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Abstract
Coronavirus disease-2019 (COVID-19) is associated with cytokine storm and is characterized by acute respiratory distress 
syndrome (ARDS) and pneumonia problems. The respiratory system is a place of inappropriate activation of the immune 
system in people with multiple sclerosis (MS), and this may cause damage to the lung and worsen both MS and infections.
The concerns for patients with multiple sclerosis are because of an enhance risk of infection with severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). The MS patients pose challenges in this pandemic situation, because of the regu-
latory defect of autoreactivity of the immune system and neurological and respiratory tract symptoms. In this review, we 
first indicate respiratory issues associated with both diseases. Then, the main mechanisms inducing lung damages and also 
impairing the respiratory muscles in individuals with both diseases is discussed. At the end, the leading role of physical 
exercise on mitigating respiratory issues inducing mechanisms is meticulously evaluated.

Keywords Multiple sclerosis · COVID-19 · Exercise training · Renin–angiotensin system · Respiratory system · Immune 
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Abbreviations
ACE2  Angiotensin-converting enzyme 2
Ang I  Angiotensinogen I
Ang II  Angiotensin II
ARDS  Acute respiratory distress syndrome
AT1R  Angiotensin type 1 receptor
Ca2+  Calcium
CNS  Central nervous system
COVID-19  Coronavirus disease-2019
MasR  Mas receptor
MS  Multiple sclerosis

NETs  Neutrophil extracellular traps
NF-κB  Nuclear factor-kappa B
NK  Natural killer
RAS  Renin–angiotensin system
ROS  Reactive oxygen species
SARS-CoV-2  Severe acute respiratory syndrome corona-

virus 2
URTI  Upper respiratory tract infection
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Introduction

The respiratory system, anatomically and functionally, is 
designed to provide and eliminate oxygen and carbon diox-
ide  (CO2), respectively, or simply viewed as a gas exchange 
system [1, 2]. To do so, the respiratory cycle consists of inspi-
ration and expiration which are performed by the help of sev-
eral muscles. All components of respiratory system, such as 
pleurae, airway, and vessels, are innervated by afferent and 
efferent of autonomic nervous system, sympathetic, and para-
sympathetic nerves especially the vagal nerve. Breath is an 
autonomic and rhythmic action that is produced by networks 
of neurons originating from the brainstem, known as pons 
and medulla oblongata. These neuronal networks enervate 
thoracic and abdominal muscles. Three main neuronal groups 
are involved in monitoring the breath rhythm and its duration: 
(1) inspiratory neurons in dorsomedial medulla, (2) inspiratory 
and expiratory neurons in ventrolateral medulla, and (3) inspir-
atory and expiratory discharging neurons in rostral pons. The 
important characteristic of this system is its ability to modu-
late breathing patterns in response to changing of external and 
internal environments [1, 3, 4].

The majority of components of the respiratory system are 
impaired in some neurological diseases, such as multiple scle-
rosis (MS) and Alzheimer disease (AD) [5, 6], and this condi-
tion may impose further endangering of these individuals dur-
ing respiratory virus diseases, like the worldwide coronavirus 
disease-2019 (COVID-19) pandemic. In this context, physi-
cians most often solicit the use of inhaled steroids and also 
antibiotic medications [7]. Respiratory pathogenesis of both 
COVID-19 and MS is extensively referred for improper activa-
tion of the immune system, renin–angiotensin system (RAS) 
dysfunction, the existence of some plaques in brain areas mon-
itoring ventilation skeletal muscles [8–13]. Exercise training 
as a non-pharmacological intervention by several mechanisms, 
such as improving the immune responses, converting negative 
RAS axis to positive one, alleviating the plaque progression, 
can largely mitigate respiratory issues [14]. Thus, the purposes 
of this narrative review are to meticulously investigate respira-
tory issues associated with COVID-19 and MS diseases and 
also better understand the cellular and molecular mechanisms 
by which neuro-inflammatory autoimmune disease influences 
lung immunity. Finally, shed light on the positive roles of regu-
lar exercise training as a prophylactic or modifying interven-
tion in mitigating such problems is another outstanding aim 
of this study.

Respiratory dysfunctions common road 
between coronavirus and multiple sclerosis

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the third coronavirus disease originated from 

animal and it belongs to beta-coronaviruses which induce 
a disease known as novel COVID-19 [15, 16]. As inferred 
naturally from the name of the virus, this disease is associ-
ated with respiratory infections [17].

In most cases, the disease is without any respiratory 
signs; however, all sufferers may later manifest different 
degrees of lung disorders due to damages in lung tissue [18].

Acute respiratory distress syndrome (ARDS) and pneu-
monia are the common clinical manifests in patients with 
severe COVID-19 [18–21]. ARDS is clinical disorder asso-
ciated with systemic inflammation and failure in multiple 
organs with a high mortality rate related to lung damage [22, 
23]. Hence, COVID-19 is associated with some disorders in 
lung tissue, including airways, lung parenchyma, lung ves-
sels, and neuromuscular disruptions [24].

This virus can infect several systems, including digestive, 
genitourinary, central nervous system (CNS), and respira-
tory systems [16, 25, 26]. During COVID-19 disease, the 
infected individuals may encounter some respiratory prob-
lems occurring orderly through this phases: cellular invasion 
and viral replication in the nasal cavity, replication in lung 
and immune system activation, pneumonia, ARDS, cytokine 
storm, and multi-organ failure [27–29]. Many interactive 
factors contribute to lung tissue damage and impaired respir-
atory muscles in both COVID-19 and MS diseases included 
activated immune system and its pro-inflammatory cytokines 
such as IFN-ϒ, TNF-α, and IL-1β [8–10, 14, 30–35], central 
demyelinated lesions/plaques formed in areas monitoring 
respiratory rhythm, and muscles induced by the function of 
the activated immune system [36–46], local, and systemic 
(soluble) imbalance in the RAS axis [12, 13, 47, 48] (Fig. 1).

Respiratory epithelium, especially ciliary airway epithe-
lium, is the critical point of SARS-CoV-2 entering into the 
host since it expresses the highest levels of SARS-CoV-2 
receptors, namely the angiotensin-converting enzyme 2 
(ACE2) [49–51]. Epithelium serves as a barrier against 
pathogens and particles, preventing tissue damage through 
secreting mucosa and also mucociliar clearance [24]. Upon 
cell–virus crosstalk and consequent entering into ciliary 
nasal cells, SARS-CoV-2 travels to lower respiratory tracts 
(LRTs) and then triggers the extreme production of inflam-
matory cytokines and chemokines, such as IL-1, IL-6, IL-8, 
TNF-α, and -β, and monocyte chemoattractant protein 1 
(MCP-1). These inflammatory mediators recruit leukocytes 
to the infectious site [52–54]. Increased cytokine levels can 
devastate airways and alveolar epithelium by triggering the 
cells apoptotic process and formation of reactive oxygen 
species (ROS) exacerbating the pneumonia severity. Alveo-
lar damage remarkably impairs gas exchange and leads to 
respiratory failure [24, 55, 56]. In more detail, for exam-
ple, TNF-α has an important role in regulating neutrophils 
influx following lung damage [23, 57]. Neutrophils release 
toxic oxygen metabolites such as superoxide anion, hydroxyl 
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radicals, and hydrogen peroxide which cause cellular oxida-
tive damage in pulmonary endothelium, parenchymal cells, 
and inflammatory edema [58–60].

Infiltrated neutrophils, therefore, secret neutrophil extra-
cellular traps (NETs) to control lung infection, but their high 
production is associated with lung damage by turning the 
alveolar macrophages into the pro-inflammatory M1 phe-
notype [61]. The main mechanisms for such transforma-
tive phenotype ascribed to the NETs induced activation of 
signaling pathways in pulmonary cells include extracellular 
signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal 
kinase (JNK), p38, and nuclear factor-kappa B(NF-κB) pro-
teins [62]. Besides, the proteins and dsDNA components 
located in NETs may act as critical autoantigen sources to 
trigger local inflammatory cascades [63]. Of note, infectious 
and damaged epithelium attracting the pro-inflammatory 
cytokines is associated with reduced secretion of surfactant 
proteins of A and B [64], resulting in alveolar collapse. It 
is important to note that COVID-19 often initiates with 
symptoms akin to influenza [27]. Coronaviruses are the sec-
ond reason for induced common cold [65]. As mentioned, 

SARS-CoV-2 can worsen the conditions of some patients 
with asthma, since it causes infection of the upper and lower 
respiratory tracts [65–67]. Epithelium of upper respiratory 
tract needs 3 weeks to return to the previous normal level 
[68].

Endothelial dysfunction is another lung pathophysiology 
of COVID-19 disease. In these patients, extended inflamma-
tory cytokine levels will induce some changes or damages 
in smooth muscle cells of lung vessels including phenotypic 
switching from the quiescent contractile phenotype to a pro-
liferative, migratory, and synthetic phenotype which is asso-
ciated with vessel thickening and also reticular small vessels 
[69, 70]. It has been reportedly illustrated that endothelial 
cells suffer apoptosis [71]. Increased permeability of lung 
vessels is another problem that patients with COVID-19 
encounter, which is corroborated by alveolar hemorrhage 
and fibrin deposition [24]. Thus, these disorders in lung 
microvessels can impair vascular perfusion [71, 72]. Addi-
tionally, regarding the expression of ACE2 on microvascular 
endothelial cells and vascular smooth muscles, SARS-CoV-2 
disrupts the relationship between endothelium and smooth 

Fig. 1  The main pathways inducing structural and functional patho-
genesis of lung tissue through both MS and COVID-19 diseases. The 
red arrows represent the detrimental events that result from both dis-
eases causing the whole pulmonary issues indicated in the red rec-
tangular box below. ACE2 angiotensin-converting enzyme 2; RAS 

renin–angiotensin system; ROS reactive oxygen species; MS multiple 
sclerosis; URTI upper respiratory tract infection; LRTI lower respira-
tory tract infection; FEV1/FVC ratio, forced expiratory volume in 1 s 
to forced vital capacity ration
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muscles which results in disordered vasodilation and vaso-
constriction as well as disorders in gas exchange [73]. It has 
been documented that some central autoimmune diseases are 
susceptible to other diseases involving immune system [74, 
75]. MS is a chronic central disease characterized by inflam-
matory demyelination. In both patients with MS and its ani-
mal model, experimental autoimmune encephalomyelitis 
(EAE) is initiated with reactivation of T cells crossing the 
blood–brain barrier (BBB) into the CNS [76]. Patients with 
MS have a reduction in clearing virus from their lungs that 
in part stem from lower efficiency of their anti-viral immune 
responses [74]. MS patients during contracting respiratory 
viral infection such as influenza and pneumonia experience 
higher morbidity and severity than individuals without 
MS disease [77–80]. Thus, MS disease can exacerbate the 
expansion of respiratory infection that may partly refer to the 
regulation of inflammatory characteristics of T cells in MS 
patient’s lungs [43]. Interestingly, it has also been revealed 
that lung is involved in myelin-reactive T cells becoming 
pathogenic [43]. As a natural procedure, the mobilization 
of innate (e.g., natural killer; NK) and acquired immune 
(CD8 +T cells) system is cardinal strategy to control the 
viral replacing and to clear efficiently the respiratory viruses 
through releasing an anti-viral pro-inflammatory cytokines, 
like interferon (IFN)-γ [81, 82]. A report documented that 
EAE animals with respiratory infection lowers the produc-
tion of effector cells, both innate and acquired, and IFN-γ, 
suggesting a reduction in the immune response to infection 
in patients with MS [82]. MS and animal model of MS are 
also associated with mobilizing the extensive population of 
myeloid-derived suppressor cells (MDSCs), especially their 
 CD11b+ subunit, from bone marrow, blood, spleen, and CNS 
into the lungs. These myeloid cells inhibit the proliferation 
of CD8 +T cells and consequently their IFN-γ production in 
lungs [74, 78, 83]. MDSCs use various mechanisms to miti-
gate the immune response including production of IL-10 and 
synthesis of nitric oxide (NO) through inducible nitric oxide 
synthase (iNOS) [83–85]. Therefore, MS patients infected 
with respiratory viruses present increased viral titers, lung 
pathology, and consequent increases in their mortality. If 
the patients with MS survived from respiratory infection, 
their hospitalization lasted 2 times more than individuals 
without MS and only infected with respiratory viruses, since 
patients with MS are exposed to extension of relapses after 
infection [86–89]. It is also reported that the susceptibility of 
MS patients to respiratory infections may be elevated during 
relapsing–remitting MS. It has been suggested that patients 
with MS during the remission phase show a reduction in 
their innate immune cells. Of these cells, granulocytes 
(neutrophil, eosinophil, basophil) are the most important to 
fight against viral infections [90–93]. As a part of immune 
response, granulocytes migrate to the infectious site, in this 
case the lungs, and consequently secret effector molecules, 

such as histamine, cytokines, chemokines, enzymes, and 
growth factors [94, 95]. It has been shown that the number 
of granulocytes, especially neutrophils, is lower during the 
remitting phase and that may lead to diminished IFN-γ pro-
duction, a stimulating factor of neutrophils or granulocytes, 
by Th1 cells [90, 96]. The other pathway that may promote 
the susceptibility of patients with MS to infectious diseases 
is immunosenescence, which is associated with progres-
sively diminished number of naïve T cells, originated from 
structurally and functionally thymic involution [97, 98]. The 
age range of 20 to 40 is a benchmark age range where the 
majority of individuals may be afflicted with MS disease and 
live with this disease for a long time even until death [99]. 
The events that take place in the immunosenescence process 
result in poorer immune responses in the old patients with 
MS [100]. Thymus is a lymphoid organ, where the T cells 
mature, and is a main source for circulating T cells. The 
thymic size is progressively elevated until puberty and then 
undergone involution with its parenchymal tissue replaced 
by fat [98, 101]. Respiratory viruses are leading causes of 
acute respiratory infections every year affecting mainly 
older patients with MS and the elderly. Up to date, several 
reports have described the association between respiratory 
viral infections with neurological symptoms [102]. Thus, in 
MS patients, respiratory viruses have placed themselves as 
relevant agents responsible for CNS pathologies. Aged MS 
patients who are in advanced phase of the disease do not 
have enough  CD8+ T cells in their circulation and conse-
quently in their lung tissue to fight against viral antigens and 
increased infectious risk [98] exacerbating the neurological 
signs of the patients [103–106]. Lungs are inflamed dur-
ing respiratory infection, which is associated with increased 
upregulation of a chemokine, namely CCL20, to attract 
Th17 cells into the lungs. Through increased gene expres-
sion encoding chemokine receptors and integrin receptors 
on T cells, these immune cells which converted to the patho-
genic phenotype are licensed to enter circulation [43, 107]. 
Circulating pathogenic T cells then increase BBB perme-
ability and lesion load and volume in brain and spinal cord 
[108], which is equal to worsening the clinical signs of MS 
patients.

Reduced physical activity during lockdowns, and espe-
cially hospitalization, causes respiratory muscle wasting 
and impaired skeletal muscles that could lead to sarcopenia 
and cachexia [109–112]. Using mechanical ventilation for 
several weeks is another factor involved in structural and 
functional impairment of respiratory muscles [111, 113, 
114]. Also, diaphragm, a key inspiratory muscle, during 
mechanical ventilation is put in an unloaded condition which 
can be accompanied with atrophy and consequently weak-
ness. Brainstem centers monitoring respiratory rhythm have 
been documented to switch off sending efferent impulses 
to respiratory muscles amid long-term usage of mechanical 
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ventilation [115–117]. In support of this claim, reports dis-
closed that COVID-19 patients during their stay in intensive 
care unit (ICU) wards experienced diaphragm impairment 
and a decrease in its thickness [116, 118]. Also, an atrophy 
in diaphragm fibers and a reduction in its contractile function 
have also been reported [119, 120]. MS patients also experi-
ence such inactivity which is highly similar to those who are 
bedridden [121]. Inactivity-induced influence on respiratory 
muscles may also be ascribed to production of ROS by the 
pro-inflammatory cytokine storm and activated macrophages 
and monocytes. Reactive oxygen species and resultant oxi-
dative stress increase the apoptosis and proteolytic processes 
through the expression of caspase-3 and the activation of 
the ubiquitin–proteasome system [119, 120, 122–127]. The 
ubiquitin–proteasome system is activated by hyperinflam-
mation conditions as observed in both COVID-19 and MS 
diseases [128–130]. The ubiquitin system, which is depend-
ent on ATP, is the main mechanism responsible for muscle 
atrophy [131, 132]. Pro-inflammatory cytokines induce mus-
cle atrophy, particularly in respiratory muscles, through the 
following additional mechanisms: inhibited protein synthesis 
due to the changes in anabolic hormones such as insulin-like 
growth factor 1 (IGF-1), the mitigating function of satellite 
cells, attenuated expression of myoblast determining protein 
1 (MyoD), downregulation of myosin heavy chain (MHC) of 
slow twitch fibers and increased degeneration and changes 
in fiber-type phenotype [133–138], increased activation of 
NF-κB which leads to the activation of the ubiquitin system 
[137, 139, 140], and hindered expression of the peroxisome 
proliferator-activated receptor (PPAR), which has a role in 
preventing inflammatory conditions, all contributing to a 
catabolic state along with muscle atrophy [141].

In addition to the immune system, intrinsic expression 
of ACE2 receptors in the skeletal muscle system may play 
an important role in SARS-CoV-2 entering into muscles 
and contribute to skeletal muscle morbidities [142]. Indeed, 
increased virus entrance into respiratory skeletal muscles is 
also associated with produced pro-inflammatory cytokines 
and as a consequence ROS formation. Reactive oxygen spe-
cies induce muscle damage and atrophy that will finally lead 
to muscle fatigue [110, 143–147]. These species, further, 
reduce muscle force production by several mechanisms, 
including attenuating sensitivity of myofibrils to calcium 
 (Ca2+) [148, 149], oxidizing regulatory proteins of sarco-
plasmic reticulum (SR)  Ca2+ release channels [150, 151], 
opening ryanodine-sensitive  Ca2+ release channel result-
ing in increased  Ca2+ concentration [150, 152], inhibiting 
the function of sarcoplasmic reticulum calcium ATPase 
(SERCA) which is necessary for ATP hydrolysis [153], 
impacting on myofibril structure and function [154, 155], 
altering cross-bridge kinetics [149], oxidizing myosin heavy 
chain and also increased impairment of myosin function 
[154, 156], and modifying the function of troponin C [157]. 

Thus, increment in ROS can incur in  Ca2+ dysregulation 
in cell cytosol (increased intracellular  Ca2+ concentration) 
that in turn activates calpain [145, 158]. Calpain causes 
the releasing of sarcomere proteins via cleaving cytoskel-
etal proteins such as titin and nebulin which are anchored 
to the contractile components [159]. In this context, how-
ever, future studies should address whether the direct attack 
of SARS-CoV-2 on respiratory muscles has a role in their 
atrophy.

Severe active respiratory syndrome coronavirus 2 also 
associates with respiratory challenges after entering the 
body via respiratory or neuronal pathways. Coronavirus 
is categorized as a virus that after entering to CNS causes 
lesions in brainstem, a sensitive area for respiratory cycles 
[3, 160]. It may be concluded that produced lesions cause a 
neuromuscular impairment of respiratory muscles. Demyeli-
nated lesions which are observed in patients with COVID-19 
and MS diseases are actuated by cytokine storm [18, 33, 36, 
37, 161, 162]. Upon entering into the body, SARS-CoV-2 
identified as a foreign antigen by immune cells triggers seri-
ous immune and inflammatory responses which as a con-
sequence cause extensive peripheral and central release of 
pro-inflammatory cytokines. There is a positive correlation 
between increased pro-inflammatory cytokines and disease 
progression [163, 164]. This process suggests the lack of 
immune regulation in response to respiratory infection.

That the respiratory system in MS patients can be 
impaired has been neglected by clinicians and scientists due 
to prominent other signs in these patients. Altered respira-
tory function and respiratory muscles strength are changes 
exacerbated with increasing MS disabilities [165–167], 
and it has even been disclosed that these respiratory issues 
account for roughly 47% of total deaths in MS patients 
[168]. There are acute and chronic respiratory failures in MS 
patients. Respiratory failure happens in the terminal stages 
of MS and is usually associated with significant bulbar or 
limb paralysis [169]. Respiratory failure may be acute, typi-
cally secondary to demyelinating lesions in the cervical cord 
or the medulla, or chronic, typically found in the terminal 
stages of the disease and related to weak respiratory mus-
cles, and ineffective cough, leading to aspiration, atelectasis 
and pneumonia. Of the two kinds, only acute respiratory 
failure is potentially reversible with treatment [169–172]. 
Weakened respiratory muscles, especially expiratory ones, 
are a prevalent detriment in advanced phase of MS disease 
[167, 173, 174]. Paraplegic progression from distal to proxi-
mal in MS causes impairment in expiratory muscles prior to 
the diaphragm and intercostal muscles [175]. The regulation 
of respiratory muscle function is controlled in the regions 
of the brain stem and spinal cord, dorsal, and ventral res-
piratory centers. MS patients have centrally demyelinating 
plaques extended to these respiratory centers which associ-
ate with disrupted impulses and neural pathways related to 
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respiratory muscles [166, 167, 169, 172]. Additionally, the 
majority of MS patients experience autonomic dysfunction, 
including in the thermal system, which is originated from 
lesions in brain stem and medulla areas of the brain [176]. 
Hyperthermia induced by these lesions negatively influences 
impulse conduction throughout neurons present in respira-
tory centers that control respiratory muscles [177, 178]. The 
primary mechanism that can mechanistically explain such 
reduction in impulse conduction is attributed to the potas-
sium channels expressed in these neurons. Hyperthermia 
activates two-pore domain  K+ (K2P) channels on respira-
tory muscles controlling neurons and therefore culminates 
in neuronal hyperpolarization and reduced action potential 
propagation [179–181].

The above-mentioned pathways can diminish strength 
and endurance of respiratory muscles [167, 172–174], more 
predominant in expiratory respiratory ones [172, 174, 182]. 
The reduction in these muscle fitness components associate 
with changes in lung volume and capacity [172], including 
VC, maximal expiratory and inspiratory pressures, forced 
expiratory volume in the first second  (FEV1: the volume 
of air exhaled in the first second during forced exhalation 
after maximal inspiration), FVC,  FEV1/FVC ratio, peak 
expiratory flow (PEF: the highest forced expiratory flow), 
and total lung capacity [165, 172, 174]. Collectively, these 
pulmonary issues in patients with MS engender some abnor-
malities such as disruption in diffusion capacity of gas 
dispersed across alveolar membrane, ventilation to perfu-
sion ratio, increased physiological dead space, and conse-
quently diminished oxygenation, inefficient cough, reduced 
respiratory control, dyspnea, and exercise intolerance or 
reduced exercise capacity [171, 183–185]. All complica-
tions related to respiratory muscle impairment can put MS 
patients in a severe condition or even death upon infection 
with COVID-19.

Multiple sclerosis is always associated with some dis-
abilities, including fatigue, strength, coordination, and cog-
nitive signs loss, that progress over time and lead to physical 
and social inactivity [185]. Besides, several years ago, it has 
been recommended that MS patients should not participate 
in physical exercise, just because of increasing their internal 
temperature during exercise would compromise their clini-
cal signs [186, 187]. Thus, MS patients face a sedentary 
live [188–190] accompanied with increasing body mass 
index (BMI) and obesity. Increased BMI and obesity in 
turn compromise MS severity and even elevate the odds on 
afflicting MS disease in younger ages [191–195]. Adopted 
sedentary lifestyle in these patients results in an imbalance 
between energy intake and expenditure, leading to obesity. 
Obesity, which is defined as a BMI ≥ 30 kg  m−2, is a meta-
bolic disorder with accumulating fat mass in various body 
points. Extra burden of body fat through mechanical limi-
tations and reduced thoracic compliance may change lung 

function/physiology and respiratory rhythm [196, 197]. 
Hence, increased fat accumulation in areas around ribs, 
diaphragm, and abdominal cavity implements a mechani-
cal load on chest cavity that abates respiratory compliance 
(increased stiffness) [198–200]. Elevated intra-abdominal 
and pleural pressures due to upward and outward move-
ments, respectively, in diaphragm and chest wall preclude 
airflows toward negative pressure gradient in lungs and 
pleural space with the lower part of lung system tending to 
collapse [199, 201, 202]. Generally, increased mechanical 
load and internal pressures cause a change in respiratory 
pattern to the quick, shallow type (increased breath rate) 
[203]. Compromised lung volumes are secondary to the 
changes of respiratory pattern. The most detrimental altera-
tions in lung volumes and capacities have been observed 
in expiratory reserve volume (ERV), FVC, forced residual 
capacity (FRC), total lung capacity (TLC), and tidal volume 
[204–210]. An impaired lung gas exchange, hypoventilation, 
and eventually hypoxia have been pinpointed in obese indi-
viduals that mostly resulted from regional ventilation–per-
fusion mismatching; on the other hand, the lower parts of 
their lungs are often under-ventilated and contrarily over-
perfused [211, 212]. Adiposity is characterized by deposi-
tion of fat in adipocytes, followed by adipocyte hypertrophy 
and hyperplasia. The hypertrophied adipocyte are infiltrated 
by macrophages and they in turn release pro-inflammatory 
cytokines (TNF-α, IL-1β, IL-6) and adipocytokines from the 
TGF-β family, especially TGF-β1 [213–218]. Additionally, 
an imbalance between some other adipokines, including adi-
ponectin and leptin, also occurs. The concentration of adi-
ponectin, as an anti-inflammatory adipocytokine, and leptin, 
as a pro-inflammatory cytokine, respectively, decreased and 
increased in obese individuals [219, 220]. In a more general 
term, increased secretion of these adipokines into circulation 
can influence other organs throughout the body and pro-
duce some lung disorders, like asthma, COPD, and fibrosis 
[221, 222]. Increased compensatory lung perfusion in obese 
individuals can guide circulating TGF-β1 to lung tissue. In 
lungs, TGF-β1 recruits immune cells, such as eosinophils, 
neutrophils, macrophages, mast cells, and fibroblasts, as 
well as increases the production and expression of IL-8, 
cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) 
in airway smooth muscle cells, leading to airway inflamma-
tion and finally asthma [223–227]. Independent of inflam-
matory responses in airways, TGF-β1 can cause airway 
remodeling or fibrosis [228]. TGF-β1 modulates the syn-
thetic and secretory functions of epithelial, airway smooth 
and monocyte cells, and fibroblasts. Increased function of 
these cells are associated with synthesis and deposition of 
extracellular matrix (ECM) components. These ECM com-
ponents include collagen I and IV, elastin, fibronectin, and 
biglycan [229–231]. Adiposity as a secondary outcome to 
changing lifestyle in MS patients with detrimental effects on 
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respiratory system can be a risk factor for infectious diseases 
such as COVID-19 [232] and therefore expose MS patients 
to higher mortality rate when infected to COVID-19 than 
non-obese ones. More importantly, accumulated adipose 
tissue extensively expresses ACE2 enzyme, the receptor for 
SARS-CoV-2 entering into cells; this tissue thus acting as a 
reservoir for virus [233, 234].

The infection of SARS-CoV-2 can be fatal and its severity 
is heterogeneous among individuals that have or do not have 
underlying diseases [235]. Such heterogeneity in disease 
severity may be attributed to the underlying diseases that 
already naturally promote respiratory problems or to differ-
ences in ACE2 expression and distribution [236]. Angioten-
sin-converting enzyme 2 presence in lung tissue can under-
line the promoted respiratory issues and their severity [237]. 
Angiotensin-converting enzyme 2 is a dipeptidyl carboxy-
peptidase expressed remarkably on numerous tissues and 
organs, including lungs, vascular endothelia, cardiovascular 
tissue, stomach, small intestine, colon, skin, Ranvier nodes, 
thymus, bone marrow, spleen, liver, kidneys, and brain [73, 
162, 238, 239]. However, ACE belongs to RAS. RAS com-
prises two arms or axes in which one of them is detrimental/
pathological and another is protective with opposing effects 
[240, 241]. The main pathological axes are angiotensin II 
(Ang II also known as Ang1-8)/ACE/angiotensin type 1 
receptor (AT1R). Angiotensin-converting enzyme or ACE 
cleaves angiotensinogen I (Ang I) to form Ang II exerting its 
actions by binding to AT1R. The protective axis consists of 
angiotensin 1–7 (Ang1-7)/ACE2/Mas receptor (MasR), and 
sometimes angiotensin type 2 receptor (AT2R) is also taken 
into account in this axis. Angiotensin-converting enzyme 
2 produces Ang1-7 via catalyzing Ang II [240, 242, 243]. 
The second axis has anti-inflammatory, anti-proliferative, 
anti-fibrotic, anti-apoptotic, and vasodilatory functions 
[244]. There are two RAS types, namely, systemic and local 
RAS [245]. Indeed, ACE2 is found in two forms, membrane 
associated and soluble which is catabolically activated [246, 
247]. The upregulation of the detrimental axis of RAS has 
been observed in disease circumstances [248–250], and it 
has been found that the activity of soluble ACE2 decreases 
in disease conditions [250]. Soluble and membrane-associ-
ated ACE2 as protective axis of RAS were downregulated 
following infection with SARS-CoV-2 which may contrib-
ute to increased viral entering and lysing of ACE2-positive 
cells [12, 48, 251, 252]. On the other hand, attenuated ACE2 
is associated with loss of protective effects of ACE2 and 
increased Ang II in both mRNA and protein levels [247]. 
The circulating and tissue levels of ACE2 in some diseases, 
such as cardiovascular and chronic kidney diseases, and 
also smokers with chronic obstructive pulmonary disease 
(COPD) are increased as a compensatory response and it 
may be an explanation for why some persons with underling 
diseases are at higher risk of COVID-19-induced mortality 

[253, 254]. Increased plasma level of Ang II has been also 
reported in patients infected with SARS-CoV-2 which had 
positive correlation to viral load and lung damage. There-
fore, it may be possible to inhibit the detrimental effects of 
COVID-19 through suppressing of Ang II [12, 252, 255, 
256]. Angiotensin II or Ang II exerts its pro-inflammatory 
and pro-fibrotic action through binding AT1R on lung cells 
[247]. Contrarily, the protective role of the ACE2/Ang1-7/
MasR axis has been identified in several models of lung 
damage including initial type of SARS [252]. Angiotensin-
converting enzyme 2 suppresses the production of Ang II, 
the activity of ACE and AT1R activation in order to prevent 
severe lung failure by mediating the production of bioactive 
peptide of Ang1-7 which activates MasR and AT2R sign-
aling [257–260]. Angiotensin 1–7 promotes its beneficial 
functions by inhibiting ERK1/2 and natural NF-κB path-
ways and also prevents bronchial responsiveness, which is a 
hallmark characteristic of chronic asthma [258, 259]. In MS 
patients associated with SARS-CoV-2, notable differences 
were observed in the numbers of lung NK cells,  CD8+ T 
cells, inflammatory monocytes, and myeloid-derived sup-
pressor cells (MDSCs). This leads to increased lung cell 
infiltration, suppressive monocytes in the bone marrow, 
blood, spleen, and CNS, and a decrease in anti-viral  CD8+ 
T-cell function. It is worth noting that increased concentra-
tion of ACE, and dysregulation in ACE/ACE2 balance, has 
been observed in diseases associated with ARDS, like in 
patients with severe COVID-19. Produced imbalance favors 
the detrimental axis of RAS, which can impair lung func-
tion due to inflammation, fibrosis, and lung edema, the latter 
resulting from promoted permeability of lung blood vessels 
[252, 258, 261, 262].

Majority of the human studies have measured solu-
ble ACE2 in blood, while membrane-associated ACE2 
assessment needs more investigation in future. It has been 
acknowledged that using ACE2 blockers or antibodies dis-
rupting viral entering into the cell during COVID-19 infec-
tion, may endanger patients, since these strategies abate 
the protective effects of ACE2 and its anti-inflammatory 
activity and as a consequence promote lung susceptibil-
ity to damage [263, 264]. Furthermore, utilizing analogue 
receptors or recombinant soluble ACE2 is another strat-
egy to reduce viral binding in a competitive manner to 
membrane-associated ACE2 and finally through this pro-
cedure mitigate infection and viral load. In this context, 
soluble ACE2 acts as a decoy receptor and reduces the 
binding of SARS-CoV-2 to local/membrane-associated 
ACE2 and as a result reduces lung damages induced by 
COVID-19 disease [264, 265]. Of note, based on evidence, 
increased levels of soluble ACE2 point to the attenuation 
of membrane-associated ACE2 levels [266].

As mentioned above, COVID-19 patients have a lower 
protective axis compared with controls or rather, patients 
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with COVID-19 disease illustrated higher circulatory Ang II 
levels which were correlated to viral load [255, 267].

Angiotensin II receptor blockers (ARBs) improve 
ACE2/Ang1-7/MasR axis of RAS which is associated with 
assuaged ROS production, inhibiting lung fibrosis via miti-
gation of collagen deposition, reducing the disruption of 
alveolar walls through anti-inflammatory influences medi-
ated by suppression of NF-κB pathway, and also by reducing 
the production of pro-inflammatory cytokines (IL-6, TNF-
α) [268–271]. Collectively, RAS manipulation may abate 
SARS-induced tissue damages [12].

In any case, details about the expression and distribution 
of ACE2 receptors are scarce in MS patients and they should 
be identified in future research. SARS-CoV-2’s receptor 
availability can increase the virus entering into the lung cells 
and worsen the disease complications [236]. Both ACE2 and 
transmembrane serine protease 2 (TMPRSS2) are expressed 
on the apical membrane of alveolar cell type 2 (AT2). The 
virus binds to the ACE2 receptor through its spike glyco-
protein (S) and then TMPRSS2 helps SARS-CoV-2 to fuse 
with the host cell membrane for the release of its genome 
[272]. Thus, other factors such as TMPRSS2 may be criti-
cal in regulating COVID-19 disease, although it remains to 
be clarified in future research. As above mentioned, RAS 
has been found peripherally in circulation and centrally in 
the CNS [273]. The main sources of RAS components in 
CNS are glial cells (especially astrocytes) and neurons [274]. 
Increased expression and activation of detrimental compo-
nents of RAS have been reported in circulation, cerebrospi-
nal fluid (CSF) and brain tissue (especially on lesions) of 
MS patients [13, 47, 275], while there was a reduction in 
the protective ACE2 component [13]. This observed status 
in MS patients is associated with exacerbating neurologi-
cal signs [259, 276, 277]. Importantly, the detrimental axis 
is activated in the early steps of experimental autoimmune 
encephalomyelitis (EAE), as an animal model of MS, but 
the protective axis is activated during the end time point 
of this model [278]. The majority of studies have concen-
trated on the inflammatory role of the detrimental axis of 
RAS. Growing scientific literature, using the EAE model, 
has reported that ACE inhibitors and ARBs and improve-
ment of the protective axis can attenuate the clinical scores 
and inflammation [243, 279–281]. Thus, RAS axes should 
be taken into account for therapeutic purposes in the treat-
ment COVID-19.

A correlation has been detected between pulmonary 
damage and changes in its function [282]. Recovered 
patients from COVID-19 still experience impairments in 
pulmonary functional capacity for several months [283]. 
Such functional disorders or functional reduction have 
been proved in forced expiratory flow, forced expiratory 
volume in 1 s to forced vital capacity (FEV1/FVC) [284]. 
Otherwise, ground-glass opacities are observed in the 

early and progressive phases of the disease [285]. Patients’ 
age, comorbidities, history of cigarette smoking, the dura-
tion of hospital admission, and also the type of medication 
administration are the critical determinants in the severity 
of pulmonary disorders [283, 286].

It has been shown that there is a mutual relationship 
between having chronic respiratory disease and increas-
ing cerebral infraction; on the other hand, it is shown that 
there is a significant relationship between impaired res-
piratory function and both brain atrophy and volume of 
white matter lesions [5, 167, 171, 287].

Remarkable brain and brainstem demyelination influ-
ence motor pathways, especially those that innervate 
limbs, which lead to mobility weakness or impairment. 
Multiple sclerosis is a neuro-inflammatory and demyeli-
nated disease associated with lesions throughout the CNS, 
which depending on the involved brain area incurs in some 
disabilities [288, 289]. Pulmonary dysfunction manifested 
in MS primarily include impaired respiratory muscles that 
result in pulmonary weakness and cough. Expiratory mus-
cles are probably more at risk to suffer impairment. It must 
be mentioned that there is a close correlation between dis-
ease severity and higher reductions in respiratory mus-
cles force. In this context, after pulmonary function tests 
(PFTs) it has been indicated that MS patients have a low 
vital capacity (14%) in the supine position. Thus, respira-
tory dysfunction in MS patients may partly reflect the 
demyelinated lesions in the monitoring area of respiratory 
centers in the brainstem and cervical spinal cord and as a 
result, they can weaken the expiratory respiratory muscles. 
As a whole, impaired expiratory respiratory muscles may 
be accompanied by a higher risk of respiratory infections 
like pneumonia. Respiratory infection-induced mortality 
of MS patients is twice times higher than the general popu-
lation, [172, 173, 287, 290–293]. It is worth noting that 
the side effects of some MS-modifying drugs such as Fin-
golimod, Tranquilizes, muscle relaxants, and opioids may 
be the main factor in the reduction of some lung function 
values and slowdown the ventilation action.

It has also been shown that pneumonia is the common 
consequence in all coronavirus and MS patients. Respiratory 
problems in MS patients initiate by disease progression. The 
systemic pro-inflammatory milieu in MS patients alone con-
tributes to skeletal muscle weakness and these complications 
may increase with COVID-19 infection. In this context, it 
is necessary to identify the direct attack of SARS-CoV-2 on 
skeletal muscles in future research.

Additionally, both diseases share the same initial mecha-
nisms and symptoms; thus, individuals with MS may experi-
ence and be placed in the intolerable condition after coro-
navirus infection, just like resurging the chronic relapses 
increasing the clinical symptoms that may lead to their death 
[294, 295].
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Pleiotropic roles of physical exercise

Physical exercise is a challenge on approximately the whole-
body system. The movement demands, the control of skeletal 
muscles, the cardiovascular, and particularly the pulmonary 
system helps to maintain the intensity of a given exercise for 
longer times. Persistent contributions of regular exercise, 
specialty endurance mode causes adaptations in all of these 
physiological systems [296, 297]. The majority of respira-
tory muscles including expiratory and inspiratory muscles 
are skeletal muscles [298]. In admitted COVID-19 patients 
with a severe condition of mechanical ventilation, it is neces-
sary to strengthen pulmonary muscles during the recovery 
period [24]. Furthermore, individuals with changes in the 
motor system and generally with disabilities, most probably 
experience functionally respiratory disorders [299]. Endur-
ance training might be one recovery strategy to improve the 
function of pulmonary muscles (Fig. 2). It has been revealed 

that endurance training primarily increases the number and 
size of mitochondria and capillaries in skeletal muscles and 
as a consequence converts the fibers phenotype to the more 
oxidative type [296, 297, 300–302]. Increased myoglobin 
and glycogen content and the increase use of fat as a fuel 
source are other adaptations that occur in skeletal muscles 
[303, 304]. The main functional alterations in the respiratory 
system induced by endurance training are as following: (1) 
increased tidal volume and breath rate which collectively 
promote maximal pulmonary ventilation and (2) improved 
pulmonary perfusion as a result of increased pulmonary 
blood flow in the higher area of the lungs [305]. These adap-
tations in pulmonary muscles and in respiratory function are 
partly amenable to increased  VO2max and lactate thresholds. 
A study conducted on severe acute respiratory syndrome 
(SARS) survivals showed that 6 weeks of combined training 
(endurance and resistance) improved cardiopulmonary and 
muscle (upper and lower limbs) fitness and performance, 

Fig. 2  The schematic diagram of protective or modifying role of 
physical activity. The positive effects of regular physical exercise on 
four body systems is indicated by dashed rectangles and also the posi-
tive marks. The effects of positive changes in MS patients are, then, 
identified by the solid rectangle and also dashed arrows for every 
item. FEV forced expiratory volume; URTI upper respiratory tract 

infection; COVID-19 coronavirus disease-19; QOL quality of life; 
Ach, acetylcholine; TLR, toll-like receptor; HPA, hypothalamus–pitu-
itary–adrenal axis; RAS renin–angiotensin system; Treg T regulatory 
cells; OPCs oligodendrocyte precursor cells; MBP myelin basic pro-
tein; PLP myelin proteolipid protein; ROS reactive oxygen species
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increased predicted  VO2max, and elevated health-related 
quality of life (QOL) [306]. Increased  VO2max/VO2peak 
induced by exercise training mainly comes from improving 
and reducing blood circulation and pressure, respectively, 
as well as refining cardiovascular function [307]. Addition-
ally, a reduction in breathlessness and an improvement in 
muscle endurance and strength can increase contribution to 
physical exercise and independency in doing personal duties, 
all promoting QOL [308–310]. Thus, MS patients with the 
contribution of progressive endurance training following 
SARS-CoV-2 can expedite their recovery and also improve 
their quality of life through independence from others in 
daily tasks [305].

Nowadays, the training of respiratory muscles is the new-
est training trend to rehabilitate individuals who have a prob-
lem with their respiratory muscles or even to enhance perfor-
mance in persons whose professions benefit from improving 
the strength of respiratory muscles [311, 312]. This training 
model is implemented in guise of trained expiratory and 
inspiratory respiratory muscles, and a combination of them 
[313]. It has been proved that this type of rehabilitating 
training in MS patients is involving positive adaptations 
and improvements in respiratory muscle strength, spirom-
eter parameters, cough efficiency, fatigue, and dyspnea 
[290, 314–317]. Besides, respiratory training improves the 
strength and endurance components of respiratory muscles 
and as a result promote lung functional capacity and perfor-
mance [318]. Due to enhancement of components related to 
respiration, such as slowdown breathing rate and assuaged 
carbon dioxide production, dyspnea is diminished second-
ary to the respiratory training [317, 319]. Inspiratory muscle 
training has affirmative effects on cardiac function by involv-
ing in autonomic nervous system; for example, increasing 
parasympathetic activity [320, 321]. Elevated exercise-
mediated intrathoracic pressure triggers baroreflex activity 
leading to promoted venous return which in turn mitigates 
heart sympathetic activation during resting condition [175]. 
Despite potential influences on respiratory muscles, exer-
cise training defies the cardiac problems incurred in MS 
and COVID-19 diseases and therefore prevents exacerbating 
ventilation process. There are several training models esca-
lating respiratory muscle strength and endurance [322–324]. 
One of these models is swim training [299].

Swim training increases respiratory work; hence, this 
training type promotes pulmonary volumes by strengthen-
ing the respiratory muscles, especially the diaphragm [325].

Other functional changes in the form of adaptations that 
occurred in the pulmonary system induced by exercise train-
ing include (1) reduced fatigability, (2) increased expira-
tory lung volume, (3) elevated vital capacity, (4) increased 
diaphragm thickness, (5) enhanced function of inspiratory 
muscles [326, 327], (6) increased TLC, (7) promoted FRC 
[299], (8) increased FEV1 [299], (9) promoted FVC, (10) 

increased PEF [299, 328, 329], and (11) increased strength 
and endurance of respiratory muscles [330].

Maintenance of diaphragm activity under mechanical 
ventilation may prevent its atrophy [331]. Otherwise, it has 
been identified that increased concentration of metabolites 
in respiratory muscles may partly explain the fatigue of exer-
cising organs; in such a way, metabolites trigger the firing 
rate of afferent nerves to the autonomous nervous system.

Increased strength of outflow of sympathetic nerve, by 
corollary, causes vasoconstriction and as result fatigue in 
exercising organs [332, 333]. Inspiratory and expiratory 
muscle training inflict a load on the diaphragm and as a 
result, increases cross-sectional area and strength and endur-
ance of the diaphragm and also improves fatigue tolerance 
[334–336].

Single exercise sessions, or acute exercise, impact on 
the immune system by recruiting leukocytes from other 
organs to circulation, acquiring active phenotype of both 
innate and adaptive cells including NK cells, active T and B 
lymphocytes [337, 338], and increased release of immune 
modulatory peptides, such as anti-inflammatory cytokines 
[339]. Thus, acute exercise causes the immune activa-
tion and this may influence defense mechanisms against 
pathogens. Although the increased immune function may 
be efficacious in healthy persons, this condition can aggra-
vate the circumstance of MS individuals particularly those 
who suffer from COVID-19. It is documented that regular 
physical exercise can attenuate respiratory issues through 
effectuating positive responses of the immune system or 
reducing pro-inflammatory cytokines as causative agents of 
respiratory issues in COVID-19 and MS patients (Fig. 2) 
[29, 340, 341]. IL-6 may be one of the outstanding mecha-
nisms by which exercise induces a mitigated inflammatory 
environment. Exercise training increases the production of 
IL-6 from adipocytes, macrophages, monocytes, brain, liver, 
and skeletal muscles [340, 342, 343]. The increased circu-
latory concentration of IL-6 is associated with attenuated 
production of pro-inflammatory cytokines (TNF-α, IL-1β) 
from inflammatory cells [340, 342] as well as promoted anti-
inflammatory cytokines, such as IL-1 receptor antagonist 
(IL-1ra), IL-4, and IL-10 [342, 344]. Furthermore, blockage 
of IL-1β receptors, which inhibits its signal transduction, 
maybe another anti-inflammatory function induced by IL-6 
[345]. Produced anti-inflammatory cytokines reduce antigen 
presentation by antigen-presenting cells (APCs) which are 
necessary to maintain inflammatory responses [346]. The 
upregulation of IL-6 in lung tissue after exercise training 
has also been shown in lung injury in animal models [347]. 
IL-6 dampens pulmonary inflammation through increasing 
superoxide dismutase (SOD) and also restricts the disrup-
tion of alveolar barrier induced by neutrophils [348, 349]. 
A negative correlation between IL-6 and IL-10 has been 
shown with neutrophils density in lung tissue. Increased 
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concentration of IL-6 and also activation of the hypothala-
mus–pituitary–axis (HPA) induced by physical exercise 
increase the release of cortisol, a circulatory anti-inflam-
matory factor. Initially increased exercise-induced cortisol 
reduces pro-inflammatory production by acting on its own 
receptors on immune cells [340, 344]. It has also been shown 
that IL-6 can activate HPA per se [348, 350, 351]. The pre-
vious evidence corroborates this claim since an increase in 
IL-6 receptors and an enlargement have been observed in 
adrenal glands [350]. Exercise directly mitigates pulmonary 
inflammation by increasing glucocorticoid receptors on 
inflammatory lung cells. It also dampens the levels of pro-
inflammatory cytokines in inflammatory lung tissue induced 
by endotoxin in animal models [347, 348]. Reduced pro-
inflammation plays a critical role in abating the permeability 
of microvascular endothelium [352] and accordingly reduces 
ROS and lung edema [62]. Importantly, it has been revealed 
that enhanced pulmonary antioxidants, particularly SOD, 
induced by regular exercise can attenuate ARDS produced 
through viral infection. Enzymatic antioxidants degrade free 
radicals culminating in the reduction of lung damages [62, 
353–355].

Exercise training has an extensive effect on the vague 
tone of the parasympathetic nerve. The increased efferent 
reflex of a sympathetic nerve is associated with releasing 
acetylcholine (Ach) from its terminals. Ach binds to nico-
tinic receptors on immune cells attenuating the production of 
pro-inflammatory cytokines as well as acts on macrophages 
by converting their phenotype from M1 (pro-inflammatory 
phenotype) to M2 (anti-inflammatory phenotype) [356, 357]. 
Reduced toll-like receptors (TLRs), especially TLR4, on 
circulatory monocytes may be another way through which 
exercise impacts the changes of immune status. Activated 
intracellular signals of these receptors trigger the produc-
tion of pro-inflammatory cytokines [358, 359]. Therefore, 
regular exercise revolves negative immune response to a 
positive one. Another change in immune function resulting 
from exercise training is increased circulatory number of T 
regulatory (Treg) cells [360]. These cells secret anti-inflam-
matory cytokines like IL-10 and transforming growth factor-
beta (TGF-β) and also increase the proportion of Th2 to Th1 
which is related to promoting anti-inflammatory cytokines 
[361]. There is cross-reactivity between pro-inflammatory 
cytokines and microglial cells; in such a way, reduced pro-
inflammatory cytokines induced by exercise training, miti-
gates reactivated microglia (microgliosis) and consequently 
decreased microgliosis associated with assuaging the pro-
duced pro-inflammatory cytokines released by reactive 
microglia [362, 363]. The changes of detrimental immune 
responses to reparative/positive responses may be efficacious 
to mitigate pulmonary damages resulting from COVID-19 
disease and to improve the strength and endurance of the 
respiratory muscles in MS patients infected with COVID-19. 

Importantly, attenuated pro-inflammatory cytokines pro-
vided by physical exercise can also be beneficial for reducing 
neuronal loss and for reducing the demyelination induced 
by MS/COVID-19 in brain areas monitoring respiratory 
muscles and ventilation cycle [32, 364, 365]. Thus, exercise 
training establishes an appropriate balance in lung infection, 
tissue homeostasis, and immune response.

It has been found that exercise inhibits alveolar mac-
rophages polarization to pro-inflammatory M1 phenotype 
by reducing NETs production and suppressing ERK1/2 and 
NF-κB pathways in lung cells and macrophages. This action 
can culminate in the mitigation of lung damages [366]. 
Besides, exercise enhances sputum clearance throughout 
the pulmonary system, which can be attributed to increased 
activity of nasal epithelial sodium channels (ENaC), pro-
moted ventilation, shear force, and body movements [367]. 
Damped neutrophilic inflammation has been reported in 
individuals with pulmonary problems after participation 
in regular exercise programs and is associated with the 
diminishment of complement receptors [368]. Thus, exer-
cise could reduce lung inflammation induced by infection, 
particularly in patients with MS.

Increased remyelination, or rather, ceased demyelination 
mediated by regular physical exercise could be attributed 
to the following: (1) increased central expression of neuro-
trophic factors and their receptors expressed in brain areas, 
particularly on oligodendrocyte precursor cells (OPCs), 
which can elevate the proliferation and differentiation of 
OPCs to adult (myelinating) oligodendrocytes enveloping 
neural axon [369, 370], (2) increased number of mitochon-
dria, which is associated with mitigating the production 
of pro-inflammatory cytokines, reduces myelin damage 
induced by oxidative stress [371], (3) increased antioxidant 
enzymes [372], (4) upregulation of some myelin protein 
expression, such as myelin main protein (MBP) and prote-
olipid protein (PLP) [373], which are expressed on myelin 
sheath and also essential for myelin formation and thick-
ness [374, 375], and (5) phenotypic conversion of microglia 
from M1 (pro-inflammatory) to M2 (anti-inflammatory) type 
and maintain them in inactivation or resting state as well as 
increasing their phagocytic function for expediting clearance 
of debris [376, 377]. Collectively, contribution in regular 
physical exercise can preclude plaque/lesion extension to 
the areas of the brain more related to respiratory centers 
and even restore nerve impulses through remyelinating pro-
cesses. The relationship between immune and pulmonary 
systems in MS individuals with COVID-19 disease is per 
se complex and there is no information related to exercise 
training and respiratory system in MS patients who have 
been infected with COVID-19.

It has been postulated that low-to-moderate-intensity 
exercise in contrast to high-intensity exercise, causes a 
decrement in upper respiratory tract infections (URTI) 
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and symptoms [378]. Besides, the individuals with moder-
ate exercise levels also experience lower URTI incidence 
compared to their sedentary counterparts [379]. The main 
mechanisms related to reducing URTI induced by moder-
ate regular exercise training have been attributed to the fol-
lowing (Fig. 2): first, increased salivary immunoglobulin A 
(s-IgA) which is the first line of the body defense against 
foreign pathogens, like respiratory viruses. This factor binds 
to respiratory viruses and eliminates them through opsoniza-
tion [380, 381]. Second, immune phenotype changes from 
T helper 1 (Th1) to Th2 (improving Th1/Th2 balance). Th1 
cells produce pro-inflammatory chemokines when exposed 
to pathogens, but their excessive responses can incur in tis-
sue damages in the lungs [382]. In this context, moderate 
exercise training attenuates immune cells infiltration to lungs 
and lymph nodes drainage and release of pro-inflammatory 
cytokines by Th1 are reduced [383]. Third, increased IL-2 
levels in lung tissue enhance differentiation and maturation 
of Treg cells. Increased number of Treg is congruent with 
establishing an anti-inflammatory milieu in lungs [382]. 
Anti-inflammatory cytokines such as IL-4 exert another 
role in reducing detrimental pro-inflammatory conditions. 
Interleukin-4 facilitates the differentiation of naïve Th to 
Th2 phenotype which has an anti-inflammatory function as 
well as co-stimulates B cells to secrete virus-neutralizing 
antibodies. Viral antibodies reduce the virus load through 
inhibiting the infection of cells and opsonizing the infected 
cells [383]. Fourth, increased soluble TNF-α receptor which 
is capable to bind to circulatory TNF-α through which 
mitigates membrane-binding propensity and consequently 
reduces activation of NF-κB signal pathways. Fifth, an incre-
ment in eosinophil chemoattractants causes extravasation of 
eosinophils into the infected lung tissue where their ribonu-
cleases can degrade virus’s single-stranded RNA and sup-
presses virus replication [383]. Initial increases in cortisol 
induced by chronic exercise may act as an assuaging factor 
of pro-inflammatory condition produced by infection and 
as a consequence reduces lung susceptibility to infection 
[383, 384]. In this matter, professionals should be aware that 
prescribing a proper exercise protocol in MS patients with 
SARS-CoV-2 infection is essential, since higher core body 
temperature (hyperthermia) in individuals with MS may act 
as an endogenous stress factor that causes a higher CNS 
recruitment and higher exertion. In this case, higher exer-
tion will lead to increased concentration of stress hormones 
and result in impairment of the host immune system which 
it may endanger MS patients with compromised immune 
system [385, 386]. Sixth, exercise increases the circulation 
of IL-6 derived from exercising skeletal muscles and, it, in 
turn, upregulates anti-inflammatory cytokines, including IL-
1ra and IL-10. These anti-inflammatory cytokines mitigate 
the extended inflammation originated from respiratory virus 
infection [383, 387]. Besides, increased recruitment of NK 

and cytotoxic T cells also occurs following regular exercise 
training, improving immune defense against foreign patho-
gens [388, 389]. Exercise-mediated increases in immunosur-
veillance and attenuated inflammation have been observed 
in some parts of the body, including the upper respiratory 
tract (URT), lung, blood, and skeletal muscles, among others 
[389, 390]. Thus, regarding a reverse relationship between 
mediated exercise training and URTI incidence and duration 
[391, 392] and also fatality and pneumonia rates [393–395], 
either individuals with a clinical condition or healthy are 
encouraged to regularly practice physical exercise. It is 
worth noting that highly fitted persons have lower basic 
levels of inflammatory biomarkers compared with unfitted 
ones [396].

As mentioned, host susceptibility to SARS-CoV-2 is 
dependent on binding between host ACE2 and spike (S) 
glycoprotein of the virus which is known as the S1 subu-
nit [397]. Although there are not enough reports regarding 
exercise training on ACE, especially ACE2 as local or lung 
tissue receptor, the changes of other subunits in other organ 
systems like kidneys, heart, brain, skeletal muscles, and 
circulation mediated by exercise are available [398, 399]. 
The most beneficial and prophylactic effects of exercise 
maybe induced through changes in RAS (Fig. 2) [400, 401]. 
Based on a literature review and recently original reports, 
regular exercise downregulates systemic and local ACE/
AngII/AT1R axis and also upregulates all components of 
ACE2/Ang1-7/MasR axis, as well as transfers the axis bal-
ance to the protective axis [400, 402, 403]. Upregulated 
protective axis of RAS increases the bioavailability of 
prostaglandins (PGs) and bradykinin as well as enhances 
anti-inflammatory environment, augments anti-fibrotic and 
antioxidant defenses, and normalizes oxidative stress and 
anti-apoptotic environment [404–406]. These responses in 
RAS can improve lung blood flow and consequently lead 
to reduced oxygen deficiency in MS patients infected with 
COVID-19 [407, 408]. Besides, it has been claimed that 
exercise training reduces lung lesions and fibrosis through 
the normalization of RAS axes and reducing collagen depo-
sition [271, 399, 409]. By affecting this system, exercise 
training can attenuate the susceptibility of individuals to 
detrimental functions of COVID-19 infection or mitigate 
the severity of disease by the following additional strate-
gies: (1) mitigated severity of comorbidities [247] and as a 
result reduced COVID-19-induced mortality rates [410, 411] 
and (2) warded off the diminishing effects of COVID-19 on 
ACE2 via increasing ACE2 activity and its concentration 
[412], although the positive or negative effects of increas-
ing ACE2 should be investigated. Thus, RAS manipulation 
and its normalization may be a potential treatment for health 
optimization against the COVID-19 pandemic.

Since adipose tissue can play a role as the viral reservoir 
[233] and in the sense that obesity causes many structural 
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and functional issues in respiratory system, weight loss via 
lifestyle changes may reverse such respiratory problems 
[413]. Physical exercise has profound effects on body com-
position by increasing fat oxidation and improving muscle 
mass, which has a leading role on fat oxidation and conse-
quent weight loss. By the same token, exercise should have 
enough intensity to influence lipid oxidation and metabolic 
factors [414]. There are several pathways by which exercise 
causes weight loss, including increased aerobic capacity 
measured by maximal oxygen consumption (VO2 max) and 
altered body composition resulting in part from elevating 
muscle mass [415–417]. Promoted muscle mass is associ-
ated with more consumption of glucose and lipid as fuels 
and as a result dampens insulin resistance [418, 419]. In 
addition, increasing activation of AMP-activated protein 
kinase (AMPK) and peroxisome proliferator-activated recep-
tor gamma coactivator 1 (PGC)-α is another mechanism 
through which exercise facilitates lipid and glucose oxida-
tion [420, 421]. PGC-α increases aerobic capacity of muscle 
tissue by impacting on mitochondrial biogenesis [422, 423]. 
Besides, changes in some genes involving in lipogenesis and 
lipolysis are another adaptation that occurs during and after 
exercise. In this context, it has been disclosed that lipoly-
sis [peroxisome proliferator-activated receptor (PPAR)-α, 
cytochrome c oxidase (COX) IV] and lipogenesis [fatty acid 
synthase (FAS), and acetyl-CoA carboxylase (ACC)] genes 
are upregulated and downregulated, respectively [424]. The 
initiation of exercise elevates catecholamine hormones, 
including adrenaline and noradrenaline. Upon release, these 
hormones bind to their β-adrenergic receptors expressed on 
adipose tissue yielding intracellular signal and consequent 
phosphorylation of hormone-sensitive lipase to promote 
lipolysis in this tissue [425]. It is worth noting that exercise 
reverses increased adiponectin induced by obesity. Elevated 
anti-inflammatory adipokine increases the expression of 
farnesoid X receptor (FXR) as a regulator of multiple meta-
bolic pathways. FXR then activates adaptor phosphotyrosine 
protein interacting with the PH domain and leucine zipper 
1 (APPL1) to increase lipolysis [426, 427]. Additionally, 
physical exercise establishes a balance among some adipo-
myokines, such as myostatin (MST), TGF-β1, and activin A, 
as members of the transforming growth factor-β superfamily 
(TGF-β) and follistatin (FST). These adipo-myokines, par-
ticularly TGF-β members, are upregulated in adiposity and 
inflammatory condition, while FST inhibits their function 
through binding to them. Generally, FST increases muscle 
mass and consequently reduces body fat [428–432]. There-
fore, physical exercise is a dynamic lifestyle that mitigates 
weight gain or obesity, as a risk factor for severe COVID-19, 
in MS patients and as a result, reverses the changes in lung 
mechanics and function. It has been suggested that weight 
loss associates with improving in peak expiratory flow and 
some spirometer indices [433–435] markedly increases in 

lung volumes (TLC, FRC, ERV) [436–438], diminishing air-
way hyper-responsiveness in asthmatic and non-asthmatic 
obese individuals [434, 439, 440].

As mentioned in the previous section, increased core 
body temperature in MS patients can influence the respira-
tory center and nerves in the brain monitoring respiratory 
muscles and ventilation rhythm. Thus, improving heat strain 
engendered in MS patients during coronavirus infection, as 
a febrile virus, would help MS patients to reduce the detri-
mental effects of hyperthermia on respiratory muscles, espe-
cially their fatigability [441]. Although physical exercise is 
notorious as a heat stressor, long-term exposure to physical 
exercise is associated with some adaptations in thermal regu-
lation to diminish its compromised effects [442]. Exercise 
training causes adaptive changes in the cardiovascular sys-
tem and hemodynamic and hematological factors, including 
increased contractile strength of cardiac muscle, increased 
plasma volume, and reduced vasoconstriction at the sub-
cutaneous level [443–445]. These adaptations are associ-
ated with supplying deep or core organs with higher cardiac 
output and followed by transferring the core temperature to 
the body surface [446, 447]. Exercise increases antioxidant 
enzymes and therefore reduces and elevates reactive oxygen 
species (ROS) production and nitric oxide (NO) bioavail-
ability, respectively [448–451]. Besides, increased plasma 
ATP concentration in response to exercise-induced hypoxia 
and shear stress, interacts with P2Y receptors to elevate 
the vasodilation factors, such as NO and prostaglandin E2 
(PGE2). These exercise-induced alterations attenuate vas-
cular damages and promote microvessel dilation [452–460]. 
Some other adaptive mechanisms yielded by exercise ame-
nable to dampening core body temperature are increased 
sweat rate through elevating cholinergic sensitivity, higher 
efficiency of eccrine sweat gland in sweat production per 
each gland, increased number and sensitivity of muscarinic 
receptors responsible for sweating [442, 461]. Therefore, 
exercise abates the threshold for commencing subcutaneous 
blood flow and sweat production in response to promoting 
core body temperature. Generally speaking, maintaining 
core body temperature in a narrative range mediated by 
exercise can preserve the normal impulses along neurons 
enervating respiratory muscles, followed by the attenuation 
of clinical signs and premature whole and respiratory fatigue 
in MS patients.

Conclusion

Our review investigated molecular mechanisms of respira-
tory impairments and lung damage in MS patients with 
COVID-19. We found that regular exercise training changes 
the responses of the immune system and also increases 
some aspects of innate and adaptive immunity against 
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SARS-CoV-2 virus to cope with lung damages. Generally 
speaking, physical exercise training can mitigate the nega-
tive effects of COVID-19 disease on lung tissue and respira-
tory muscles in MS patients and expedites their recovery 
following COVID-19 infection.
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