ON POISSON QUASI-NIJENHUIS LIE ALGEBROIDS

RAQUEL CASEIRO, ANTONIO DE NICOLA AND JOANA M. NUNES DA COSTA

Abstract

We propose a definition of Poisson quasi-Nijenhuis Lie algebroids as a natural generalization of Poisson quasi-Nijenhuis manifolds and show that any such Lie algebroid has an associated quasi-Lie bialgebroid. Therefore, also an associated Courant algebroid is obtained. We introduce the notion of a morphism of quasi-Lie bialgebroids and of the induced Courant algebroids morphism and provide some examples of Courant algebroid morphisms. Finally, we use paired operators to deform doubles of Lie and quasi-Lie bialgebroids and find an application to generalized complex geometry.

Introduction

The notion of Poisson quasi-Nijenhuis manifold was recently introduced by Stiénon and Xu [14]. It is a manifold M together with a Poisson bivector field π, a (1,1)-tensor N compatible with π and a closed 3 -form ϕ such that $i_{N} \phi$ is also closed and the Nijenhuis torsion of N, which is nonzero, is expressed by means of ϕ and π. When $\phi=0$ one obtains a PoissonNijenhuis manifold, a concept introduced by Magri and Morosi [11] to study integrable systems and which was extended to the Lie algebroid framework by Kosmann-Schwarzbach [6] and Grabowski and Urbanski [5] who introduced the notion of a Poisson-Nijenhuis Lie algebroid. In this paper we propose a definition of Poisson quasi-Nijenhuis Lie algebroid, which is a straightforward generalization of a Poisson quasi-Nijenhuis manifold.

Quasi-Lie bialgebroids were introduced by Roytenberg [12] who showed that they are the natural framework to study twisted Poisson structures [13]. On the other hand, quasi-Lie bialgebroids are intimately related to Courant algebroids [9], because the double of a quasi-Lie bialgebroid carries a structure of Courant algebroid and conversely, a Courant algebroid E that admits a Dirac subbundle A and a transversal isotropic complement B, can be identified with the Whitney sum $A \oplus A^{*}$, where A^{*} is identified with B [12]. Generalizing a result of Kosmann-Schwarzbach [6] for Poisson-Nijenhuis manifolds and Lie bialgebroids, it is proved in [14] that a Poisson quasiNijenhuis structure on a manifold M is equivalent to a quasi-Lie bialgebroid

[^0]structure on $T^{*} M$. Extending the result of [14], we show that a Poisson quasiNijenhuis Lie algebroid has an associated quasi-Lie bialgebroid, so that it has also an associated Courant algebroid.

In an unpublished manuscript, Alekseev and Xu [1], gave the definition of a Courant algebroid morphism between E_{1} and E_{2} and, in the case where E_{1} and E_{2} are doubles of Lie bialgebroids $\left(A, A^{*}\right)$ and $\left(B, B^{*}\right)$, i.e $E_{1}=A \oplus A^{*}$ and $E_{2}=B \oplus B^{*}$, they established a relationship with a Lie bialgebroid morphism $A \rightarrow B$ [10]. Since doubles of quasi-Lie bialgebroids are Courant algebroids, it seems natural to obtain a relationship between Courant algebroid morphisms and quasi-Lie bialgebroid morphisms. This is the case when considering Courant algebroids associated with a Poisson quasi-Nijenhuis Lie algebroid of a certain type and with a twisted Poisson Lie algebroid, respectively. In a first step towards our result, we give the definition of a morphism of quasi-Lie bialgebroids which is, up to our knowledge, a new concept that includes morphism of Lie bialgebroids as a particular case.

Another aspect of Poisson quasi-Nijenhuis manifolds that is exploited in [14] is the relation with generalized complex structures. We extend to Poisson quasi-Nijenhuis Lie algebroids some of the results obtained in [14] and also discuss the relation of Poisson quasi-Nijenhuis Lie algebroids with paired operators [3].

The paper is divided into three sections. In section 1 we introduce quasi-Lie bialgebroid morphisms and discuss their relationship with Courant algebroid morphisms. Section 2 is devoted to Poisson quasi-Nijenhuis Lie algebroids. We prove that each Poisson quasi-Nijenhuis Lie algebroid has an associated quasi-Lie bialgebroid and, in some particular cases, we construct a morphism of Courant algebroids. In the last section we use paired operators to deform doubles of Lie and quasi-Lie bialgebroids.

1. Quasi-Lie bialgebroids morphisms

1.1. Quasi-Lie bialgebroids. The main subject of this work are quasi-Lie bialgebroids. We begin by recalling the definition and give some examples.

Definition 1.1. [12] A quasi-Lie bialgebroid is a Lie algebroid ($\left.A,[,]_{A}, \rho\right)$ equipped with a degree-one derivation d_{*} of the Gerstenhaber algebra $\left(\Gamma\left(\wedge^{\bullet} A\right), \wedge,[,]_{A}\right)$ and a 3 -section of $A, X_{A} \in \Gamma\left(\wedge^{3} A\right)$ such that

$$
\mathrm{d}_{*} X_{A}=0 \quad \text { and } \quad \mathrm{d}_{*}^{2}=\left[X_{A},-\right]_{A} .
$$

If X_{A} is the null section, then d_{*} defines a structure of Lie algebroid on A^{*} such that d_{*} is a derivation of $[,]_{A}$. In this case we say that $\left(A, A^{*}\right)$ is a Lie bialgebroid.

Examples of quasi-Lie bialgebroids arise from different well known geometric structures. We will illustrate some of them that will be needed in our work.

Example 1.2. Let $\left(A,[,]_{A}, \rho\right)$ be a Lie algebroid and consider any closed 3 -form ϕ. Equipping A^{*} with the null Lie algebroid structure, $\left(A^{*}, \mathrm{~d}_{A}, \phi\right)$ is canonically a quasi-Lie bialgebroid.

Example 1.3. [Lie algebroid with a twisted Poisson structure] Let $\pi \in$ $\Gamma\left(\wedge^{2} A\right)$ be a bivector on the Lie algebroid $\left(A,[,]_{A}, \rho\right)$ and denote by π^{\sharp} the usual bundle map

$$
\begin{aligned}
\pi^{\sharp}: A^{*} & \longrightarrow A \\
\alpha & \longmapsto \pi^{\sharp}(\alpha)=i_{\alpha} \pi .
\end{aligned}
$$

This map can be extended to a bundle map from $\Gamma\left(\wedge^{\bullet} A^{*}\right)$ to $\Gamma\left(\wedge^{\bullet} A\right)$, also denoted by π^{\sharp}, as follows:

$$
\pi^{\sharp}(f)=f \quad \text { and } \quad\left\langle\pi^{\sharp}(\mu), \alpha_{1} \wedge \ldots \wedge \alpha_{k}\right\rangle=(-1)^{k} \mu\left(\pi^{\sharp}\left(\alpha_{1}\right), \ldots, \pi^{\sharp}\left(\alpha_{k}\right)\right),
$$

for all $f \in C^{\infty}(M)$ and $\mu \in \Gamma\left(\wedge^{k} A^{*}\right)$ and $\alpha_{1}, \ldots, \alpha_{k} \in \Gamma\left(A^{*}\right)$.
Let $\phi \in \Gamma\left(\wedge^{3} A^{*}\right)$ be a closed 3-form on A. We say that (π, ϕ) defines a twisted Poisson structure on A [13] if

$$
[\pi, \pi]_{A}=2 \pi^{\sharp}(\phi) .
$$

In this case, the bracket on the sections of A^{*} defined by

$$
[\alpha, \beta]_{\pi}^{\phi}=£_{\pi^{\sharp} \alpha} \beta-£_{\pi^{\sharp} \beta} \alpha-\mathrm{d}(\pi(\alpha, \beta))+\phi\left(\pi^{\sharp} \alpha, \pi^{\sharp} \beta,-\right), \quad \forall \alpha, \beta \in \Gamma\left(A^{*}\right),
$$

is a Lie bracket and $A_{\pi, \phi}^{*}=\left(A^{*},[,]_{\pi}^{\phi}, \rho \circ \pi^{\sharp}\right)$ is a Lie algebroid. The differential of this Lie algebroid is given by

$$
\mathrm{d}_{\pi}^{\phi} X=[\pi, X]_{A}-\pi^{\sharp}\left(i_{X} \phi\right), \quad \forall X \in \Gamma(A) .
$$

The pair $\left(A, A^{*}\right)$ is not a Lie bialgebroid but when we consider the bracket on $\Gamma(A)$ defined by:

$$
[X, Y]^{\prime}=[X, Y]_{A}-\pi^{\sharp}(\phi(X, Y,-)), \quad \forall X, Y \in \Gamma(A),
$$

the associated differential d^{\prime}, given by

$$
\mathrm{d}^{\prime} f=\mathrm{d} f \quad \text { and } \quad \mathrm{d}^{\prime} \alpha=\mathrm{d} \alpha-i_{\pi^{\sharp} \alpha} \phi, \quad \forall f \in C^{\infty}(M), \alpha \in \Gamma\left(A^{*}\right),
$$

defines on $A_{\pi, \phi}^{*}$ a structure of quasi-Lie bialgebroid $\left(A_{\pi, \phi}^{*}, \mathrm{~d}^{\prime}, \phi\right)$.
One should notice that when $\phi=0, \pi$ is a Poisson bivector. The Lie algebroid $A_{\pi, 0}^{*}$ is simply denoted by A_{π}^{*}, and together with the Lie algebroid A it defines a special kind of Lie bialgebroid called a triangular Lie bialgebroid.

Any bundle map $\Phi: A \rightarrow B$ induces a map $\Phi^{*}: \Gamma\left(B^{*}\right) \rightarrow \Gamma\left(A^{*}\right)$ which assigns to each section $\alpha \in \Gamma\left(B^{*}\right)$ the section $\Phi^{*} \alpha$ given by

$$
\Phi^{*} \alpha(X)(m)=\left\langle\alpha(\phi(m)), \Phi_{m} X(m)\right\rangle, \quad \forall m \in M, X \in \Gamma(A),
$$

where $\phi: M \rightarrow N$ is the map induced by Φ on the base manifolds. We denote by the same latter Φ^{*} the extension of this map to the multisections of B^{*}, where we set $\Phi^{*} f=f \circ \phi$, for $f \in C^{\infty}(N)$.

Let $A \rightarrow M$ and $B \rightarrow N$ be two Lie algebroids. Recall that a Lie algebroid morphism is a bundle map $\Phi: A \rightarrow B$ such that $\Phi^{*}:\left(\Gamma\left(\wedge^{\bullet} B^{*}\right), \mathrm{d}_{B}\right) \rightarrow$ $\left(\Gamma\left(\wedge^{\bullet} A^{*}\right), \mathrm{d}_{A}\right)$ is a chain map.

Generalizing the notion of Lie bialgebroid morphism we propose the following definition of morphism between quasi-Lie bialgebroids:

Definition 1.4. Let $\left(A, \mathrm{~d}_{A^{*}}, X_{A}\right)$ and $\left(B, \mathrm{~d}_{B^{*}}, X_{B}\right)$ be quasi-Lie bialgebroids over M and N, respectively. A bundle map $\Phi: A \rightarrow B$ is a quasi-Lie bialgebroid morphism if

1) Φ is a Lie algebroid morphism;
2) Φ^{*} is compatible with the brackets on the sections of A^{*} and B^{*} :

$$
\left[\Phi^{*} \alpha, \Phi^{*} \beta\right]_{A^{*}}=\Phi^{*}[\alpha, \beta]_{B^{*}} ;
$$

3) the vector fields $\rho_{B^{*}}(\alpha)$ and $\rho_{A^{*}}\left(\Phi^{*} \alpha\right)$ are ϕ-related:

$$
T \phi \cdot \rho_{A^{*}}\left(\Phi^{*} \alpha\right)=\rho_{B^{*}}(\alpha) \circ \phi ;
$$

4) $\Phi X_{A}=X_{B} \circ \phi$,
where $\alpha, \beta \in \Gamma\left(B^{*}\right)$ and $\phi: M \rightarrow N$ is the smooth map induced by Φ on the base.

Example 1.5. A Lie bialgebroid morphism [10] is a Lie algebroid morphism which is also a Poisson map, when we consider the Lie-Poisson structures induced by their dual Lie algebroids. We can easily see that in case we are dealing with Lie bialgebroids, the definition of quasi-Lie bialgebroid morphism coincides with the one of Lie bialgebroid morphism.

Example 1.6. Consider $\left(A, \mathrm{~d}_{A *}, X_{A}\right)$ and $\left(B, \mathrm{~d}_{B *}, X_{B}\right)$ two quasi-Lie bialgebroids over the same base manifold M. We can see that a base preserving quasi-Lie bialgebroid morphism (such that $\phi=$ id) is a bundle map $\Phi: A \rightarrow B$ such that $\Phi^{*} \circ \mathrm{~d}_{B}=\mathrm{d}_{A} \circ \Phi^{*}, \Phi \circ \mathrm{~d}_{A^{*}}=\mathrm{d}_{B^{*}} \circ \Phi$ and $\Phi X_{A}=X_{B}$.

Other examples of quasi-Lie bialgebroid morphisms will appear in the next section associated with quasi-Nijenhuis structures.
1.2. Courant algebroids. A Courant algebroid $E \rightarrow M$ is a vector bundle over a manifold M equipped with a nondegenerate symmetric bilinear form \langle,$\rangle , a vector bundle map \rho: E \rightarrow T M$ and a bilinear bracket \circ on $\Gamma(E)$ satisfying:

C1) $e_{1} \circ\left(e_{2} \circ e_{3}\right)=\left(e_{1} \circ e_{2}\right) \circ e_{3}+e_{2} \circ\left(e_{1} \circ e_{3}\right)$
C2) $e \circ e=\rho^{*} d\langle e, e\rangle$
C3) $£_{\rho(e)}\left\langle e_{1}, e_{2}\right\rangle=\left\langle e \circ e_{1}, e_{2}\right\rangle+\left\langle e_{1}, e \circ e_{2}\right\rangle$
C4) $\rho\left(e_{1} \circ e_{2}\right)=\left[\rho\left(e_{1}\right), \rho\left(e_{2}\right)\right]$
C5) $e_{1} \circ f e_{2}=f\left(e_{1} \circ e_{2}\right)+£_{\rho\left(e_{1}\right) f} e_{2}$,
for all $e, e_{1}, e_{2}, e_{3} \in \Gamma(E), f \in C^{\infty}(M)$.
Associated with the bracket \circ, we can define a skew-symmetric bracket on the sections of E by:

$$
\llbracket e_{1}, e_{2} \rrbracket=\frac{1}{2}\left(e_{1} \circ e_{2}-e_{2} \circ e_{1}\right)
$$

and the properties C1)-C5) can be expressed in terms of this bracket.
Example 1.7. [Standard Courant algebroid] Let $\left(A,[,]_{A}, \rho_{A}\right)$ be a Lie algebroid. The double $A \oplus A^{*}$ equipped with the skew-symmetric bracket

$$
\llbracket X+\alpha, Y+\beta \rrbracket=[X, Y]_{A}+\left(£_{X} \beta-£_{Y} \alpha+\frac{1}{2} \mathrm{~d}(\alpha(Y)-\beta(X))\right),
$$

the pairing $\langle X+\alpha, Y+\beta\rangle=\alpha(Y)+\beta(X)$ and the anchor $\rho(X+\alpha)=\rho_{A}(X)$ is a Courant algebroid.

A standard Courant algebroid is a simple example of a Courant algebroid which is a the double of a Lie bialgebroid. The construction of Courant algebroids as doubles of Lie bialgebroids is implicit in the next example, where we explicit the construction of the double of a quasi-Lie bialgebroid.

Example 1.8. [Double of a quasi-Lie bialgebroid] Let $\left(A, \mathrm{~d}_{*}, X_{A}\right)$ be a quasiLie bialgebroid. Its double $E=A \oplus A^{*}$ is a Courant algebroid if it is equipped
with the pairing $\langle X+\alpha, Y+\beta\rangle=\alpha(Y)+\beta(X)$, the anchor $\rho=\rho_{A}+\rho_{A^{*}}$ and the bracket

$$
\begin{aligned}
\llbracket X+\alpha, Y+\beta \rrbracket & =[X, Y]_{A}+£_{\alpha}^{*} Y-£_{\beta}^{*} X-\frac{1}{2} \mathrm{~d}_{*}(\alpha(Y)-\beta(X))+X_{A}(\alpha, \beta,-) \\
& +\left([\alpha, \beta]_{*}+£_{X} \beta-£_{Y} \alpha+\frac{1}{2} \mathrm{~d}(\alpha(Y)-\beta(X))\right)
\end{aligned}
$$

Taking $X_{A}=0$ we have the Courant algebroid structure of a double of a Lie bialgebroid.

Another particular case that worths to be mentioned is the double of the quasi-Lie bialgebroid $\left(A^{*}, \mathrm{~d}, \phi\right)$ illustrated in Example 1.2. In this case the anchor is simply $\rho_{E}=\rho_{A}$ and the skew-symmetric bracket is a twisted version of the standard Courant bracket given by:

$$
\begin{equation*}
\llbracket X+\alpha, Y+\beta \rrbracket^{\phi}=[X, Y]_{A}+£_{X} \beta-£_{Y} \alpha+\frac{1}{2} \mathrm{~d}(\alpha(Y)-\beta(X))+\phi(X, Y,-) . \tag{1}
\end{equation*}
$$

1.3. Dirac structures supported on a submanifold. Dirac structures play an important role in the theory of Courant algebroids. Let us recall them before proceed.

A Dirac structure on a Courant algebroid E is a subbundle $A \subset E$, which is maximal isotropic with respect to the pairing \langle,$\rangle and it is integrable in$ the sense that the space of the sections of A is closed under the bracket on $\Gamma(E)$. Restricting the skew-symmetric bracket of E and the anchor to A, we endow the Dirac structure with a Lie algebroid structure $\left(A, \llbracket, \rrbracket_{\left.\right|_{A}}, \rho_{E_{\left.\right|_{A}}}\right)$. A Courant algebroid together with a Dirac structure is called a Manin pair.

As a way to generalize Dirac structures we have the concept of generalized Dirac structures or Dirac structures supported on a submanifold of the base manifold.

Definition 1.9. [1] On a Courant algebroid $E \rightarrow M$, a Dirac structure supported on a submanifold P of M or a generalized Dirac structure is a subbundle F of $E_{\left.\right|_{P}}$ such that:

D1) for each $x \in P, F_{x}$ is maximal isotropic;
D2) F is compatible with the anchor, i.e. $\rho_{\left.\right|_{P}}(F) \subset T P$;
D3) For each $e_{1}, e_{2} \in \Gamma(E)$, such that $e_{\left.1\right|_{P}}, e_{\left.2\right|_{P}} \in \Gamma(F)$, we have $\left(e_{1} \circ e_{2}\right)_{\left.\right|_{P}} \in$ $\Gamma(F)$.

Obviously, a Dirac structure supported on the whole base manifold M is an usual Dirac structure of the Courant algebroid.

Generalizing the Theorem 6.11 on [1] to quasi-Lie bialgebroids we have:
Theorem 1.10. Let $E=A \oplus A^{*}$ be the double of a quasi-Lie bialgebroid $\left(A, \mathrm{~d}_{*}, X_{A}\right)$ over the manifold $M, L \rightarrow P$ a vector subbundle of A over a submanifold P of M and $F=L \oplus L^{\perp}$. Then F is a Dirac structure supported on P if and only if the following conditions hold:

1) L is a Lie subalgebroid of A;
2) L^{\perp} is closed for the bracket on A^{*} defined by d_{*};
3) L^{\perp} is compatible with the anchor, i.e., $\rho_{A^{*} \mid P}\left(L^{\perp}\right) \subset T P$;
4) $X_{\left.A\right|_{L^{\perp}}}=0$.

Proof: Since $F=L \oplus L^{\perp}$, this is a Lagrangian subbundle of E. Suppose F is a Dirac structure supported on P. By definition, we immediately deduce that L is a Lie subalgebroid of A and, for α, β sections of A^{*} such that $\alpha_{\left.\right|_{P}}$, $\beta_{\left.\right|_{P}} \in \Gamma\left(L^{\perp}\right)$, we have

$$
(\alpha \circ \beta)_{\left.\right|_{P}}=X_{A}(\alpha, \beta,-)_{\left.\right|_{P}}+[\alpha, \beta]_{\left.A^{*}\right|_{P}} \in \Gamma\left(L \oplus L^{\perp}\right),
$$

and this means that $[\alpha, \beta]_{\left.A^{*}\right|_{P}} \in L^{\perp}$ and $X_{A}(\alpha, \beta,-)_{\left.\right|_{P}} \in L$, or equivalently, L^{\perp} is closed with respect to the bracket of E and $X_{A_{L^{\perp}}}=0$.
Moreover, since F is compatible with the anchor,

$$
\rho_{\left.A^{*}\right|_{P}}\left(\alpha_{\left.\right|_{P}}\right)=\rho_{A^{*}}(\alpha)_{\left.\right|_{P}}=\rho_{E}(\alpha)_{\left.\right|_{P}} \in T P,
$$

so L^{\perp} is compatible with $\rho_{A^{*}}$.
Conversely, suppose L is a Lie subalgebroid of $A, L^{\perp} \subset A^{*}$ is closed for $[,]_{A^{*}}, \rho_{\left.A^{*}\right|_{P}}\left(L^{\perp}\right) \subset T P$ and $Q_{\left.A\right|_{L^{\perp}}}=0$. Obviously F is compatible with the anchor. We are left to prove that F is closed with respect to the bracket on E. Let $X, Y \in \Gamma(A)$ and $\alpha, \beta \in \Gamma\left(A^{*}\right)$ such that $X+\alpha$ and $Y+\beta$ restricted to P are sections of F, then

$$
\begin{aligned}
(X+\alpha) \circ(Y+\beta)_{E} & =[X, Y]_{A}+i_{\alpha} \mathrm{d}_{*} Y-i_{\beta} \mathrm{d}_{*} X+\mathrm{d}_{*}(\alpha(Y))+X_{A}(\alpha, \beta,-) \\
& +[\alpha, \beta]_{A^{*}}+£_{X} \beta-i_{Y} \mathrm{~d} \alpha .
\end{aligned}
$$

By hypothesis, we immediately have that

$$
\begin{gathered}
{[X, Y]_{\left.A\right|_{P}}=\left[X_{\left.\right|_{P}}, Y_{\left.\right|_{P}}\right]_{L} \in \Gamma(L),} \\
{[\alpha, \beta]_{\left.A^{*}\right|_{P}}=\left[\alpha_{\left.\right|_{P}}, \beta_{\left.\right|_{P}}\right]_{L^{\perp}} \in \Gamma\left(L^{\perp}\right)}
\end{gathered}
$$

and

$$
X_{A}(\alpha, \beta,-)_{\left.\right|_{P}} \in \Gamma(L)
$$

Now, notice that $\alpha(Y)_{\left.\right|_{P}}=0$, so $d \alpha(Y)_{\left.\right|_{P}} \in \nu^{*}(P)=(T P)^{0}$. Since $\rho_{\left.A^{*}\right|_{P}}\left(L^{\perp}\right) \subset T P$, we have that

$$
\mathrm{d}_{*} \alpha(Y)_{\left.\right|_{P}}=\rho_{\left.A^{*}\right|_{P}}^{*} d \alpha(Y) \in \Gamma(L) .
$$

Analogously, $\mathrm{d} \alpha(Y)_{\left.\right|_{P}}=\rho_{A}^{*} d \alpha(Y)_{\left.\right|_{P}} \in \Gamma\left(L^{\perp}\right)$.
Also,

$$
\mathrm{d}_{*} Y(\alpha, \beta)_{\left.\right|_{P}}=\left(\rho_{A^{*}}(\alpha) \cdot \beta(Y)-\rho_{A^{*}}(\beta) \cdot \alpha(Y)-[\alpha, \beta]_{A^{*}}(Y)\right)_{\left.\right|_{P}}=0
$$

so $i_{\alpha} \mathrm{d}_{*} Y \in \Gamma(L)$. Analogously, $i_{X} \mathrm{~d} \beta \in \Gamma\left(L^{\perp}\right)$.
All these conditions allow us to say that $(X+\alpha) \circ(Y+\beta) \in \Gamma\left(L \oplus L^{\perp}\right)$ and, consequently, F is a Dirac structure supported on P.
Corollary 1.11. [1] Let $E=A \oplus A^{*}$ be the double of a Lie bialgebroid then $F=L \oplus L^{\perp}$ is a Dirac structure supported on P if and only if L and L^{\perp} are Lie subalgebroids of A and A^{*}.
Notice that when $P=M$ we obtain Proposition 7.1 of [9].
Corollary 1.12. [1] Let $E=T M \oplus T^{*} M$ be the standard Courant algebroid twisted by the 3 -form $\phi \in \Omega^{3}(M)$ (see equation (1) in Example 1.8). For any submanifold P of $M, F=T P \oplus \nu^{*} P$ is a Dirac structure supported on M iff $i^{*} \phi=0$, where $i: P \hookrightarrow M$ is the inclusion map.
Like Lie bialgebroids morphisms, quasi-Lie bialgebroid morphisms give rise to Courant algebroid morphisms. Let us recall what is a Courant algebroid morphism.
Definition 1.13. [1] A Courant algebroid morphism between two Courant algebroids $E \rightarrow M$ and $E^{\prime} \rightarrow M^{\prime}$ is a Dirac structure in $E \times \bar{E}^{\prime}$ supported on graph ϕ, where $\phi: M \rightarrow M^{\prime}$ is a smooth map and \bar{E}^{\prime} denotes the Courant algebroid obtained from E^{\prime} by changing the sign of the bilinear form.

Theorem 1.14. Let $E_{1}=A \oplus A^{*}$ and $E_{2}=B \oplus B^{*}$ be doubles of quasi-Lie bialgebroids $\left(A, \mathrm{~d}_{A^{*}}, X_{A}\right)$ and $\left(B, \mathrm{~d}_{B *}, X_{B}\right)$ and $(\Phi, \phi): A \rightarrow B$ a quasi-Lie bialgebroid morphism, then
$F=\left\{\left(a+\Phi^{*} b^{*}, \Phi a+b^{*}\right) \mid a \in A\right.$ and $b^{*} \in B^{*}$ over compatible fibers $\} \subset E_{1} \times \overline{E_{2}}$ is a Dirac structure supported on graph ϕ, i.e. F is a Courant algebroid morphism.

Proof: The idea of the proof is analogous to the idea of the proof of Theorem 6.10 in [1] for Lie bialgebroid morphisms.

Consider M and N the base manifolds of A and B, respectively. Consider the following subbundles over graph ϕ

$$
L=\operatorname{graph} \Phi=\{(a, \Phi a) \mid a \in A\} \subset A \times B
$$

and

$$
L^{\perp}=\left\{\left(\Phi^{*} b^{*},-b^{*}\right) \mid b^{*} \in B^{*}\right\} \subset A^{*} \times B^{*} .
$$

Since Φ is a Lie algebroid morphism, L is clearly a Lie subalgebroid of $A \times B$. Analogously, we can also conclude that L^{\perp} is closed for the bracket on $A^{*} \times \overline{B^{*}}$ (where $\overline{B^{*}}$ denotes the bundle B^{*} with bracket $[,]_{\overline{B^{*}}}=-[,]_{B^{*}}$) and it is compatible with the anchor $\rho_{A^{*} \times \overline{B^{*}}}=\left(\rho_{A^{*}},-\rho_{B^{*}}\right)$. Also, since $\Phi X_{A}=X_{B} \circ \phi$, we have that $\left(X_{A}, X_{B}\right)_{\mid L^{\perp}}=0$. So, Theorem 1.10 guarantees that $L \oplus L^{\perp}$ is a Dirac structure supported on graph ϕ of the double $A \times B \oplus A^{*} \times \overline{B^{*}}$ which is the Courant algebroid $A \oplus A^{*} \times B \oplus \overline{B^{*}}$. Finally, observe that the bundle morphism $b+b^{*} \mapsto b-b^{*}$ induces a canonical isomorphism between F and $L \oplus L^{\perp}$ and the result follows.

2. Poisson Quasi-Nijenhuis Lie algebroids

Let $(A,[],, \rho)$ be a Lie algebroid over a manifold M. The torsion of a bundle map $N: A \rightarrow A$ (over the identity) is defined by

$$
\begin{equation*}
\mathcal{T}_{N}(X, Y):=[N X, N Y]-N[X, Y]_{N}, \quad X, Y \in \Gamma(A), \tag{2}
\end{equation*}
$$

where $[,]_{N}$ is given by:

$$
[X, Y]_{N}:=[N X, Y]+[X, N Y]-N[X, Y], \quad X, Y \in \Gamma(A)
$$

When $\mathcal{T}_{N}=0$, the bundle map N is called a Nijenhuis operator, the triple $A_{N}=\left(A,[,]_{N}, \rho_{N}=\rho \circ N\right)$ is a new Lie algebroid and $N: A_{N} \rightarrow A$ is a Lie algebroid morphism.

Remark 2.1. Let A be a Lie algebroid and ϕ a closed 3 -form. We have that $\left(A^{*}, \mathrm{~d}, \phi\right)$ is quasi-Lie bialgebroid (see Example 1.2). If $N: A \rightarrow A$ is a Nijenhuis operator, then $A_{N}=\left(A,[,]_{N}, \rho \circ N\right)$ is a Lie algebroid and $N: A_{N} \rightarrow A$ is a Lie algebroid morphism. So,

$$
\mathrm{d}_{N} N^{*} \phi=N^{*} \mathrm{~d} \phi=0,
$$

$\left(A^{*}, \mathrm{~d}_{N}, N^{*} \phi\right)$ is a quasi-Lie bialgebroid and $N^{*}:\left(A^{*}, \mathrm{~d}, \phi\right) \rightarrow\left(A^{*}, \mathrm{~d}_{N}, N^{*} \phi\right)$ is a quasi-Lie bialgebroid morphism.

Definition 2.2. On a Lie algebroid A with a Poisson structure $\pi \in \Gamma\left(\wedge^{2} A\right)$, we say that a bundle map $N: A \rightarrow A$ is compatible with π if $N \pi^{\sharp}=\pi^{\sharp} N^{*}$ and the Magri-Morosi concomitant vanishes:

$$
\mathcal{C}(\pi, N)(\alpha, \beta)=[\alpha, \beta]_{N \pi}-[\alpha, \beta]_{\pi}^{N^{*}}=0
$$

where $[,]_{N \pi}$ is the bracket defined by the bivector field $N \pi \in \Gamma\left(\wedge^{2} A\right)$, and $[,]_{\pi}^{N^{*}}$ is the Lie bracket obtained from the Lie bracket $[,]_{\pi}$ by deformation along the tensor N^{*}.

As a straightforward generalization of the definition of quasi-Poisson Nijenhuis manifolds presented in [14], we have:

Definition 2.3. A Poisson quasi-Nijenhuis Lie algebroid (A, π, N, ϕ) is a Lie algebroid A equipped with a Poisson structure π, a bundle map $N: A \rightarrow A$ compatible with π and a closed 3-form $\phi \in \Gamma\left(\wedge^{3} A^{*}\right)$ such that

$$
\mathcal{T}_{N}(X, Y)=-\pi^{\sharp}\left(i_{X \wedge Y} \phi\right) \text { and } \mathrm{d} i_{N} \phi=0
$$

Theorem 2.4. If (A, π, N, ϕ) is a Poisson quasi-Nijenhuis Lie algebroid then $\left(A_{\pi}^{*}, \mathrm{~d}_{N}, \phi\right)$ is a quasi-Lie bialgebroid.

Proof: First notice that $\mathrm{d} \phi=0$ and $\mathrm{d} i_{N} \phi=0$ imply that

$$
\mathrm{d}_{N} \phi=\left[i_{N}, \mathrm{~d}\right] \phi=i_{N} \mathrm{~d} \phi-\mathrm{d} i_{N} \phi=0 .
$$

Secondly, we notice that since the bundle morphism N and the Poisson structure π are compatible, then d_{N} is a derivation of the Lie bracket $[,]_{\pi}$. In fact, first one directly sees that d is a derivation of $[,]_{N \pi}$ and, since $\mathcal{C}(\pi, N)$ vanishes and

$$
\begin{aligned}
\mathrm{d}(\mathcal{C}(\pi, N)(\alpha, \beta)) & =\mathrm{d}_{N}[\alpha, \beta]_{\pi}-\left[\mathrm{d}_{N} \alpha, \beta\right]_{\pi}-\left[\alpha, \mathrm{d}_{N} \beta\right]_{\pi} \\
& -\mathrm{d}[\alpha, \beta]_{N \pi}+[\mathrm{d} \alpha, \beta]_{N \pi}+[\alpha, \mathrm{d} \beta]_{N \pi}
\end{aligned}
$$

we immediately conclude that d_{N} is a derivation of $[,]_{\pi}$ (the particular case where $A=T M$ can be found in [6]).

It remains to prove that $\mathrm{d}_{N}^{2}=[\phi,-]_{\pi}$. Using the definition of d_{N}, we have: $\mathrm{d}_{N}^{2} \alpha(X, Y, Z)=\mathcal{T}_{N}(X, Y)\langle\alpha, Z\rangle-\left\langle\alpha,\left[\mathcal{T}_{N}(X, Y), Z\right]+\mathcal{T}_{N}([X, Y], Z)\right\rangle+$ c.p.

The fact that $\mathcal{T}_{N}(X, Y)=-\pi^{\sharp} i_{X \wedge Y} \phi$ yields:

$$
\begin{aligned}
& \mathrm{d}_{N}^{2} \alpha(X, Y, Z)=-\phi\left(X, Y, \pi^{\sharp} \mathrm{d}\langle\alpha, Z\rangle\right)-\left\langle\alpha, £_{Z}\left(\pi^{\sharp} i_{X \wedge Y} \phi\right)-\pi^{\sharp} i_{[X, Y] \wedge Z} \phi\right\rangle+\mathrm{c} . \mathrm{p} . \\
&=-\phi\left(X, Y, \pi^{\sharp} \mathrm{d}\langle\alpha, Z\rangle\right)-\left\langle\alpha,\left(£_{Z} \pi\right)^{\sharp} i_{X \wedge Y} \phi+\pi^{\sharp}\left(£_{Z} i_{X \wedge Y} \phi\right)\right\rangle \\
&+\phi\left([X, Y], Z, \pi^{\sharp} \alpha\right)+\mathrm{c} . \mathrm{p} . \\
&=-\phi\left(X, Y, \pi^{\sharp} \mathrm{d}\langle\alpha, Z\rangle\right)-\left\langle\alpha,\left(£_{Z} \pi\right)^{\sharp} i_{X \wedge Y} \phi+\pi^{\sharp}\left(i_{X \wedge Y} £_{Z} \phi\right)-\pi^{\sharp} i_{[Z, X \wedge Y]} \phi\right\rangle \\
&+\phi\left([X, Y], Z, \pi^{\sharp} \alpha\right)+\mathrm{c} . \mathrm{p} . \\
&=-\phi\left(X, Y, \pi^{\sharp} \mathrm{d}\langle\alpha, Z\rangle\right)-\phi\left(X, Y,\left(£_{Z} \pi\right)^{\sharp} \alpha\right)-£_{Z} \phi\left(X, Y, \pi^{\sharp} \alpha\right) \\
&-\phi\left(X,[Z, Y], \pi^{\sharp} \alpha\right)+\text { c.p.. }
\end{aligned}
$$

Since

$$
\begin{aligned}
{[\phi, \alpha]_{\pi}(X, Y, Z) } & =-£_{\pi^{\sharp}(\alpha)} \phi(X, Y, Z) \\
& -\left\{\phi\left(X, Y, \pi^{\sharp} \mathrm{d}\langle\alpha, Z\rangle\right)-\phi\left(X, Y, £_{Z} \pi^{\sharp}(\alpha)\right)+\text { c.p. }\right\},
\end{aligned}
$$

and by hypothesis, ϕ is closed, we finally have that

$$
\left(\mathrm{d}_{N}^{2} \alpha-[\phi, \alpha]_{\pi}\right)(X, Y, Z)=-\mathrm{d} \phi\left(X, Y, Z, \pi^{\sharp} \alpha\right)=0 .
$$

Suppose (A, π, N, ϕ) is a Poisson quasi-Nijenhuis Lie algebroid. The double of the quasi-Lie bialgebroid $\left(A_{\pi}^{*}, \mathrm{~d}_{N}, \phi\right)$ is a Courant algebroid (see Example 1.8) that we denote by E_{π}^{ϕ}.

An interesting case is when the 3 -form ϕ is the image by N^{*} of another closed 3-form ψ :

$$
\phi=N^{*} \psi \quad \text { and } \quad \mathrm{d} \psi=0
$$

In this case $(A, N \pi, \psi)$ is a twisted Poisson Lie algebroid because

$$
[N \pi, N \pi]=2 \pi^{\sharp}(\phi)=2 \pi^{\sharp}\left(N^{*} \psi\right)=2 N \pi^{\sharp}(\psi)
$$

and A^{*} has a structure of Lie algebroid: $A_{N \pi}^{* \psi}=\left(A^{*},[,]_{N \pi}^{\psi}, N \pi^{\sharp}\right)$ (see Example 1.3). Equipping A with the differential d' given by

$$
\mathrm{d}^{\prime} f=\mathrm{d} f, \quad \text { and } \quad \mathrm{d}^{\prime} \alpha=\mathrm{d} \alpha-i_{N \pi^{\sharp} \alpha} \psi,
$$

for $f \in C^{\infty}(M)$ and $\alpha \in \Gamma\left(A^{*}\right)$, we obtain a quasi-Lie bialgebroid: $\left(A_{N \pi}^{* \psi}, \mathrm{~d}^{\prime}, \psi\right)$. Its double is a Courant algebroid and we denote it by $E_{N \pi}^{\psi}$.

Theorem 2.5. Let (A, π, N, ϕ) be a Poisson quasi-Nijenhuis Lie algebroid and suppose that $\phi=N^{*} \psi$, for some closed 3-form ψ, then

$$
F=\left\{\left(a+N^{*} \alpha, N a+\alpha\right) \mid a \in A \text { and } \alpha \in A^{*}\right\} \subset E_{N \pi}^{\psi} \times \overline{E_{\pi}^{\phi}}
$$

defines a Courant algebroid morphism between $E_{N \pi}^{\psi}$ and E_{π}^{ϕ}.
In order to prove the theorem, we need to remark the following property.
Lemma 2.6. Let (A, π, N, ϕ) be a Poisson quasi-Nijenhuis Lie algebroid, then

$$
\left\langle\mathcal{I}_{N^{*}}(\alpha, \beta), X\right\rangle=\phi\left(\pi^{\sharp} \alpha, \pi^{\sharp} \beta, X\right),
$$

for all $X \in \Gamma(A)$ and $\alpha, \beta \in \Gamma\left(A^{*}\right)$.
Proof: The compatibility between N and π implies that (see [7])

$$
\left\langle\mathcal{T}_{N^{*}}(\alpha, \beta), X\right\rangle=\left\langle\alpha, \mathcal{T}_{N}\left(X, \pi^{\sharp} \beta\right)\right\rangle,
$$

so

$$
\left\langle\mathcal{I}_{N^{*}}(\alpha, \beta), X\right\rangle=\left\langle\alpha,-\pi^{\sharp}\left(i_{X \wedge \pi^{\sharp} \beta} \phi\right)\right\rangle=-\phi\left(X, \pi^{\sharp} \beta, \pi^{\sharp} \alpha\right)=\phi\left(\pi^{\sharp} \alpha, \pi^{\sharp} \beta, X\right) .
$$

Proof of the Theorem: First notice that $N^{*}: A_{N \pi}^{* \psi} \rightarrow A_{\pi}^{*}$ is a Lie algebroid morphism because it is obviously compatible with the anchors and

$$
\begin{aligned}
N^{*}[\alpha, \beta]_{N \pi}^{\psi} & =N^{*}[\alpha, \beta]_{N \pi}+N^{*} \psi\left(\pi^{\sharp} \alpha, \pi^{\sharp} \beta,-\right) \\
& =\left[N^{*} \alpha, N^{*} \beta\right]_{\pi}-\mathcal{T}_{N^{*}}(\alpha, \beta)+\phi\left(\pi^{\sharp} \alpha, \pi^{\sharp} \beta,-\right)=\left[N^{*} \alpha, N^{*} \beta\right]_{\pi} .
\end{aligned}
$$

Let $[,]^{\prime}$ be the bracket on the sections of A induced by the differential d^{\prime}. Notice that

$$
[X, f]^{\prime}=\left\langle\mathrm{d}^{\prime} f, X\right\rangle=\langle\mathrm{d} f, X\rangle
$$

so $N^{*} \mathrm{~d}^{\prime} f=\mathrm{d}_{N} f$, for all $f \in C^{\infty}(M)$ and $X \in \Gamma(A)$.
And since

$$
[X, Y]^{\prime}=[X, Y]-(N \pi)^{\sharp}(\psi(X, Y,-)),
$$

we have:

$$
\begin{aligned}
N[X, Y]_{N} & =[N X, N Y]-\mathcal{T}_{N}(X, Y)=[N X, N Y]+\pi^{\sharp}\left(i_{X \wedge Y} N^{*} \psi\right) \\
& =[N X, N Y]+\psi\left(N X, N Y, N \pi^{\sharp}-\right)=[N X, N Y]^{\prime},
\end{aligned}
$$

for all $X, Y \in \Gamma(A)$.
This way we conclude that $N^{*}: A_{N \pi}^{* \psi} \rightarrow A_{\pi}^{*}$ is a quasi-Lie bialgebroid morphism (see definition 1.4) and the result follows from Theorem 1.14.

3. Paired operators

Let $\left(A, \mathrm{~d}_{A^{*}}, X_{A}\right)$ be a quasi-Lie bialgebroid over M and consider a bundle map over the identity, $\mathcal{N}: A \oplus A^{*} \rightarrow A \oplus A^{*}$. This bundle map can be written in the matrix form $\mathcal{N}=\left(\begin{array}{cc}N & \pi \\ \sigma & N_{A^{*}}\end{array}\right)$ with $N: A \rightarrow A, N_{A^{*}}: A^{*} \rightarrow A^{*}$, $\pi: A^{*} \rightarrow A$ and $\sigma: A \rightarrow A^{*}$.

Definition 3.1. The operator \mathcal{N} is called paired if

$$
\langle X+\alpha, \mathcal{N}(Y+\beta)\rangle+\langle\mathcal{N}(X+\alpha), Y+\beta\rangle=0
$$

for all $X+\alpha, Y+\beta \in A \oplus A^{*}$, where $\langle\cdot, \cdot\rangle$ is the usual pairing on the double $A \oplus A^{*}$.

As it is observed in [3], \mathcal{N} is paired if and only if $\pi \in \Gamma\left(\wedge^{2} A\right), \sigma \in \Gamma\left(\wedge^{2} A^{*}\right)$ and $N_{A^{*}}=-N^{*}$.
3.1. Paired operators on the double of Lie bialgebroids. Let us now take the Lie bialgebroid $\left(A, A^{*}\right)$, where A^{*} has the null Lie algebroid structure. In this case, the double $A \oplus A^{*}$ is the standard Courant algebroid of Example 1.7.

Now we consider, on the sections of $A \oplus A^{*}$, the bracket deformed by \mathcal{N},

$$
\begin{aligned}
\llbracket X+\alpha, Y+\beta \rrbracket_{\mathcal{N}} & =\llbracket \mathcal{N}(X+\alpha), Y+\beta \rrbracket+\llbracket X+\alpha, \mathcal{N}(Y+\beta) \rrbracket \\
& -\mathcal{N} \llbracket X+\alpha, Y+\beta \rrbracket
\end{aligned}
$$

and the Courant-Nijenhuis torsion of \mathcal{N},

$$
\mathcal{T}_{\mathcal{N}}(X+\alpha, Y+\beta):=\llbracket \mathcal{N}(X+\alpha), \mathcal{N}(Y+\beta) \rrbracket-\mathcal{N} \llbracket X+\alpha, Y+\beta \rrbracket_{\mathcal{N}} .
$$

A simple computation shows that for all $\alpha, \beta \in \Gamma\left(A^{*}\right)$,

$$
\llbracket \alpha, \beta \rrbracket_{\mathcal{N}}=[\alpha, \beta]_{\pi} .
$$

Proposition 3.2. Let \mathcal{N} be a paired operator on $A \oplus A^{*}$. If $\mathcal{T}_{\mathcal{N} \mid A^{*}}=0$, then the vector bundle A^{*} is equipped with the Lie algebroid structure A_{π}^{*}.

Proof: A straightforward computation shows that

$$
\mathcal{T}_{\mathcal{N}}(\alpha, \beta)=0 \Rightarrow\left[\pi^{\#} \alpha, \pi^{\#} \beta\right]=\pi^{\#}[\alpha, \beta]_{\pi}
$$

for all sections α and β of A^{*}. This means that π is a Poisson bivector on A and the result follows.

Now we give sufficient conditions for a paired operator to define a Poisson quasi-Nijenhuis structure on a Lie algebroid.
Theorem 3.3. Let $\mathcal{N}=\left(\begin{array}{cc}N & \pi \\ \sigma & -N^{*}\end{array}\right)$ be a paired operator on $A \oplus A^{*}$ such that

$$
N \pi^{\#}=\pi^{\#} N^{*} \quad \text { and } \quad i_{N X} \sigma=N^{*}\left(i_{X} \sigma\right), \quad \forall X \in \Gamma(A) .
$$

If $\mathcal{T}_{\mathcal{N} \mid A^{*}}=0$ and $\mathcal{T}_{\mathcal{N} \mid A}=0$, then $(A, \pi, N, \mathrm{~d} \sigma)$ is a Poisson quasi-Nijenhuis Lie algebroid.

Proof: First, notice that the condition $i_{N X} \sigma=N^{*}\left(i_{X} \sigma\right)$ means that

$$
\sigma(N X, Y)=\sigma(X, N Y), \quad \forall X, Y \in \Gamma(A)
$$

and implies that $N \sigma$ defined by $N \sigma(X, Y)=\sigma(N X, Y)$ is a 2-form on M. The condition $N \pi^{\#}=\pi^{\#} N^{*}$ ensures that $N \pi$ is a bivector field on A.

For all $\alpha, \beta \in \Gamma\left(A^{*}\right)$,

$$
\mathcal{T}_{\mathcal{N}}(\alpha, \beta)=0 \quad \text { iff } \quad \pi \quad \text { is a Poisson bivector } \quad \text { and } \quad[\alpha, \beta]_{\pi}^{N^{*}}=[\alpha, \beta]_{N \pi} .
$$

So we have that π and N are compatible. On the other hand, if X and Y are sections of A, then

$$
\mathcal{T}_{\mathcal{N}}(X, Y)=0 \quad \text { iff } \quad \mathcal{T}_{N}(X, Y)=\pi^{\#}(\mathrm{~d} \sigma(X, Y,-)) \quad \text { and } \quad \mathrm{d}(N \sigma)=i_{N} \mathrm{~d} \sigma
$$

According to Definition 2.3, $(A, \pi, N, \mathrm{~d} \sigma)$ is a Poisson quasi-Nijenhuis Lie algebroid.

From Theorem 2.4, we obtain:
Corollary 3.4. $\left(A_{\pi}^{*}, \mathrm{~d}_{N}, \mathrm{~d} \sigma\right)$ is a quasi-Lie bialgebroid.
Remark 3.5. We note that a paired operator \mathcal{N} that satisfies $\mathcal{N}^{2}=-\operatorname{Id}_{A \oplus A^{*}}$, also satisfies

$$
\langle\mathcal{N}(X+\alpha), \mathcal{N}(Y+\beta)\rangle=\langle X+\alpha, Y+\beta\rangle, \quad \forall X+\alpha, Y+\beta \in \Gamma\left(A \oplus A^{*}\right) .
$$

In this case \mathcal{N} defines a generalized complex structure on the Lie algebroid A. From $\mathcal{N}^{2}=-\operatorname{Id}_{A \oplus A^{*}}$ we deduce that $N \pi^{\#}=\pi^{\#} N^{*}, N^{2} X+\pi^{\#}\left(i_{X} \sigma\right)=-X$ and $i_{N X} \sigma=N^{*}\left(i_{X} \sigma\right)$, with $X \in \Gamma(A)$.

Let us denote by $\left(A \oplus A^{*}\right)_{\mathcal{N}}$ the vector bundle map equipped with the nondegenerate symmetric bilinear form $\langle\cdot, \cdot\rangle_{\mathcal{N}}$ given by

$$
\langle X+\alpha, Y+\beta\rangle_{\mathcal{N}}=\langle\mathcal{N}(X+\alpha), \mathcal{N}(Y+\beta)\rangle
$$

the bundle map $\rho_{\mathcal{N}}$ given by $\rho_{\mathcal{N}}(X+\alpha)=a(N X)+\pi^{\#}(\alpha)$ and the bracket $\llbracket, \rrbracket_{\mathcal{N}}$ on its space of sections.

We can now establish a result that generalizes the one of [14], for the case where the Lie algebroid A is $T M$.

Theorem 3.6. Let $\mathcal{N}=\left(\begin{array}{cc}N & \pi \\ \sigma & -N^{*}\end{array}\right)$ be a paired operator on $A \oplus A^{*}$ such that $\mathcal{N}^{2}=-I d_{A \oplus A^{*}}$. If $\mathcal{T}_{\mathcal{N} \mid A^{*}}=0$ and $\mathcal{T}_{\mathcal{N} \mid A}=0$, then $\left(A \oplus A^{*}\right)_{\mathcal{N}}$ is a Courant algebroid and it is identified with the double of the quasi-Lie bialgebroid $\left(A_{\pi}^{*}, \mathrm{~d}_{N}, \mathrm{~d} \sigma\right)$.

Proof: From Corollary 3.4 and Remark 3.5 we have a Courant algebroid $E_{\pi}^{\mathrm{d} \sigma}$ which is the double of the quasi-Lie bialgebroid $\left(A_{\pi}^{*}, \mathrm{~d}_{N}, \mathrm{~d} \sigma\right)$. An easy computation shows that the bracket on $\Gamma\left(E_{\pi}^{\mathrm{d} \sigma}\right)$ coincides with the bracket $\llbracket, \rrbracket_{\mathcal{N}}$ on $\Gamma\left(\left(A \oplus A^{*}\right)_{\mathcal{N}}\right)$, the anchor of $E_{\pi}^{\mathrm{d} \sigma}$ is $\rho_{\mathcal{N}}$ and the nondegenerate bilinear form on $E_{\pi}^{\mathrm{d} \sigma}$ is exactly $\langle\cdot, \cdot\rangle_{\mathcal{N}}$.
3.2. Paired operators on the double of quasi-Lie bialgebroids. Now we consider the quasi-Lie bialgebroid $\left(A^{*}, \mathrm{~d}_{A}, \phi\right)$ of Example 1.2 and the Courant algebroid structure on its double: the standard Courant bracket twisted by $\phi, \llbracket, \rrbracket^{\phi}$, and the anchor ρ_{A}. Let $\mathcal{N}=\left(\begin{array}{cc}N & \pi \\ \sigma & -N^{*}\end{array}\right)$ be a paired operator and consider the bracket on $\Gamma\left(A \oplus A^{*}\right)$ deformed by \mathcal{N} :

$$
\begin{aligned}
\llbracket X+\alpha, Y+\beta \rrbracket_{\mathcal{N}}^{\phi} & =\llbracket \mathcal{N}(X+\alpha), Y+\beta \rrbracket^{\phi}+\llbracket X+\alpha, \mathcal{N}(Y+\beta) \rrbracket^{\phi} \\
& -\mathcal{N} \llbracket X+\alpha, Y+\beta \rrbracket^{\phi} .
\end{aligned}
$$

The Theorem 3.6 admits a direct extension for the case of quasi-Lie bialgebroids.

Theorem 3.7. Let \mathcal{N} be a paired operator on the double $A \oplus A^{*}$ of the quasi-Lie bialgebroid $\left(A^{*}, \mathrm{~d}_{A}, \phi\right)$, such that $\mathcal{N}^{2}=-I d_{A \oplus A^{*}}$. If $\mathcal{T}_{\mathcal{N} \mid A^{*}}=0$ and $\mathcal{I}_{\mathcal{N} \mid A}=0$, then $\left(A \oplus A^{*}\right)_{\mathcal{N}}^{\phi}=\left(A \oplus A^{*}, \llbracket, \rrbracket_{\mathcal{N}}^{\phi}, \rho_{\mathcal{N}},\langle\cdot, \cdot\rangle_{\mathcal{N}}\right)$ is a Courant algebroid and it is identified with the double of the quasi-Lie bialgebroid $\left(A_{\pi}^{*}, \mathrm{~d}^{\prime}, \mathrm{d} \sigma+\right.$ $\left.i_{N} \phi\right)$, where d^{\prime} the differential given by $\mathrm{d}^{\prime} f=\mathrm{d}_{N} f$ and $\mathrm{d}^{\prime} \alpha=\mathrm{d}_{N} \alpha-i_{\pi^{\#}(\alpha)} \phi$, for $f \in \mathcal{C}^{\infty}(M)$ and $\alpha \in \Gamma\left(A^{*}\right)$.

Proof: Let $\alpha, \beta \in \Gamma\left(A^{*}\right)$ and $X, Y \in \Gamma(A)$. Then,

$$
\mathcal{I}_{\mathcal{N}}(\alpha, \beta)=0 \quad \text { iff }\left\{\begin{array}{l}
\pi \text { is a Poisson bivector } \\
{[\alpha, \beta]_{N \pi}-[\alpha, \beta]_{\pi}^{N^{*}}=\phi\left(\pi^{\#}(\alpha), \pi^{\#}(\beta),-\right)}
\end{array}\right.
$$

and $\mathcal{T}_{\mathcal{N}}(X, Y)=0$ iff

$$
\left\{\begin{array}{l}
\mathcal{I}_{N}(X, Y)=\pi^{\#}\left(\left(\mathrm{~d} \sigma+i_{N} \phi\right)(X, Y,-)\right)-N \pi^{\#}(\phi(X, Y,-)) \\
\mathrm{d}(N \sigma)(X, Y,-)+\phi(X, Y,-) \\
=\phi(N X, N Y,-)+\phi(N X, Y, N-)+\phi(X, N Y, N-)+\left(i_{N} \mathrm{~d} \sigma\right)(X, Y,-)
\end{array}\right.
$$

A straightforward generalization for Lie algebroids of the results presented in [15] and in [8] in the case of a manifold, establishes that the four equations corresponding to $\mathcal{T}_{\mathcal{N} \mid A^{*}}=0$ and $\mathcal{I}_{\mathcal{N} \mid A}=0$ are equivalent to the vanishing of the Courant-Nijenhuis torsion of \mathcal{N} with respect to the bracket $\llbracket, \rrbracket^{\phi}$. Therefore, we have a new Courant algebroid structure on the vector bundle $A \oplus A^{*},\left(A \oplus A^{*}\right)_{\mathcal{N}}^{\phi}=\left(A \oplus A^{*}, \llbracket, \rrbracket_{\mathcal{N}}^{\phi}, \rho_{\mathcal{N}},\langle\cdot, \cdot\rangle_{\mathcal{N}}\right)$.

The restriction of the bracket $\llbracket, \rrbracket_{\mathcal{N}}^{\infty}$ to the sections of A^{*} is the bracket $[,]_{\pi}$ and since $\mathcal{T}_{\mathcal{N} \mid A^{*}}=0$, we have that A_{π}^{*} is a Dirac structure of the Courant algebroid $\left(A \oplus A^{*}\right)_{\mathcal{N}}^{\phi}$. On the other hand, the restriction of the bracket $\llbracket, \rrbracket_{\mathcal{N}}^{\phi}$ to the sections of A gives

$$
\llbracket X, Y \rrbracket_{\mathcal{N}}^{\phi}=[X, Y]_{N}-\pi^{\#}(\phi(X, Y,-))+\mathrm{d} \sigma(X, Y,-)+i_{N} \phi(X, Y,-)
$$

and the anchor $\rho_{\mathcal{N}}$ restricted to $\Gamma(A)$ is $\rho_{A} \circ N$. If we consider the bracket

$$
[X, Y]^{\prime}=[X, Y]_{N}-\pi^{\#}(\phi(X, Y,-))
$$

on the sections of A and the bundle map $\rho_{A} \circ N$, the differential corresponding to this structure on A is d^{\prime} given by,

$$
\mathrm{d}^{\prime} f=\mathrm{d}_{N} f \quad \text { and } \quad \mathrm{d}^{\prime} \alpha=\mathrm{d}_{N} \alpha-i_{\pi \#(\alpha)} \phi,
$$

with $f \in \mathcal{C}^{\infty}(M)$ and $\alpha \in \Gamma\left(A^{*}\right)$.
The vector bundle A is obviously a transversal isotropic complement of A^{*}, so that $\left(A_{\pi}^{*}, \mathrm{~d}^{\prime}, \mathrm{d} \sigma+i_{N} \phi\right)$ is a quasi-Lie bialgebroid [12]. Finally, a simple computation shows that the double of this quasi-Lie bialgebroid is naturally identified with the Courant algebroid $\left(A \oplus A^{*}\right)_{\mathcal{N}}^{\phi}$.

References

[1] A. Alekseev and P. Xu, Derived brackets and Courant algebroids. Unpublished manuscript.
[2] H. Bursztyn, D. Iglesias Ponte and P. Ševera, Courant morphisms and moment maps. Preprint arXiv:0801.1663.
[3] J. Cariñena, J. Grabowski and G. Marmo, Courant algebroid and Lie bialgebroid contractions. J. Phys. A: Math. Gen. 37 (2004), 5189-5202.
[4] M. Crainic, Generalized complex structures and Lie brackets. Preprint arXiv:math/0412097.
[5] J. Grabowski and P. Urbanski, Lie algebroids and Poisson-Nijenhuis structures. Rep. Math. Phys. 40 (1997) 195-208.
[6] Y. Kosmann-Schwarzbach, The Lie bialgebroid of a Poisson-Nijenhuis manifold. Lett. Math. Phys. 38 (1996) 421-428.
[7] Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures. Ann. Inst. Henri Poincaré 53 (1990), 35-81.
[8] U. Lindström, R. Minasian, A. Tomasiello and M. Zabzine, Generalized complex manifolds and supersymmetry. Comm. Math. Phys. 257 (2005), 235-256.
[9] Z.-J. Liu, A. Weinstein and P. Xu, Manin triples for Lie bialgebroids. J. Diff. Geom. 45 (1997), no. 3, 547-574.
[10] K. Mackenzie, General theory of Lie groupoids and Lie algebroids. London Math. Soc. Lecture notes series 213, Cambridge University Press, Cambridge 2005.
[11] F. Magri and C. Morosi, A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds. Quaderno S 19, 1984, University of Milan.
[12] D. Roytenberg, Quasi-Lie bialgebroids and twisted Poisson manifolds. Lett. Math. Phys. 61 (2002), 123-137.
[13] P. Ševera and A. Weinstein, Poisson geometry with a 3-form background. Noncommutative geometry and string theory. Prog. Theor. Phys., Suppl. 144 (2001) 145-154.
[14] M. Stiénon and P. Xu, Poisson Quasi-Nijenhuis Manifolds. Comm. Math. Phys. 50 (2007), 709-725.
[15] I. Vaisman, Reduction and submanifolds of generalized complex manifolds. Diff. Geom. Appl. 25(2007), 147-166.

Raquel Caseiro
CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal
E-mail address: raquel@mat.uc.pt
Antonio De Nicola
CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal
E-mail address: antondenicola@gmail.com
Joana M. Nunes da Costa
CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal
E-mail address: jmcosta@mat.uc.pt

[^0]: Received June 20, 2008.

