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COMPLETELY NORMAL FRAMES

AND REAL-VALUED FUNCTIONS
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Abstract: Up to now point-free insertion results have been obtained only for
semicontinuous real functions. Notably, there is now available a setting for dealing
with arbitrary, not necessarily (semi-)continuous, point-free real functions, due to
Gutiérrez Garćıa, Kubiak and Picado, that gives point-free topology the freedom
to deal with general real functions only available before to point-set topology. As a
first example of the usefulness of that setting, we apply it to characterize completely
normal frames in terms of an insertion result for general real functions. This char-
acterization extends a well known classical result of T. Kubiak about completely
normal spaces. In addition, characterizations of completely normal frames that ex-
tend results of H. Simmons for topological spaces are presented. In particular, it
follows that complete normality is a lattice-invariant property of spaces, correcting
an erroneous conclusion in [Y.-M. Wong, Lattice-invariant properties of topological
spaces, Proc. Amer. Math. Soc. 26 (1970) 206-208].
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1. Introduction

If X is a topological space, the partially ordered set OX of open subsets
of X is a complete lattice, in which the infinite distributive law

U ∧∨S =
∨{U ∧ S | S ∈ S}

holds for all open subsets U and collections of open subsets S in X. We recall
that a frame is an abstract lattice with these properties; like inverse image
along a continuous mapping, a frame homomorphism is taken to preserve
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arbitrary joins and finite meets. We write Frm for the category of frames and
frame homomorphisms.

The above representation is contravariant (continuous maps f : X → Y
are represented by frame homomorphisms h : OY → OX). This is easily
mended, in order to keep the geometric (topological) motivation, by consid-
ering, instead of Frm simply its opposite category. It is called the category
Loc of locales and localic maps, and we have “generalized continuous maps”
f : L → M that are precisely frame homomorphisms h : L ← M .

In the whole paper we keep the algebraic (frame) approach and reasoning.
The reader should keep in mind that the geometric (localic) motivation reads
backwards.

Several insertion theorems for semicontinuous real functions (most notably,
Katětov-Tong Theorem) have been obtained recently in the point-free setting
of frames and locales [7, 3, 4, 5, 6] (see also [12, 13]) using the point-free
description of semicontinuity of [7]. They were also obtained equivalently
by the more general setting of [6] describing the ring F(L) of arbitrary real
functions on a frame L.

This paper was prompted by the latter paper. The possibility provided
by that paper of considering arbitrary not necessarily semicontinuous real
functions opens new horizons and naturally addresses the question of the
extension to the point-free setting of insertion theorems classically formulated
for general real functions. The first obvious choice appears to be the complete
normality separation axiom; completely normal spaces X were characterized
by T. Kubiak [10] by the following insertion condition for general functions
f1, f2 : X → R:

If f1
− ≤ f2 and f1 ≤ f2

◦, then there exists a lower semicontinuous
f : X → R such that f1 ≤ f ≤ f− ≤ f2 (where f1

− denotes the
upper regularization of f1 and f2

◦ denotes the lower regularization
of f2).

Our purpose with the present paper is to study complete normality in the
setting of point-free topology, with the goal of obtaining an insertion-type
characterization for completely normal frames that extends the classical one
of Kubiak quoted above.

We start by recalling the notion of a completely normal frame due to Isbell
([8]). Then, by making some straightforward observations, we obtain several
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characterizations of completely normal frames that extend results of H. Sim-
mons for topological spaces [16]. In particular, we conclude that complete
normality is a lattice-invariant property of spaces, correcting an erroneous
conclusion in [17].

Finally, with the help of generalized characteristic maps, we present the
insertion theorem for completely normal frames and a few nice consequences
of it.

For general background regarding frames and locales we refer to Johnstone
[9] and Picado, Pultr and Tozzi [15], and for details concerning the ring RL
of continuous real functions to Banaschewski [1].

2. Background on sublocales ([9], [14], [15])

A sublocale S of a locale L is defined to be a regular subobject of L in
Loc, that is, a localic map jS : S→L for which the corresponding frame
homomorphism L→S is onto. We have a natural order in the class of all
sublocales of L:

j1 v j2 if and only if there is an f such that j2f = j1.

The sublocales j1 and j2 are equivalent if j1 v j2 and j2 v j1. The partially
ordered set obtained is a co-frame (that is, a complete lattice satisfying the
dual of the frame distributive law).

There are various equivalent ways in the literature of describing the sublo-
cales of L. Here we prefer to use the following [14]:

¿From the frame distribution law it follows that any frame L is precisely a
complete Heyting algebra with implication → satisfying the standard equiv-
alence a∧ b ≤ c if and only if a ≤ b → c. The pseudocomplement of an a ∈ L
is the element a∗ = a → 0 =

∨{b ∈ L : a ∧ b = 0}. A sublocale set (briefly, a
sublocale) S in a frame L is a subset S ⊆ L such that

(S1) for every A ⊆ S,
∧

A is in S, and
(S2) for every s ∈ S and every x ∈ L, x→s is in S.

In the co-frame of sublocale sets of L the least element is {1} and the
largest one is L. The meets coincide with intersections and the joins are
given by the formula

∨
i∈I

Si =
{ ∧

A | A ⊆ ⋃
i∈I

Si

}
.
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Among the important examples of sublocales are, for each a ∈ L, the closed
sublocales

c(a) = ↑a = {b ∈ L : a ≤ b}
and the open sublocales

o(a) = {a → b : b ∈ L}.
Each sublocale S ⊆ L is also determined by the frame surjection cS : L→S

given by cS(x) =
∧{s ∈ S | s ≥ x} for all x ∈ L. E.g. the quotients cc(a) and

co(a) are given by

cc(a)(x) = a ∨ x and co(a)(x) = a → x, respectively.

Further, each sublocale S of L is itself a frame with the same meets as in
L, and since the Heyting operation → depends on the meet structure only,
with the same Heyting operation. However the joins in S and L will not
necessarily coincide:

S∨
i∈I

ai =
∧ {

s ∈ S | s ≥ ∨
i∈I

ai

}
≥ ∨

i∈I

ai.

It follows that 1S = 1 but in general 0S 6= 0. In particular

0c(a) = a, x
c(a)∨ y = x ∨ y, 0o(a) = a∗ and x

o(a)∨ y = a→(x ∨ y).

We shall denote the closed and open sublocales of a sublocale S of L by cS(a)
and oS(a), respectively.

Convention 2.1. For notational reasons, we shall make the co-frame of all
sublocales of L into a frame SL by considering the opposite ordering:

S1 ≤ S2 ⇔ S2 ⊆ S1.

Thus, given {Si ∈ SL : i ∈ I}, we have
∨
i∈I

Si =
⋂
i∈I

Si and
∧
i∈I

Si =
{ ∧

A : A ⊆ ⋃
i∈I

Si

}
.

Then {1} is the top element and L is the bottom element in SL that we just
denote by 1 and 0, respectively. Contrarily to the spatial case, sublocales do
not necessarily have complements. But there is a natural substitute, given
by the pseudocomplement S∗ of S ∈ SL described by S∗ =

∨{T ∈ SL |
S ∧ T = 0}. When S∗ is a complement of S we denote it by ¬S as usual.
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The interior S◦ of a sublocale S ∈ SL is the smallest open sublocale bigger
than S. In particular, c(a)◦ = o(a∗). The closure S of a sublocale S ∈ SL,
that is, the largest closed sublocale smaller than S, is given by the formula
S =↑(

∧
S) and satisfies:

(1) 0 = 0, S ≤ S and S = S,
(2) S ∧ T = S ∧ T ,

(3) o(a) = c(a∗).
We shall freely use the following properties of sublocales.

Proposition 2.2. For every a, b ∈ L, A ⊆ L and S ∈ SL, we have:

(1) c(a) ≤ c(b) if and only if a ≤ b,
(2) c(a ∧ b) = c(a) ∧ c(b),
(3) c(

∨
A) =

∨
a∈A c(a),

(4) c(
∧

A) ≤ ∧
a∈A c(a),

(5) c(a) ∨ o(a) = 1 and c(a) ∧ o(a) = 0,
(6) o(a) ≥ c(b) if and only if a ∧ b = 0,
(7) o(a) ≤ c(b) if and only if a ∨ b = 1,
(8) S ∨ c(a) = 1 if and only if S ≥ o(a),
(9) S ∨ o(a) = 1 if and only if S ≥ c(a),

(10) S ∧ c(a) = 0 if and only if S ≤ o(a),
(11) S ∧ o(a) = 0 if and only if S ≤ c(a).

Note that the map a 7→ c(a) is a frame embedding L ↪→ SL. The subframe
of SL consisting of all closed sublocales will be denoted by cL. Clearly, L
and cL are isomorphic. We denote by oL the subframe of SL generated by
all o(a), a ∈ L.

We shall also need the following

Proposition 2.3. Let S ∈ SL. Then:

(1) For every a ∈ L, c(a) ∨ S is the closed sublocale cS(cS(a)) of S.
(2) For every a ∈ L, o(a) ∨ S is the open sublocale oS(cS(a)) of S.
(3) If T is a closed sublocale of S then T = c(a) ∨ S for some a ∈ S.
(4) If T is an open sublocale of S then T = o(a) ∨ S for some a ∈ S.

3. Complete normality

One of the classical separation axioms of topology is complete normality
(also known as relative normality). A topological space X is completely
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normal if for every pair of subsets A and B of X which are separated (i.e. A∩
B = ∅ = A∩B) there are disjoint open sets containing A and B respectively.
A standard exercise is to show that this is equivalent to hereditary normality.

Accordingly (recall Convention 2.1), two sublocales S and T of a frame L
are separated [12] if S ∨ T = 1 = S ∨ T . We say that S and T are separated
by open sublocales if there exist open sublocales U and V of L such that
U ∨ V = 1, S ≥ U and T ≥ V ; a frame L is completely normal ([8]) if every
pair of separated sublocales of L is separated by open sublocales.

Since the lattice of sublocales of a topological space can be much larger
than the Boolean algebra of its subspaces, it is not obvious that this defi-
nition provides a conservative extension from spaces to frames of complete
normality, that is, whether a space X is completely normal if and only if the
corresponding frame OX of open sets is completely normal. We will see in
the sequel that this is indeed the case.

Remark 3.1. We point out that a different concept of complete normality
for frames (and distributive lattices), not directly related with the classical
concept, has been introduced by B. Banaschewski in [2].

In [16] H. Simmons proved that a space X is completely normal if and only
if L = OX satisfies the following condition:

∀ a, b ∈ L ∃ x, y ∈ L : x ∧ y = 0, x ≤ b ≤ a ∨ x, y ≤ a ≤ b ∨ y. (CN)

Remarks 3.2. (a) For any frame L, (CN) is equivalent to

∀ a, b ∈ L ∃ x ∈ L : x ≤ b ≤ a ∨ x, x∗ ∧ (a ∨ b) ≤ a ≤ b ∨ x∗. (CN∗)

Proof : (CN) ⇒ (CN∗): For each a, b ∈ L let x ∈ L given by (CN). Then:

• x∗∧ (a∨ b) = (x∗∧a)∨ (x∗∧ b) ≤ a since x∗∧ b ≤ x∗∧ (a∨x) = x∗∧a.
• a ≤ b ∨ y ≤ b ∨ x∗.

(CN∗) ⇒ (CN): For each a, b ∈ L let x ∈ L given by (CN∗) and take
y = x∗ ∧ (a ∨ b). Then x ∧ y = 0, y ≤ a and b ∨ y = b ∨ (x∗ ∧ (a ∨ b)) =
(b ∨ x∗) ∧ (b ∨ a) ≥ a.

(b) The conditions x ≤ b and y ≤ a in (CN) are redundant because condition

∀ a, b ∈ L ∃ x, y ∈ L : x ∧ y = 0, b ≤ a ∨ x, a ≤ b ∨ y (CN∗∗)

implies (CN). Indeed, given (CN∗∗), the elements x̃ := x ∧ b and ỹ := y ∧ a
satisfy immediately the conditions x̃∧ ỹ = 0, x̃ ≤ b ≤ a∨ x̃ and ỹ ≤ a ≤ b∨ ỹ.
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The following proposition shows, in particular, that Simmons characteri-
zation above may be extended to a general frame.

Proposition 3.3. The following are equivalent for a frame L:

(1) L is completely normal.
(2) For every a, b ∈ L there exist x, y ∈ L such that x ∧ y = 0, b ≤ a ∨ x

and a ≤ b ∨ y.
(3) For every S, T ∈ SL such that S ≤ T and S◦ ≤ T there exist an open

sublocale U and a closed sublocale F such that S ≤ F ≤ U ≤ T .
(4) For every S, T ∈ SL such that S ∧ T ◦ = 0 = S◦ ∧ T there exist closed

sublocales F and G such that F ∧G = 0, S ≤ F and T ≤ G.

Proof : (1) ⇒ (2): Given a, b ∈ L let S = o(a) ∨ c(b) and T = c(a) ∨ o(b).
The sublocales S and T are separated: S ∨ T ≥ S ∨ c(a) = 1 and S ∨ T ≥
c(b) ∨ T = 1. Thus, by complete normality there exist x, y ∈ L such that
o(x) ∨ o(y) = 1, S ≥ o(y) and T ≥ o(x). These are the elements x and y we
are looking for. Indeed:

• o(x) ∨ o(y) = 1 means that x ∧ y = 0.
• S ≥ o(y) means that o(a)∨ c(b) ≥ o(y), that is, c(y)∨ o(a)∨ c(b) = 1.

Equivalently, o(a) ∨ c(y ∨ b) = 1, that is, c(y ∨ b) ≥ c(a). Hence
a ≤ y ∨ b.

• Similarly, T ≥ o(x) implies that b ≤ x ∨ a.

(2) ⇒ (3): Let S, T ∈ SL such that S ≤ T and S◦ ≤ T , with T = c(a) and
S◦ = o(b) for some a, b ∈ L. By hypothesis, there exist x, y ∈ L satisfying
x ∧ y = 0, b ≤ a ∨ x and a ≤ b ∨ y. Then:

• c(y) ≤ o(x).
• S ≤ S◦ = o(b). On the other hand, S ≤ T = c(a) implies S ≤ c(b) ∨

c(y) (since a ≤ b∨y). Hence S ≤ o(b)∧(c(b)∨c(y)) = o(b)∧c(y) ≤ c(y).
• T ≥ T = c(a). On the other hand, o(b) = S◦ ≤ T implies o(a∨x) ≤ T

(since b ≤ a∨x). Hence T ≥ c(a)∨ (o(a)∧o(x)) = c(a)∨o(x) ≥ o(x).

(3) ⇒ (4): Let S, T ∈ SL such that S∧T ◦ = 0 = S◦∧T . Then S ≤ T ◦∗ = T ∗
and S◦ ≤ T ∗ and so there exist an open sublocale U and a closed sublocale F
such that S ≤ F ≤ U ≤ T ∗. Consequently F and ¬U are closed sublocales
such that F ∧ ¬U = 0, S ≤ F and T ≤ T ∗∗ ≤ ¬U .
(4) ⇒ (1): Let S, T ∈ SL such that S ∨ T = 1 = S ∨ T . The sublocales
S1 = T ∧ ¬S and T1 = S ∧ ¬T satisfy S1 ∧ T1

◦ = 0 and T1 ∧ S1
◦ = 0. Hence

there exist closed sublocales F and G such that F ∧ G = 0, S1 ≤ F and
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T1 ≤ G. Thus ¬F and ¬G are open sublocales such that ¬F ∨ ¬G = 1,
¬F = (¬F ∧ S) ∨ (¬F ∧ ¬S) ≤ S ∨ ((¬T ∨ S) ∧ ¬S) ≤ S ∨ (¬T ∧ ¬S) ≤
S ∨ ¬T = (S ∨ ¬T ) ∧ (S ∨ T ) = S. Similarly, ¬G ≤ T .

Remarks 3.4. (a) In particular, Proposition 3.3 (together with Simmons
characterization) shows that complete normality is a conservative extension
from spaces to frames: a space X is completely normal if and only if the
frame OX is completely normal. (Compare this with Simmons proof in the
spatial case ([16], Theorem 5).)

In [17] it is asserted that complete normality is not lattice-invariantly, which
contradicts the equivalence above. However a glance to the counter-example
provided there (p. 208) reveals a mistake (σ to be a topology must contain
also the empty set and then it is no longer lattice-isomorphic to 2X). Hence,
complete normality is, like many other separation properties, lattice-inva-
riant.
(b) Recall that a frame L is normal if for every a, b ∈ L with a∨ b = 1 there
exist x, y ∈ L such that x ∧ y = 0, a ∨ x = 1 = b ∨ y. By condition (2) in
Proposition 3.3, every completely normal frame is normal. There is a result
for normal frames parallel to Proposition 3.3 that makes visible the difference
between normality and the stronger concept of complete normality. After the
calculations done in the proof of Proposition 3.3 we feel free to avoid its proof.

Proposition 3.5. The following are equivalent for a frame L:

(1) L is normal.
(2) For every closed S, T ∈ SL such that S ∨ T = 1 there exist open

sublocales U and V such that U ∨ V = 1, U ≤ S and V ≤ T .
(3) For every open S and closed T in SL such that S ≤ T there exist an

open sublocale V and a closed sublocale F such that S ≤ F ≤ V ≤ T .
(4) For every open S, T ∈ SL satisfying S ∧ T = 0 there exist closed

sublocales F and G such that F ∧G = 0, S ≤ F and T ≤ G.

(c) In [13] normal frames were characterized by the condition that, for any
countable subsets {ai}i∈N and {bi}i∈N of L, satisfying ai ∨ (

∧
j∈N bj) = 1 and

bi ∨ (
∧

j∈N aj) = 1 for every i ∈ N, there exists u ∈ L such that ai ∨ u = 1
and bi ∨ u∗ = 1 for every i ∈ N. Similarly, one can show that

Proposition 3.6. A frame L is completely normal if and only if for any
countable subsets {ai}i∈N and {bi}i∈N ⊆ L there exists u ∈ L such that∧

i∈N bi ≤ ak ∨ u and
∧

i∈N ai ≤ bk ∨ u∗ for every k ∈ N.
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Recall from [3] that a frame is hereditarily normal if every its sublocale is
normal. This is the same as complete normality:

Theorem 3.7. For each frame L the following are equivalent:

(1) L is completely normal.
(2) L is hereditarily normal.
(3) Each open sublocale of L is normal.

Proof : (1) ⇒ (2): Let S be a sublocale of L and let a
S∨ b = 1. Then

cS(a) = S ∨ c(a), cS(b) = S ∨ c(b), and

cS(a) ∨ cS(b) = S ∨ c(a) ∨ cS(b) ≥ S ∨ c(a) ∨ cS(b) = S ∨ c(a) ∨ cS(b).

But cS(a) ∨ cS(b) ≥ cS(b) ≥ S. Therefore

cS(a) ∨ cS(b) ≥ S ∨ c(a) ∨ cS(b) = cS(a) ∨ cS(b) = cS(a
S∨ b) = 1.

Similarly, cS(a) ∨ cS(b) = 1. Hence, by hypothesis, there exist u, v ∈ L such
that u ∧ v = 0, cS(a) ≥ o(u) and cS(b) ≥ o(v). Consider the open sublocales
oS(cS(u)) and oS(cS(v)) of S. Then, clearly,

cS(a) ≥ oS(cS(u)) and cS(b) ≥ oS(cS(v)),

that is, a
S∨ cS(u) = 1 and b

S∨ cS(v) = 1. Moreover, cS(u) ∧ cS(v) =
cS(u ∧ v) = cS(0) = 0S. This shows that S is normal.
(2) ⇔ (3): It is proved in ([3], Proposition 3.3).
(2) ⇒ (1): If S ∨ T = 1 = S ∨ T with T = c(t) and S = c(s) then S ≥ o(t)
and T ≥ o(s). Let U = o(s) ∧ o(t) = o(s ∨ t). By hypothesis, U is normal.
Further, S∩U = c(s)∨o(t) and T ∩U = c(t)∨o(s). By (1) of Proposition 2.3,
S∩U = cU(cS(s)) and T ∩U = cU(cT (t)). These are disjoint closed sublocales
of U so

cU(cS(s)
U∨ cT (t)) = (S ∩ U) ∩ (T ∩ U) = 1.

Thus cS(s)
U∨ cT (t) = 1. Then, by the normality of U , there exist u, v ∈ U

satisfying u ∧ v = 0U , cS(s)
U∨ u = 1 = cT (t)

U∨ v. In particular,

u∧ v = 0U ⇔ u∧ v = (t∨ s)→0 = (t→0)∧ (s→0) ⇔ u∧ v∧ (t∨ s) = 0. (∗)
On the other hand, by (7) of Proposition 2.2 and (4) of Proposition 2.3,

cS(s)
U∨ u = 1 ⇔ cU(cS(s)) ≥ oU(u) = U ∨ o(u) = o(u ∧ (t ∨ s))
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and

cT (t)
U∨ v = 1 ⇔ cU(cT (t)) ≥ oU(v) = U ∨ o(v) = o(v ∧ (t ∨ s)).

Let a = u∧ (t∨ s) and b = v ∧ (t∨ s). By (∗), a∧ b = 0 thus o(a)∨ o(b) = 1.
Finally,

S ≥ S ∨ o(t) = S ∨ U = cU(cS(s)) ≥ o(a)

and, similarly,

T ≥ T ∨ o(s) = T ∨ U = cU(cT (t)) ≥ o(b).

4. Background on real-valued functions ([6])

We denote by L(R) the frame of reals and by Ll(R) and Lu(R), respectively,
the lower and upper frames of reals (see [1, 4] for the details). There are also
the extended variants of these frames: L(R), Ll(R) and Lu(R).

Let

F(L) = Frm(L(R), SL), F(L) = Frm(L(R), SL).

An f ∈ F(L) is called an arbitrary real function on L. Further f is:

(1) lower semicontinuous if f(r, —) is a closed sublocale for all r.
(2) upper semicontinuous if f(—, r) is a closed sublocale for all r.
(3) continuous if f(p, q) is a closed sublocale for all p, q, i.e. f(L(R)) ⊆ cL.

We denote by LSC(L), USC(L) and C(L) the collections of all lower semi-
continuous, upper semicontinuous, and continuous members of F (L). If we
replace f ∈ F(L) by f ∈ F(L) in, respectively, (1), (2), and (3) above, we get
the collections LSC(L), USC(L), and C(L) of all extended lower semicontinu-
ous, upper semicontinuous, and continuous members of F(L). Evidently, one
has

C(L) = LSC(L) ∩ USC(L) and C(L) = LSC(L) ∩ USC(L).

Remark 4.1. All the above collections of morphisms are partially ordered
by

f ≤ g ⇔ f(r, —) ≤ g(r, —) for all r ∈ Q ⇔ g(—, r) ≤ f(—, r) for all r ∈ Q.

Let f ∈ F(L). It follows that f ≥ 0 if f(—, 0) = 0. Similarly, f ≤ 1 means
that f(1, —) = 0.
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The set LSCb(L) = {f ∈ LSC(L) : 0 ≤ f ≤ 1} has arbitrary joins and
finite meets. Indeed, given F ⊆ LSCb(L) one has

(
∨F)(r, —) =

∨
f∈F

f(r, —) and (
∨F)(—, s) =

∨
r<s
¬ (

∨F)(r, —) =
∨
r<s

∧
f∈F

¬ f(r, —)

and, for F finite,

(
∧F)(r, —) =

∧
f∈F

f(r, —) and (
∧F)(—, s) =

∨
f∈F

f(—, s)

for every r, s ∈ Q.
On the other hand, USCb(L) = {f ∈ USC(L) : 0 ≤ f ≤ 1} is closed under

arbitrary meets and finite joins. Given G ⊆ USCb(L) one has

(
∧G)(r, —) =

∨
r<s

∧
g∈G

¬ g(—, s) and (
∧G)(—, s) =

∨
g∈G

g(—, s)

and, for G finite,

(
∨G)(r, —) =

∨
g∈G

g(r, —) and (
∨G)(—, s) =

∧
g∈G

g(—, s)

for every r, s ∈ Q.

The lower regularization f ◦ of f ∈ F(L) is defined by

f ◦(r, —) =
∨
s>r

f(s, —) and f ◦(—, s) =
∨
r<s
¬ f(r, —).

and, dually, the upper regularization f− of f is defined by

f−(r, —) =
∨
s>r
¬ f(—, s) and f−(—, s) =

∨
r<s

f(—, r).

The following properties ([4], [6]) of the operators (·)◦ : F(L) → LSC(L)
and (·)− : F(L) → USC(L) will be useful in the sequel:

Proposition 4.2. For every f, g ∈ F(L) we have:

(1) f ◦ ≤ f .
(2) (f ∧ g)◦ = f ◦ ∧ g◦.
(3) LSC(L) = {f ∈ F(L) : f = f ◦}.
(4) f ◦ =

∨{g ∈ LSC(L) : g ≤ f}.
(5) If f ∈ F(L) and

∨
r∈Q f(r, —) = 1, then f ◦ ∈ LSC(L).

(6) f ≤ f−.
(7) (f ∨ g)− = f− ∨ g−.
(8) USC(L) = {f ∈ F(L) : f = f−}.
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(9) f− =
∧{g ∈ USC(L) : g ≥ f}.

(10) If f ∈ F(L) and
∨

r∈Q f(—, r) = 1, then f− ∈ USC(L).

5. Characteristic maps

Given a complemented sublocale S of L and 0 ≤ s < r ≤ 1, the generalized
characteristic map [6]

χr,s
S = (χS ∧ r) ∨ s : L(R) → SL

is defined by

χr,s
S (p, —) =





1 if p < s,

¬S if s ≤ p < r,

0 if p ≥ r,

and χr,s
S (—, q) =





0 if q ≤ s,

S if s < q ≤ r,

1 if q > r,

for each p, q ∈ Q. (Note that in [6] we only considered the case χ1,0
S = χS.)

Then, as in the classical context, we have:

(1) χr,s
S ∈ LSCb(L) if and only if S is open,

(2) χr,s
S ∈ USCb(L) if and only if S is closed,

(3) χr,s
S ∈ Cb(L) = LSCb(L) ∩ USCb(L) if and only if S is clopen.

(4)
(
χr,s

S

)−
= χr,s

S
and

(
χr,s

S

)◦
= χr,s

S◦ .

Lemma 5.1. Let 0 ≤ f ≤ 1 be such that for each r ∈ Q ∩ [0, 1] there exists
xr ∈ L satisfying f(r, —) ≤ c(xr). Then

f ≤ ∨
r∈Q∩[0,1]

χr,0
o(xr) ∈ LSCb(L).

Proof : First note that
∨

r∈Q∩[0,1] χ
r,0
o(xr)∈ LSCb(L) by Remark 4.1. It suffices

to observe that
∨
r

χr,0
o(xr)(p, —) =

∨
p<r

c(xr) ≥
∨
p<r

f(r, —) = f(p, —)

for each 0 ≤ p < 1.

Similarly we have

Lemma 5.2. Let 0 ≤ g ≤ 1 be such that for each r ∈ Q ∩ [0, 1] there exists
yr ∈ L satisfying g(—, r) ≤ c(yr). Then

USCb(L) 3 ∧
r∈Q∩[0,1]

χ1,r
c(yr) ≤ g.
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6. The insertion theorem

The Normalization Lemma of Kubiak ([10], Lemma 2.1) cannot be trans-
lated immediately to the point-free setting since joins of upper semicontin-
uous functions (and meets of lower semicontinuous ones) do not necessarily
exist. Nevertheless we can get the following which suffices for the insertion
result.

Lemma 6.1. Let L be a frame and 0 ≤ h1 ≤ h2 ≤ 1 in F(L). Let {fn}n∈N ⊆
LSCb(L) and {gn}n∈N ⊆ USCb(L) be such that h1 ≤

∨
n fn,

∧
n gn ≤ h2,

fn
− ≤ h2 and h1 ≤ gn

◦ for every n ∈ N. Then there exists an f ∈ LSCb(L)
such that h1 ≤ f ≤ f− ≤ h2.

Proof : Define f̃1 = f1 and f̃n = fn ∧
∧

i<n gi
◦ for each n ≥ 2. Now take

f =
∨

n∈N f̃n. It follows from Remark 4.1 that f ∈ LSCb(L). It remains to
show that h1 ≤ f ≤ f− ≤ h2.

We have for each p ∈ Q (and by Remark 4.1)

f(p, —) = f1(p, —) ∨ ∨
n≥2

(fn(p, —) ∧ ∧
i<n

gi
◦(p, —))

≥ (f1(p, —) ∧ h1(p, —)) ∨ ∨
n≥2

(fn(p, —) ∧ h1(p, —))

=
( ∨
n∈N

fn(p, —)
) ∧ h1(p, —) = h1(p, —).

Hence f ≥ h1.
On the other hand, since f̃m ≤ fm ≤ fm

−, then f̃m ≤ ∨
i≤n fi

− for every
m ≤ n, and f̃m ≤ g◦n ≤ gn if m > n. Hence f̃m ≤ gn∨

∨
i≤n f−i for all m,n ∈ N.

Since 0 ≤ gn ∨
∨

i≤n fi
− ≤ 1 for each n ∈ N, by Remark 4.1 it follows that∧

n∈N(gn ∨
∨

i≤n fi
−) ∈ USCb(L) and therefore f− ≤ ∧

n∈N(gn ∨
∨

i≤n f−i ).
Finally, we have for each q ∈ Q (and by Remark 4.1)

f−(—, q) ≥ ∨
n∈N

(
gn(—, q) ∧ ∧

i≤n

fi
−(—, q)

)

≥ ∨
n∈N

(gn(—, q) ∧ h2(—, q))

=
( ∨

n∈N
gn(—, q)

)
∧ h2(—, q)

=
( ∧

n∈N
gn

)
(—, q) ∧ h2(—, q) = h2(—, q).
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Hence f− ≤ h2. Consequently, 0 ≤ h1 ≤ f ≤ f− ≤ h2 ≤ 1.

Proposition 6.2. Let L be a frame. For 0 ≤ h1 ≤ h2 ≤ 1 in F(L), the
following are equivalent:

(1) There exists an f ∈ LSCb(L) such that h1 ≤ f ≤ f− ≤ h2.
(2) For every r in Q∩[0, 1], there exist xr, yr ∈ L such that xr ∧ yr = 0,

h1(r, —) ≤ c(xr) and h2(—, r) ≤ c(yr).

Proof : (1) ⇒ (2): For each r ∈ Q take xr, yr ∈ L such that f(r, —) = c(xr)
and f−(—, r) = c(yr). Since f ≤ f−, it follows that c(xr) ∧ c(yy) = f(r, —) ∧
f−(—, r) = 0. On the other hand, h1 ≤ f implies that h1(r, —) ≤ c(xr) and
f− ≤ h2 implies that c(yr) ≥ h2(—, r).
(2) ⇒ (1): By Lemmas 5.1 and 5.2 we have that

h1 ≤
∨

r∈Q∩[0,1]
χr,0

o(xr) and
∧

r∈Q∩[0,1]
χ1,r

c(yr) ≤ h2.

Further

(χr,0
o(xr))

− = χr,0
c(x∗r) ≤ h2 and (χ1,r

c(yr))
◦ = χ1,r

o(y∗r ) ≤ h1

since h2(—, r) ≤ c(yr) ≤ c(x∗r) and h1(r, —) ≤ c(xr) ≤ c(y∗r) for each r ∈
Q∩[0, 1]. Then Lemma 6.1 implies the existence of f .

Remark 6.3. The result above can be extended to any (not necessarily
bounded) h1 ≤ h2 by the following general procedure:

Take any continuous increasing bijection ϕ : (0, 1)→R that maps rationals
into rationals. Given h ∈ F(L), define gh ∈ F(L) by gh(—, q) = 0 if q ≤ 0,
gh(—, q) = h(—, ϕ(q)) if 0 < q < 1, gh(—, q) = 1 if q ≥ 1 and gh(p, —) = 0 for
p ≥ 1, gh(p, —) = h(ϕ(p), —) for 0 < p < 1 and gh(p, —) = 1 in case p ≤ 0.
Let h1 ≤ h2 in F(L). Clearly 0 ≤ gh1 ≤ gh2 ≤ 1 and by Proposition 6.2 there
exists f ∈ LSC(L) such that gh1 ≤ f ≤ f− ≤ gh2. Then fϕ : L(R)→SL given
by fϕ(—, q) = f(—, ϕ−1(q)) and fϕ(p, —) = f(ϕ−1(p), —) is also in LSC(L) and
is easily seen to satisfy h1 ≤ fϕ ≤ f−ϕ ≤ h2.

Theorem 6.4. For each frame L the following are equivalent:

(1) L is completely normal.
(2) For each h1, h2 ∈ F(L), if h1

− ≤ h2 and h1 ≤ h2
◦, then there exists an

f ∈ LSC(L) such that h1 ≤ f ≤ f− ≤ h2.
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Proof : (1) ⇒ (2): Let h1, h2 ∈ F(L) such that h1
− ≤ h2 and h1 ≤ h2

◦. Then
h1(r, —) ∧ h2(—, r)◦ = 0 = h1(r, —)◦ ∧ h2(—, r) for any r in Q. Indeed:

Clearly enough h1(r, —) ≤ h2
◦(r, —) and h2

◦(r, —) ∧ h2(—, r) = 0 for any
r ∈ Q. Hence h2(—, r) ≤ ¬h2

◦(r, —) and so h2(—, r)◦ ≤ ¬h2
◦(r, —) (since

¬h2
◦(r, —) is an open sublocale). It follows that h1(r, —) ∧ h2(—, r)◦ ≤

h2
◦(r, —) ∧ ¬h2

◦(r, —) = 0. Similarly h1(r, —)◦ ∧ h2(—, r) = 0.
Hence, by Proposition 3.3, there exist xr, yr ∈ L such that c(xr)∧c(yr) = 0,

h1(r, —) ≤ c(xr) and h2(—, r) ≤ c(yr). Then, by Proposition 6.2 and Remark
6.3, there exists an f ∈ LSC(L) such that h1 ≤ f ≤ f− ≤ h2.
(2) ⇒ (1): For each a, b ∈ L let S = c(a) ∧ o(b) and T = c(a) ∨ o(b). Since
both S and T are complemented, we have χS, χT ∈ F(L). Also S◦ ≤ o(b) ≤ T
and S ≤ c(a) ≤ T , hence χT ≤ χS

◦ and χT ≤ χS. By hypothesis it follows
that there exists an f ∈ LSC(L) such that χT ≤ f ≤ f− ≤ χS. Take
c(x) = f(1

2 , —) and c(y) = f−(—, 1
2). Then:

• f ≤ f− implies that c(x∧y) = f(1
2 , —)∧f−(—, 1

2) = 0 and so x∧y = 0.
• χT ≤ f implies that

c(x) = f(1
2 , —) ≥ χT (1

2 , —) = ¬T = o(a) ∧ c(b)

and so o(x) ∧ o(a) ∧ c(b) = o(x ∨ a) ∧ c(b) = 0. Hence b ≤ x ∨ a.
• Similarly f− ≤ χS implies that a ≤ y ∨ b.

Hence, by condition (2) of Proposition 3.3, L is completely normal.

Remark 6.5. In a similar way, it may be proved (we omit the details), more
generally, that

A frame L is normal if and only if for every h1 =
∨

n h1
n with

h1
n ∈ USC(L) and h2 =

∧
n h2

n with h2
n ∈ LSC(L) such that

h1
− ≤ h2 and h1 ≤ h2

◦, there exists an f ∈ LSC(L) satisfying
h1 ≤ f ≤ f− ≤ h2.

In particular, when h1 = χA for any Fσ-sublocale A (i.e. h1 = χ∨
n

c(an)
=∨

n χc(an)) and h2 = χB for any Gδ-sublocale B (i.e. h2 = χ∧
n

o(bn)
=∧

n χo(bn)) we may conclude that for any normal frame L, if χ−A ≤ χB and
χA ≤ χ◦B, then there is a lower semicontinuous f on L such that χA ≤ f ≤
f− ≤ χB. In other words, this means that in any normal frame L every two
separated Fσ-sublocales of L are separated by open sublocales (and evidently
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the converse is also true). This is the point-free counterpart of the charac-
terization of normal spaces due to Urysohn that each two separated Fσ-sets
have disjoint open neighbourhoods.

Theorem 6.4 shows that there exists a lower semicontinuous function f
such that h1 ≤ f ≤ f− ≤ h2 if and only if L is completely normal. When
and only when can one insert a continuous function f between such h1 and
h2? As for spaces (see [11, Theorem 2]) this can be answered immediately.
For that recall that a frame L is extremally disconnected if a∗ ∨ a∗∗ = 1 for
every a ∈ L and that in any extremally disconnected frame L,

f ∈ LSC(L) implies f− ∈ C(L) and f ∈ USC(L) implies f ◦ ∈ C(L) [4]. (∗∗)
Further, the point-free Stone-type insertion theorem from [4] asserts that
extremally disconnected frames are precisely the ones where one can insert
a continuous function in between h1 ∈ LSC(L) and h2 ∈ USC(L) satisfying
h1 ≤ h2.

Corollary 6.6. For each frame L the following are equivalent:

(1) L is completely normal and extremally disconnected.
(2) If h1, h2 ∈ F(L), h1

− ≤ h2 and h1 ≤ h2
◦, then there exists an f ∈ C(L)

such that h1 ≤ f ≤ h2.
(3) L is normal and if h1, h2 ∈ F(L) are such that h1

− ≤ h2 and h1 ≤ h2
◦,

then h1
− ≤ h2

◦.

Proof : (1) ⇒ (2): Obvious by Theorem 6.4 and property (∗∗).
(2)⇒ (3): That L is normal follows from Katětov-Tong theorem (see e.g. [6]).
Further, h1 ≤ f ≤ h2 with f ∈ C(L) implies that h1

− ≤ f− = f = f ◦ ≤ h2
◦.

(3) ⇒ (1): That L is completely normal follows from normality and Theorem
6.4. Let h1 ∈ LSC(L) and h2 ∈ USC(L) with h1 ≤ h2. Then, by properties
4.2 (4) and (9), h1

− ≤ h2 and h1 ≤ h2
◦ and therefore there exists f ∈ C(L)

such that h1 ≤ f ≤ h2. Hence, by the Stone insertion theorem (see e.g. [6]),
L is extremally disconnected.

Corollary 6.7. For each frame L the following are equivalent:

(1) L is completely normal and extremally disconnected.
(2) Every sublocale of L is C∗-embedded.



COMPLETELY NORMAL FRAMES AND REAL-VALUED FUNCTIONS 17

References
[1] B. Banaschewski, The Real Numbers in Pointfree Topology, Textos de Matemática, Série B,
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