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QUADRATIC QUASILINEAR EQUATIONS WITH
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DAVID ARCOYA, JOSÉ CARMONA, TOMMASO LEONORI, PEDRO J.
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Abstract: We study both existence and nonexistence of nonnegative solutions for
nonlinear elliptic problems with singular lower order terms that have natural growth
with respect to the gradient, whose model is



−∆u+

|∇u|2
uγ

= f in Ω,

u = 0 on ∂Ω,

where Ω is an open bounded subset of R
N , γ > 0 and f is a function which is

strictly positive on every compactly contained subset of Ω. As a consequence of our
main results, we prove that the condition γ < 2 is necessary and sufficient for the
existence of solutions in H1

0
(Ω) for every sufficiently regular f as above.

1. Introduction

In this paper we are going to study existence and nonexistence of nonneg-
ative solutions for the following boundary value problem

{
−div (M(x, u)∇u) + g(x, u)|∇u|2 = f in Ω,

u = 0 on ∂Ω.
(1)

Here Ω is a bounded, open subset of R
N , N ≥ 3, M(x, s)

def
= (mij(x, s)),

i, j = 1, . . . , N is a symmetric matrix whose coefficients mij : Ω × R −→ R

are Carathéodory functions (i.e., mij(·, s) is measurable on Ω for every s ∈ R,
andmij(x, ·) is continuous on R for a.e. x ∈ Ω) such that there exist constants
0 < α ≤ β satisfying

α|ξ|2 ≤M(x, s)ξ · ξ and |M(x, s)| ≤ β, for a.e. x ∈ Ω, ∀(s, ξ) ∈ R × R
N .
(2)

The function g : Ω× (0,+∞) → R is a Carathéodory function (i.e., g(·, s) is
measurable on Ω for every s ∈ (0,+∞), and g(x, ·) is continuous on (0,+∞)
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for a.e. x ∈ Ω) such that

g(x, s) ≥ 0, for a.e. x ∈ Ω, ∀s > 0. (3)

We will be mainly interested to the case of a function g which is singular
near s = 0, such as, for example, g(x, s) = 1/sγ, γ > 0. On the datum f , we

first suppose that it belongs to L
2N
N+2 (Ω) and that it satisfies

mω(f)
def
= ess inf {f(x) : x ∈ ω} > 0, ∀ω ⊂⊂ Ω. (4)

Note that (4) implies that f ≥ 0 in Ω and that f 6≡ 0 in Ω.
There are several papers concerned with existence and nonexistence of

solutions for (1). If g is nonsingular, that is if g is a Carathéodory function
on Ω×[0,∞), problem (1) has been exhaustively studied by Boccardo, Murat
and Puel [15], Bensoussan, Boccardo and Murat [7] and Boccardo, Gallouët
[11] with data f in suitable Lebesgue spaces.

On the contrary, as stated before, in this paper we shall focus our attention
to lower order terms g(x, s) having a singularity at s = 0. Therefore, we need
positive solutions of (1). Specifically, for distributional solution for problem
(1), we mean a function u ∈ W 1,1

0 (Ω) which solves the equation in the sense of
distributions with u > 0 almost everywhere in Ω and g(x, u)|∇u|2 in L1(Ω).
If moreover u ∈ H1

0(Ω), we say that u is a finite energy solution for problem
(1).

The model problem for our study is the following:


−∆u+

|∇u|2
uγ

= f in Ω,

u = 0 on ∂Ω.
(5)

Recently, existence of solutions for (5) has been proved in [1, 2, 3] for 0 < γ ≤
1. We also quote the even more recent papers [8] and [20]. Specifically, the
existence of positive solutions of (1) is proved in [8] provided 0 6≡ f ∈ Lq(Ω)
(q > N/2) with f ≥ 0 and provided g(x, s) = 1/sγ with γ ≤ 1. On the other
hand, if χ{u>0} denotes the characteristic function of the set {x ∈ Ω : u(x) >

0}, 0 ≤ f ∈ L∞(Ω), µ ∈ R and λ, γ > 0, the different equation

−div (M(x, u)∇u) + λu + µ
|∇u|2
uγ
χ{u>0} = f

is studied in [20], where the results about existence of nonnegative solutions
in H1

0(Ω) depend on γ. Indeed, existence is proved for every µ ∈ R if γ < 1,
while the case γ ≥ 1 requires that µ < 0. Thus, if γ ≥ 1 the term with
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quadratic dependence in ∇u is negative (i.e., the opposite assumption with
respect to (3)).

The purpose of this paper is twofold. First of all, we will extend the above
results to a more general class of nonlinearities both in the principal part
of the operator and in the lower order term, as well as to general, possibly
L1(Ω), data. Then, we will give a sharp range of nonlinearities g(x, s) for
which these problems admit a solution for every datum f ∈ Lq(Ω), with
q > N/2, satisfying (4).

In order to prove our results, we will have to strengthen assumption (3).
Specifically, for the results of existence of solutions, we will suppose that the
function g(x, s) satisfies

0 ≤ g(x, s) ≤ h(s), for a.e. x ∈ Ω, ∀s > 0, (6)

where h : (0,+∞) → [0,+∞) is a continuous nonnegative function such that

lim
s→0+

∫ 1

s

√
h(t) dt < +∞,

h(s) is nonincreasing in a neighborhood of zero.
(7)

Our result of existence of finite energy solutions (proved in Section 2) is the
following.

Theorem 1.1. Let f in L
2N
N+2 (Ω) be such that (4) holds, and suppose that

(2), (6) and (7) hold. Then there exists a finite energy solution u for problem
(1). Furthermore, u g(x, u)|∇u|2 ∈ L1(Ω).

Note that the fact u g(x, u)|∇u|2 ∈ L1(Ω) implies that the solution u itself
is allowed as test function (since f ∈ H−1(Ω)) in the weak formulation of (1)
(see (18) in Section 2). With respect to the proof, due to the fact that the
lower order term g(x, u)|∇u|2 is (possibly) singular as the solution is near
0, we will approximate the function g(x, s) by nonsingular ones gn(x, s) in
such a way that the corresponding approximated problems have finite energy
solutions un for every n in N. The main difficulty in the proof of Theorem 1.1
relies on a suitable local uniform estimate from below of these solutions. To
do it, it suffices by (6) to prove that any supersolution z > 0 for the equation

−div (M(x, z)∇z) + h(z)|∇z|2 = f in Ω

is above some positive constant in every ω ⊂⊂ Ω, i.e.

∀ω ⊂⊂ Ω ∃cω > 0 : z(x) ≥ cω > 0. (8)
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This is proved in Proposition 2.3 via a suitable change of variable which
turns the goal into a local L∞ estimate for solutions of quasilinear problems.
The local L∞ estimate is then obtained using a result of [26] (see also the
pioneering paper [17] and also [12, 19]) on an equation whose model is

−÷ (M̃(x, v)∇v) + f(x)b(v) = 0 in Ω, (9)

where M̃ satisfies (2) and b(s) is a function with b(s)/s increasing for large
s > 0 and satisfying the Keller-Osserman condition

∫ +∞ dt√
2
∫ t

0 b(τ)dτ
< +∞.

For the convenience of the reader, the exact result that we need is proved in
the appendix (see Theorem A.1). For such type of L∞ estimates we refer to
the “classical” literature on the so-called large solutions (see, among others,
[5, 29, 30, 35]) and on local estimates (see, among others, [12, 17, 19, 26, 34]).

Combining the above ideas with those in [32] (see also [25]), we handle the
case of data f in a more general Lebesgue space. Indeed, in Section 3, we
prove the existence of distributional solutions u of (1), with u in W 1,q

0 (Ω) for
every q < N

N−1
. More precisely, we have the following result.

Theorem 1.2. Let f in L1(Ω) be such that (4) holds and suppose that (2),
(6) and (7) hold. Then there exists a distributional solution u of (1), with u
in W 1,q

0 (Ω), for every q < N
N−1

. If, in addition, there exist s0 > 0 and µ > 0
such that

g(x, s) ≥ µ for a.e. x ∈ Ω, ∀s ≥ s0, (10)

then u ∈ H1
0(Ω) (i.e., it is a finite energy solution).

We are also concerned with nonexistence of positive solutions for problem
(1) for data f in Lq(Ω) for some q > N

2
, with f ≥ 0 and f 6≡ 0. In contrast

with the previous existence results, we will assume in this case that the non-
linearity g(x, s) is above a function h(s) whose square root is not integrable
in (0, 1). Specifically, we assume that

0 ≤ h(s) ≤ g(x, s), for a.e. x ∈ Ω, ∀s > 0, (11)

where h : (0,+∞) → [0,+∞) is a nonnegative continuous function such that

lim
s→0+

h(s) = +∞, lim
s→0+

∫ 1

s

√
h(t) dt = +∞, (12)
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and

lim
s→0+

√
h(s) e

∫ s

1

√
h(t)dt

= h0 ≥ 0. (13)

Among others, we are going to prove in Section 4 that if λ1(f) denotes the
first positive eigenvalue of the laplacian operator −∆ with zero Dirichlet
boundary conditions and weight f ∈ Lq(Ω), (q > N/2), then the following
result holds.

Theorem 1.3. Let f in Lq(Ω), with q > N
2 , be such that f ≥ 0 and f 6≡ 0,

and assume that (2), (11), (12), (13) hold. If λ1(f) > β
α , then (1) does not

have any finite energy solution.

As an easy consequence of Theorem 1.3, we will prove (see Corollary 4.5)
that the model problem (5) does not have any finite energy solution provided
γ ≥ 2. By gathering together this nonexistence result and Theorem 1.1 we
conclude immediately that, in the case of the model problem (5), we have a
sharp range of values of γ for which there exist solutions. In addition, if γ
is not in this range, we prove also what happens if we try to approximate
problem (5) with a sequence of problems for which solutions exist.

Theorem 1.4. Problem (5) has a finite energy solution for every f ∈ Lq(Ω)
(q > N

2
) satisfying (4) if and only if γ < 2. Moreover, let λ1 be the first

eigenvalue of the laplacian in the N -dimensional unit ball (i.e. the first
positive zero of the Bessel function Jm withm = N/2−1), assume f ∈ L∞(Ω),
and either

γ > 2 or γ = 2 and ‖f‖L∞(Ω) <
λ1

diam(Ω)2 . (14)

Then the sequence {un} of solutions of



−∆un +

|∇un|2(
un + 1

n

)γ = f in Ω,

un = 0 on ∂Ω,

tends to 0 in H1
0(Ω), and the sequence |∇un|2

(un+ 1
n)

γ converges to f in the weak∗
topology of measures.

To conclude this introduction, some remarks are in order. First, we have
to mention that uniqueness of solutions for (5) is proved in [4] for the case
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0 < γ ≤ 1. Secondly, let us explicitly state that we have chosen to present the
results and to perform the proofs in the case N ≥ 3. However, all the results
but Theorem 1.1 hold true also in the case N = 2 (with easier proofs). In
addition, ifN = 2 (which implies 2N

N+2 = 1), Theorem 1.1 is also true provided

we replace the assumption f ∈ L
2N
N+2 (Ω) with f ∈ Lm(Ω), and assume m > 1.

The plan of the paper is the following: in Section 2 we will prove a local
estimate from below for the solutions, together with Theorem 1.1. Section 3
is devoted to the results concerning L1 data (Theorem 1.2) while in Section
4 we prove the nonexistence result (both theorems 1.3 and 1.4). Finally
we present in the Appendix some results related to the local estimate (8).
For instance, we show in detail how to get the lower bound for solutions of
(1), through a suitable change of variable, proving a local bound from above
for solutions of a semilinear equation whose model is (9) (Theorem A.1).
Such topic is strictly related to the possibility of constructing estimates for
solutions of (9) that do not depend on the behavior at the boundary: and
indeed in Theorem A.8 we prove the existence of solutions that blow-up at
the boundary (i.e., the so-called “large solutions”) for such equations.

Notation. For any k > 0 we set Tk(s) = min(k,max(s,−k)) and Gk(s) =
s − Tk(s). Moreover, for any q > 1, q′ = q

q−1 will be the Hölder conjugate

exponent of q, while for any 1 < p < N , p∗ = Np
N−p is the Sobolev conjugate

exponent of p. As usual, S denotes the best Sobolev constant, i.e.,

S = sup{‖u‖L2∗(Ω) : ‖u‖H1
0 (Ω) = 1}.

In Section 3 we will use some ideas related to Marcinkiewicz spaces; for the
convenience of the reader we recall here their definition and some properties.
For s > 1, we denote by Ms(Ω) the space of measurable functions v : Ω → R

such that there exists c > 0, with

meas{x ∈ Ω : |v(x)| ≥ k} ≤ c

ks
, ∀k > 0. (15)

The space Ms(Ω) is a Banach space, and on it can be defined the pseudo-
norm

‖v‖sMs(Ω) = inf {c > 0 : (15) holds} .
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We also recall that, since Ω is bounded, for every ε ∈ (0, s− 1], there exists
a positive constant C such that

‖v‖Ms(Ω) ≤ ‖v‖Ls(Ω), ∀v ∈ Ls(Ω)
‖w‖Ls−ε(Ω) ≤ C ‖w‖Ms(Ω), ∀w ∈ Ms(Ω).

(16)

Finally, following [15], we set ϕλ(s) = seλs
2

, λ > 0; in what follows we will
use that for every a, b > 0 we have

aϕ′
λ(s) − b|ϕλ(s)| ≥ 1, (17)

if λ > b2

4a2 . We will also denote by ε(n) any quantity that tends to 0 as n
diverges.

2. Finite energy solutions

In this section we will prove the existence of finite energy solutions for
problem (1). Let us recall its definition.

Definition 2.1. A distributional supersolution (resp. subsolution) for prob-
lem (1) is a function u ∈ W 1,1

loc (Ω) such that

1) u > 0 almost everywhere in Ω,
2) g(x, u)|∇u|2 belongs to L1(Ω),
3) for every 0 ≤ φ ∈ C∞

c (Ω), it holds
∫

Ω

M(x, u)∇u · ∇φ+

∫

Ω

g(x, u)|∇u|2φ ≥
(≤)

∫

Ω

f φ .

A function u ∈ W 1,1
0 (Ω) is a distributional solution for (1) if it is both a

supersolution and a subsolution for such a problem.
If moreover u ∈ H1

0(Ω), we say that u is a finite energy solution for problem
(1). In this case, we have
∫

Ω

M(x, u)∇u · ∇ψ +

∫

Ω

g(x, u)|∇u|2ψ =

∫

Ω

f ψ, ∀ψ ∈ H1
0(Ω) ∩ L∞(Ω).

(18)

The proof of Theorem 1.1 relies on approximating the datum f ∈ L
2N
N+2 (Ω)

by its truncature fn = Tn(f) and the nonlinearity g by a suitable sequence
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of Carathéodory functions gn (for n ∈ N). Specifically, we define

gn(x, s)
def
=





g(x, s) s ≥ 1

n
,

nh

(
1

n

)
s

h(s)
g(x, s) 0 < s ≤ 1

n
,

0 s ≤ 0.

Since h is nonincreasing in a neighborhood of zero, we observe that there
exists n0 ∈ N, such that gn satisfies, for a.e. x ∈ Ω, ∀s > 0,





lim
n→+∞

gn(x, s) = g(x, s) ,

gn(x, s) ≤ g(x, s) , ∀n ≥ n0 ,

gn(x, s) ≥ 0 .

(19)

Since for fixed n both functions fn(x) (x ∈ Ω) and |ξ|2
1+ 1

n
|ξ|2 (ξ ∈ R

N) are

bounded, classical results (see [28] and [33]) allow us to deduce, that problem




−div (M(x, un)∇un) + gn(x, un)

|∇un|2
1 + 1

n |∇un|2
= fn in Ω,

un = 0 on ∂Ω,

(20)

has a solution un that belongs to H1
0(Ω) ∩ L∞(Ω).

We are going to prove now some properties of the sequence un that we will
use in the sequel.

Lemma 2.2. Assume that 0 6≡ f ∈ L
2N
N+2 (Ω) satisfies f ≥ 0 and that M(x, s)

satisfies (2). If, for every n ∈ N, the function un ∈ H1
0(Ω) is a solution of

problem (20), then:

1. The sequence {un} is bounded in H1
0(Ω) and

ungn(x, un)
|∇un|2

1 + 1
n |∇un|2

is bounded in L1(Ω).

2. The functions un are continuous in Ω and un(x) > 0 for every x ∈ Ω
and n ∈ N.
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Proof : 1. Taking un as test function in (20) and using Hölder and Sobolev
inequalities we obtain that

∫

Ω

M(x, un)∇un · ∇un +

∫

Ω

gn(x, un)un
|∇un|2

1 + 1
n |∇un|2

=

∫

Ω

fnun

≤ S‖f‖
L

2N
N+2 (Ω)

‖∇un‖L2(Ω).

By the ellipticity condition (2) and the nonnegativeness of gn(x, s)s, we con-

clude that the sequences un and ungn(x, un)
|∇un|2

1 + 1
n
|∇un|2

are bounded, respec-

tively, in H1
0(Ω) and in L1(Ω).

2. We take u−n
def
= min(un, 0) as test function in (20), so that, by (2),

α

∫

Ω

|∇u−n |2 +

∫

Ω

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

u−n ≤
∫

Ω

fn u
−
n .

Using that fn ≥ 0 and gn(x, s) is zero for every s ≤ 0, we obtain

α

∫

Ω

|∇u−n |2 ≤
∫

Ω

fn u
−
n ≤ 0.

Thus u−n ≡ 0 and so un ≥ 0. Moreover,

−div (M(x, un)∇un) = fn − gn(x, un)
|∇un|2

1 + 1
n |∇un|2

∈ L∞(Ω).

Hence un belongs to the space of the Hölder continuous functions in Ω (see
for instance [24], Theorem 1.1 in Chapter 4).

We are now going to prove that un > 0 in Ω. Let Cn > 0 be such that
gn(x, s) ≤ Cns, for s ∈ [0, ‖un‖∞]. Thus the nonnegative function un satisfies
in Ω

−div (M(x, un)∇un) + nCnun ≥

−div (M(x, un)∇un) + gn(x, un)
|∇un|2

1+ 1
n
|∇un|2 = fn .

Observing that fn is nonnegative and not identically zero (since f 6≡ 0), by
the strong maximum principle (see [22] for instance) we deduce that un > 0
in Ω.

In the next proposition we will prove that the sequence {un} is uniformly
bounded from below, away from zero, in every compact set in Ω. This result
will be crucial in order to prove the existence of a solution for (1).
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Proposition 2.3. Suppose that f ∈ L∞
loc

(Ω) satisfies (4), and that g(x, s)
satisfies (6) (with h such that (7) holds). Let ω be a compactly contained
open subset of Ω. Then there exists a constant cω > 0 such that every
supersolution 0 < z ∈ H1

loc(Ω) ∩ C(Ω) of the equation

−div (M(x, z)∇z) + h(z)|∇z|2 = f in Ω, (21)

satisfies

z ≥ cω in ω.

Remark 2.4. The above proposition will be crucial in the proofs of both
Theorem 1.1 and 1.2. In fact, we will use the following consequences:

(i) Let un be a solution of (20) with n ≥ n0 (n0 given by (19)). Since
the inequalities gn(x, s) ≤ g(x, s) ≤ h(s) for every s > 0 and fn ≥ f1

imply that un > 0 in Ω (see Lemma 2.2), un is a supersolution for

−div (M(x, z)∇z) + h(z)|∇z|2 = f1 in Ω.

Therefore, by the above proposition (with f = f1 and z = un ∈
H1

0(Ω) ∩ C(Ω) (Lemma 2.2-2.)) for any ω ⊂⊂ Ω we deduce the exis-
tence of a positive constant cω such that un ≥ cω in ω. Taking k > 0
and m0 > max{n0,

1
cω
}, we deduce, by the definition of gn, that for all

n ≥ m0

gn(x, un(x)) = g(x, un(x)) ≤ ck(ω)
def
= max

s∈[cω,k]
h(s) ,

for every x ∈ ω such that un(x) ≤ k.

(ii) If 0 < un ∈ H1
loc(Ω) ∩ C(Ω) is a solution of

−div (M(x, un)∇un) + g(x, un)|∇un|2 = fn in Ω,

then, using again that g(x, s) ≤ h(s) and fn ≥ f1, we derive that un
is also a supersolution of

−div (M(x, z)∇z) + h(z)|∇z|2 = f1 in Ω.

Consequently, if ω ⊂⊂ Ω and cω has been defined above (with f = f1),
then un ≥ cω in ω. Therefore,

g(x, un(x)) ≤ ck(ω)
def
= max

s∈[cω ,k]
h(s) ,

for every x ∈ ω such that un(x) ≤ k.
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Proof of Proposition 2.3: Let z > 0 be a supersolution of (21). We are going
to consider a suitable change of variable. In order to make it, since in general

the function h may be integrable in (0, 1), we set h̃(s) = h(s)+
α

s
, and define,

for s > 0, the nondecreasing function

H(s) =

∫ s

1

h̃(t)dt =

∫ s

1

h(t)dt+ log sα,

and the nonincreasing function

ψ(s) =

∫ 1

s

e−
H(t)
α dt =

∫ 1

s

t−1e−
R t
1 h(τ)dτ

α dt.

Observing that

lim
s→0+

ψ(s) = +∞, lim
s→+∞

ψ(s)= ψ∞ ∈ [−∞, 0),

we can define

v
def
= ψ(z).

Since z is continuous and strictly positive in Ω, we get that z is bounded
away from zero (with the bound depending on z) in every open set ω com-
pactly contained in Ω. Consequently, by the chain rule, we have

∇v = −e−
H(z)
α ∇z ∈ L2(ω) ∀ω ⊂⊂ Ω, (22)

and thus v ∈ H1(ω) for every ω ⊂⊂ Ω, i.e., v ∈ H1
loc(Ω).

Let 0 ≤ φ ∈ C∞
c (Ω), and take e−

H(z)
α φ as test function in (21) to deduce

from the inequality h(s) ≤ h̃(s) that

−
∫

Ω

M(x, z)∇z · ∇z h̃(z)
α

e−
H(z)
α φ +

∫

Ω

M(x, z)∇z · ∇φ e−
H(z)
α

+

∫

Ω

h̃(z)|∇z|2e−H(z)
α φ ≥

∫

Ω

fe−
H(z)
α φ ,

and using (2) together with (22) we get,

−
∫

Ω

M(x, z)∇ψ(z) · ∇φ ≥
∫

Ω

fe−
H(z)
α φ≥

∫

Ω

(
e−

H(z)
α − 1

)
fφ .

If we define M̃(x, s) = M(x, ψ−1(s)) and b(s) = e−
H(ψ−1(s))

α − 1 for every s ∈
(ψ∞,+∞), then v is subsolution of

−div (M̃(x, v)∇v) + f(x) b(v) = 0 in Ω.
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Observe that b(s)
s is nondecreasing for large s > 0; indeed, this is equivalent

to prove that Υ(t) = e−
H(t)
α −1
ψ(t) is nonincreasing in a neighborhood of t = 0. To

show this, let w0 ∈ (0, 1) be such that h̃(t) is nonincreasing in (0, w0], and,
note that

−e
H(t)
α ψ2(t)Υ′(t) =

h̃(t)

α
ψ(t) − (e−

H(t)
α − 1) =

∫ 1

t

[h̃(t) − h̃(s)]

α
e−

H(s)
α ds

≥
∫ 1

w0

[h̃(t) − h̃(s)]

α
e−

H(s)
α ds = h̃(t)M1 −M2

where

M1 =
1

α

∫ 1

w0

e−
H(s)
α ds and M2 =

1

α

∫ 1

w0

h̃(s)e−
H(s)
α ds.

Thus, if t belongs to the interval (0, h̃−1(min{w0,M2/M1})), then the right
hand side of the above inequality is positive, and consequently Υ(t) is non-
increasing in this interval.

We also claim now that since
∫ 1

0

√
h(s)ds < +∞ and h is nonincreasing

in a neighborhood of zero, then the function b(s) satisfies the well-known
Keller-Osserman condition (see [23] and [31] for instance), i.e., there exists
t0 > 0 such that ∫ +∞

t0

dt√
2
∫ t

0 b(s)ds
< +∞. (23)

We postpone the proof of the claim for the moment, and we show how to
conclude the proof by using the claim. Indeed, by applying [26, Theorem
7] (see also Theorem A.1 in the Appendix where, for the convenience of the
reader, we have also included a proof of the precise result that we need here)
we derive that for every ω ⊂⊂ Ω, there exists Cω > 0 such that

v ≤ Cω in ω.

Therefore, undoing the change

z ≥ ψ−1(Cω) = cω > 0 in ω ,

as desired.
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Consequently, to conclude the proof it suffices to show (23) or, equivalently,
that ∫ +∞

t0

dt√
2
∫ t

0 e−
H(ψ−1(s))

α ds

< +∞.

Using the change τ = ψ−1(s), we obtain

∫ +∞

t0

dt√
2
∫ t

0 e−
H(ψ−1(s))

α ds

=

∫ +∞

t0

dt√
2
∫ ψ−1(0)

ψ−1(t) e−2H(τ)
α dτ

.

Now we apply the change w = ψ−1(t) to deduce that
∫ +∞

t0

dt√
2
∫ t

0 e−
H(ψ−1(s))

α ds

≤
∫ w0

0

dw√
2
∫ w0

w e
2
α
[H(w)−H(τ)]dτ

,

with 0 < w0 = ψ−1(t0) < 1 = ψ−1(0) since ψ is nonincreasing, and we choose
t0 >> 1 such that h is nonincreasing in (0, w0].

Since h satisfies (7), also h̃ satisfies it, so that we conclude the proof if we
show that there exists a positive contant c0 such that

h̃(w)

∫ w0

w

e
2
α
[H(w)−H(τ)] dτ ≥ c0 > 0, ∀w ∈ (0, w0). (24)

Indeed, the only difficulty is near zero. To overcome it, we use that h (hence

h̃) is nonincreasing in (0, w0], to obtain

h̃(w)

∫ w0

w

e
2
α
[H(w)−H(τ)] dτ ≥

∫ w0

w

h̃(τ)e
2
α
[H(w)−H(τ)] dτ

= −αe
2
α
H(w)

2

∫ w0

w

− 2

α
h̃(τ)e−

2
α
H(τ) dτ

= −αe
2
α
H(w)

2

[
e−

2
α
H(τ)

]w0

w
= −α

2

e
2
α
H(w)

e
2
α
H(w0)

+
α

2
.

Using the above inequality and the fact that e
2
α
H(w) is close to zero for w

small enough, we can choose w ∈ (0, w0) such that

h̃(w)

∫ w0

w

e
2
α
[H(w)−H(τ)] dτ ≥ α

4
,

for 0 < w < w. Thus the existence of c0 such that (24) holds is deduced.
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Remark 2.5. If h is such that

lim
s→0+

∫ 1

s

h(t) dt = +∞,

there is no need to define the above function h̃. Indeed, in this case, the
proof of the above theorem works by using directly h instead of h̃.

Proof of Theorem 1.1: We are going to prove that, up to a subsequence, the
sequence {un} of finite energy solutions of (20) converges to a finite energy
solution of (1).

By Case 1. of Lemma 2.2 we obtain

‖un‖H1
0 (Ω) ≤ C1,

∫

Ω

ungn(x, un)
|∇un|2

1 + 1
n |∇un|2

≤ C2. (25)

Thus, up to a subsequence, we can assume that un converges to some u ∈
H1

0(Ω) weakly in H1
0(Ω) and, by Rellich’s Theorem, strongly in L2(Ω) and

a.e. in Ω.
Choosing 1

εTε(un) as test function in (20) and taking into account that
fn ≤ f in Ω, we deduce that

∫

Ω

Tε(un)

ε
gn(x, un)

|∇un|2
1 + 1

n|∇un|2
≤
∫

Ω

fn ≤
∫

Ω

f .

If we take the limit as ε tends to zero, and we use that, by Lemma 2.2, un > 0
in Ω, we get

∫

Ω

gn(x, un)
|∇un|2

1 + 1
n
|∇un|2

=

∫

{un>0}
gn(x, un)

|∇un|2
1 + 1

n
|∇un|2

≤
∫

Ω

f . (26)

The proof will be concluded by proving the following steps:
Step 1. For every k > 0, Tk(un) → Tk(u) strongly in H1

loc(Ω).
Step 2. un is strongly convergent in H1

loc(Ω).
Step 3. We pass to the limit in (20).

Step 1. Here we want to prove that

lim
n→+∞

∫

Ω

|∇(Tk(un) − Tk(u))|2φ = 0, ∀φ ∈ C∞
c (Ω) with φ ≥ 0. (27)
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Considering the function ϕλ(s) defined in (17) and taking ϕλ(Tk(un) −
Tk(u))φ as test function in (20), we have

∫

Ω

M(x, un)∇un · ∇(Tk(un) − Tk(u))ϕ
′
λ(Tk(un) − Tk(u))φ

+

∫

Ω

M(x, un)∇un · ∇φϕλ(Tk(un) − Tk(u))

+

∫

Ω

gn(x, un)
|∇un|2

1 + 1
n
|∇un|2

ϕλ(Tk(un)−Tk(u))φ =

∫

Ω

fn ϕλ(Tk(un)−Tk(u))φ .

Since Tk(un) → Tk(u) weakly in H1
0(Ω) and strongly in L2(Ω), we note that

∫

Ω

fn ϕλ(Tk(un)−Tk(u))φ −
∫

Ω

M(x, un)∇un ·∇φϕλ(Tk(un)−Tk(u)) = ε(n).

Moreover, choosing ωφ ⊂⊂ Ω with suppφ ⊂ ωφ, we deduce, by Case (i) of
Remark 2.4 and by the nonnegativeness of both gn and ϕλ(k − Tk(u)), that

∫

Ω

gn(x, un)
|∇un|2

1 + 1
n
|∇un|2

ϕλ(Tk(un) − Tk(u))φ

≥
∫

{un≤k}
gn(x, un)

|∇un|2
1 + 1

n |∇un|2
ϕλ(Tk(un) − Tk(u))φ

≥ −ck(ωφ)
∫

Ω

|∇Tk(un)|2|ϕλ(Tk(un) − Tk(u))|φ .

Thus ∫

Ω

M(x, un)∇un · ∇(Tk(un) − Tk(u))ϕ
′
λ(Tk(un) − Tk(u))φ

−ck(ωφ)
∫

Ω

|∇Tk(un)|2|ϕλ(Tk(un) − Tk(u))|φ ≤ ε(n).
(28)

Note that∫

Ω

M(x, un)∇un · ∇(Tk(un) − Tk(u))ϕ
′
λ(Tk(un) − Tk(u))φχ{un≥k}

= −
∫

Ω

M(x, un)∇un · ∇Tk(u)ϕ′
λ(k − Tk(u))φχ{un≥k} = ε(n),

so that, adding

−
∫

Ω

M(x, un)∇Tk(u) · ∇(Tk(un) − Tk(u))ϕ
′
λ(Tk(un) − Tk(u))φ = ε(n)
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in both sides of (28) and since
∫

Ω

|∇Tk(un)|2|ϕλ(Tk(un) − Tk(u))|φ

≤ 2

∫

Ω

|∇(Tk(un) − Tk(u))|2|ϕλ(Tk(un) − Tk(u))|φ

+2

∫

Ω

|∇Tk(u)|2|ϕλ(Tk(un) − Tk(u))|φ

= 2

∫

Ω

|∇(Tk(un) − Tk(u))|2|ϕλ(Tk(un) − Tk(u))|φ + ε(n),

we find, using also (2), (we omit the arguments of the functions ϕλ and ϕ′
λ

for brevity)
∫

Ω

|∇(Tk(un) − Tk(u))|2
[
αϕ′

λ − 2ck(ωφ)|ϕλ|
]
φ ≤ ε(n).

Choosing λ such that (17) holds with a = α and b = 2ck(ωφ), we obtain (27).

Step 2. We prove now that the sequence un is strongly convergent inH1
loc(Ω).

Let us choose Gk(un) as test function in (20) and drop the positive inte-
gral involving the lower order term. By using (2), and Hölder and Sobolev
inequalities, we have

∫

Ω

|∇Gk(un)|2 ≤ S2

α2

(∫

{un≥k}
f

2N
N+2

)1+ 2
N

,

and the right hand side of the previous inequality is arbitrarily small if k is
large enough. Therefore, |∇Gk(un)|2 is equiintegrable. Moreover by Lemma 1
of [9] (see also [14]), we deduce that, up to (not relabeled) subsequences, ∇un
converges to ∇u a.e. in Ω, so that by Vitali theorem

Gk(un) → Gk(u) in H1
0(Ω).

Combining this and Step 1 we deduce that

un → u in H1
loc(Ω).

Step 3. Let us observe that, by applying Fatou lemma in (25) and (26), we
deduce that∫

Ω

ug(x, u)|∇u|2 ≤ C2 and

∫

Ω

g(x, u)|∇u|2 ≤
∫

Ω

f ,
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respectively. Therefore, to conclude the proof we only have to prove that u
is a distributional solution of the problem (1). We begin by passing to the
limit on n in the equation satisfied by un, i.e., in
∫

Ω

M(x, un)∇un · ∇φ +

∫

Ω

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

φ =

∫

Ω

fnφ , ∀φ ∈ C∞
c (Ω).

First of all, the weak convergence of un to u and the weak-∗ convergence of
M(x, un) to M(x, u) in L∞(Ω) implies that

lim
n→+∞

∫

Ω

M(x, un)∇un∇φ =

∫

Ω

M(x, u)∇u∇φ , ∀φ ∈ C∞
c (Ω). (29)

On the other hand, if we fix ω ⊂⊂ Ω, then, by Remark 2.4,

gn(x, un(x)) ≤ ck(ω), ∀n >> 1, and ∀x ∈ ω satisfying un(x) ≤ k.

Consequently, if E ⊂⊂ ω we have
∫

E

|gn(x, un(x))|
|∇un(x)|2

1 + 1
n
|∇un(x)|2

≤
∫

E∩{un≤k}
gn(x, un)

|∇un|2
1 + 1

n |∇un|2
+

∫

E∩{un≥k}
gn(x, un)

|∇un|2
1 + 1

n |∇un|2

≤ ck(ω)

∫

E∩{un≤k}
|∇Tk(un)|2 +

∫

{un≥k}
gn(x, un)

|∇un|2
1 + 1

n |∇un|2
. (30)

Let ε > 0 be fixed. Observe that if, for k > 1, we use T1(Gk−1(un)) as test
function in (20) and drop positive terms, we deduce that

∫

{un≥k}
gn(x, un)

|∇un|2
1 + 1

n |∇un|2
≤
∫

{un≥k−1}
fn ≤

∫

{un≥k−1}
f .

Thus, since the right hand side tends to 0 uniformly in n as k diverges, we
obtain the existence of k0 > 1 such that

∫

{un≥k}
gn(x, un)

|∇un|2
1 + 1

n|∇un|2
≤ ε

2
, ∀k ≥ k0, ∀n ∈ N.

Moreover, since Tk(un) is strongly compact in H1
loc(Ω), there exist nε, δε such

that for every E ⊂⊂ Ω with meas (E) < δε we have
∫

E∩{un≤k}
|∇Tk(un)|2 <

ε

2ck(ω)
, ∀n ≥ nε.
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In conclusion, by (30), taking k ≥ k0 we see that meas (E) < δε implies
∫

E

|gn(x, un(x))|
|∇un(x)|2

1 + 1
n |∇un(x)|2

≤ ε, ∀n ≥ nε.

i.e., the sequence gn(x, un)
|∇un|2

1+ 1
n
|∇un|2 is equiintegrable. This, together with its

a.e. convergence to g(x, u)|∇u|2, implies by Vitali theorem that

lim
n→+∞

∫

Ω

gn(x, un)
|∇un|2

1 + 1
n
|∇un|2

φ =

∫

Ω

g(x, u)|∇u|2φ ∀φ ∈ C∞
c (Ω).

Therefore, using the above limit, (29) and since fn tends to f strongly in
L1(Ω) we conclude that

∫

Ω

M(x, u)∇u∇φ +

∫

Ω

g(x, u)|∇u|2φ =

∫

Ω

fφ ∀φ ∈ C∞
c (Ω).

Remark 2.6. In addition, if f ∈ Lq(Ω) with q > N/2, then the solution u
given by Theorem 1.1 is continuous in Ω. Indeed, by using ψ = Tm(Gk(u)),
with m > k, as test function in (18), it is easy to adapt the idea of Stam-
pacchia ([33]) in order to obtain that u ∈ L∞(Ω). Now, consider a function
ζ ∈ C∞(Ω) with 0 ≤ ζ(x) ≤ 1, for every x ∈ Ω and compact support in a
ball Bρ of radius ρ > 0, and set Ak,ρ = {x ∈ Kρ ∩ Ω : u(x) > k}. Following
the idea of the proof of Theorem 1.1 of Chapter 4 in [24], take φ = Gk(u)ζ

2

as test function in (18) to deduce by (2) and Hölder’s inequality that
∫

Ak,ρ

|∇u|2ζ2 ≤ ‖f‖Lq(Ω)‖u‖L∞(Ω)

α
(meas Ak,ρ)

1− 1
q + 2

β

α

∫

Ak,ρ

|∇u||∇ζ|ζGk(u).

Using again Young’s inequality we get
∫

Ak,ρ

|∇u|2ζ2 ≤ 2‖f‖Lq(Ω)‖u‖L∞(Ω)

α
(meas Ak,ρ)

1− 1
q +

4β

α2

∫

Ak,ρ

|∇ζ|2G2
k(u).

In particular, if for σ ∈ (0, 1) we choose ζ such that it is constantly equal
to 1 in the concentric ball Bρ−σρ (to Bρ) of radius ρ− σρ and |∇ζ| < 1

σρ
, we

obtain
∫

Ak,ρ−σρ

|∇u|2 ≤ γ

(
1 +

1

σ2ρ2(1−N
2q )

max
Ak,ρ

(u− k)2

)
(meas Ak,ρ)

1− 1
q ,
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where γ = max

{
2‖f‖Lq(Ω)‖u‖L∞(Ω)

α , 4β
α2ω

1
q

N

}
with ωN denoting the measure of

the unit ball of R
N .

This means that for δ > 0 small enough and every M ≥ ‖u‖L∞(Ω), the

function u belongs to the class B2(Ω,M, γ, δ, 1
2q) with 2q > N (see [24], pag.

81). Applying Theorem 6.1 of [24] we deduce that u is Hölder continuous in
Ω.

3. Existence for data in L1(Ω)
In this section we prove Theorem 1.2. In this case, taking advantage of

Theorem 1.1, we approximate problem (1) by
{
−div (M(x, un)∇un) + g(x, un)|∇un|2 = fn in Ω,

un = 0 on ∂Ω,
(31)

where fn = Tn(f).
Note that the existence of a nonnegative finite energy solution un ∈ H1

0(Ω)∩
C(Ω) such that g(x, un)|∇un|2 ∈ L1(Ω) follows from Theorem 1.1 and Re-
mark 2.6.

Lemma 3.1. If f ∈ L1(Ω) satisfies (4), g(x, s) satisfies (6) (with h(s) such
that (7) holds), and un is a solution of (31), then

(i) the sequence un is bounded in M N
N−2 (Ω) and |∇un| is bounded in

M N
N−1 (Ω);

(ii) up to subsequences, the sequence un is weakly convergent to some u
in W 1,q

0 (Ω) for every q ∈ [1, N
N−1

);
(iii) for any k > 0 and for any ω ⊂⊂ Ω,

Tk(un) → Tk(u) in H1(ω).

Proof : (i) Taking Tk(un) as test function in (31) and using (2), we have

α

∫

Ω

|∇Tk(un)|2 +

∫

Ω

g(x, un)Tk(un)|∇un|2 ≤ k‖fn‖L1(Ω).

Since 0 ≤ fn ≤ f and g(x, un) ≥ 0, we have

α

∫

Ω

|∇Tk(un)|2 ≤ k‖f‖L1(Ω). (32)
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Standard estimates (see [6, Lemmas 4.1 and 4.2]) imply that un is bounded

in M N
N−2 (Ω) and that |∇un| is bounded in M N

N−1 (Ω).
(ii) Let 1 ≤ q < N

N−1. By the preceding case and by the embedding (16), we

deduce that un is bounded in W 1,q
0 (Ω) and thus, passing to a subsequence if

necessary, there exists u such that un ⇀ u weakly in W 1,q
0 (Ω).

(iii) Our aim is to show that

lim
n→+∞

∫

Ω

|∇[Tk(un) − Tk(u)]|2φ = 0 , ∀φ ∈ C∞
c (Ω) , φ ≥ 0.

Here we adapt to our case a technique to obtain the strong convergence of
truncations first introduced in [25] (see also [32]). Let us choose ϕλ(wn)φ as
test function in (31) where ϕλ(s) has been defined in (17) and

wn = T2k[un − Tl(un) + Tk(un) − Tk(u)], 0 < k < l.

Thus we have
∫

Ω

M(x, un)∇un · ∇wnϕ′
λ(wn)φ +

∫

Ω

M(x, un)∇un · ∇φϕλ(wn)

+

∫

Ω

g(x, un)|∇un|2ϕλ(wn)φ =

∫

Ω

fn φϕλ(wn) .

(33)

Observing that ∇Tk(un) = 0 if un > k and ∇wn ≡ 0 if un ≥ 2k + l ≡ K (we
recall that l > k), we have
∫

Ω

M(x, un)∇un · ∇wnϕ′
λ(wn)φ

=

∫

Ω

M(x, un)∇Tk(un) · ∇(Tk(un) − Tk(u))ϕ
′
λ(wn)φ

+

∫

{un≥k}
M(x, un)∇TK(un) · ∇T2k(Gl(un) + k − Tk(u))ϕ

′
λ(wn)φ .

Moreover, using that

∇TK(un) · ∇(Gl(un) − Tk(u)) = ∇TK(un) · ∇Gl(un) −∇TK(un)∇Tk(u)
≥ −∇TK(un) · ∇Tk(u),
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we have
∫

{un>k}∩{Gl(un)+k−Tk(u)≤2k}
M(x, un)∇TK(un) · ∇(Gl(un) − Tk(u))ϕ

′
λ(wn)φ

≥ −
∫

{Gl(un)+k−Tk(u)≤2k}
|M(x, un)∇TK(un) · ∇Tk(u)|ϕ′

λ(wn)φχ{un>k} ,

and thus, since the above integral tends to zero as n diverges,

∫

Ω

M(x, un)∇un · ∇wnϕ′
λ(wn)φ

≥
∫

Ω

M(x, un)∇Tk(un) · ∇(Tk(un) − Tk(u))ϕ
′
λ(wn)φ + ε(n).

(34)

On the other hand, since Gl(un) + k − Tk(u) ≥ 0,

∫

Ω

g(x, un)|∇un|2ϕλ(wn)φ ≥
∫

{un≤k}
g(x, un)|∇un|2ϕλ(wn)φ .

Thanks to Case (ii) of Remark 2.4 applied to a subset ωφ ⊂⊂ Ω with
suppφ ⊂ ωφ, we have g(x, un(x)) ≤ ck(ωφ) for every x ∈ ω with un(x) ≤ k.

Then, we get

∣∣∣∣
∫

{un≤k}
g(x, un)|∇un|2ϕλ(Tk(un) − Tk(u))φ

∣∣∣∣

≤ ck(ωφ)

∫

Ω

|∇Tk(un)|2|ϕλ(Tk(un) − Tk(u))|φ

≤ 2ck(ωφ)

∫

Ω

|∇(Tk(un) − Tk(u))|2|ϕλ(Tk(un) − Tk(u))|φ

+2ck(ωφ)

∫

Ω

|∇Tk(u)|2|ϕλ(Tk(un) − Tk(u))|φ .

Note that the last integral tends to 0 as n diverges since ϕλ(Tk(un)− Tk(u))
converges to zero in the weak-∗ topology of L∞(Ω) and Tk(u) ∈ H1

0(Ω).
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Therefore, we deduce from this, (33) and (34) that
∫

Ω

M(x, un)∇Tk(un) · ∇(Tk(un) − Tk(u))ϕ
′
λ(wn)φ

−2ck(ωφ)

∫

Ω

|∇(Tk(un) − Tk(u))|2|ϕλ(wn)|φ

≤
∫

Ω

fnφϕλ(wn) −
∫

Ω

M(x, un)∇un · ∇φϕλ(wn) + ε(n),

and adding to both sides of the previous inequality

−
∫

Ω

M(x, un)∇Tk(u) · ∇(Tk(un) − Tk(u))ϕ
′
λ(wn)φ = ε(n),

we find from (2),
∫

Ω

|∇(Tk(un) − Tk(u))|2
[
αϕ′

λ(wn) − 2ck(ωφ)|ϕλ(wn)|
]
φ

≤
∫

Ω

fnφϕλ(wn) −
∫

Ω

M(x, un)∇un · ∇φϕλ(wn) + ε(n).

Choosing λ such that ϕλ satisfies (17) with a = α and b = 2ck(ωφ), we get
∫

Ω

|∇(Tk(un) − Tk(u))|2φ

≤
∫

Ω

fnφϕλ(wn) −
∫

Ω

M(x, un)∇un · ∇φϕλ(wn) + ε(n).

Moreover, wn a.e. (and weakly-∗ in L∞(Ω)) converges to w = T2k(Gl(u)) and
thus, recalling that ∇un → ∇u weakly in (Lq(Ω))N , q < N/(N − 1),

lim
n→+∞

∫

Ω

fnφϕλ(wn) −
∫

Ω

M(x, un)∇un · ∇φϕλ(wn)

=

∫

Ω

fφϕλ(w) −
∫

Ω

M(x, u)∇u · ∇φϕλ(w) .

Consequently, using (2)
∫

Ω

|∇(Tk(un) − Tk(u))|2φ ≤
∫

Ω

fφϕλ(w) −
∫

Ω

M(x, u)∇u · ∇φϕλ(w) + ε(n)
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≤ ϕλ(2k)

∫

{u≥l}
(f + β|∇u||∇φ|) + ε(n).

Since the last integral tends to zero as l diverges, (iii) is proved.

Now, we prove our main result concerning L1(Ω) data:

Proof of Theorem 1.2: We begin by proving the first part of the theorem, i.e.
that there exists a solution u ∈ W 1,q

0 (Ω), for every q < N
N−1, of problem (1).

We first observe that we deduce from the results of [14] that ∇un → ∇u
a.e., and from Lemma 3.1 the estimates on un and |∇un| in M N

N−2(Ω) and

M N
N−1 (Ω) respectively. Thus un → u strongly in W 1,q

0 (Ω), for every q < N
N−1.

Arguing as in the proof of Theorem 1.1, we can show that, choosing 1
εTε(un)

as test function in (31) and applying Fatou lemma, we have g(x, u)|∇u|2 ∈
L1(Ω).

In order to prove that for all ω ⊂⊂ Ω, {g(x, un)|∇un|2} is strongly conver-
gent in L1(ω) to g(x, u)|∇u|2, it suffices to show the local uniform equiinte-
grability of such sequence. To prove the claim, we choose T1(Gk−1(un)) (for
k > 1) as test function in the equation (31) and we deduce, by dropping the
first positive term (in virtue of (2)), and since fn ≤ f , that

∫

{un≥k}
g(x, un)|∇un|2 ≤

∫

{un≥k−1}
f . (35)

By a similar argument to the one used in Step 3 of the proof of Theorem 1.1,
we prove the claim. Indeed, let E ⊂ ω ⊂⊂ Ω be a measurable set. By
Remark 2.4-(ii) and (35), we have, ∀k > 1,

∫

E

g(x, un)|∇un|2 =

∫

E∩{un≤k}
g(x, un)|∇un|2

+

∫

E∩{un≥k}
g(x, un)|∇un|2 ≤ ck(ω)

∫

E∩{un≤k}
|∇Tk(un)|2

+

∫

{un≥k}
g(x, un)|∇un|2 ≤ ck(ω)

∫

E

|∇Tk(un)|2 +

∫

{un≥k−1}
f .

Since meas ({x ∈ Ω : un ≥ k − 1}) tends to zero (uniformly with respect
to n) as k tends to +∞ (because of the boundedness of {un} in the space
MN/(N−2)(Ω) by Lemma 3.1-(ii)), we obtain that the last integral in the above
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inequalities tends to zero as k goes to +∞. This, and the local equiintegrabil-
ity of |∇Tk(un)|2 (by Lemma 3.1-(iii)), then show the local equiintegrability
of {g(x, un)|∇un|2}.

Using moreover that ∇un → ∇u a.e., we conclude by Vitali theorem that

g(x, un)|∇un|2 → g(x, u)|∇u|2 in L1(ω) , ∀ω ⊂⊂ Ω . (36)

Now, using (36) and the strong convergence of ∇un to ∇u in (Lq(Ω))N , for
every q < N

N−1, we can pass to the limit in (31) to show that u is a solution
for (1).

In order to prove the second part of the theorem, we simply note that we
can fix k ≥ max{s0, 1} so that (10) and (35) imply

µ

∫

Ω

|∇Gk(un)|2 = µ

∫

{un≥k}
|∇un|2 ≤

∫

{un≥k−1}
f ≤ ‖f‖L1(Ω). (37)

Hence, taking into account both (32) and (37), we have
∫

Ω

|∇un|2 =

∫

Ω

|∇Tk(un)|2 +

∫

Ω

|∇Gk(un)|2 ≤
(
k

α
+

1

µ

)
‖f‖L1(Ω),

i.e., the boundedness of the sequence {un} in H1
0(Ω). This implies that

the solution u, which is the limit of (a subsequence of) {un}, belongs to
H1

0(Ω).

Remark 3.2. Actually, if (10) holds, it is possible to prove, in this latter
case, that the approximate sequence un is strongly convergent to u in H1(ω),
for every ω ⊂⊂ Ω. Indeed, due to the a.e. convergence of ∇un to ∇u in Ω,
it suffices to check the equiintegrability of |∇un|2 in every ω ⊂⊂ Ω. To do
that, we take a measurable set E ⊂ ω ⊂⊂ Ω, and we observe that, thanks
to (37), for any k ≥ max{s0, 1}, we can write

∫

E

|∇un|2 =

∫

E

|∇Tk(un)|2 +

∫

E

|∇Gk(un)|2

≤
∫

E

|∇Tk(un)|2 +
1

µ

∫

{un≥k−1}
f . (38)

Therefore, using again both the boundedness of un in M N
N−2 (Ω) and the

equiintegrability of |∇Tk(un)|2 in ω given by Lemma 3.1, we see that (38)
yields the desired result.
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4. Nonexistence results

This section is devoted to study nonexistence of solutions for (1). We begin
by observing that if the function g(x, s) satisfies condition (11) with h such
that (12) and (13) hold, then we can change h by a smaller function h which,
in addition to (12) and (13), also satisfies h(s) = 0 for every s > 1. Indeed,
if s0 is the point where h attains its minimum value in [1

2
, 1], then it suffices

to define

h(s) =

{
(h(s) − h(s0))

+ if s ∈ (0, s0],
0 if s > s0.

Consequently, without loss of generality, we will assume in the following that
condition (11) holds with h satisfying (12), (13), and

h(s) = 0, ∀s ≥ 1. (39)

Let us consider the function G : (0,+∞) → (0,+∞) given by

G(s) = e

∫ s

1

h(t)

β
dt

for every s > 0,

where β is given by (2). Observe that, by (12), the function G can be
continuously extended to [0,+∞) setting G(0) = 0. Moreover, we also define
the function σ : [0,+∞) → [0,+∞) by setting σ(0) = 0 and

σ(s) = e

∫ s

1

√
h(t)dt

for every s > 0.

Observe that, thanks to (12) and (13), we have that σ ∈ C1([0,+∞)),
σ′(0) = h0 and σ(s) = 0 if and only if s = 0. As a consequence of (39),
σ(s) = 1 for every s > 1 and σ(s) ≤ 1 for every s ≥ 0.

Lemma 4.1. Assume (12) and (13). Then the function

ϕ(s) =





∫ s

0

G(t)[σ′(t)]2dt

G(s)
if s > 0,

0 if s = 0,

(40)



26 D. ARCOYA, J. CARMONA, T. LEONORI, P. MARTÍNEZ, L. ORSINA AND F. PETITTA

is a continuously differentiable function on [0,+∞) that satisfies the ordinary
differential equation




ϕ′(s) +

h(s)

β
ϕ(s) = [σ′(s)]2, on [0,+∞),

ϕ(0) = 0.
(41)

Moreover, the following inequality holds:

ϕ(s) ≤ β[σ(s)]2, ∀s > 0. (42)

Proof. The first part of the proof is straightforward except for checking that
ϕ is differentiable at zero and ϕ′ is continuous at zero. In order to do it, we
note firstly that ϕ is continuous at zero. Indeed, since G is nondecreasing
and [σ′]2 is continuous in [0,+∞) we have

0 ≤ lim
s→0+

ϕ(s) = lim
s→0+

∫ s

0

G(t)[σ′(t)]2dt

G(s)
≤ lim

s→0+

∫ s

0

[σ′(t)]2dt = 0.

Now we observe that, using the L’Hôpital Rule, (12) and (13),

ϕ′(0) = h2
0 − lim

s→0+

h(s)

∫ s

0

G(t) [σ′(t)]
2
dt

βG(s)

= h2
0 − h2

0 lim
s→0+

G(s)[σ′(s)]2

2βσ(s)σ′(s)G(s) + h(s)[σ(s)]2G(s)

= h2
0 − h2

0 lim
s→0+

1

2β 1√
h(s)

+ 1
= h2

0 − h2
0 = 0.

Hence ϕ is differentiable at zero and ϕ′ is continuous at zero.
In order to prove inequality (42), we first observe that since [σ′(s)]2 =

[σ(s)]2 h(s), then

ϕ(s) =
β

G(s)

∫ s

0

G(t)
h(t)

β
[σ(t)]2 dt.

Since

G(t)
h(t)

β
=

d

dt
G(t),
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we can integrate by parts to find (recall that G(0) = σ(0) = 0)

ϕ(s)=
β

G(s)

[
G(t) [σ(t)]2

]t=s
t=0

− 2β

G(s)

∫ s

0

G(t) σ(t) σ′(t) dt

=β [σ(s)]2 − 2β

G(s)

∫ s

0

G(t) [σ(t)]2
√
h(t) dt

≤β [σ(s)]2,

since all the functions in the last integral are nonnegative.

Proof of Theorem 1.3: Let u ∈ H1
0(Ω) be a positive solution for (1) and let

ϕ ∈ C1([0,+∞)) be given by (40). Observing that ϕ(0) = 0, that ϕ′ is
bounded and that, by (42) and since σ(s) ≤ 1, we have ϕ(s) ≤ β, we derive
that ϕ(u) ∈ H1

0(Ω)∩L∞(Ω). Therefore, we can take v = ϕ(u) as test function
in (18) to obtain, by using (11), that

∫

Ω

M(x, u)∇u · ∇uϕ′(u) +

∫

Ω

h(u)|∇u|2ϕ(u) ≤
∫

Ω

f ϕ(u) .

Thus, adding and subtracting
1

β

∫

Ω

M(x, u)∇u·∇u h(u)ϕ(u) , we derive from

(2) and (41) that
∫

Ω

M(x, u)∇u · ∇u[σ′(u)]2 ≤
∫

Ω

M(x, u)∇u · ∇u
[
ϕ′(u) +

h(u)

β
ϕ(u)

]

+

∫

Ω

[
I − M (x, u)

β

]
∇u · ∇u h(u)ϕ(u)

≤
∫

Ω

f ϕ(u) .

Using now (2), (42) and the fact that f ≥ 0, we have

α

∫

Ω

|∇σ(u)|2 = α

∫

Ω

|∇u|2[σ′(u)]2 ≤
∫

Ω

f ϕ(u) ≤ β

∫

Ω

f [σ(u)]2 . (43)

Hence, recalling (see [18]) that, since f belongs to Lq(Ω) with q > N
2
, and

f+ 6≡ 0, the first positive eigenvalue λ1(f) of the eigenvalue boundary value
problem {

−∆u = λ f u in Ω,

u = 0 on ∂Ω,
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is such that

λ1(f)

∫

Ω

f v2 ≤
∫

Ω

|∇v|2, ∀v ∈ H1
0(Ω).

we deduce from (43) that

α

∫

Ω

|∇σ(u)|2 ≤ β

λ1(f)

∫

Ω

|∇σ(u)|2.

Recalling the assumption
β

α
< λ1(f), this implies that

∫

Ω

|∇σ(u)|2 = 0,

which yields

σ(u) = 0 for a.e. x ∈ Ω.

Therefore, recalling that σ(s) = 0 if and only if s = 0, we have u ≡ 0,
contradicting u > 0 in Ω: therefore, there are no positive solutions of (1).

Remark 4.2. Theorem 1.3 can be extended to more general operators.
Specifically, if a(x, s, ξ) is a Carathéodory function such that

∃α > 0 : a(x, s, ξ) · ξ ≥ α|ξ|2 for a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ R
N ,

∃β > 0 : |a(x, s, ξ)| ≤ β|ξ| for a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ R
N ,

and 0 ≤ f ∈ Lq(Ω) with q > N
2

and f 6≡ 0, then problem
{
−div (a(x, u,∇u)) + g(x, u)|∇u|2 = f in Ω,

u = 0 on ∂Ω,

has no finite energy solutions provided λ1(f) >
β

α
and conditions (11), (12)

and (13) hold.

Remark 4.3. Let 0 ≤ f ∈ Lq(Ω) with q > N
2 and f 6≡ 0. Assume (2) and

that g(s) satisfies (11). Observe that if u ∈ H1
0(Ω) is a solution of (1), and

R > 0, then v = Ru is a solution of



−div

(
M
(
x,
v

R

)
∇v
)

+
1

R
g
(
x,
v

R

)
|∇v|2 = Rf in Ω,

v = 0 on ∂Ω,
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with

g
(
x,
s

R

)

R
≥hR(s)

def
=

1

R
h
( s
R

)
.

Therefore, by Theorem 1.3, and since λ1(Rf) = λ1(f)/R, if hR(s) satisfies
conditions (12) and (13), then a necessary condition for the existence of finite
energy solutions of (1) is that λ1(f) ≤ Rβ/α.

In the following result, as a consequence of Theorem 1.3 (and Remark 4.3),
we give conditions to assure the nonexistence of solutions of (1) for every
datum f .

Corollary 4.4. Let 0 ≤ f ∈ Lq(Ω) with q > N
2 and f 6≡ 0. Assume (2)

and that g(s) satisfies (11). If there exists R0 > 0 such that the function

hR(s) =
1

R
h
( s
R

)
satisfies (12) and (13) for every R ∈ (0, R0), then (1) does

not have any finite energy solution.

As a consequence of the above results we also have the following.

Corollary 4.5. Let 0 ≤ f ∈ Lq(Ω) with q > N
2 and f 6≡ 0. Suppose that (2)

holds and that for some constants s0,Λ > 0 and γ ≥ 2 we have

Λ

sγ
≤ g(x, s), for a.e. x ∈ Ω, ∀s ∈ (0, s0].

If either

(i) γ > 2,

or

(ii) γ = 2 and λ1(f) > β
Λα ,

then (1) does not have any finite energy solution.

Proof. Consider a continuous function h(s) such that

h(s) =





Λ

sγ
if 0 < s ≤ s0

2
,

≤ Λ

sγ
if
s0

2
< s < s0,

0 if s0 ≤ s.

Observing that hR(s) =
ΛRγ−1

sγ
for every s ∈ (0, s02 ), and using that γ ≥ 2,

we have that hR(s) is not integrable in (0, s02 ), i.e., it satisfies (12).
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In addition, if γ > 2, then hR(s) satisfies (13) for every R > 0, so that
Corollary 4.4 concludes the proof in this case.

On the other hand, if we assume that γ = 2, then

lim
s→0+

√
hR(s) e

∫ s

1

√
hR(t)dt

= lim
s→0+

√
ΛR

s
e

∫ s

s0/2

√
ΛR

s
dt+

∫ s0/2

1

√
hR(t)dt

= lim
s→0+

Cs
√

ΛR−1 = h0 ≥ 0 ⇐⇒ R ≥ 1

Λ
.

In other words, hR(s) satisfies (13) if and only if R ≥ 1
Λ. Therefore, Re-

mark 4.3 implies the nonexistence of solutions provided that λ1(f) > β
Λα

.

As a consequence of this result, we have that the first part of Theorem 1.4
is proved. We are now going to prove the second part of it.

Proof of Theorem 1.4: We first note that if γ < 2, then Theorem 1.2 guaran-
tees the existence of a solution. Conversely, if γ > 2 or if γ = 2 and ‖f‖L∞(Ω)

is large enough, Theorem 1.3 applies and no solutions exist for (5).
On the other hand, if f ∈ L∞(Ω) and (14) holds, we recall that existence

and uniqueness of a solution un in H1
0(Ω) ∩ C(Ω) for




−∆un +

|∇un|2(
un + 1

n

)γ = f in Ω,

un = 0 on ∂Ω,

(44)

(with γ ≥ 2) follows by the results of [4, 16]. Taking un, Gk(un), and Tε(un)/ε
as test functions and working as in Lemma 2.2 (1.), it is easy to see that un
is bounded in H1

0(Ω) and in L∞(Ω), and that
∫

Ω

|∇un|2(
un + 1

n

)γ ≤ C.

Therefore, up to subsequences, there exists a nonnegative bounded Radon
measure ν such that

|∇un|2(
un + 1

n

)γ converges to ν in the weak-∗ topology of measures.

Since un is bounded in H1
0(Ω) then it converges, up to subsequences, to some

function u weakly in H1
0(Ω), strongly in L2(Ω), and almost everywhere in Ω.

Moreover, since f− |∇un|2

(un+ 1
n)

γ is bounded in L1(Ω), the result of [14] yields that
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(up again to subsequences) ∇un converges to ∇u almost everywhere in Ω.

Then we have, by Fatou lemma, that |∇u|2
uγ χ{u>0} belongs to L1(Ω), and that

ν =
|∇u|2
uγ

χ{u>0} + ν0,

where ν0 is a nonnegative bounded Radon measure on Ω. Therefore, u ∈
H1

0(Ω) is a finite energy solution of



−∆u+

|∇u|2
uγ

χ{u>0} = f − ν0 in Ω,

u = 0 on ∂Ω.

Note also that since un+1 is a subsolution for (44), we can apply the compar-
ison principle of [4] so that, for every x ∈ Ω, we have

un(x) ≥ un+1(x) ≥ . . . ≥ u(x),

and thus we can assume that un(x) is converging to u(x) for every x ∈ Ω. We
claim that u ≡ 0, so that un converges to zero in L2(Ω). Indeed, we divide
the proof of this assertion in two steps:

Step 1. The case in which Ω is a ball of radius R > 0, Ω = BR, and
f = T > 0 is a constant.

Step 2. The general case.
Step 1. Assume that Ω = BR and f = T > 0 is a constant. In this case,
(14) means that, if γ = 2, then the first eigenvalue λBR1 (T ) of the Laplacian

operator with weight T in BR is greater than one, i.e., λBR1 (T ) > 1. We
first observe that u is radially symmetric (and thus continuous for |x| 6= 0).
Indeed, if we define

ψn(s) =

∫ s

0

e−Hn(t)dt, where Hn(t) =
nγ−1

γ − 1

[
1 − (1 + nt)1−γ]

and we set vn = ψn(un), it is easy to check that vn is the unique solution of
{
−∆vn = T e−Hn(ψ

−1
n (vn)) in BR

vn = 0 on ∂BR .

Since the nonlinearity 0 ≤ e−Hn(ψ
−1
n (s)) is C1, we can apply the result of Gidas,

Ni and Nirenberg (see [21]) in order to deduce that vn is radially symmetric
(hence vn = vn(r)), monotone decreasing with respect to r and such that
v′n(0) = 0. Since ψn and Hn are smooth and increasing, the functions un
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have the same properties as vn. Passing to the limit with respect to n we
deduce that u is radially symmetric and monotone nonincreasing.

We argue by contradiction assuming that u is not identically zero. In this
case, using that u(r) is nonincreasing in (0, R),

r1 = inf{0 < r ≤ R : u(r) = 0} > 0,

and then

u ≥ cε := u(r1 − ε) in Br1−ε .

Therefore, repeating the proof of Theorem 1.1, we prove that

lim
n→+∞

|∇un|2(
un + 1

n

)γ =
|∇u|2
uγ

strongly in L1
loc(Br1),

so that ν0 is zero on Br1 and, by the continuity of u for r 6= 0, u is a solution
of 



−∆u+

|∇u|2
uγ

= T in Br1,

u = 0 on ∂Br1,

and this contradicts the result of Theorem 1.3 (note that, if γ = 2, we have

λ
Br1
1 (T ) > λBR1 (T ) > 1). Therefore u ≡ 0.

Step 2. Ω is an open set and f is nonnegative and belongs to L∞(Ω).
By (14), we can fix R > diamΩ with λ1 > ‖f‖∞R2 provided that γ = 2.

Let vn be also the solution of



−∆vn +

|∇vn|2(
vn + 1

n

)γ = ‖f‖L∞(Ω) in BR

vn = 0 on ∂BR.

By definition of diamΩ, we have Ω ⊂ BR. Our aim is to prove that vn is
a supersolution for (44). Indeed, let 0 ≤ ψ ∈ C∞

0 (Ω) and we use it as test
function in the formulation of vn. Thus

∫

BR

∇vn · ∇ψ +

∫

BR

|∇vn|2
( 1
n + un)γ

ψ =

∫

BR

‖f‖L∞(BR)ψ ,

and since the support of ψ is contained in Ω we deduce
∫

Ω

∇vn · ∇ψ +

∫

Ω

|∇vn|2
( 1
n + un)γ

ψ =

∫

Ω

‖f‖L∞(BR)ψ ≥
∫

Ω

fψ
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for every nonnegative ψ in H1
0(Ω) ∩ L∞(Ω) (by an easy density argument).

Using again the comparison principle of [4], un ≤ vn in Ω. Now, observing
that by the choice of R, if γ = 2, we have

λBR1 (‖f‖∞) =
λ1

R2‖f‖∞
> 1, (45)

we are able to apply the previous Step 1, so that vn tends to 0 strongly in
L2(BR), which implies that un tends to zero in L2(Ω) and the claim has been
proved.

Finally, we conclude the proof by taking un as test function in (44) and
dropping the nonnegative quadratic term to deduce that the convergence to
zero is strong in H1

0(Ω); using this fact in the weak formulation of (44) then
yields that ν = f , as desired.

Remark 4.6. Let us emphasize that the condition ‖f‖∞ ≤ λ1

(diam Ω)2
im-

posed in assumption (14) for the case γ = 2 is not optimal. We use it for
the sake of simplicity. However, as shown in the proof of Theorem 1.4 (see
(45)), a sharper condition can be used in this case. More precisely, if γ = 2
and there exists a ball BR of radius R > 0 such that Ω ⊂ BR and

‖f‖L∞(Ω) <
λ1

R2
,

then the result of Theorem 1.4 holds.

Appendix A.Local a priori estimates and large solutions

We devote this appendix to recall some results concerning the following
equation

−÷ (a(x, u,∇u)) + B(x, u) = F (x), x ∈ Ω, (46)

where F ∈ L1
loc(Ω) and a(x, s, ξ), B(x, s) are Carathéodory functions. Sup-

pose that there exist constants β ≥ α > 0 such that

a(x, s, ξ) · ξ ≥ α|ξ|2, (47)

|a(x, s, ξ)| ≤ β|ξ|, (48)

(a(x, s, ξ)− a(x, s, η)) · (ξ − η) > 0, (49)

for a.e. x ∈ Ω, for every s ∈ R and for every ξ, η ∈ R
N , ξ 6= η.
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Our aim is to prove that if the datum F belongs to Lqloc(Ω) with q > N
2 and

there exists a continuous nonnegative function b : [0,+∞) → [0,+∞) such
that

b(s) is increasing and satisfies (23), b(s)/s is nondecreasing for large s,
and for every ω ⊂⊂ Ω there exists mω > 0 such that:
∀s ∈ R

+, B(x, s) ≥ mωb(s) ≥ 0 for a.e. x ∈ ω,
(50)

then the subsolutions of equation (46) are uniformly bounded from above in
ω ⊂⊂ Ω. This result is essentially contained in [26].

Theorem A.1. Suppose that a(x, s, ξ) satisfies (47)–(49), B(x, s) satisfies
(50) and assume that F ∈ Lq

loc
(Ω), q > N

2 . Let u ∈ H1
loc

(Ω) be any distribu-
tional subsolution for (46) such that B(x, u+), u+B(x, u+) ∈ L1

loc(Ω). Then
for every ω ⊂⊂ Ω there exists Cω > 0 such that

u(x) ≤ Cω, ∀x ∈ ω .

In order to prove this theorem, we need the following two lemmas.

Lemma A.2 (Lemma 1.1 of [26]). Let b : [0,+∞) → [0,+∞) be a contin-

uous function, satisfying the Keller-Osserman condition (23), such that b(s)
s

is nondecreasing for large s. Then, for any C > 0 and γ ≥ 0, there exists
a smooth function ϕ : [0, 1] −→ [0, 1], with ϕ(0) = ϕ′(0) = 0, ϕ(1) = 1,
depending only on b, C and γ, satisfying

tγ+1 ϕ
′(τ)2

ϕ(τ)
≤ 1

C
tγ b(t)ϕ(τ) + 1, ∀τ ∈ (0, 1], ∀t ≥ 0.

Remarks A.3. (1) In Lemma 1.1 of [26] it is imposed that b(s) is increas-

ing, b(0) = 0, and the function b(s)
s is nondecreasing in R

+. However,
it is easy to see that the proof works by using the weaker assumptions
of Lemma A.2.

(2) In addition, also in [26], the Keller-Osserman condition is replaced by
the following one:

∫ +∞ ds√
sb(s)

< +∞.

Note that, as a consequence of the monotonicity of b(s) for large s,
the above assumption is equivalent to (23).
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Let us recall a local version of a classical result by Stampacchia we will use
in the following.

Lemma A.4 ([33]). Let σ(j, ρ) : [0,+∞)× [0, R0) −→ R be a function such
that σ(·, ρ) is nonincreasing and σ(j, ·) is nondecreasing. Moreover, suppose
that there exist K0 > 0, µ1, and C, ν, γ > 0 satisfying

σ(j, ρ) ≤ C
σ(k, R)µ

(j − k)ν(R− ρ)γ
, ∀j > k > K0, ∀ 0 < ρ < R < R0.

Then for every δ ∈ (0, 1), there exists d > 0 such that:

σ(K0 + d, (1 − δ)R0) = 0 ,

where dν = 2(ν+γ) µ

µ−1C (σ(K0,R0))
µ−1

δγRγ0
.

Idea of the Proof of Theorem A.1: The proof of this result is essentially con-
tained in [26], but for the convenience of the reader, we include here the proof
of the exact result that we have used in the proof of Proposition 2.3.

Actually we deal with equation

−div(M̃(x, u)∇u) + f(x)b(u) = 0, in Ω ,

where M̃(x, s) satisfies (2), b(s) satisfies the Keller-Osserman condition (23),
b(s)
s is nondecreasing for s large and f satisfies (4). Consequently all the

assumptions of the theorem are satisfied. We remind that the functions

M̃(x, s), b(s) and f(x), appearing in Proposition 2.3, satisfy the above as-
sumptions.

Suppose now that b(u+), u+b(u+) ∈ L1
loc(Ω). We set ω ⊂⊂ ω′ ⊂⊂ Ω and a

cut-off function η(x) such that 0 ≤ η ≤ 1 and

η(x) =

{
1, x ∈ ω,
0, x ∈ Ω\ω′.

(51)

We fix C = ‖∇η‖2
L∞(Ω)

4β2+α2

8αmω′
and we also consider the function ϕ given by

Lemma A.2 with γ = 1 and this constant C. Note that if ξ =
√
ϕ(η), then

uξ2 = uϕ(η) ∈ H1
0(Ω) and

∇(uξ2) =

{
ξ2∇u+ 2ξu∇ξ, if ξ(x) > 0,

0, if ξ(x) = 0,
(52)
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a.e. in Ω. Moreover f(x)u+b(u+) ∈ L1
loc(Ω) and thus v = Gk(u

+)ξ2 is an
admissible test function. Using (2), Young’s inequality, and (4), we deduce

α

2

∫

ω′

|∇Gk(u
+)|2ξ2 +mω′

∫

ω′

b(u+)Gk(u
+)ξ2 ≤ 2β2

α

∫

{ξ(x)>0}
|∇ξ|2Gk(u

+)2 .

Hence,

α

4

∫

ω′

|∇[Gk(u
+)ξ]|2 +mω′

∫

ω′

b(u+)Gk(u
+)ξ2 ≤ 4β2 + α2

2α

∫

ω′

|∇ξ|2Gk(u
+)2.

Lemma A.2 applied with γ = 1 together to the monotonicity of b(s) yields

α

4

∫

ω′

|∇(Gk(u
+)ξ)|2 ≤ C0meas{x ∈ ω′ : u(x) ≥ k} ,

where C0 = ‖∇η‖2
L∞(Ω)

4β2+α2

2α . We deduce by Sobolev inequality that

(∫

ω

|Gk(u
+)ξ|2∗

) 2
2∗

≤ 4S2

α
C0 meas{x ∈ ω′ : u(x) ≥ k}.

Hence, using that if u(x) ≥ j > k we have Gk(u) ≥ j − k, we conclude that

(j−k)2 meas{x ∈ ω : u(x) ≥ j} 2
2∗ ≤ 4S2

α
C0 meas {x ∈ ω′ : u(x) ≥ k} . (53)

Now, if ω ⊂⊂ Ω is fixed, we consider R = dist (ω, ∂Ω)/2 and the sets

ωr = {x ∈ Ω : dist (x, ω) < r} ⊂⊂ Ω

for every r ∈ (0, R]. Taking ω = ωr and ω′ = ωR in (53) and defining

σ(k, r) = meas{x ∈ ωr : u(x) ≥ k}
we deduce, since we can choose η such that ‖∇η‖L∞(Ω) ≤ c

R−r , that there
exists c1 > 0 such that

(j − k)2σ(j, r)2/2∗ ≤ c1
σ(k, R)

(R− r)2

and the proof is concluded by applying Lemma A.4.

Remark A.5. By adding a condition on the function b(s) for negative s
and using similar ideas to these ones in the above proof, it is possible to
give also a priori estimates of the whole L∞ norm of the solution in every
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compact subset ω of Ω. More precisely, if, in addition to the hypotheses of
Theorem A.1, we strengthen (50) by imposing that

b(s) is increasing and satisfies (23), b(s)/s is nondecreasing,
for large s and for every ω ⊂⊂ Ω there exists mω > 0 such that:
∀s ∈ R, B(x, s) sign s ≥ mωb(|s|) ≥ 0 for a.e. x ∈ ω,

(54)

then for every ω ⊂⊂ Ω there exists Cω > 0 such that

|u(x)| ≤ Cω, ∀x ∈ ω .

Theorem A.1 is an extension to quasilinear equations of the well-known
local a priori estimate of Keller [23] and Osserman [31] (see also [5], [29],
[30], [34], [35] and the references cited therein) for semilinear operators. This
semilinear a priori estimate was the crucial tool in order to prove the existence
of a large solution, i.e., a solution u of the semilinear equation satisfying
u = +∞ at ∂Ω in the sense that

lim
dist(x,∂Ω)→0

u(x) = +∞.

Thus, it is natural to ask whether it is also possible to prove the existence
of a large solution for (46). Clearly, in this nonlinear framework we have
to specify the meaning we give to “infinity”at ∂Ω, since it has no sense
pointwise. Actually we will assume such a condition in a weak sense, through
a condition on the trace on the boundary of the truncation of the solution.
Specifically, our definition of a distributional large solution for equation (46)
is the following.

Definition A.6. An a.e. finite function u(x) such that Tk(u) ∈ H1(Ω)
∀k > 0 is a distributional large solution for (46) with F ∈ L1

loc(Ω), if:
i) |a(x, u,∇u)| ∈ L1

loc(Ω), B(x, u) ∈ L1
loc(Ω);

ii)
∫

Ω

a(x, u,∇u) · ∇ϕ +

∫

Ω

B(x, u)ϕ =

∫

Ω

F ϕ , ∀ϕ ∈ C∞
c (Ω) ;

iii) ∀k > 0, k − Tk(u) ∈ H1
0(Ω).

Remark A.7. In the above definition, iii) has the meaning of “infinity at
∂Ω”. We mention that this definition of explosive boundary condition has
already been introduced in [27], for a different class of nonlinear elliptic
equations involving nonlinear “coercive” gradient terms.
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We conclude by observing that even if not explicitly written in [26], all the
estimates that we need in order to prove the existence of large solutions for
(46) have been proved and thus we have the following result.

Theorem A.8. Suppose that a(x, s, ξ) and B(x, s) satisfy (47), (48), (49),
(54) and

sup
|s|≤k

|B(x, s)| ∈ L1(Ω), ∀k > 0. (55)

Assume also that F ∈ L1
loc(Ω) with F− ∈ L1(Ω). Then there exists a distri-

butional large solution for (46).

Proof. We consider the following sequence of problems{
−div a(x, un,∇un) + B(x, un) = Fn in Ω,

un − n ∈ H1
0(Ω),

where Fn = Tn(F ). Since B(x, s + n)s ≥ 0 for large |s|, the existence of a
weak solution un ∈ H1(Ω) ∩ L∞(Ω) is a consequence of [6] (Theorem 6.1),
i.e. un − n ∈ H1

0(Ω) and it satisfies∫

Ω

a(x, un,∇un) · ∇v +

∫

Ω

B(x, un)v =

∫

Ω

Fnv , ∀v ∈ H1
0(Ω) ∩ L∞(Ω).

(56)
Observing that for any n ≥ k, k − Tk(un) ∈ H1

0(Ω) ∩ L∞(Ω), we can choose
v = k − Tk(un) as test function in (56) and we obtain,

−
∫

Ω

a(x, un,∇un) · ∇Tk(un) +

∫

Ω

B(x, un)[k− Tk(un)] =

∫

Ω

Fn[k− Tk(un)] .

Using (47), and (50) and (55) we have:

α

∫

Ω

|∇Tk(un)|2 ≤ 2k

∫

Ω

sup
|s|≤k

|B(x, s)| + 2k‖F−
n ‖L1(Ω).

Thus, for every k ∈ N, we can now extract a subsequence (not relabeled)
of {Tk(un)}n∈N

that weakly converges in H1(Ω) and, by Rellich theorem,
strongly in L2(Ω).

Now, consider any sets ω ⊂⊂ ω′ ⊂⊂ Ω, a cut-off function η(x) cho-

sen as in (51) and ξ =
√
ϕ(η). Arguing as in (52), we deduce that v =

Tk(unξ
2) is an admissible test function for (56). Let us set, now, Ak ={

x ∈ Ω : |un|ξ2 ≤ k and ξ(x) > 0
}
, we get

∫

Ak

a(x, un,∇un) · ∇[unξ
2] +

∫

Ω

B(x, un)Tk(unξ
2) ≤ k‖F‖L1(ω′) ,



QUADRATIC QUASILINEAR EQUATIONS WITH GENERAL SINGULARITIES 39

and so, using (47) and (54),

α

∫

Ak

|∇un|2ξ2 +mω′

∫

Ak

|b(un)|Tk(unξ2)

≤ k‖F‖L1(ω′) + 2β

∫

Ak

|∇un||∇ξ|unξ .

By applying Young inequality, (48) and Lemma A.2 (with γ = 1 and C >
α2+4β2

8αmω′
‖∇η‖L∞(ω′) and taking into account Remark A.5) we deduce that there

exists c > 0 such that ∫

Ω

|∇Tk(unξ2)|2 ≤ c(k + 1).

Then, using that ξ = 1 in ω, by Lemmas 4.1 and 4.2 of [6] it follows that

un and |∇un| are bounded respectively in M N
N−2 (ω) and M N

N−1 (ω), for any
ω ⊂⊂ Ω. Combining this information with the strong convergence of Tk(un)
in L2(Ω) we deduce that un is a Cauchy sequence in measure and so, up
to subsequences (not relabeled), it converges for a.e. x ∈ Ω to a function
u ∈ W 1,q

loc (Ω). This, in particular, implies that

lim
n→+∞

k − Tk(un) = k − Tk(u) weakly in H1
0(Ω) ,

i.e. u satisfies the boundary condition.
On the other hand, we prove that the lower order term is bounded in

L1
loc(Ω); indeed, if, for ε > 0, we take v = 1

ε
Tε(un)ξ as test function in (56)

(as before, such a function it is admissible). Thus, by (47), (48), and dropping
positive terms, we get

∫

Ω

B(x, un)
Tε(un)

ε
ξ ≤ ‖F‖L1(ω′) + β‖∇ξ‖L∞(ω′)

∫

ω′

|∇un| .

Since the right hand side is bounded being {|∇un|} bounded in M
N
N−1

loc (Ω)
and F ∈ L1

loc(Ω), letting ε→ 0, we deduce by Fatou lemma that there exists
cω > 0 such that ∫

ω

|B(x, un)| ≤ cω.

On the other hand, choosing v = T1(Gh(unξ
2)) as test function, where ξ2 =

ϕ(η) we have, by using (47), (48), (54) and (55),

α

2

∫

h≤|unξ2|≤h+1

|∇un|2ξ2 +
1

2

∫

Ω

B(x, un)T1(Gh(unξ
2))
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≤
∫

ω′∩{unξ2≥h}
|Fn| +

2β2

α
‖∇η‖2

L∞(Ω) meas{x ∈ ω′ : ξ2|un| ≥ h}.

By the strong compactness of {Fn} in L1(ω′) and the local uniform estimate

of {un}n∈N in M
N
N−2

loc (Ω), we derive then that

lim
h→+∞

sup
n∈N

∫

{x∈ω: |un|≥h}
|B(x, un)| = 0.

As a consequence of Vitali theorem we deduce that {|B(x, un)|}n∈N is strongly
compact in L1(ω′), where ω′ ⊂⊂ Ω is arbitrary. Moreover, since the lower
order term is bounded in L1

loc(Ω), we can apply Lemma 1 in [10] in order to
prove that ∇un converges to ∇u a.e. in Ω. This, and the weak convergence
of un in W 1,q(ω′), ∀ω′ ⊂⊂ Ω, imply

un −→ u in W 1,q(ω), ∀1 ≤ q <
N

N − 1
, ∀ω ⊂⊂ Ω,

and, thanks to (48), we also have that

a(x, un,∇un) −→ a(x, u,∇u) in L1(ω)N , ∀ω ⊂⊂ Ω. (57)

Now we can pass to the limit in the distributional formulation: indeed
choosing any φ ∈ C∞

c (Ω) in (56) we have
∫

Ω

a(x, un,∇un) · ∇φ +

∫

Ω

B(x, un)φ =

∫

Ω

Fnφ .

Using (57) we deduce that

lim
n→+∞

∫

supp φ

a(x, un,∇un) · ∇φ =

∫

supp φ

a(x, u,∇u) · ∇φ .

Moreover, by the strong convergence of {B(x, un)} and {Fn} in L1
loc(Ω), we

deduce that

lim
n→+∞

∫

supp φ

Fn φ =

∫

supp φ

F φ

and

lim
n→+∞

∫

supp φ

B(x, un)φ =

∫

supp φ

B(x, u)φ

and this concludes the proof.
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364.

[8] L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms,
ESAIM: Control, Optimization and the Calculus of Variations, to appear.
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