher Education MRG 5080075.

 This work was supported by CMUC - Centro de Matemática da Universidade Coimbra.

