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HIGH ORDER SMOOTHING SPLINES VERSUS LEAST
SQUARES PROBLEMS ON RIEMANNIAN MANIFOLDS

L. MACHADO, F. SILVA LEITE AND K. KRAKOWSKI

Abstract: In this paper, we present a generalization of the classical least squares
problem on Euclidean spaces, introduced by Lagrange, to more general Riemannian
manifolds. Using the variational definition of Riemannian polynomials, we formulate
a high order variational problem on a manifold equipped with a Riemannian metric,
which depends on a smoothing parameter and gives rise to what we call smoothing
geometric splines. These are curves with a certain degree of smoothness that best fit
a given set of points at given instants of time and reduce to Riemannian polynomials
when restricted to each subinterval.

We show that the Riemannian mean of the given points is achieved as a limiting
process of the above. Also, when the Riemannian manifold is an Euclidean space,
our approach generates, in the limit, the unique polynomial curve which is the
solution of the classical least squares problem. These results support our belief that
the approach presented in this paper is the natural generalization of the classical
least squares problem to Riemannian manifolds.

Keywords: Riemannian manifolds, smoothing splines, Lie groups, least square
problems, geometric polynomials.

1. Introduction

Curve fitting techniques on Euclidean spaces are well known in the liter-
ature, being the classical least squares problems the most common [21]. In
these methods, introduced by Lagrange, we are given a finite set of points
and a sequence of times with the objective to find a polynomial curve that
best fits the given data.

Nevertheless, most part of the mechanical systems that appear in mod-
ern applications have components that are manifolds such as Lie groups or
symmetric spaces, and more general fitting techniques have been required.
This is the case, for instance, in the trajectory planning problem arising in
robotics, aeronautics and air traffic control.

One of the main difficulties encountered in establishing the generalization of
these standard fitting techniques has been the lack of the analogues to poly-
nomial curves in Riemannian manifolds. This obstacle was overcome about
two decades ago, when Noakes, Heinzinger and Paden [27], similarly to what
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happens in Euclidean spaces [13], defined cubic polynomials on manifolds as
being curves that minimize the squared norm of the covariant acceleration.
Following this variational approach, Camarinha et al. [5], on their work on
higher order interpolating splines on non-Euclidean spaces, also defined high
order Riemannian polynomials. In these two papers, Riemannian polynomi-
als were defined as solutions of the Euler-Lagrange equations associated with
certain variational problems.

However, due to the high nonlinearity of these differential equations, ex-
plicit solutions for Riemannian polynomials are extremely hard to find, ex-
cept for some trivial cases. In spite of the effort spent by several authors
using different perspectives, many questions remain open. We mention [10],
[4], [8], [14], [19], [6] for an account of important theoretical contributions
in this area. Equally important results for some particular manifolds with
strong connections to applications are, for instance, [1], [7], [34], [20], [2].

As an attempt to overcome issues related to the computation of Riemann-
ian polynomials, other alternative approaches have been proposed. One is
based on a geometric construction called the De Casteljau algorithm [11],
[13]. This algorithm was generalized for Riemannian manifolds [28], [8], [29]
and several of the difficulties encountered with the variational approach have
been overcome. Unfortunately, this alternative was not capable of producing
explicit formulas for geometric splines even for low dimensional manifolds.

Under the above considerations and inspired by the definition of geometric
polynomials on curved spaces, we propose here a natural generalization of the
classical least squares problem to Riemannian manifolds. Such generalization
is based in the formulation of a high order variational problem, depending
on a smoothing parameter, whose solutions are smoothing curves minimizing
the L2−norm of the covariant derivative of order m ≥ 1, that fit a given data
set of points at given times. Solutions are called for that reason smoothing
geometric splines. This approach follows the ideas behind the construction
of smoothing splines for the S2 sphere encountered in [17] and generalizes
our previous work [24], where only the case m = 2 was treated.

Here, we establish and prove the necessary optimality conditions for the
proposed variational problem and show that the Riemannian mean of the
given points is obtained as a limiting process for the particular case when
m = 1. This result extends to more general Riemannian manifolds what was
done in [23] for compact and connected Lie groups and spheres.
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Also, when the manifold is an Euclidean space and the smoothing parame-
ter goes to infinity, the smoothing geometric splines converge to the solution
of the classical least squares problem. This fact supports our strong belief
that this is the natural generalization of the classical least squares problem
to Riemannian manifolds.

Interpolating splines (studied, for instance, in [27], [9], [10], [5] and [15])
also arise as a limiting process of the above variational problems. However,
in many applications it is not really crucial to pass through the given points
exactly, but rather to go reasonably close to them. This is the case when a
small deviation from the given points can result in a significant decrease of
the cost. Another realistic situation arises when we are working with data
which stems from experimental tasks and is corrupted by noise, situations
that frequently occur in data analysis and statistics [33].

The outline of the paper is as follows. In section 2, we gather all the back-
ground from differential geometry needed throughout the paper. In section
3, we formulate the variational problem, state and prove the necessary op-
timality conditions for this problem. We also study the particular case of
broken geodesics and prove that the Riemannian mean arises as a limiting
process. Finally, in section 4 we recall the classical least squares problem in
Euclidean spaces and prove that its solution is in fact achieved as a limiting
process of the variational problem formulated in section 3. We also show in
simulations, for some particular manifolds and some special data that our
approach works in practice as well as in theory.

2. Preliminaries

In what follows, M denotes an n−dimensional Riemannian manifold en-
dowed with the Levi-Civita connection denoted by ∇. Given p ∈ M , TpM

denotes the tangent space of M at p and 〈·, ·〉 represents the inner product
in TpM . TM stands for the tangent bundle of M .

A vector field V along a curve c : I ⊂ IR → M is a mapping that assigns to
each t ∈ I, the vector V (t) ∈ Tc(t)M . The velocity vector field of c, that we

denote by
dc

dt
, is an example of a vector field. If V is induced by some vector

field X : M → TM , that is, if V (t) = Xc(t), then we define the covariant
derivative of V along c as being

DV

dt
= ∇ dc

dt

X. (2.1)
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More generally, we have

DmV

dtm
=

Dm−1

dtm−1

(DV

dt

)

, ∀ m ≥ 2.

The Levi-Civita connection ∇ is the unique affine connection that is com-
patible with the Riemannian metric and therefore, if V and W are smooth
vector fields along a curve c, then

d

dt

〈

V, W
〉

=
〈DV

dt
, W

〉

+
〈

V,
DW

dt

〉

. (2.2)

The previous equality can be seen as a particular case of the more general
property that is stated by the following lemma.

Lemma 2.1. [5]

〈DpV

dtp
,
DqW

dtq

〉

=

p
∑

l=1

(−1)l−1 d

dt

〈Dp−lV

dtp−l
,
Dq+l−1W

dtq+l−1

〉

+ (−1)p
〈

V,
Dp+qW

dtp+q

〉

,

where p, q ∈ IN0.

A vector field V along a curve c is said to be parallel if

DV

dt
= 0. (2.3)

Taking into account the existence and uniqueness theorem for ordinary
differential equations, it can be easily seen that given V0 ∈ Tc(0)M , there
exists a unique parallel vector field V along c such that V (0) = V0. This
vector field is called the parallel translate of V0 along c. Thus, we can establish
a linear isomorphism between tangent spaces, called the parallel transport,

P0,t : Tc(0)M −→ Tc(t)M

V0 7−→ P0,t

(

V0

)

= V (t)
,

being V (t) the unique parallel translate of V0 along c.
By definition, a geodesic c is a smooth curve whose velocity vector is a

parallel vector field along c. That is,

D

dt

(dc

dt

)

= 0.

The above condition can also be written as
D2c

dt2
= 0.



HIGH ORDER SMOOTHING SPLINES ON RIEMANNIAN MANIFOLDS 5

Therefore, according to the theory of existence and uniqueness for ordinary
differential equations, given p ∈ M and v ∈ TpM , there is a unique geodesic

c : [0, 1] → M , satisfying c(0) = p and
dc

dt
(0) = v.

c(1) is the point in the geodesic that is at a distance equal to ‖v‖ from p

and is denoted by expp(v), [25].
Therefore c is a constant speed curve that can be parameterized explicitly

by

c(t) = expp(tv).

Although, in general, the exponential map is only a terminology, there are
some special Riemannian manifolds where it can be explicitly defined. In Eu-
clidean spaces, geodesics are the straight lines and therefore, the exponential
map is simply given by

expp(tv) = p + tv.

For the unit sphere Sn, equipped with the Riemannian metric from the
embedded space, geodesics are the great circles, and therefore,

expp(tv) = p cos
(

t‖v‖
)

+
v

‖v‖ sin
(

t‖v‖
)

. (2.4)

For the case of connected and compact Lie groups, endowed with the bi-
invariant Riemannian metric, geodesics through a point p are translations of
1-parameter subgroups, i.e.,

expp(tv) = p etv, (2.5)

where etv stands for the sum of the power series etv =

+∞
∑

m=0

tmvm

m!
.

Since v =
dc

dt
(0) ∈ Tc(0)M , using the definition of parallel transport given

above, it follows that

P0,t(v) =
dc

dt
(t).

When every two points in M can be joined by a unique minimizing geodesic,
we say that M is geodesically complete.

Following [18], the unique minimizing geodesic from p to q can be param-
eterized explicitly by

c(s) = expp

(

s exp−1
p (q)

)

, s ∈
[

0, 1
]

. (2.6)
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•p

•q

�

-

ċ(0) = exp−1
p (q)

ċ(1) = − exp−1
q (p)

Figure 1. The minimizing geodesic joining p to q.

In this case, the distance between p and q is, therefore,

d(p, q) =
〈

exp−1
p (q), exp−1

p (q)
〉

1

2

,

and M becomes a complete metric space when endowed with the metric
induced by the distance function.

A subset C ⊂ M is said to be geodesically convex if any two points in C

can be joined by a minimizing geodesic in M that lies entirely in C, [12].
Keeping the terminology of do Carmo [12], we adopt the following definition

for the curvature tensor in M :

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ + ∇[X,Y ]Z,

where X, Y and Z are smooth vector fields in M .
The curvature tensor satisfies several symmetry relations that will be used

throughout the paper and are listed below.

Lemma 2.2. [25] If X, Y, Z and W are smooth vector fields, the curvature
tensor R satisfies the following symmetry relations:

1. R(X, Y )Z = −R(Y, X)Z;
2. R(X, Y )Z + R(Y, Z)X + R(Z, X)Y = 0;
3.

〈

R(X, Y )Z, W
〉

= −
〈

R(X, Y )W, Z
〉

;

4.
〈

R(X, Y )Z, W
〉

=
〈

R(W, Z)Y, X
〉

.

Also, given a point p ∈ M , and a two dimensional subspace Ξ of TpM , if
{

X, Y
}

is any basis of Ξ, the real number

∆
(

Ξ
)

=

〈

R(X, Y )Y, X
〉

√

∥

∥X
∥

∥

2∥
∥Y

∥

∥

2 −
〈

X, Y
〉2

,
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denotes the sectional curvature of Ξ at p.
Now, let α : (x, y) ∈ IR2 7→ α(x, y) ∈ M be a smooth parameterized surface

in M . In spite of the following symmetry condition (do Carmo [12])

D

∂x

(∂α

∂y

)

=
D

∂y

(∂α

∂x

)

, (2.7)

the two covariant differentiation operators
D

∂y
and

D

∂y
do not commute in

general. The extent of noncommutativity of these two operators is given by
the curvature tensor as it is shown in the next lemma.

Lemma 2.3. [25] If V is a vector field along the parameterized surface α,
then

D

∂y

D

∂x
V =

D

∂x

D

∂y
V + R

(∂α

∂y
,
∂α

∂x

)

V. (2.8)

Using high order covariant differentiation, a more general result was estab-
lished in [5], as follows.

Proposition 2.4.

D

∂y

(DmV

∂xm

)

=
Dm

∂xm

(DV

∂y

)

+
m

∑

j=2

Dm−j

∂tm−j
R

(∂α

∂y
,
∂α

∂x

)Dj−1α

∂xj−1
. (2.9)

2.1. Riemannian Mean. In Euclidean spaces there are several concepts
of means [26], each of them with numerous applications in different areas.
Nevertheless, the most common is indeed the arithmetic mean, also know as
the center of mass, centroid or barycenter. For the set of points p0, . . . , pN ,
belonging to the Euclidean space IRn, it is simply defined as

p̄ =
1

N + 1

N
∑

i=0

pi. (2.10)

The above formula has not a straightforward generalization to more general
Riemannian manifolds, unless we notice that the arithmetic mean (2.10) is
the unique solution of the following minimization problem:

min
p∈IRn

N
∑

i=0

∥

∥p − pi

∥

∥

2
.

That is, p̄ minimizes the sum of the squared Euclidean distances from a point
p to each pi.
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Now, a natural generalization of the above formulation to a Riemannian
manifold M , consists in replacing the Euclidean distance by the geodesic
distance. The Riemannian mean of the points p0, . . . , pN lying in M , is
defined as being the set of points p ∈ M that yield the minimum value for
the function

Φ(p) =

N
∑

i=0

d2(p, pi). (2.11)

It has been already proved in the literature ([18]), that a necessary condi-
tion for p ∈ M to be a local minimum for Φ is that

N
∑

i=0

exp−1
p

(

pi

)

= 0. (2.12)

Contrary to what happens in Euclidean spaces, we have no guarantee that
the Riemannian mean of a set of points is unique. If we think of two antipodal
points on the sphere S2, it is easy to check that all the points lying in the
equator yield the minimum value for the function (2.11).

However, when the points are sufficiently close, it has been proved, in
Karcher [18], that the Riemannian mean of the given points is unique.

Theorem 2.5. [18] If Bρ is a convex geodesic ball in M , with radius ρ <
π
4∆− 1

2 , being ∆ > 0 the maximum value of the sectional curvature in Bρ, then
function Φ is convex in Bρ and it has a unique point of local minimum in
Bρ.

The above result has been already extended by several authors for some
particular symmetric spaces, like for instance, the Lie group of rotations [19],
[16], and the unit n−sphere [3].

In this paper, we present an alternative way to obtain the Riemannian
mean of a given set of points in M , based on the solution of a variational
problem that gives rise to broken geodesics fitting those points.

2.2. High Order Polynomials on Riemannian Manifolds. Polynomials
on Euclidean spaces are well behaviored curves that have a wide range of ap-
plications. Actually, interpolating splines based on cubic polynomials are the
most used in approximation theory and the classical least squares problems
introduced by Lagrange (1736-1813), also based in Euclidean polynomials,
are a typical tool in the context of fitting curves.
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Since our main objective here is to establish the generalization of the clas-
sical least squares problems to more general Riemannian manifolds, the first
step is to recall how to define polynomials on manifolds.

About two decades ago, cubic polynomials on Riemannian manifolds have
been introduced by Noakes, Heinzinger and Paden [27], as being extremal
curves for the functional

L2(γ) =
1

2

∫ T

0

〈D2γ

dt2
,
D2γ

dt2

〉

dt,

over an appropriate family of smooth curves γ : [0, T ] → M , satisfying some
prescribed boundary conditions.

Analogously to what happens in Euclidean spaces [13], cubic polynomials
on Riemannian manifolds also minimize changes in the acceleration, but only
that component that is tangent to the manifold.

Later on, high order polynomials on Riemannian manifolds, also known as
geometric polynomials, have been introduced in the literature by Camarinha
et al. [5], as a generalization of the above and have been defined as the
extremals for the functional

Lm(γ) =
1

2

∫ T

0

〈Dmγ

dtm
,
Dmγ

dtm

〉

dt, (2.13)

over an appropriate family of curves.
Due to difficulties in characterizing properties and finding explicit solutions

for this variational problem other notions of Riemannian polynomials have
been introduced in the literature. For instance, the De Casteljau algorithm
in Euclidean spaces produces curves that coincide with the solutions of the
variational approach, but its generalization to Riemannian manifolds does
not ([8]). However, we adopt the definition of Camarinha et al. [5], and
define a Riemannian polynomial of degree 2m − 1 as the solutions of the
Euler-Lagrange equations associated to 2.13. That is,

D2mγ

dt2m
+

m
∑

j=2

(−1)jR
(D2m−jγ

dt2m−j
,
Dj−1γ

dtj−1

)dγ

dt
= 0. (2.14)

Cubic polynomials are therefore obtained by considering m = 2 in (2.14),
and are, therefore solutions of

D4γ

dt4
+ R

(D2γ

dt2
,
dγ

dt

)dγ

dt
= 0.
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Even in this case, the differential equation is highly non-linear and many
questions concerning the geometry and ways to compute its solution remain
open, in spite of the effort taken by several researchers using different per-
spectives. For more details, we mention [27], [4], [9], [10], [31], [6], [14], [29],
and the references therein.

In the next lemma, we define an invariant along a geometric polynomial.
This invariant was derived independently in [22] and in [29], and will be
useful to prove some of the results appearing in the next section.

Lemma 2.6. The quantity

I =
m−1
∑

j=1

(−1)j−1
〈D2m−jγ

dt2m−j
,
Djγ

dtj

〉

+
(−1)m−1

2

〈Dmγ

dtm
,
Dmγ

dtm

〉

, (2.15)

is preserved along a smooth curve satisfying (2.14).

For the particular case when m = 2, the invariant (2.15) reduces to the
invariant along a cubic polynomial derived in Camarinha et al. [6].

Lemma 2.7. If the invariant (2.15) vanishes identically along the geometric
polynomial (2.14), then

m−1
∑

j=1

(−1)j−1j
d

dt

〈D2m−jγ

dt2m−j
,
Dj−1γ

dtj−1

〉

= (−1)m
(

m − 1

2

)〈Dmγ

dtm
,
Dmγ

dtm

〉

. (2.16)

3. Problem’s Statement

Let us start with a given set of points in M , p0, p1, . . . , pN , and a set of
instants of time 0 = t0 < t1 < · · · < tN = 1.

By Ω we denote the set of all Cm−1 paths γ : [0, 1] → M such that γ
∣

∣

∣

[ti,ti+1]

is smooth (C∞) and therefore both the limits lim
x→t+

i

Dkγ

dtk
(t) and lim

x→t−
i+1

Dkγ

dtk
(t)

are bounded, for all k ∈ IN.
We define the tangent space of Ω at a path γ, TγΩ, as being the set of all

Cm−1 vector fields W : [0, 1] → TM such that W
∣

∣

∣

[ti,ti+1]
is smooth.

Hereafter, we use the notation γ ∈ Ck
[

a, b
]

to mean that the curve γ is of

class Ck in the interval
[

a, b
]

.
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Let us consider the following variational problem

(P) min
γ∈Ω

J(γ) =
1

2

N
∑

i=0

d2
(

pi, γ(ti)
)

+
λ

2

∫ 1

0

〈Dmγ

dtm
,
Dmγ

dtm

〉

dt,

where λ denotes a positive real number that will play the role of a smoothing
parameter, as will be seen sooner.

Notice that

J(γ) = E(γ) + λLm(γ),

where

E(γ) =
1

2

N
∑

i=0

d2
(

pi, γ(ti)
)

,

and Lm is defined by (2.13).
Since γ is an extremal for the functional J if and only its first variation

vanishes for all variations of γ, we need to compute the first variation of J ,

∂

∂u

∣

∣

∣

u=0
J
(

α(u, t)
)

, (3.17)

where α :
]

−ε, ε
[

×
[

0, 1
]

7−→ α(u, t) ∈ M is a variation of γ.
Variations may be defined as

α(u, t) = expγ(t)

(

uW (t)
)

, (3.18)

where W :
[

0, 1
]

→ TM is a variation vector field along γ lying in TγΩ.
Therefore,

W (t) =
∂α

∂u
(0, t).

Since,

∂

∂u

∣

∣

∣

u=0
J
(

α(u, t)
)

=
∂

∂u

∣

∣

∣

u=0
E

(

α(u, t)
)

+ λ
∂

∂u

∣

∣

∣

u=0
L

(

α(u, t)
)

,

we start with the computation of
∂

∂u

∣

∣

∣

u=0
E

(

α(u, t)
)

.

For each i = 0, . . . , N , let us denote by

ci(s) = exppi

(

s exp−1
pi

(

γ(ti)
))

, (3.19)

the minimal geodesic joining the point pi (at s = 0) to the point γ(ti) (at
s = 1).
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Introducing, in (3.19), the variation α defined by (3.18), we obtain the
parameterized surface in M , ci :

[

0, 1
]

×
]

−ε, ε
[

−→ M , given by

ci(s, u) = exppi

(

s exp−1
pi

(

α(u, ti)
))

.

•

•

ci(1, u) = α(u, ti)

ci(s, 0) = ci(s)

pi

γ(ti)

Figure 2. The parameterized surface ci.

Therefore, we can define two family of curves

s 7−→ ci(s, u),

by setting u constant, and

u 7−→ ci(s, u),

by setting s constant, and, consequently, two family of vector fields

Si(s, u) =
∂ci

∂s
(s, u),

and,

Ui(s, u) =
∂ci

∂u
(s, u).

Since, for each fixed u, s 7−→ ci(s, u) is a geodesic, Si is a parallel vector
field along that geodesic, i.e.,

DSi

∂s
(s, u) = 0.

On the other hand, there exists a unique minimizing geodesic joining pi to
α(u, ti) (see figure 3), so we can write

d2
(

pi, α(u, ti)
)

=
〈

Si(s, u), Si(s, u)
〉

=

∫ 1

0

〈

Si(s, u), Si(s, u)
〉

ds.
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Now, using the symmetry condition (2.7) together with the compatibility
condition (2.2), we can still write

∂

∂u
E

(

α(u, t)
)

=
N

∑

i=0

∫ 1

0

〈DSi

∂u
(s, u), Si(s, u)

〉

ds

=
N

∑

i=0

∫ 1

0

〈DUi

∂s
(s, u), Si(s, u)

〉

ds

=
N

∑

i=0

∫ 1

0

∂

∂s

〈

Ui(s, u), Si(s, u)
〉

ds

=
N

∑

i=0

〈

Ui(1, u), Si(1, u)
〉

−
〈

Ui(0, u), Si(0, u)
〉

.

By setting u = 0, and taking into account that Si(1, 0) = − exp−1
γ(ti)

(pi)
∗,

we get

∂

∂u

∣

∣

∣

u=0
E

(

α(u, t)
)

= −
N

∑

i=0

〈

W (ti), exp−1
γ(ti)

(pi)
〉

. (3.20)

It remains to derive the first variation of functional L. In this case, we will
use lemma 2.1 and proposition 2.4 and follow analogous steps to those in [5],

∗Notice that ci(s, 0) is the minimizing geodesic joining pi to γ(ti) and recall figure 1.
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adapted to the current situation.

∂

∂u
L

(

α(u, t)
)

=

=

∫ 1

0

〈 D

∂u

(Dmα

∂tm

)

,
Dmα

∂tm

〉

dt

=

∫ 1

0

〈Dm

∂tm

(∂α

∂u

)

,
Dmα

∂tm

〉

dt +
m

∑

j=2

∫ 1

0

〈Dm−j

∂tm−j
R

(∂α

∂u
,
∂α

∂t

)Dj−1α

∂tj−1
,
Dmα

∂tm

〉

dt

=

m
∑

l=1

(−1)l−1

∫ 1

0

∂

∂t

〈Dm−l

∂tm−l

(∂α

∂u

)

,
Dm+l−1α

∂tm+l−1

〉

dt + (−1)m

∫ 1

0

〈∂α

∂u
,
D2mα

∂t2m

〉

dt

+
m−1
∑

j=2

m−j
∑

l=1

(−1)l−1

∫ 1

0

∂

∂t

〈Dm−j−l

∂tm−j−l
R

(∂α

∂u
,
∂α

∂t

)Dj−1α

∂tj−1
,
Dm+l−1α

∂tm+l−1

〉

dt

+
m

∑

j=2

(−1)m−j

∫ 1

0

〈

R
(∂α

∂u
,
∂α

∂t

)Dj−1α

∂tj−1
,
D2m−jα

dt2m−j

〉

dt.

By letting u = 0 in the above expression and taking into account property
4 of the curvature tensor, listed in lemma 2.2, we get

∂

∂u

∣

∣

∣

u=0
L

(

α(u, t)
)

=

=
m

∑

l=1

N−1
∑

i=0

(−1)l−1
〈Dm−lW

dtm−l
,
Dm+l−1γ

dtm+l−1

〉
∣

∣

∣

t−
i+1

t+
i

+

m−1
∑

j=2

m−j
∑

l=1

N−1
∑

i=0

(−1)l−1
〈Dm−j−l

dtm−j−l
R

(

W,
dγ

dt

)Dj−1γ

dtj−1
,
Dm+l−1γ

dtm+l−1

〉
∣

∣

∣

t−
i+1

t+
i

+ (−1)m

∫ 1

0

〈D2mγ

dt2m
+

m
∑

j=2

(−1)jR
(D2m−jγ

dt2m−j
,
Dj−1γ

dtj−1

)dγ

dt
, W

〉

dt

(3.21)
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Putting together (3.20) and (3.21), we obtain the desired first variation of
the functional J .

∂

∂u

∣

∣

∣

u=0
J
(

α(u, t)
)

=

=
m−1
∑

l=1

N
∑

i=0

(−1)lλ
〈Dm−lW

dtm−l
(ti),

Dm+l−1γ

dtm+l−1

(

t+i
)

− Dm+l−1γ

dtm+l−1

(

t−i
)

〉

+
N

∑

i=0

〈

W (ti), (−1)mλ
[D2m−1γ

dt2m−1

(

t+i
)

− D2m−1γ

dt2m−1

(

t−i
)

]

− exp−1
γ(ti)

(

pi

)

〉

+

m−1
∑

j=2

m−j
∑

l=1

N−1
∑

i=0

(−1)l−1λ
〈Dm−j−l

dtm−j−l
R

(

W,
dγ

dt

)Dj−1γ

dtj−1
,
Dm+l−1γ

dtm+l−1

〉
∣

∣

∣

t−
i+1

t+
i

+ (−1)m

∫ 1

0

λ
〈D2mγ

dt2m
+

m
∑

j=2

(−1)jR
(D2m−jγ

dt2m−j
,
Dj−1γ

dtj−1

)dγ

dt
, W

〉

dt.

(3.22)

We are now in a position to state and prove one of our main results.

Theorem 3.1. A necessary condition for γ ∈ Ω to be a solution for problem
(P) is that γ ∈ C2m−2

[

0, 1
]

, satisfies for each i = 0, . . .N − 1, and t ∈
[

ti, ti+1

]

, the differential equation

D2mγ

dt2m
+

m
∑

j=2

(−1)jR
(D2m−jγ

dt2m−j
,
Dj−1γ

dtj−1

)dγ

dt
= 0, (3.23)

and at the knot points ti, for i = 0, . . . , N , it also satisfies the following
conditions



















Djγ

dtj
(t+i ) − Djγ

dtj
(t−i ) = 0, m ≤ j ≤ 2m − 2

D2m−1γ

dt2m−1
(t+i ) − D2m−1γ

dt2m−1
(t−i ) =

(−1)m

λ
exp−1

γ(ti)
(pi)

, (3.24)

where we assume for shorten of notation that
Djγ

dtj
(t−0 ) =

Djγ

dtj
(t+N) = 0, for

j = m, . . . , 2m − 1.

Proof : In order for γ ∈ Ω to be an extremal for functional J , its first variation
has to vanish for all variations α given by (3.18).
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Let us consider a particular variation vector field W defined as

W (t) = (−1)mF (t)
[D2mγ

dt2m
+

m
∑

j=2

(−1)jR
(D2m−jγ

dt2m−j
,
Dj−1γ

dtj−1

)dγ

dt

]

,

where F : [0, 1] → IR is a positive piecewise smooth function satisfying, for
each i = 0, . . . , N ,

F (ti) = F ′(ti) = · · · = F (m−1)(ti) = 0.

For this choice of the variation vector field W , we get from (3.22),

∂

∂u

∣

∣

∣

u=0
J
(

α(u, t)
)

=

∫ 1

0

F (t)
∥

∥

∥

D2mγ

dt2m
+

m
∑

j=2

(−1)jR
(D2m−jγ

dt2m−j
,
Dj−1γ

dtj−1

)dγ

dt
, W

∥

∥

∥

2

dt.

Consequently, this vanishes identically if and only if, for each i = 0, . . . , N ,
and t ∈

[

ti, ti+1

]

,

D2mγ

dt2m
+

m
∑

j=2

(−1)jR
(D2m−jγ

dt2m−j
,
Dj−1γ

dtj−1

)dγ

dt
= 0.

So, the first part of the statement is proved.
Now, if one considers a variation vector field W satisfying, for each i =

0, . . . , N ,

W (ti) =
DW

dt
(ti) = · · · =

Dm−2W

dtm−2
(ti) = 0,

and
Dm−1W

dtm−1
(ti) =

Dmγ

dtm
(t−i ) − Dmγ

dtm
(t+i ),

we get

∂

∂u

∣

∣

∣

u=0
J
(

α(u, t)
)

=

N
∑

i=0

λ
∥

∥

∥

Dmγ

dtm
(t+i ) − Dmγ

dtm
(t−i )

∥

∥

∥

2

,

which vanishes if and only if γ ∈ Cm
[

0, 1
]

.
Now, if we choose a variation vector field W , such that for each i =

0, . . . , N ,

W (ti) =
DW

dt
(ti) = · · · =

Dm−3W

dtm−3
(ti) = 0,

and
Dm−2W

dtm−2
(ti) =

Dm+1γ

dtm+1
(t+i ) − Dm+1γ

dtm+1
(t−i ),
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it can easily be seen that if γ is a solution for problem (P), then
γ ∈ Cm+1

[

0, 1
]

.
Proceeding analogously and choosing appropriate variation vector fields in

a way similar to the last choice, we conclude that the requirement
γ ∈ C2m−2

[

0, 1
]

is necessary in order for γ to be an extremal for functional
J .

Finally, choose the variation vector field W satisfying

W (ti) = (−1)mλ
[D2m−1γ

dt2m−1

(

t+i
)

− D2m−1γ

dt2m−1

(

t−i
)

]

− exp−1
γ(ti)

(

pi

)

,

for each i = 0, . . . , N , to conclude that, for this case,

N
∑

i=0

∥

∥

∥
(−1)mλ

[D2m−1γ

dt2m−1

(

t+i
)

− D2m−1γ

dt2m−1

(

t−i
)

]

− exp−1
γ(ti)

(

pi

)

∥

∥

∥

2

= 0,

and, therefore,

D2m−1γ

dt2m−1

(

t+i
)

− D2m−1γ

dt2m−1

(

t−i
)

=
(−1)m

λ
exp−1

γ(ti)

(

pi

)

.

This completes the proof.

Remark 3.1. From the above theorem, we can see that solutions for the vari-
ational problem (P) are obtained by piecing together geometric polynomials
of degree 2m − 1 in each subinterval

[

ti, ti+1

]

. According to the regularity
conditions (3.24), they fit the given points pi at the given times ti, this being
the reason why we call them smoothing geometric splines.

Proposition 3.2. [22] Under conditions (3.23)-(3.24) of theorem (3.1), the
following holds.

(a) When λ goes to 0, then the smoothing geometric splines approach an
interpolating spline that passes through each point pi at each time ti.

(b) When λ goes to +∞, then the smoothing geometric splines approach
a smooth curve in the whole interval [0, 1] fitting the given points at
the given times, and satisfying the differential equation

Dmγ

dtm
= 0. (3.25)

Proof : Property (a) follows immediately if one multiplies both terms of the
last equation in (3.24) by λ, and then take limits as λ goes to 0.
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To prove property (b), take limits on both sides of (3.24), as λ goes to +∞.
In this case, the curve γ ∈ C2m−1

[

0, 1
]

, and satisfies

Dkγ

dtk
(0) = 0, (3.26)

for k = m, . . . , 2m − 1.
According to the theory of ordinary differential equations, since γ belongs

to C2m−2
[

0, 1
]

and satisfies the differential equation (3.23) of order 2m in
each subinterval [ti, ti+1], it has to satisfy (3.23), for all t ∈ [0, 1].

Now, taking into account the boundary conditions (3.26), it is easy to see
that the invariant I along the geometric polynomial γ, defined by (3.23)
vanishes identically.

So, using lemma 2.7, we can conclude that the real function

t 7−→
m−1
∑

j=1

(−1)j−1j
〈D2m−jγ

dt2m−j
,
Dj−1γ

dtj−1

〉

,

is a monotonous function in the interval [0, 1] (non-increasing for odd values
of m and non-decreasing otherwise).

In both cases, according to the boundary conditions (3.26), the above func-
tion vanishes identically in

[

0, 1
]

, and therefore,

Dmγ

dtm
(t) = 0, ∀t ∈ [0, 1].

Remark 3.2. Smooth curves satisfying the differential equation (3.25) can
be obtained by rolling (without slip or twist) a manifold on its affine tangent
space Tγ(0)M along an Euclidean polynomial of degree m−1, as it was shown
recently in Silva Leite and Krakowski [32].

The previous results show that for the particular case when m = 1 and the
smoothing parameter λ goes to infinity in the system of equations (3.23)-
(3.24), the smoothing geometric splines approach a single point. What we
prove next is that this point turns out to be the Riemannian mean of the
given points pi, if we assume in advance that their Riemannian mean exists
and is a singleton.

Theorem 3.3. When m = 1 and λ goes to +∞ in the conditions (3.23)-
(3.24), of theorem 3.1, then the smoothing geometric splines converge to the
Riemannian mean of the given points pi.
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Proof : For m = 1, the differential equation (3.23) becomes

D2γ

dt2
= 0, (3.27)

and the regularity conditions (3.24) reduce simply to

dγ

dt
(t+0 ) = −1

λ
exp−1

γ(t0)
(p0)

dγ

dt
(t+1 ) − dγ

dt
(t−1 ) = −1

λ
exp−1

γ(t1)
(p1)

...
dγ

dt
(t+N−1) −

dγ

dt
(t−N−1) = −1

λ
exp−1

γ(tN−1)
(pN−1)

dγ

dt
(t−N) =

1

λ
exp−1

γ(tN)(pN)

. (3.28)

Since γ is a geodesic in each subinterval
[

ti, ti+1

]

, let us denote by Pi the
parallel transport along γ in that subinterval. This means that,

dγ

dt
(t−i+1) = Pi

(dγ

dt
(t+i )

)

, (3.29)

and the regularity conditions (3.28) may be written as

dγ

dt
(t+0 ) = −1

λ
exp−1

γ(t0)
(p0)

dγ

dt
(t+1 ) = −1

λ
exp−1

γ(t1)
(p1) −

1

λ
P0

(

exp−1
γ(t0)

(p0)
)

...
dγ

dt
(t+N−1) = −1

λ
exp−1

γ(tN−1)
(pN−1) −

1

λ
PN−2

(

exp−1
γ(tN−2)

(pN−2)
)

− · · ·

−1

λ

(

PN−2 ◦ PN−3 ◦ · · · ◦ P0

)(

exp−1
γ(t0)

(p0)
)

−1

λ
PN−1

(

exp−1
γ(tN−1)

(pN−1)
)

− 1

λ

(

PN−1 ◦ PN−2

)(

exp−1
γ(tN−2)

(pN−2)
)

− · · ·

−1

λ

(

PN−1 ◦ PN−2 ◦ · · · ◦ P0

)(

exp−1
γ(t0)

(p0)
)

=
1

λ
exp−1

γ(tN )(pN)

.

(3.30)
When λ goes to +∞, it is clear from the above conditions that the broken

geodesic γ reduces to a single point, say γ(t) = p, ∀t ∈ [0, 1]. Moreover, for
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each i = 0, . . . , N − 1, the parallel transport Pi degenerates into the identity
map and the last equation in (3.30) becomes

exp−1
p (p0) + exp−1

p (p1) + · · · + exp−1
p (pN) = 0,

which proves that p is in fact the Riemannian mean of the points pi.

In figures 3-6, we illustrate the previous result for some specific data and
the particular cases when M is the Euclidean space IR2 and the unit sphere
S2.

5−5

1

2.5

2

3

−2

−2.5 7.5

−1

10

Figure 3. q0 =
(

−7, 0
)

, q1 = (2, 3), q2 = (10,−1), t0 = 0, t1 = 1
2

and t2 = 1. The smoothing cubic splines were obtained for the
following values of λ: λ1 = 10−5, λ2 = 10−1, λ3 = 10−0.5, λ4 = 3
and λ5 = 103.

3

1

2

2 8

−3

−2

−2−4

−1

4 6 10

Figure 4. q0 =
(

−5,−2
)

, q1 = (1, 3), q2 =
(

5,−3
2

)

, q3 =
(

10, 5
2

)

,

t0 = 0, t1 = 1
8 , t2 = 1

2 and t3 = 1. The smoothing cubic splines
were obtained for the following values of λ: λ1 = 10−3, λ2 = 10−1,
λ3 = 0.7, λ4 = 3 and λ5 = 103.
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Figure 5. q0 =
(

√
2

4
,
√

2
4

,
√

3
2

)

, q1 =
(

−1
4
, 0,

√
3

2

)

, q2 =
(

1, 0, 0
)

,

t0 = 0, t1 = 1
2 and t2 = 1. The smoothing cubic splines were

obtained for the following values of λ: λ1 = 10−3, λ2 = 10−1,
λ3 = 1, λ4 = 5 and λ5 = 104.

Figure 6. q0 =
(

0, 0, 1
)

, q1 = (0,−1, 0), q2 =
(

1
2 ,−1

2,−
√

2
2

)

,

q3 =
(

√
3

4 , 3
4 ,

1
2

)

, t0 = 0, t1 = 1
3, t2 = 2

3 and t3 = 1. The smoothing
cubic splines were obtained for the following values of λ: λ1 =
10−4, λ2 = 10−1, λ3 = 0.5, λ4 = 3 and λ5 = 104.

4. Smoothing Splines and Least Squares Problems

In this section, we will finally establish the relationship between the smooth-
ing geometric splines defined in the previous section and the solution of the
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classical least squares problem in Euclidean spaces. The results that we de-
velop throughout this section, which generalize the classical results appearing
in [30] for the particular case when m = 2 and M = IRn, strongly support
our belief that the variational problem formulated at the very beginning of
section 3 is the most natural way of generalizing the classical least squares
problem to Riemannian manifolds.

Before we establish our main result of this section, we will briefly recall the
classical least squares problem in Euclidean spaces.

4.1. Recalling the Classical Least Squares Problem. In the classical
least squares problem, we are given a finite set of points in IRn, p0, . . . , pN , and
an increasing sequence of instants of time t0 < · · · < tN , and the objective
is to find a polynomial curve t 7→ γ(t) = a0 + a1t + · · · + am−1t

m−1, with
m− 1 ≤ N , that minimizes the sum of the squared Euclidean distances from
pi to γ(ti). That is, that yields the minimum value for the functional

E(γ) =
N

∑

i=0

∥

∥pi − γ(ti)
∥

∥

2
. (4.31)

Although the classical literature only treats the case when the data belongs
to IR, its generalization to more general Euclidean spaces is straightforward.
In particular, it is easy to prove that the above problem has a unique solution
γ, which is obtained by solving the following system of equations:

N
∑

i=0

γ(ti) =
N

∑

i=0

pi

N
∑

i=0

tiγ(ti) =

N
∑

i=0

tipi

...
N

∑

i=0

tm−1
i γ(ti) =

N
∑

i=0

tm−1
i pi

, (4.32)

known in the literature as the normal equations [21].

4.2. Main Results. In what follows, we will assume that the Riemannian
manifold M is the Euclidean space IRn, endowed with the Riemannian metric
induced by the Euclidean inner product.
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Theorem 4.1. When M = IRn and λ goes to +∞ in conditions (3.23)-
(3.24) of theorem 3.1, the smoothing splines converge to the polynomial of
degree m − 1 that is the solution of the classical least squares problem.

Proof : For the case when M is the Euclidean space IRn, the curvature ten-
sor vanishes, the covariant derivative reduces to the usual derivative and
therefore the differential equation (3.23) becomes simply

d2mγ

dt2m
= 0. (4.33)

The regularity conditions (3.24) take also the form

dkγ

dtk
(t+i ) =

dkγ

dtk
(t−i ) = 0, k = m, . . . , 2m − 2

d2m−1γ

dt2m−1
(t+i ) − d2m−1γ

dt2m−1
(t−i ) =

(−1)m

λ

(

pi − γ(ti)
)

, (4.34)

for i = 0, . . . , N .
Equation (4.33) can be integrate explicitly is each subinterval

[

ti, ti+1

]

. Let
us consider

γ(t) = ai
0 + ai

1t + . . . + ai
2m−1t

2m−1, (4.35)

where ai
k ∈ IRn, for each k = 0, . . . , 2m − 1 and i = 0, . . . , N − 1.

Computing successively the derivatives of γ with respect to t, we get, for
t ∈

[

ti, ti+1

]

,

dγ

dt
(t) = ai

1 + 2ai
2t + · · · + (2m − 1)ai

2m−1t
2m−2

d2γ

dt2
(t) = 2ai

2 + 3!ai
3t + · · · + (2m − 1)(2m− 2)ai

2m−1t
2m−3

...
dkγ

dtk
(t) = k!ai

k + (k + 1)!ai
k+1t + · · · + (2m − 1)!

(2m − k − 1)!
ai

2m−1t
2m−k−1

...
d2m−1γ

dt2m−1
(t) = (2m − 1)!ai

2m−1

.

Now, attending to the expression for the derivative of γ of order 2m − 1,
it follows immediately that

d2m−1γ

dt2m−1

(

t+i
)

=
d2m−1γ

dt2m−1

(

t−i+1

)

, (4.36)
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where i = 0, . . . , N − 1.
Equality (4.36) can now be used to rewrite the last set of equations ap-

pearing in (4.34) as

d2m−1γ

dt2m−1
(t+0 ) =

(−1)m

λ

(

p0 − γ(t0)
)

d2m−1γ

dt2m−1
(t+1 ) − d2m−1γ

dt2m−1
(t+0 ) =

(−1)m

λ

(

p1 − γ(t1)
)

...
d2m−1γ

dt2m−1
(t+N−1) −

d2m−1γ

dt2m−1
(t+N−2) =

(−1)m

λ

(

pN−1 − γ(tN−1)
)

d2m−1γ

dt2m−1
(t+N) − d2m−1γ

dt2m−1
(t+N−1) =

(−1)m

λ

(

pN − γ(tN)
)

. (4.37)

Adding up both terms of the above system of equations, we obtain

(−1)m

λ

N
∑

i=0

(

pi − γ(ti)
)

= 0, (4.38)

which is equivalent to the first equation of the normal equations (4.32).
According to the explicit form (4.35) of the curve γ in each subinterval

[

ti, ti+1

]

, we can also write the last equation of (4.34) as

(2m − 1)!
(

ai
2m−1 − ai−1

2m−1

)

=
(−1)m

λ

(

pi − γ(ti)
)

. (4.39)

The corresponding condition for the derivative of γ of order 2m − 2 can
also be written as

(2m − 2)!
(

ai
2m−2 − ai−1

2m−2

)

= −(2m − 1)!ti

(

ai
2m−1 − ai−1

2m−1

)

. (4.40)

Plugging equation (4.39) into (4.40) and then summing up both terms of
the previous N + 1 equations, we conclude that

(−1)m

λ

N
∑

i=0

ti

(

pi − γ(ti)
)

= 0,

which is equivalent to the second equation of (4.32).
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To complete the proof, we claim that for l ∈
{

2, . . . , m
}

, the condition
fulfilled by the derivative of γ of order 2m − l is equivalent to

(l − 1)!(2m− l)!
(

ai
2m−l − ai−1

2m−l

)

= (−1)l−1(2m − 1)!tl−1
i

(

ai
2m−1 − ai−1

2m−1

)

.

(4.41)
If the above condition holds, then plugging (4.36) into (4.41) and then

summing up those N + 1 equations, we get

(−1)m

λ

N
∑

i=0

tl−1
i

(

pi − γ(ti)
)

= 0,

for l = 2, . . . , m.
When λ goes to +∞, we have already proved in proposition 3.2 (b), that the

smoothing spline γ approaches an Euclidean polynomial of degree m−1. On
the other hand, since the above m−1 equations together with equation (4.38)
are equivalent to the normal equations (4.32), that Euclidean polynomial is
therefore the solution of the classical least squares problem.

Let us assume that condition (4.41) holds for l ∈
{

2, . . . , m − 1
}

and let
us prove that it still holds for l + 1.

The condition appearing in (4.34) for the derivative of γ of order 2m− l−1
can be written as

(2m − l − 1)!
(

ai
2m−l−1 − ai−1

2m−l−1

)

+ (2m − l)! ti

(

ai
2m−l − ai−1

2m−l

)

+

+ · · · + (2m − 2)!

(l − 1)!
tl−1
i

(

ai
2m−2 − ai−1

2m−2

)

+
(2m − 1)!

l!
tli

(

ai
2m−1 − ai−1

2m−1

)

= 0.

Now, if we use the induction step (4.41), we obtain after some manipula-
tions

l!(2m− l − 1)!
(

ai
2m−l−1 − ai−1

2m−l−1

)

=

= −
l

∑

j=1

(−1)l−j l!

(l − j)!j!
(2m − 1)! tli

(

ai
2m−1 − ai−1

2m−1

)

= (−1)l+1(2m − 1)! tli

(

ai
2m−1 − ai−1

2m−1

)

,

† which finishes the proof.

†To prove the last equality, we used the fact that

l
∑

j=0

(−1)l−j l!

(l − j)!j!
= 0.
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For the particular case when m = 2, we conclude from the previous theorem
that the straight line obtained by the described limiting process is indeed
the solution of the corresponding classical least squares problem, thus also
generalizing the results appearing in [30] and in [24].

We finish with some illustrations in the plane IR2 of the results presented
here, for some specific data, where we can see that polynomials that are the
solution of the classical least squares problems are obtained by this limiting
process.

−1

−2

−2

3

−4

1

2

2 4 6 8

Figure 7. q0 =
(

−7
2
,−3

2

)

, q1 = (0, 2), q2 = (4,−2), q3 =
(

15
2
, 5

2

)

,

t0 = 0, t1 = 1
3 , t2 = 2

3 and t3 = 1. The smoothing cubic splines
were obtained for the following values of λ: λ1 = 10−5, λ2 = 10−3,
λ3 = 10−2 and λ4 = 10.

−2

5

−4

−2.5 102.5 12.5

2

4

7.5

Figure 8. q0 = (−4,−4), q1 = (1, 3), q2 =
(

4,−3
2

)

, q3 = (8, 3),

q4 = (12,−4), t0 = 0, t1 = 1
4, t2 = 1

2, t3 = 3
4 and t4 = 1. The

smoothing splines of degree 5 were obtained for the following
values of λ: λ1 = 10−7, λ2 = 10−5.3, λ3 = 10−4.6 and λ4 = 103.
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−2

−5

−4

10

4

2

5 15

Figure 9. q0 = (−7, 3), q1 = (−2,−1), q2 = (1, 2), q3 =
(

5,−3
2

)

,

q4 = (8, 3), q5 =
(

13,−5
2

)

, t0 = 0, t1 = 1
5, t2 = 2

5 , t3 = 3
5, t4 = 4

5
and t5 = 1. The smoothing splines of degree 7 were obtained for
the following values of λ: λ1 = 10−10, λ2 = 10−8, λ3 = 10−7 and
λ4 = 10−4.

5. Conclusion

In this paper, we presented a generalization of high order classical least
squares problems to more general Riemannian manifolds.

The formulation of the classical least squares problem given at the very
beginning of section 4 has not a straightforward generalization to more gen-
eral Riemannian manifolds. In fact, the non availability of explicit forms for
the analogous to polynomial curves on manifolds was the main drawback to
establish this generalization.

Nevertheless, the variational approach used to define such polynomial curves
referred in subsection 2.2 enabled us to formulate in section 3 the variational
problem (P), depending on a smoothing parameter, and giving rise to what
we call smoothing geometric splines.

These curves fit the given data and are obtained by piecing smoothly to-
gether segments of geometric polynomials. The Riemannian mean of the
given points could also be obtained as a limiting process of those smoothing
geometric splines, as it was proved in Theorem 3.3.

It was also possible to prove Theorem 4.1, that when the smoothing pa-
rameter goes to infinity, the smoothing geometric curves approach a smooth
curve that turns out to be the solution of the classical least squares problem
for the particular case when the manifold reduces to an Euclidean space.
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These facts were illustrated in the plane IR2 and in the sphere S2, in figures
3-9, using the software Matlab 7.1 and Mathematica 5.1.

Acknowledgments: We thank C. Avelino from the University of
Trás-os-Montes and Alto Douro for her invaluable help with the simulations
on the sphere S2 illustrated in figures 5 and 6.
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3030-290 Coimbra, Portugal, and Department of Mathematics, University of Trás-os-

Montes and Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal

E-mail address : lmiguel@utad.pt
URL: http://home.utad.pt/∼lmiguel

F. Silva Leite

Institute of Systems and Robotics, University of Coimbra - Pólo II, Pinhal de Marrocos,
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