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VARIATIONAL IMAGE SEGMENTATION
FOR ENDOSCOPIC HUMAN COLONIC ABERRANT

CRYPT FOCI

I. N. FIGUEIREDO, P. N. FIGUEIREDO, G. STADLER, O. GHATTAS AND A. ARAÚJO

Abstract: The aim of this paper is to introduce a variational image segmentation
method for assessing the aberrant crypt foci (ACF) in the human colon captured
in vivo by endoscopy. ACF are thought to be precursors for colorectal cancer, and
therefore their early detection may play an important clinical role. We enhance the
active contours without edges model of Chan and Vese to account for the ACF’s
particular structure. We employ level sets to represent the segmentation boundaries,
and discretize in space by finite elements and in (artificial) time by finite differences.
The approach is able to identify the ACF, their boundaries, and some of the internal
crypts’ orifices.
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1. Introduction

In the human colon’s epithelium there are millions of invaginations (ap-
proximately 10 millions according to [25]) called crypts. Each crypt is a
cylindrical tube, with a round opening in the top, directed at the lumen’s
colon, that contains different populations of cells (≈ 300 cells in total, with
≈ 15 in perimeter and ≈ 20 from the closed bottom to the orifice, see [15, 37]).
These cells are aligned along the crypt wall: stems cells are believed to reside
in the bottom of the crypt, transit cells along the middle part of the crypt
axis and differentiated cells at the top of the crypt. In normal colonic crypts
the cells renew completely each 3-4 days, through a programmed mechanism
which includes the proliferation of cells, their migration along the crypt wall
towards the top and their apoptosis, as they reach the top and the cell cy-
cle is finished. If this programmed mechanism changes, disease may appear:
the shape of the crypts change, they become aberrant crypts, aggregate in
clusters and thus aberrant crypt foci (ACF for short) appear. Nowadays it is
believed that ACF may represent preneoplastic lesions in the human colon,
i.e., ACF may be the precursors of colorectal cancer (cf. [4, 6]). This is one
of the most frequent and malignant tumor in the world, and in Portugal it
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is the leading cause of cancer related death (cf. [18] for statistics in Europe
and [21] in the United States). Therefore the study, analysis and evolution
in vivo of ACF is a prominent issue in the medical community.

The ACF were first described in [5], after some experiments with rats,
which were subjected to the administration of a carcinogenic agent (azoxy-
methane). A few years later, these lesions detected in rats were considered
potential preneoplastic lesions in the murine colon, see [24]. Nowadays, hu-
man colonic ACF foci are defined as sets with one or more crypts, which stain
darker with methylene blue and are larger than normal crypts, have a larger
peri-cryptal zone and a thick epithelial lining (see also [31] for a classification
of human ACF). Currently, ACF can de detected in vivo with magnification
chromoscopic endoscopy (cf. [1, 20, 34]). This is a medical endoscopic tech-
nique (that has a high patient acceptability) which combines chromoscopy
and magnification. Chromoscopy consists in the application, by endoscopy,
of colored substances in the colonic mucosa and subsequent visual analysis
of the tissue stains in lesions (their location and features, as for example, the
dimension, number, pattern, shape, etc.). By magnification it is meant an
endoscopic diagnostic system, which enables the study and analysis of the
crypt’s orifices as well as micro-circulation. This term magnification includes
two different concepts: high-resolution and amplification. The first is related
to the ability to discriminate two objects or two points which are very close,
whereas amplification is related to the possibility of increasing the whole size
of the image. For an endoscope, the high-resolution depends on the den-
sity of the pixels incorporated in the chips, and the amplification depends
on the existence of a lens integrated in the endoscope, which is controlled
by the medical doctor (in some endoscopes the amplification of the lens can
achieve 105 times). By way of illustration, the human eye can distinguish
objects with 125 to 165 micron (1 micron is equal to 10−6 meter), while
a high-resolution endoscope can discriminate objects with 10 to 17 micron.
To detect details in the colonic mucosa it is necessary to distinguish parts
of tissue with 10 micron (for instance, the dimension of a normal human
crypt is approximately 74 and 433 micron, respectively, for the horizontal
and vertical cross sections, see [19, 22]).

The current methods doctors use for assessing ACF patterns are somewhat
subjective and not standardized. They are not computerized and rely only
on direct medical observation. Through the endoscopic exam the medical
doctor has a top view of the colon wall, and in particular the crypts’ orifices,
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including their shapes, number, location. We note that, for each patient,
the total number of ACF and the dimension of each ACF, expressed (if
this is possible) in terms of the number of crypt’s orifices and these orifices’
shapes, are most relevant for medical analysis. It would be very useful and
helpful for medical doctors to have a reliable computerized and fast method
for assessing the ACF’s patterns images. This method would be able to
identify the external boundary of each ACF, as well as, the crypts’ orifices
in its interior. This can be achieved with some image processing method.
In an abstract framework this is a method (see [10]), which operates on a
given acquired image (which could be degraded due to some external causes)
and produces targeted features and patterns of this image. Mathematically,
this corresponds to an inverse problem: in fact, the given acquired image
is generated from the targeted features and the aim is to recover or detect
precisely these features.

In this paper we focus on a particular image processing method, for as-
sessing the ACF captured in vivo by endoscopy: image segmentation. This
method consists in the partition of the given image into disjoint regions, rep-
resenting distinct objects. Moreover, we use image segmentation methods
based on partial differential equations, more exactly, active contours without
edges and level set methods. These combine techniques of curve evolution
(where the basic idea is to start with an initial curve in the image and to
deform it to the boundaries of the objects in the image, and stop it there, see
[7, 11, 23]), Mumford-Shah functional for image segmentation (an optimiza-
tion problem to obtain a partition of the given image into distinct regions,
see [26]) and level set methods (essentially these consist in considering the
problem in a higher dimension, such that the evolving curve is the zero level
set of an unknown function; these methods allow cusps, corners, and auto-
matic topology changes, as merging and breaking curves, see [27, 28, 33]).
We note that the expression “without edges” in “active contours without
edges” refers to the fact that in these models it is not used any edge-detector
function, based on the gradient of the given image, to identify the different
objects (the “edges”, in an image, are the boundaries of the distinct objects,
corresponding to the places where these objects meet). This latter prop-
erty allows the model to segment images where there are no clear gradient
boundaries, which is often the case for ACF endoscopic images.

To be more precise, in this paper, we describe and apply to ACF endo-
scopic images, different active contour without edges models, existing in the
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literature (see [11, 9, 8, 38]), for which we have introduced several modi-
fications. One main modification concerns the numerical scheme we adopt
for solving each one of these models. It is based on their weak variational
formulations and finite elements discretizations (using the software Comsol
Multiphysicsr [12]); this differs from [11, 9, 8, 38], where a strong formu-
lation is used (requiring higher regularity for the unknown level set function)
and finite differences are used for the numerical approximations. In addition,
we propose two new active contour without edges models. The first, is de-
fined in section 2.2 and includes new terms, which represent specific ACF’s
features, which should be captured in the images and that were pointed out
by medical doctors. The second, defined in section 2.3, is a mixed regu-
larized active contour without edges model, which intends to overcome the
nonuniqueness issue (detrimental to optimization methods) that there are in-
finite level sets functions with the same zero level set. Furthermore, we also
point out combined frameworks of the two new models and the previous ones.
On the whole, all these models correspond to optimization problems, whose
solution involves both PDE techniques (PDE is the abbreviation of partial
differential equation), as for example, finite element discretizations, and nu-
merical optimization methods. We believe that all the methods, used in the
present paper, would perform even better and might give a much more accu-
rate segmentation of the ACF, if they incorporated specific features related
to the ACF’s endoscopy technique. In particular, the chromoscopy, alone, or
maybe combined with material properties of the colon and the crypts. Our
ongoing research pursues along these lines (see for instance the recent paper
[3] for similar arguments in other context). The new model we propose in
section 2.2 is a first attempt in this direction.

To the best of our knowledge there are no articles in the literature report-
ing image segmentation for in vivo ACF endoscopic images. However, we
have found out four articles, which are, in some sense, close to this paper.
The article [30] deals with image segmentation (using watershed morpho-
logical processing) of microscopic images of ACF, after resection. In [20]
the ACF quantification and histological phenotype is done using a technique
denominated by pixilation density mapping. In [14] it is used topographic
segmentation for endoscopic capsule exams, but not for ACF images. The
article [29] concerns automated image analysis tools for colorectal cancer.

We finish this introduction with the outline of the paper. In section 2 we
describe several active contour without edges models, including two new ones
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proposed in sections 2.2 and 2.3, and the new numerical algorithm adopted
for the solution of all these models. We report, in section 3, the results
obtained for seven different human ACF endoscopic images, provided by the
Faculty of Medicine of the University of Coimbra and the Department of
Gastroenterology of University Hospital of Coimbra. All the segmentation
results were done with the software Comsol Multiphysicsr [12] (in its
implementation we incorporated the new numerical scheme detailed at the
end of section 2.1). Finally some conclusions and future work are discussed
in the last section.

2. Active contours without edges models

Let Ω be a bounded open set of R
2, u0 : Ω −→ R be a given image and

ω ⊂ Ω a subset of Ω, whose boundary is represented by the curve C = ∂ω.
Using an unified mathematical approach the active contours without edges
models described in [11, 9, 8, 38] (we remark that [9, 8, 38] can be considered
extensions and variations of [11]) are optimization problems of the form

min
(φ,c)

F (φ, c). (1)

Here c is an unknown constant vector with several components representing
the distinct regions in the image u0 we want to segment (say the subset ω),
and φ : Ω −→ R is an unknown function (the so-called level set function),
representing the boundaries among these regions. That is, the set 0-level
set, {φ = 0}, is the boundary ∂ω of ω. The models [11, 9, 8, 38] differ in
the definition of F , which always involves fitting terms (trying to fit c to the
given image u0) and regularizing terms. But solving (1) amounts to resolve
the necessary optimality conditions for the minimization of F (φ, c). This
requires that the Gâteaux derivative F ′(φ, c)(ψ, s) vanishes for all admissible
test functions (ψ, s). Taking into account the specific definition of F , for
the different models in [11, 9, 8, 38], these optimality conditions demonstrate
that a minimum (φ, c) satisfies: c is an explicit function of φ, and φ is the
solution of ∂φF (φ, c)(ψ) = 0, for all admissible ψ. Due to this, the numerical
scheme, used in [11, 9, 8, 38], is a two-step iterative scheme. Starting with an
initial level set function φ0, the vector c is computed and then its value is used
to obtain the next level set function iterate φ. This scheme is based totally
on finite differences discretizations and and also on the strong formulation
corresponding to the variational problem ∂φF (φ, c)(ψ) = 0, which imposes
more regularity on the unknown φ.
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In this paper we propose a different numerical scheme to solve all these
active contours without edges model, that differs from those implemented in
[11, 9, 8, 38]. It relies on finite element discretization for the space variable,
and uses the weak and not the strong formulation of the optimality condi-
tions. We point out these differences at the end of section 2.1. Moreover,
in sections 2.2 and 2.3 we present two new active contours without edges
models: conceptually they differ from [11] because they involve additional
terms. In section 2.2 the new terms intend to capture specific features of the
ACF, while in the model of section 2.3, the two new terms are directly related
to sophisticated optimization techniques. In addition we suggest combined
frameworks of these new models with those defined in [11, 9, 8, 38]. We
remark that we have tested all the models with the new numerical scheme
reported on this paper, on the ACF endoscopic images (see section 3).

To sum up the structure of this section is the following: for each one of
the six active contours without edges models, and combined frameworks, we
briefly define the minimization functional F , the meaning of the unknown
(φ, c), point out the formulas for c and ∂φF (φ, c)(ψ), and explain the new
numerical scheme. This latter is detailed in section 2.1 for one active contours
without edges model, and for the subsequent five models we just comment
on its adaptation.

2.1. The model of [11] and finite element approximation. For the
active without edges model (ACWE model for short) introduced in [11]

F (φ, c) := λ+
∫

Ω
|u0(x, y) − c+|2H(φ(x, y)) dx dy

+λ−
∫

Ω
|u0(x, y) − c−|2 (1 −H(φ(x, y))) dx dy

+µ
∫

Ω
δ0(φ(x, y))|∇φ(x, y)| dx dy + η

∫

Ω
H(φ(x, y)) dx dy,

(2)

where λ+ > 0, λ− > 0, µ ≥ 0 and η ≥ 0 are given fixed parameters,
c = (c+, c−), H(z) := 1 if z ≥ 0, H(z) := 0 if z < 0 is the Heaviside function,
and δ0(z) := d

dz
H(z) is the Dirac delta function in the sense of distributions.

The functional (2) is a modified version of the Mumford-Shah segmentation
functional. It can be interpreted as to be looking for the best approximation
in the L2-sense to the given image u0 among all functions that take only two
values (denoted by c+ and c−). In the right-hand side of (2) the first two
integrals are fitting terms, the remaining two (related to the length of C and
area inside C) are regularizing terms. Then, the minimization problem (1),
with F defined by (2), corresponds to a partition of the image u0 into two
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regions c+ and c−, representing the averages of u0 inside and outside C. The
object ω to be detected or segmented is identified with one of the regions, the
other object is the background, and C will be the boundary of the object.
It can be shown (cf. [27] page 124) that the parameter µ in the length term
should be small if many small objects have to be detected and large if only
large objects are to be detected.

Actually, in practise, for the minimization of F (φ, c), it is necessary to use
in (2) a regularized version Hε of H (i.e. a smooth approximation of H)
and consequently an approximation δε of δ0 (see also [16]). In [11] the choice
is Hε(z) := 1

π

(

arctan(z
ε
) + 1

2ε

)

), with ε = 1 regardless the resolution of the
image, and δε(z) = H ′

ε(z) = ε
π(ε2+z2) . The unknown constants c+ and c− are

functions of φ given by

c+(φ) =

∫

Ω u0Hε(φ) dx dy
∫

ΩHε(φ) dx dy
, c−(φ) =

∫

Ω u0

(

1 −Hε(φ)
)

dx dy
∫

Ω

(

1 −Hε(φ)
)

dx dy
, (3)

which are, approximately, the averages of u0 inside (C) := ω = {φ > 0} and
outside (C) := Ω \ ω = {φ < 0}, respectively. On the other hand, φ is the
solution of following the nonlinear variational equation, for any ψ ∈ H1(Ω)
(we recall that Hs(Ω), with s ≥ 1, is the set of all functions in L2(Ω), whose
distributional derivative, up to the power s, belong to L2(Ω))

∂φF (φ, c)(ψ) =
∫

Ω

(

η + λ+ |u0 − c+|2 − λ− |u0 − c−|2
)

δε(φ)ψ dx dy

+
∫

Ω µ
(

δ′ε(φ) |∇φ|ψ + δε(φ) ∇φ·∇ψ
|∇φ|

)

dx dy = 0.
(4)

If φ ∈ H2(Ω), a Green formula can be applied to the term
∫

Ω µ δε(φ) ∇φ·∇ψ
|∇φ| dx dy,

and then, (4) becomes

∂φF (φ, c)(ψ) =
∫

Ω

(

η + λ+ |u0(x, y) − c+|2 − λ− |u0(x, y) − c−|2
)

δε(φ)ψ dx dy

−
∫

Ω
µ div( ∇φ

|∇φ|
)δε(φ)ψ dx dy +

∫

∂Ω
µ δε(φ)

|∇φ|
) ∂φ
∂n
ψ dx dy = 0,

(5)

where ∂φ
∂n

is the normal derivative of φ in the boundary ∂Ω of Ω.
An usual methodology, to solve ∂φF (φ, c)(ψ) = 0, for any admissible ψ, is

to introduce an artificial time parameter t ≥ 0 and search for the stationary
solution φ(t, x, y) with respect to the variable t. This means, to solve, for
each t, the problem

∫

Ω

∂φ

∂t
ψ dx dy = 0 with

∫

Ω

∂φ

∂t
ψ dx dy = ∂φF (φ, c)(ψ), (6)
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for all ψ ∈ H1(Ω). Then, a numerical scheme which can be used to approxi-
mate the solution of the ACWE model is a two-step scheme, where in the first
step the values of the unknowns average regions c+ and c− are computed by
formulas (3) and in the second step the minimization of F (., c) is performed
updating the level set function φ. The different steps of this method are:

Numerical Scheme

• Step 1– Initialize with φ0, and n = 0.
• Step 2– For n ≥ 0, compute cn =

(

c+(φn), c−(φn)
)

by (3).
• Step 3– Given φn, solve ∂φF (φ, cn)(ψ) = 0 by (4) (or by (6), if the

artificial variable t is introduced), to obtain φn+1.
• Step 4– Stopping criterium :

– If formula (4) is used, stop when ‖φn+1 − φn‖H1(Ω) ≤ tol with tol
a given tolerance, and c+(φn+1) ≈ c+(φn) and c−(φn+1) ≈ c−(φn).

– If formula (6) is used, stop when ∂φn+1

∂t
≈ 0, that is, the solu-

tion φn+1 is stationary (in this case we set in Step 1, for t = 0,
φ(0, x, y) = φ0(x, y)), and c+(φn+1) ≈ c+(φn) and c−(φn+1) ≈
c−(φn).

In [11], Step 3 is solved by using a finite differences implicit scheme, which
approximates the strong formulation of (6), with ∂φF (φ, c)(ψ) defined by (5)
requiring φ ∈ H2(Ω). In this paper we adopt a different numerical method.
We always use finite elements for the discretization in space and the numerical
algorithm chosen to solve Step 3 can be either a direct optimization algorithm
(when the extra variable t is not introduced) or an implicit scheme which
combines the finite element discretization in space with an approximation
of the time derivative. Furthermore for the finite element discretization we
always use the variational formulation (4) and not (5), which needs more
regularity on the unknown φ. We give now the description of the implicit
scheme, we used for segmenting the ACF endoscopic images. Considering
a finite element mesh and denoting by the same letter φ the finite element
approximation of φ, then the right formula in (6) becomes

M
∂φ

∂t
= L

(

φ, c
)

. (7)

Here M and L are, respectively, the mass and stiffness matrices (L is the
finite element discretization of ∂φF

(

φ, c) defined in (4), which is a nonlinear
function of φ). Afterwards, we choose a Taylor expansion of first order for
the right hand side of (7) (starting with the initial guess φn and freezing the



VARIATIONAL IMAGE SEGMENTATION FOR ACF 9

dependence of c = (c+, c−) on φn), and finite differences for the left hand
side. Hence, the approximation of (7) becomes

M
φn+1 − φn

△t
= K

(

φn, c+(φn), c−(φn)
)

(φn+1 − φn) + L
(

φn, c+(φn), c−(φn)
)

(8)

where △t is the time step and K is the Jacobian (stiffness matrix) of L,
with respect to the first argument φ. Then, (8) is equivalent to the following
linear system
(

M
△t −K

(

φn, c+(φn), c−(φn)
)

)

φn+1 =
(

M
△t −K

(

φn, c+(φn), c−(φn)
)

)

φn + L
(

φn, c+(φn), c−(φn)
)

(9)

whose unknown is φn+1. Actually, in the numerical realization (see section 3),
we do not update c+(φn) and c−(φn) in each time step but only after a fixed
number of time steps. Moreover, the time step △t is not fixed but subject
to variation. Since we are only interested in the convergence to a stationary
state we increase the size of the time steps during the iteration. In addition,
and because the norm of the gradient |∇φ| appears in a denominator in
L
(

φ, c+(φn), c−(φn)
)

(see (4)), we replace 1
|∇φ| by 1

|∇φn| (this change in the

definition of L is also used in the computation of the Jacobian matrix K of
L) and keep it fixed exactly during the same number of time steps as for
c+(φn) and c−(φn).

Summarizing, we have two loops. An outer loop where we update c+(φn),
c−(φn) and |∇φn|. An inner loop, which is defined by (9), where c+(φn),
c−(φn) and 1

|∇φn| are kept fixed, and that updates φn to φnk in each inner

iteration k (the total number m of time steps, with increasing magnitudes,
is fixed a priori). So, for each outer iterate n, the new iterate φn+1 in Step 2

entering in the outer loop, is the final of the inner loop, that is, φn+1 = φnm.
In the inner loop, for the Newton-type approximation, the initial guess is
always φ0 in the first iteration, while in the subsequent iterations it is the
previous iterate (i.e. φnk−1 in iteration k of the inner loop).

2.2. A modified model. Using the a priori medical knowledge that the
crypts’ boundaries stain darker than normal crypts and that in general inside
each foci, the shape of the crypts’s orifices follows a similar pattern, we
have decided to modify the original ACWE model, described in the previous
section, by including two terms that express these features. More precisely,
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we choose the following formulation (compare to (1) with F defined by (2))

min
(φ,c,ι,κ)

F (φ, c, ι, κ) (10)

with

F (φ, c, ι, κ) := λ+
∫

{φ>0}
|u0 − c+|2 dx dy + λ−

∫

{φ<0}
|u0 − c−|2 dx dy+

µ
∫

{φ=0}
1 dx dy + η

∫

{φ>0}
1 dx dy+

ρι
∫

{φ=0}
|u0 − ι|2 dx dy + ρκ

∫

{φ=0}
|div( ∇u0

|∇u0|
) − κ|2 dx dy.

(11)

The new unknown constants, ι and κ, represent constant approximations of
the image u0 and of its curvature, respectively, on the 0–level set of φ. The
new fitting terms are weighted with two small positive parameters ρι and ρκ,
in order not not change too much the original problem. Of course we have
∫

{φ=0}

|u0 − ι|2 dx dy =

∫

Ω

|u0 − ι|2 δ0(φ) |∇φ| dx dy

∫

{φ=0} |div(
∇u0

|∇u0|
) − κ|2 dx dy =

∫

Ω |div( ∇u0

|∇u0|
) − κ|2 δ0(φ) |∇φ| dx dy.

(12)

Computing the Gâteaux derivative of F we obtain that c+ and c− are given
by (3) and ι and κ are functions of φ defined by

ι(φ) =

∫

Ω u0 δε(φ) |∇φ| dx dy
∫

Ω δε(φ) |∇φ| dx dy
≈

∫

{φ=0} u0 ds
∫

{φ=0} 1 ds
,

κ(φ) =

∫

Ω div(
∇u0

|∇u0|
) δε(φ) |∇φ| dx dy

∫

Ω δε(φ) |∇φ| dx dy
≈

∫

{φ=0} div(
∇u0

|∇u0|
) ds

∫

{φ=0} 1 ds
.

(13)

Thus, ι represents the approximation of the average of the image u0 on the
0-level set {φ = 0} and κ the approximation of the average curvature of the
level sets of u0 on {φ = 0}. Moreover, keeping (c, ι, κ) fixed, the Gâteaux
derivative ∂φF (φ, c, ι, κ)(ψ) is equal to (compare with (4))

∂φF (φ, c, ι, κ)(ψ) =
∫

Ω

(

η + λ+ |u0 − c+|2 − λ− |u0 − c−|2
)

δε(φ)ψ dx dy+

∫

Ω

(

µ+ ρι |u0 − ι|2 + ρκ |div(
∇u0

|∇u0|
) − κ|2

)(

δ′ε(φ) |∇φ|ψ + δε(φ) ∇φ·∇ψ
|∇φ|

)

dx dy

= 0,

(14)

for any ψ ∈ H1(Ω). Clearly an analogous numerical scheme, like the one
indicated on page 8 applies. But now in step 2, and in the outer loop, in
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addition to the computation of c+(φn) and c−(φn) by (3), we also have to
evaluate ι(φn) and κ(φn) by (13).

From the numerical point of view, the difference between this new model
and the one of the previous section, resides in the definition of the coefficient
of the length term. In the model of section 2.1, this coefficient is constant
and equal to µ, while here its value varies, being equal to

µ+ ρι |u0 − ι(φn)|2 + ρκ |div(
∇u0

|∇u0|
) − κ(φn)|2

in each iteration n of the outer loop.

2.3. A mixed regularized model. We remark for the model of section
2.1, there is an infinite number of level set functions φ with the same zero
level set. To overcome this nonuniqueness issue we decided to regularize
the model by adding a term, depending on ∇φ which implicitly imposes a
unique value to the gradient of the level set function (cf. [13] where a similar
regularization technique was used for shape optimization problems; there the
objective function is the nonlinear least square Heaviside distance between
the target shape and the developing shape). Now, the new minimization
functional is

F (φ, c) := λ+
∫

{φ>0} |u0 − c+|2 dx dy + λ−
∫

{φ<0} |u0 − c−|2 dx dy

+µ
∫

{φ=0} 1 ds+ η
∫

{φ>0} 1 ds

+ β
4

∫

Ω

(

|∇φ|2 − 1
)2
dx dy + α

2

∫

Ω |∇φ|2 dx dy,

(15)

where β ≥ 0 and α ≥ 0 are two positive fixed parameters. We observe
that a Tikhonov regularization is obtained with β = 0. When β ≫ α,
then the model tends to oblige the level set function φ to be closed to a
signed distance function, that is, |∇φ| = 1, everywhere. Now, the Gâteaux
derivative ∂φF (φ, c+, c−)(ψ) of F with respect to φ becomes (compare to (4))

∂φF (φ, c)(ψ) =
∫

Ω

(

η + λ+ |u0 − c+|2 − λ− |u0 − c−|2
)

δε(φ)ψ dx dy

+
∫

Ω
µ
(

δ′ε(φ) |∇φ|ψ + δε(φ) ∇φ·∇ψ
|∇φ|

)

dx dy

+
∫

Ω

(

β
(

∇φ · ∇φ− 1
)

+ α
)

∇φ · ∇ψ dx dy = 0.

(16)

Clearly, the numerical scheme of page 8 applies also to this new minimization
problem, with ∂φF (φ, c+, c−)(ψ) defined by (16).
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2.4. A vector-valued model. Suppose now that the given image u0 is a
vector-valued image, with n-channels, for instance a colored image, as a RGB
image with the red, green and blue channels, or a vector-valued image ob-
tained from a textured image. We note that ACF endoscopic images exhibit
these features. Then, u0 = (u0i)

n
i=1 = (u01, u02, . . . , u0n), where u0i : Ω −→ R

is the ith-component (or equivalently the ith-channel) of image u0. Theo-
retically and ideally, each channel would contain different information of the
same image (for instance, in the case where there are objects with differ-
ent missing parts in different channels). Then the extension of the original
ACWE’s functional defined in (2) consists in replacing the fitting error of
the scalar image, by the sum of the fitting errors over each component of the
vector-valued image. Let c := (c+, c−) and c+ := (c+i )ni=1 = (c+1 , c

+
2 , . . . , c

+
n )

and c− := (c−i )ni=1 = (c−1 , c
−
2 , . . . , c

−
n ), where c+i and c−i represent the two un-

known constant approximations of channel u0i, inside and outside the evolv-
ing contour. Hence, the generalization of (2) is (see [9])

F (φ, c) :=
∫

Ω
1
n

∑n

i=1 λ
+
i |u0i(x, y) − c+i |

2H(φ(x, y)) dx dy

+
∫

Ω
1
n

∑n

i=1 λ
+
i |u0i(x, y) − c−i |

2 (1 −H(φ(x, y))) dx dy

+µ
∫

Ω
δ0(φ(x, y))|∇φ(x, y)| dx dy + η

∫

Ω
H(φ(x, y)) dx dy,

(17)

where λ+ = (λ+)ni=1 = (λ+
1 , λ

+
2 , . . . , λ

+
n ) and λ− = (λ−)ni=1 = (λ−1 , λ

−
2 , . . . , λ

−
n ),

with λ+
i and λ−i fixed positive scalars weighting the fitting terms.

Fixing φ and minimizing F (φ, c) with respect to the unknown constants c+i
and c−i , for i = 1, . . . , n, we obtain

c+i (φ) =

∫

Ω u0iHε(φ) dx dy
∫

ΩHε(φ) dx dy
, c−i (φ) =

∫

Ω u0i (1 −Hε(φ)) dx dy
∫

Ω(1 −Hε(φ)) dx dy
, (18)

which are approximately the averages of u0i on {φ > 0} and on {φ < 0},
respectively. On the other hand, keeping c+ and c− constants and minimizing
F (φ, c) with respect to φ, the Gâteaux derivative ∂φF (φ, c)(ψ) of F with
respect to φ verifies (compare with (4))

∂φF (φ, c)(ψ) =
∫

Ω

(

η + 1
n

∑n

i=1

(

λ+
i |u0i(x, y) − c+i |

2 − λ−i |u0i(x, y) − c−i |
2
)

)

δε(φ)ψ dx dy

+
∫

Ω
µ
(

δ′ε(φ) |∇φ|ψ + δε(φ) ∇φ·∇ψ
|∇φ|

)

dx dy = 0,

(19)
for any test function ψ ∈ H1(Ω). Again the numerical scheme of page 8
applies with the following change in step 2: compute c+i (φn) and c−i (φn) by
(18), for i = 1, . . . , n.
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Clearly we can modify this vector-valued model, as indicated in section
2.2, by adding to the functional (17) the following new fitting terms for each
channel (compare with (11))

1

n

n
∑

i=1

ριi

∫

{φ=0}

|u0i − ιi|
2 dx dy +

1

n

n
∑

i=1

ρκi

∫

{φ=0}

|div(
∇u0i

|∇u0i|
) − κi|

2 dx dy.

Here ι = (ι1, . . . , ιn) and κ = (κ1, . . . , κn) are unknown vectors and ριi, ρκi

are given positive parameters. For each i = 1, . . . , n, ιi and κi represent,
respectively, the average of the channel u0i and the average curvature of the
level sets of u0i, on the 0-level set {φ = 0}.

We can also define a mixed regularized vector-valued ACWE model, as in
section 2.3, by adding, to the functional (17), the terms (compare with (15))

β

4

∫

Ω

(

|∇φ|2 − 1
)2
dx dy +

α

2

∫

Ω

|∇φ|2 dx dy.

2.5. A convex model. The problem minφ F (φ, c), of section 2.1, is a non-
convex minimization problem, for c = (c+, c−) fixed. In [8], it is shown
that this minimization problem can be equivalently reformulated as a convex
unconstrained minimization problem. More precisely, let λ+ = λ− = λ in
the definition (2) of F , then for fixed (c+, c−), the problem minφ F (φ, c) is
equivalent to

min
φ

(

∫

Ω

λ
(

|u0(x, y) − c+|2 − |u0(x, y) − c−|2
)

dx dy

+

∫

Ω

(

µ |∇φ(x, y)| + η φ(x, y)
)

dx dy +

∫

Ω

θ p(φ) dx dy

) (20)

where p(ξ) := max{0, 2|ξ − 1
2| − 1}, provided that θ > λ

2

∥

∥ |u0(x, y) − c+|2 −

|u0(x, y) − c−|2
∥

∥

L∞(Ω)
. Thus p(.) is an exact penalty term, which constrains

the minimizer φ to vary in [0, 1]. Denoting by Fp(φ, c) the objective functional
in (20), the necessary optimal condition requires that at the minimum φ, the
Gâteaux derivative ∂φFp(φ, c)(ψ) = 0, for any ψ ∈ H1(Ω), where

∂φFp(φ, c)(ψ) =
∫

Ω

(

η + λ+ |u0 − c+|2 − λ− |u0 − c−|2
)

ψ dx dy

+
∫

Ω µ δε(φ) ∇φ·∇ψ
|∇φ| dx dy +

∫

Ω θ p
′(φ)ψ dx dy,

(21)
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with p′(.) the derivative of the penalty. Once again the numerical scheme of
page 8 can be used where in step 3 we replace the objective functional by F by
Fp and solve the equation ∂φFp(φ, c)(φ

n) = 0. We note that in the numerical
realization p is replaced by a regularized penalty pb, where b is a positive
real small constant. In section 3 we chose pb(z) = z2

b
, for z ≤ 0, pb(z) = 0,

for 0 < z < 1, and pb(z) = z2

2b −
z
b
− 1

2b , for z ≥ 1. This reformulation,
as a non convex unconstrained minimization problem, also applies to the
modified model or to the vector-valued model defined in sections 2.2 and 2.4.
Moreover, the minimization problem (20) can be regularized as indicated in
section 2.3.

2.6. A multi-phase model. The main idea, in the model [11], is to search
for a partition of the given image u0 in two-phases (or two regions) one rep-
resenting the object to be detected and the other the background. In [38] it
is proposed a variant of it where the aim is to look for a decomposition of
the image in several regions, using, not only one, but several different level
set functions. It is a multi-phase level set model for image segmentation,
based again on the Mumford-Shah model, for piecewise constant or piecewise
smooth optimal approximations. Here we briefly describe the case of piece-
wise constant segmentation with four regions, that is, a four-phase model.
We note this multi-phase model is of particular interest for the ACF endo-
scopic images, since one of the aims is to extract the maximum of valuable
and relevant information from the medical images. Now the minimization
functional F is

F (φ, c) := λ11

∫

Ω |u0 − c11|
2Hε(φ1)Hε(φ2) dx dy+

λ10

∫

Ω |u0 − c10|
2Hε(φ1)

(

1 −Hε(φ2)
)

dx dy+

λ01

∫

Ω |u0 − c01|
2
(

1 −Hε(φ1)
)

Hε(φ2) dx dy+

λ00

∫

Ω |u0 − c00|
2
(

1 −Hε(φ1)
) (

1 −Hε(φ2)
)

dx dy+

µ1

∫

Ω δε(φ1)|∇φ1| dx dy + η1

∫

ΩHε(φ1) dx dy+

µ2

∫

Ω δε(φ2)|∇φ2| dx dy + η2

∫

ΩHε(φ2) dx dy.

(22)

Here, φ = (φ1, φ2) is the unknown level set function vector, with φi : Ω −→
R, for i = 1, 2, λij, for i, j = 0, 1, and µi, ηi, for i, j = 1, 2, are given
positive parameters, and c = (c11, c10, c01, c00) is an unknown vector whose
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components are the four regions of the image. By computing the Gâteaux
derivative of F (φ, c) with φ kept fixed, we have

c11(φ) =

∫

Ω
u0Hε(φ1)Hε(φ2) dx dy
∫

Ω
Hε(φ1)Hε(φ2) dx dy

, c10(φ) =

∫

Ω
u0Hε(φ1)

(

1 −Hε(φ2)
)

dx dy
∫

Ω
Hε(φ1)

(

1 −Hε(φ2)
)

dx dy
,

c01(φ) =

∫

Ω
u0

(

1 −Hε(φ1)
)

Hε(φ2) dx dy
∫

Ω

(

1 −Hε(φ1)
)

Hε(φ2) dx dy
, c00(φ) =

∫

Ω
u0

(

1 −Hε(φ1)
) (

1 −Hε(φ2)
)

dx dy
∫

Ω

(

1 −Hε(φ1)
) (

1 −Hε(φ2)
)

dx dy
,

(23)
which are approximately the averages of u0 on {φ1 > 0}

⋂

{φ2 > 0}, on
{φ1 > 0}

⋂

{φ2 < 0}, on {φ1 < 0}
⋂

{φ2 > 0} and on {φ1 < 0}
⋂

{φ2 < 0},
respectively.

Likewise, keeping the four-phase vector c fixed, and minimizing F (φ, c)
with respect to φ = (φ1, φ2), the Gâteaux derivative ∂φF

(

φ, c
)

(ψ), for any
ψ = (ψ1ψ2) ∈ [H1(Ω]2, must verify (compare with (4))

∂φF
(

φ, c
)

(ψ) =
∫

Ω

(

η1 + λ11 |u0 − c11|
2 − λ10 |u0 − c10|

2
)

Hε(φ2) δε(φ1)ψ1 dx dy

+
∫

Ω

(

λ01 |u0 − c01|
2 − λ00 |u0 − c00|

2
)

(

1 −Hε(φ2)
)

δε(φ1)ψ1 dx dy

+
∫

Ω
µ1

(

δ′ε(φ1) |∇φ1|ψ1 + δε(φ1)
∇φ1·∇ψ1

|∇φ1|

)

dx dy

+
∫

Ω

(

η2 + λ11 |u0 − c11|
2 − λ10 |u0 − c10|

2
)

Hε(φ1) δε(φ2)ψ2 dx dy

+
∫

Ω

(

λ01 |u0 − c01|
2 − λ00 |u0 − c00|

2
)

(

1 −Hε(φ1)
)

δε(φ2)ψ2 dx dy

+
∫

Ω
µ2

(

δ′ε(φ2) |∇φ2|ψ2 + δε(φ2)
∇φ2·∇ψ2

|∇φ2|

)

dx dy = 0.

(24)
As mentioned before (see (6)), the artificial time parameter t ≥ 0 can be
introduced to solve (24) and thus formula (6) becomes, for any ψ = (ψ1, ψ2) ∈
[H1(Ω]2

∫

Ω

(

∂φ1

∂t
ψ1 + ∂φ2

∂t
ψ2

)

dx dy = 0 with,

∫

Ω
∂φ1

∂t
ψ1 dx dy = ∂φF (φ, c)(ψ1, 0),

∫

Ω
∂φ2

∂t
ψ2 dx dy = ∂φF (φ, c)(0, ψ2).

(25)

The numerical scheme described on page 8 can again be applied to this four-
phase model with the following changes in steps 2 and 3:

• Step 2– Compute cij(φ
n) by (23).

• Step 3– Given φn = (φn1 , φ
n
2) solve ∂φF

(

φ, c(φn)
)

(ψ) by (24), or alter-
natively, introduce an artificial time variable t and solve, sequentially,
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the two variational problems to obtain, firstly φn+1
1 and then φn+1

2

∫

Ω
∂φn+1

1

∂t
ψ1 dx dy = ∂φF

(

(φn+1
1 , φn2), c(φ

n)
)

(ψ1, 0), ∀ψ1 ∈ H1(Ω)

∫

Ω
∂φn+1

2

∂t
ψ2 dx dy = ∂φF

(

(φn1 , φ
n+1
2 ), c(φn)

)

(0, ψ2), ∀ψ2 ∈ H1(Ω).

(26)

We remark that we can as well define a mixed regularized version of this
four-phase model, as in section 2.3, by adding to the functional (22) the
terms (compare with (15))

2
∑

i=1

(β

4

∫

Ω

(

|∇φi|
2 − 1

)2
dx dy +

α

2

∫

Ω

|∇φi|
2 dx dy

)

. (27)

Moreover this multi-phase model can be extended to vector-valued images
(see [38]). In addition, keeping the vector c = (cij) fixed, with i, j = 0, 1, it is
also possible to reformulate the multi-phase model as a convex unconstrained
minimization problem, as described in section 2.5.

3. Application to ACF’s endoscopic images

We describe now the segmentations obtained for seven different ACF’s
endoscopic images, using the models of section 2 and the software Comsol
Multiphysicsr [12]. One of the advantages of this software is that it
allows the possibility of defining a PDE model in its weak form. Besides,
its routines can be coupled with MATLABr [35] routines, for instance
optimization functions.

In all the experiments we have used 10 and 30 iterations, for the outer
and inner loops, respectively, in the numerical scheme. The initial guess is
either one circle or a seed of circles. The domain Ω, representing the given
medical images (which have different resolutions, ranging from 200 × 200 to
710 × 710 pixels) is discretized with regular squared linear finite elements
with 50, 100, 150 or 200 elements per side. In these numerical experiments
the values for the regularizing parameters are as follows (unless otherwise
stated): µ = 220 (coefficient of the length term), η = 0 (coefficient of the
area of the region inside the curve), ε = .1 (parameter in the regularization
of the Heaviside and Dirac delta functions), θ = 1. and b = .1 (coefficient
and regularization parameter for the penalty term p in (20)), and a = .01
(parameter for the numerical realization of the inverse of the norm of the gra-
dient of the level set function, that is, in 1/|∇φ| the denominator is replaced



VARIATIONAL IMAGE SEGMENTATION FOR ACF 17

by |∇φ|a =
√

a+ |∇φ|2). For the other parameters, i.e., the coefficients of
the fitting terms and the regularizing parameters β and α defined in section
2.3, we indicate their values for each medical image. We note however, that
we have kept the coefficients of the fitting terms almost constants in many
experiments. Theoretically, the larger they are, more accurate and fine is the
segmentation (see [17, 36]). In the numerical experiments, we have tested all
the six models. Unless otherwise stated, and if the used model is not explic-
itly mentioned in the text, it is understood that it is the vector-valued model
(see section 2.4) and the multi-phase model (more precisely, the four-phase
model, see section 2.6) reformulated as convex unconstrained minimization
problems, as described in section 2.5. Moreover, in the modified and four
phase models we have always chosen the red channel of the given image u0

as the input image.
The first Figure 1 shows the segmentations obtained with the four-phase

model (described in section 2.6), with and without the mixed regularized
terms (the signed distance and Tikhonov tems, see section 2.3 and (27)).
The original image has 200 × 200 pixels. We use a squared finite element
mesh with 100 finite elements per side, and for the initial guess φ0 = (φ0

1, φ
0
2)

we choose seeds of circles (depicted in Figure 2, top right, where the white
and red circles represent the zero level sets of φ0

1 and φ0
2, respectively). In

the Figure 1, the fitting parameters λij, for i, j = 0, 1 are all equal to 50 and
for the regularized case β = 10−5 and α = 10−9.

In Figure 2 we apply the four-phase regularized model to the same medical
image displayed in Figure 1 and we also kept the same values, with respect to
the fitting parameters, and the initial guess used in Figure 1. The intention
here is to show the influence of the coefficient β (in the signed distance
function term), in the segmentation results, for a fixed coefficient α = 10−9

(in the regularized Tikhonov term). We choose β = 10−6, 10−5, 10−4. In
addition we have also increased the number of finite elements, from 1002 to
2002, while changing β from 10−5 to 10−4. The same endoscopic image as
before, is again used in Figure 3, which presents the segmentations obtained
with the four-phase regularized model (with α = 10−9 and β = 10−5). The
difference now is that the initial guess is a pair of two circles (see Figure
3, top left). We note that the separated and overlapped segmentations are
different from those shown in Figures 1–2, obtained with a seed of circles as
initial zero level set guess.
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Figure 1. Medical image with 200 × 200 pixels (top left) and
four-phase segmentation (red and white level set contours) with
100 × 100 finite elements: the two separated segmentations with
mixed regularization for α = 10−9, β = 10−5 (second row) and
without regularization (third row) and the overlapped segmenta-
tions for the regularized case (top right).

The Figure 4 indicates the segmentation results, still for the same medical
image of Figure 1, but with the other models described in the paper. The top
right segmentation results correspond to the regularized RGB vector-valued
model (the initial guess is a circle and the coefficients of the fitting parame-
ters are λ±1 = 50, λ±2 = 10 and λ±3 = 10, for the red, green and blue channels,
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Figure 2. Medical image with 200 × 200 pixels (top left) and
three four-phase regularized segmentations (red and white level
set contours) with α = 10−9: initial condition (top right), β =
10−6 and 100 × 100 finite elements (second row), β = 10−5 and
100×100 finite elements (third row) and β = 10−4 and 200×200
finite elements (fourth row).
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Figure 3. Medical image (200 × 200 pixels) with the initial
condition superimposed (top left) and one four-phase regular-
ized segmentation (red and white level set contours): overlapped
segmentations (top right), separated segmentations with regular-
ization parameters α = 10−9, β = 10−5, with 200 × 200 finite
elements (bottom).

respectively), with the particularity that the regularizing parameters are up-
dated in the outer loop. Their initial values are α = 10 and β = 10−15 and
updated to α = α× 10−1 and β = β × 10 in each outer iteration (hence the
final values are α = 10−9 and β = 10−5). In the middle row of Figure 4, the
two segmentations with 502 and 2002 finite elements are achieved with the
modified model, see sections 2.1 and 2.2 (the initial guess is a circle, the co-
efficients in the fitting terms are all equal to 30, and the parameter ε = 8.).
But for the image on the right of the middle row, the modified model is
reformulated as a convex unconstrained optimization problem. Finally, the
bottom row in Figure 4 shows two segmentations, again with 502 and 2002

finite elements, performed with the vector-valued model for three channels:
one is related to the intensity of the RGB image and is the red channel,
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Figure 4. Medical image with 200 × 200 pixels (top left) and
four different segmentations (white contours): regularized RGB
vector valued model with 200 × 200 finite elements (top right),
modified model (second row, left and right) and colored-textured
vector valued model (third row, left and right), for 50×50, 200×
200 finite elements and different values for the parameters of the
fitting terms.

while the other two channels are linked to the texture of the endoscopic im-
age u0, see section 2.4. These are the curvature of u0 (curv(u0) = div ∇u0

|∇u0|
)
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and the orientation of u0 (orient(u0) = tan−1(
u0,y

u0,x
)). For the bottom left seg-

mentation, the coefficients in the fitting terms are all equal to 10, while in
the bottom right segmentation the fitting coefficients with respect to the red
channel are equal to 2 and the others equal to 10. Moreover, for both cases
the initial zero level set function is a circle and the parameter ε = .01.
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Figure 5. Medical image with 500 × 500 pixels (top left) and
three segmentations (yellow contours) with the RGB vector val-
ued model: for 50 × 50, 100 × 100 and 200 × 200 finite elements
(top right, bottom right and left).

The Figure 5 exhibits a different ACF endoscopic image with 500 × 500
pixels and evidences the influence of the finite element mesh refinement, for
the vector-valued model (without signed distance and Tikhonov regulariza-
tion) with three channels, more exactly the RGB colored image. The initial
zero level set function is a seed of circles, and the values of the fitting pa-
rameters are λ±1 = 10, λ±2 = .3 and λ±3 = .3, for the red, green and blue
channels, respectively. For this medical image, we also show in Figure 6 the
segmentations obtained with the modified model, reformulated as a convex
unconstrained optimization problem and without regularization (see sections
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2.2 and 2.5), the two separated segmentations resulting from the four-phase
regularized model, for α = 10−9 and β = 10−5, and for the no regularized
case. For the modified model, the coefficients in the fitting terms are all
equal to 30 and the initial zero level set function is a circle, while for the
other model the initial guess is a seed of circles and the former coefficients
are all equal to 50.
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Figure 6. Medical image (top left, with 500 × 500 pixels) and
five segmentations (yellow and white contours) for 100×100 finite
elements: the modified model (top right), and the four-phase
model with regularization for α = 10−9, β = 10−5 (second row)
and without regularization (third row).
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In Figure 7 we have one more endoscopic image with several ACF and
segmentations with three models. The modified model, reformulated as a
convex unconstrained optimization problem, where the coefficients in the
fitting terms all equal to 30 and the initial guess is a circle. The RGB vector-
valued model with the coefficients of the fitting parameters equal to λ±1 = 10,
λ±2 = .3 and λ±3 = .3 and the initial guess is a seed of circles. And finally the
four-phase regularized model, with the coefficients of the fitting parameters
all equal to 50, the initial guess is a pair of seeds of circles and the regularizing
parameters α = 10−9, β = 10−5 for the third row and α = 10−10, β = 10−6

for the fourth row.
The Figure 8 presents three diverse endoscopic images, showing three dif-

ferent kinds of ACF . The corresponding segmentations are achieved with
the RGB vector-valued model without regularization, where the coefficients
of the fitting parameters are equal to λ±1 = 50, λ±2 = 10 and λ±3 = 10, for
the red, green and blue channels and with a circle as initial zero level set
function.

The Figure 9 displays a distinct ACF endoscopic image for which we have
tested the modified model, reformulated as a convex unconstrained mini-
mization problem (the coefficients of the fitting terms all equal to 30 and a
circle as initial guess), the RGB vector-valued model without regularization
(with the coefficients of the fitting terms in the red channel equal to 10 and
the others equal to .3, and a seed of circles as initial guess) and the colored-
textured model with regularization (the coefficients of the fitting terms in
the red channel equal to 5, those of the texture fitting terms (the curvature
and the orientation of the given image) are equal to 50, α = 10−9, β = 10−5

and the initial guess is a circle), and also the four-phase regularized model
(with α = 10−9, β = 10−5, the coefficients of the fitting terms all equal to 50,
and a seed of circles as initial guess).

We remark that the white spots, which appear in some of these endoscopic
images, correspond to the mucus inside the colon (sometimes it is not possible
to avoid them during the endoscopic exam).

4. Conclusions and future work

In this paper we have applied different active contour without edges models
to segment distinct ACF endoscopic images. All the results were achieved
with Comsol Multiphysicsr, using finite elements of degree one and the
numerical implicit scheme described on page 8, with the stationary linear
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Figure 7. Medical image with 620×620 pixels (middle row) and
five segmentations (white and yellow contours). The modified
model (top left), the RGB vector valued model (top right), and
the four-phase model with regularization: α = 10−9, β = 10−5

(third row) and α = 10−10, β = 10−6 (fourth row) (initial guess
seeds of circles).
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Figure 8. Different medical images (left column, with, from top
to bottom, 200× 200, 710× 710 and 560× 560 pixels) and corre-
spondent segmentations (right column, yellow contours) obtained
with the RGB vector valued model and 200×200 finite elements.

solver femlin of Comsol Multiphysicsr for the solution of the linear sys-
tem (9). The time dependent solver femtime of Comsol Multiphysicsr
was not utilized for the solution of (6), since it has been proven a far too slow
process for these endoscopic images, and this was one of the reasons why we
have developed the algorithm explained on page 8.
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Figure 9. Medical image with 500×500 pixels (top left) and five
segmentations (white and yellow contours) with 200 × 200 finite
elements: modified model (top right) and RGB vector valued
model (middle left), colored-textured regularized model with α =
10−9, β = 10−5 (middle right) and the two separated level set
functions of a four phase regularized segmentation with α = 10−9,
β = 10−5 (bottom left and right).

It is worth mentioning that the coefficients α and β (in the Tikhonov and
signed distance function regularizing terms, defined in section 2.3), undoubt-
edly improve the quality of the segmentation, for all the models, and in
special for the four-phase model. In the latter case, they are essential to
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have a good understanding of the segmentation contours, which would be
very difficult without any regularization at all. However, a good choice of
the values α and β should be made, to avoid over-smoothed curves, a coarsen
segmentation and the risk of loosing some important details.

It should also be stressed that the models reformulated as convex uncon-
strained optimization problems (see section 2.5), converge remarkably faster
than when they are not reformulated in this way.

Regarding the modified model, introduced on section 2.2 (which is essen-
tially the model of [11] but with a varying length term’s coefficient) it has
given very accurate segmentations for the case of large details.

In general, for all these endoscopic images, a refinement of the finite element
mesh leads to a best and fine segmentation.

As we have remarked before, we always employed the extra time variable
in the numerical realization. But this could be avoid, as pointed out on
section 2.1. Actually, for the medical image depicted on Figure 1, we have
made a test, where we have linked the Comsol Multiphysicsr code with
a Matlabr optimization routine (fminunc for finding the minimum of an
unconstrained multivariable function). However, the execution process was
very slow, even for a coarse finite element mesh with 20 × 20 finite elements
(the algorithm chosen was a large-scale trust-region Netwon method).

We also remark that, for each medical image, of section 3, we did not use
the complete endoscopic image, but only a selected region of it, containing
the ACF, in order to reduce the size of the problem and speed up the process.

In the future we intend to continue the research on ACF endoscopic image
segmentation, with special emphasis on the following issues: the development
of a fast and appropriate optimization algorithm (which does not require the
introduction of the extra time variable mentioned above), the possibility
of exploring parallel computation in order to analyze the complete medical
image and not just a small region of it, the incorporation of specific features
of the colonic crypts in the PDE-based segmentation models, and finally
the image processing of video endoscopic images. In addition, we plan to
apply a high-order level set method, based on the generalized Mumford-
Shah functional (cf. [2]), and also a fast marching method (cf. [32, 39]), for
segmenting these endoscopic images. Finally, it should not be forgotten, that
an ideal tool, very useful to assist doctors, would be the conception of a fast
and computerized algorithm able to segment, in real time, the ACF captured
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in vivo by endoscopy. The goal is to pursue the future research along these
directions.
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[17] S. Esedoḡlu and R. Tsai. Threshold dynamics for the piecewise constant Mumford-Shah func-
tional. J. Comput. Phys., 211(1):367–384, 2006.

[18] J. Ferlay, P. Autier, M. Boniol, M. Heanue, M. Colombet, and P. Boyle. Estimates of the
cancer incidence and mortality in Europe in 2006. Annals of Oncology, 18:581–592, 2007.

[19] D. R. Halm and S. T. Halm. Secretagogue response of goblet cells and columnar cells in human
colonic crypts. Am. J. Physiol. Cell Physiol, 278:212–233, 2000.



30 I. FIGUEIREDO, P. FIGUEIREDO, G. STADLER, O. GHATTAS AND A. ARAÚJO
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