Separable Kripke structures are algebraically universal

M. C. PINTO*

Abstract

For every poset (I, <) and every family (G;);es of groups there exists a family of se-
parable Kripke structures (Kj;);c; on the same set, such that G; = Aut(K;) and K; is
subalgebra of K; iff ¢ < j, for ¢,j € I. More generally, this work is concerned with repre-
sentations of algebraic categories by means of the category of separable Kripke structures.
Consequences thereof are mentioned. Thus, in contrast to the algebraic non-universality
of the category of Boolean algebras we conclude the algebraic universality of the category
of separable dynamic algebras. Perfect classes of Kripke structures are introduced.

1. Introduction

1.1. On Kripke structures and dynamic algebras

Dynamic algebras were introduced by Kozen [19] and Pratt [29] to provide models of Propo-
sitional Dynamic Logic (PDL). For relation to Computer Science and examples see [29].
Following [29] a dynamic algebra is a two-sorted algebra (B,.A, <>) where

B=(B,V,7,0) and A= (4,;,U,x)

are one-sorted algebras with 0: O-ary operation (constant),
-,k :  l-ary operations,
V,;,U: 2-ary operations,
and an operation named diamond <-,->: AxB — B: mixed operation,

9.,

satisfying the following conditions (where ”;” is omitted, for brevity):
(i) B is a Boolean algebra,
(ii) <a,0>=0 and <a,pVg>=<a,p>V<a,q>;
(iii) <aUb,p> = <a,p>V<b,p>;
(iv) <ab,p> = <a, <b,p>>;
(v) pV<aa*,p> < <a*,p> < pV<a*,—pA<a,p>>
for a,b € A and p,q € B.
Obs.: (p < q) is abbreviation of (pAq = p) and (pAq) is abbreviation of (—(—pV —q)).

Homomorphisms of dynamic algebras h : (B, A,<>) — (B', A', <>) are defined in the
usual way, as homomorphisms of two-sorted algebras, i.e., h = (hy, he) with hy : B — B,
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ho : A — A’ such that hy and hy preserve the mentioned one-sorted operations and, more-
over, h preserves the mixed operation, that is, hi(< a,p >) = < ha(a),h1(p) > for every
a € A and every p € B. Let DA denote the category of all dynamic algebras (whenever we
consider a category mentioning only its objects, we assume that its morphisms are all the
homomorphisms among those objects).

A dynamic algebra (B, A, <>) is said to be separable if for all a,b € A,
<a,p>=<b,p> forevery pe B = a=b.

We denote by SDA the full subcategory of DA whose objects are the separable dynamic
algebras.

Kripke structures, the traditional models of PDL, were presented in [29] as examples of
dynamic algebras. They are defined as follows. The full Kripke structure on a given non-
empty set S is the pair (exp(95), exp(SxS)) where exp(S) is the Boolean algebra of all subsets
of S (with the usual set theoretical operations) and exp(Sx.S) is the set of all binary relations
on S. The operations ;, U and % on exp(S x S) are the composition, the union and the
reflective-transitive closure of binary relations, respectively. The reflective-transitive closure
of a € exp(SxS) is defined,as usually, by

oo
a* = U a”,
n=0

where a® is the identity on S, and @™ (n > 0) is the composition a;a;...;a, n times. The
diamond operation <a,p> (for a € exp(SxS) and p € exp(S)) is defined to be the pre-image
of p under a,

{s€S:(s,8) €a, for some s" € p}.

Informally, the set S can be interpreted as the set of states of a computer, the subsets of
S can be interpreted as propositions, the binary relations as computer programs. Then,
"s € p” can be interpreted as ”state s satisfies proposition p”, (s,s') € a as " program a may
run from initial state s to final state s'”, a;b as " execute program a, then program b”, a Ub
as ”execute program a or program b non-deterministically’, a* as ”execute program o zero
or more times”, <a,p> as ”the proposition satisfied when a is executed and stops in a state
satisfying p”. Kripke structures are defined as the dynamic subalgebras of full Kripke structu-
res. They intend to reflect the input-output behaviour of computer programs. Whenever we
want to emphasize the fact that a certain Kripke structure (B,.A) is a Kripke structure on a
state set S we will indicate it by (B, .4, 5).

Full Kripke structures are separable dynamic algebras, though Kripke structures are not
necessarily separable. Let us denote by SKri the full subcategory of DA whose objects are
the separable Kripke structures.

The simplest examples of dynamic algebras are the so called Boolean-trivial dynamic
algebras (B, A, <>) with B={0 =1}, A = (4,;,U, *) of the required type and <a,0>= 0.
They are, obviously, non-separable.

Denote by FKri the class of all finite full Kripke structures and by T the class of all
Boolean-trivial dynamic algebras. Allow us to reuse the symbol DA to denote the variety of
dynamic algebras.

The importance of the above two types of examples was shown by Pratt [29] in the
establishment of the Theorem,

(x) DA = HSP(FKri U T),



where H, S and P stand for the closure under homomorphic images, subalgebras and products,
respectively. Thus, DA is the smallest variety containing FKri and determined by a set of
Boolean equations only (i.e., equations on Boolean sort), namely, the set of Boolean equations
satisfied in FKri . The equality (*) is the algebraic counterpart of the Segerberg-Parikh-
Gabbay completeness Theorem for PDL, which was established by means of the Segerberg’s
axioms (cf. [8], [28], [35]). Thus a Boolean equation is satisfied in every finite full Kripke
structure iff it can be "deduced” from the equations (i)-(v) above. See, e.g. [33] and [13],
to define a formal way to deduce new equations from old equations in such a way that
Completeness Theorem can be established.

More about dynamic algebras and Kripke structures can be found in [17], [18], [20], [21],
[27], [31].

1.2. Formulation of the Main Theorem

We introduce perfect classes of Kripke structures. More details on those classes of Kripke
structures will be given in section 2. Thus, a class C of Kripke structures is called perfect if, for
every (B, A,S),(B',A",S") € C and every homomorphism (hy,hs) : (B, A,S) — (B, A, S")
there is a unique mapping f : S’ — S such that hy(p) = f1(p) for every p € B and there is
no other A5 : A — A’ such that (f_yB, h%) is a homomorphism. The aim of this paper is to
prove the following,

MAIN THEOREM. There exists a perfect class of separable Kripke structures such that the
corresponding full subcategory of SKri is algebraically universal, which means that it contains
any category of universal algebras as a full subcategory.

In section 2 of this paper we introduce state mappings, its relations with Kripke structure
homomorphisms and define perfect class of Kripke structures. In section 3 we recall the re-
presentation problems concerning universality. In section 4 we refer an almost full embedding
from which the main result will be proved and in sections 5 and 6 we prove it. In section 7
we list some of the consequences of the algebraic universality of SKri. In section 8 we refer
test algebras.

2. State mappings

Since Kripke structures are dynamic algebras, their homomorphisms are defined as dynamic
algebra homomorphisms. However, homomorphisms of Kripke structures can carry more
information. We define a state mapping f : (B, A,S) +— (B, A,S") as an arbitrary
mapping f: S — S.

There is no relation between homomorphisms and state mappings in general, as we show
below.

PROPOSITION 2.1. Let f: 8" — S be a mapping. Then
(L)Y ¢ (ezp(S), exp(Sx5), ) — (exp(S'), exp(S'x S"), S")
is a homomorphism iff f is a bijection.

Obs.:Given a mapping f : S’ — S and a subset p C S, we denote by f~1(p) the pre-image
of p under f.

Proof. If f is a bijection, then (f %, (f x f)~!) is an isomorphism, evidently.

If f is not a bijection, then either it is not one-to-one or it is not surjective.



In (exp(S),exp(SxS),S) it happens §* = Ag. If f is not one-to-one, then

((fxf) H0)" =0 = As # (f x f) H(As).
If f is not surjective, then the proposition just below can be used. O

PROPOSITION 2.2. Let f : S — S be a mapping not surjective. Then there is no
homomorphism

(h17h2) : (emp(S’),exp(SXS),S) - (exp(‘sd)aemp(slxsl)vsl)
for which hy = f~1.
Proof. Let there exists hy : exp(S xS) — exp(S' xS') such that h = (f 1 hs) is a
homomorphism. Since f is not surjective, we can choose s € S\ f(S’). Choose a = {s} xS.

Then <a,S>= {s}, hence <hs(a),S’>= 0. So that ha(a) = (. Choose b = Sx{s}. Then
<ba,S>= S, hence <hsy(ba),S'>=S". But then ha(ab) # ha(a)ha(b). O

State mappings can induce Kripke structure homomorphisms. Thus, we consider
DEFINITION 2.3. A state mapping
f : (BvAa S) — (BlvAlvsl)

is compatible if there exists ho : A — A’ such that h = (f_yB, hz) is a homomorphism. We
say that f is uniquely compatible if there exists precisely one such ho.

EXAMPLE 2.4. Consider a state set S with more than one element. Choose s € S. De-
fine the Kripke structure (B, A, S) where B = {0, S} and A = {Ag,a, AgUa} with a = Sx{s}.
Then the identity on S is a compatible, but not uniquely compatible state mapping
lg : (B, A,S) «— (B, A,S), since (151/B,h’2) and (1573,%’) are homomorphisms where h,
is the identity mapping on A4 and hf is the constant mapping constantly equal to Ag.

On the other hand Kripke structure homomrphisms can be induced by state mappings.
So then, we consider

DEFINITION 2.5. A homomorphism
(h1,h2) : (B, A,S) — (B, A, S)
is grounded if there exists a state mapping f : 8" — S such that h; = f_yB‘ We say that

(h1, h2) is uniquely grounded if there exists precisely one state mapping f with h; = f_l/B.

EXAMPLE 2.6. Let S be an infinite set. Consider the Kripke structure (B,A,S) =
(exp(S),{Ag},S). Let U be an ultrafilter on exp(S) satisfying {s} € U for every s € S (such
an ultrafilter exists by Zorn’s Lemma). Let (B', A, S’) be an arbitrary Kripke structure such
that A’ contains Ag/. Then the homomorphism

(h1,h2) : (B, A,S) — (B, A, §)

defined by
S ifpel
n(p) = { (0  otherwise

and h2(Ag) = Ag is not grounded because hy doesn’t preserve infinite unions.



EXAMPLE 2.7. Consider the Kripke structure (B,.4,5) on S = {s1, s2} with B = {0, S},
A = {Ag}. Then, for every Kripke structure (B’,A’,S’) such that A" contains Agr, the
homomorphism

(hl,hg) : (B,.A, S) — (BI,AI,SI)

defined by hq(0) = 0, h1(S) = S and ha(Ag) = Ag is grounded but not uniquely grounded,
since hy = f*73 = g*I/B for f,g: S’ — S state mappings defined by f(s) = s1, g(s) = s for
se S

Now, we can rewrite the definition of perfect class of Kripke structures.

DEFINITION 2.8. A class ¢ of Kripke structures is called perfect if, for every (B, A4, S),
(B',A',S") € C, every homomorphism h : (B, A4,S) — (B, A’,S") is uniquely grounded and
the corresponding state mapping is uniquely compatible.

3. On algebraic universality

3.1. Representation problems

The representation problem for groups mentioned in the abstract has its simplest form when
we choose (I, <) to be a singular set trivially ordered, that is, ” Given a category U, is every
group isomorphic to the group of all automorphisms of some object of U?”. This is the case
with the category of symmetric graphs, the category of distributive lattices, the category of
topological spaces, (cf. [7], [34], [3], [9])-

A similar question can be formulated for monoids instead of groups as ” Given a category
U, is every monoid M isomorphic to the monoid of all endomorphisms of some object of UT”.
That is, ”Is there some object A € ObjU such that M = U(A, A)?". The category of binary
relations, the category of semigroups, the category of topological spaces and open continuous
mappings satisfy that condition.

Often, the answer to those questions requires a category-theoretical reasoning not only
in the part where one represents but in the part which we represent, also. Since a monoid
can be seen as a (only one object) category, we are led to a generalization from a problem of
representation of monoids to a problem of representation of categories.

We are interested in the representation of the concretizable categories. Recalling the
definition, we say that a category C is concretizable if there exists a faithful functor

F:C —> Set

where Set is the category of all sets and all mappings. Now, our representation problem can be
reformulated as follows ” Given a category U, can every concretizable category C be represented
in U in such a way that objects of C are substituted by objects of U and the morphisms between
every two objects of C get represented exactly by the morphisms prescribed in U between the
corresponding image objects”. In other words, ”Is C isomorphic to a full subcategory of U?”.
Whenever a category U has the above property it is called an universal category. An example
of an universal category is the category S(P™') whose objects are pairs (X,.7) where X is a
set and .7 is a family of subsets of X and morphisms from (X,.”) to (X',.#’) are mappings
f: X — X', such that each S belonging to .# has image under f, f(S5), lying in .#’.

A category is said to be algebraic if it is isomorphic to a category of some algebras of a
given type and all their homomorphisms. A category is algebraically universal (briefly, alg-
universal) if every algebraic category is fully embeddable into it. We recall that a category



A is fully embeddable into a category B if there is a full one-to-one functor F': A — 5. The
category Alg(A) of all algebras of a given type A is alg-universal iff the sum of the arities
of the operations of type A is not less than 2. The category Graph of all graphs is also alg-
universal. Moreover, this category provides a criterion to decide about the alg-universality of
any category, since

A category is alg-universal iff the category Graph fully embeds into it.

The above results are contributions of Kuc¢era, Hedrlin, Pultr and Trnkova. A full account
of universality and alg-universality can be found in the Pultr and Trnkova’s monograph [30].

Under the set-theoretical assumption that there are not too many measurable cardinals,
more precisely, that

(M) There ezists a cardinal o such that every a-additive two-valued measure is trivial,

every concretizable category is algebraic (cf. [10], [22]). Then, Kucera and Pultr concluded
in [23] that concretizability coincides with algebraicity iff (M) (e.g. the category of compact
Hausdorff spaces and continuous mappings is non-algebraic under non (M)).

Clearly, under condition (M) both the concepts of universality and of algebraic universality
coincide. Therefore, in this paper we restrict ourselves to the problem of the alg-universality
of the category of separable Kripke structures. The category of dynamic algebras is, trivially,
alg-universal since its full subcategory whose objects are the Boolean-trivial dynamic algebras
is isomorphic to the category Alg(2,2,1). Moreover, the category of Boolean algebras is
not alg-universal because Z3, the cyclic group of order 3, is an automorphism group of no
Boolean algebra [26]. This is of relevance to our problem in that the investigation of the
alg-universality of separable Kripke structures may now become one of choosing a class of
Boolean algebras with a parallel interfering structure, the action part of the Kripke structure,
which will determine the compatible Boolean homomorphisms.

3.2. Remarks on the definition of algebraic category

The concept of algebraic category was introduced by Isbell in [14], where homogeneous alge-
bras, that is, algebras with one underlying set only, were understood. Actually, the algebrai-
city doesn’t need to be described by (full) operations, since each Rel(A), the category of all
relational systems of type A and all their homomorphisms, is algebraic as shown by Hedrlin
and Pultr in [11].

Here, we deal with dynamic algebras, which are heterogeneous algebras, that is, algebras
with possibly many underlying sets (c¢f. [4] and [2] for the formal definition). However,
categories of heterogeneous algebras and all their homomorphisms are algebraic, too. It is
enough to see each heterogeneous algebra A as relational system defined on the set-theoretical
disjoint union of the underlying sets of A with a relation corresponding to each operation of
A (the relation which is the operation seen as a relation) plus a unary relation per each, and
equal to each, one of the underlying sets of A. The unary relations are added to choose the
right relation homomorphisms.

4. Preliminary construction

Let UndGrapho denote the category of connected undirected graphs without loops with more
than one vertex and all their homomorphisms. It is known (¢f. [30]) that UndGraphg is alg-
universal. Therefore, to prove the Main Theorem it is enough to construct a full embedding
of UndGraphg into SKri in such a way that the image subcategory defines a perfect class
of Kripke structures. The desired full embedding will be a composition of two contravariant



embeddings, say ¢otp. We will restrict the domain of ¢ to the image ¢ (UndGraphy’). So, we
need to describe this category. This is will be the aim of this section (we follow the monograph
[30]). The embedding ¢ is constructed in section 5. We preserve the notation used in this
section in the forthcoming sections.

By Comp we denote the category of compact Hausdorff spaces and continuous mappings.
Comp is not alg-universal, although its dual is almost alg-universal, that is the required
embedding is full up to the constant morphisms, more exactly

THEOREM 4.1.([37],[30]). There exists an almost full embedding
¢ : UndGraphg’ — Comp.
Thus, by definition, we have
(i) 1 is one-to-one on objects and on morphisms;
(ii) For any morphism f of UndGraphgy, (f) is a non-constant continuous mapping;

(iii) For every pair of graphs (X, R), (X', R') belonging to UndGraphy and every non-
constant morphism ¢ : (X' R') — (X,R) in Comp there exists a morphism
f:(X,R) — (X', R') in UndGraphg, such that ¢(f) = g.

In this case, Comp is said to be dual to an almost alg-universal category. In order to
describe the category ¢(UndGraph®), we recall some definitions.

We define continua as connected compact Hausdorff spaces with more than one point.
Such spaces are, consequently, infinite sets. A Cook continuum is a continuum D such that
for any subcontinuum S of D, each continuous mapping f : S — D is either a constant
mapping or the inclusion. Continua with this property were given the name Cook continuum,
since it was H. Cook [6] who firstly constructed such a continuum. Each continuum has a
countable pairwise disjoint system of its subcontinua. See the Appendix A of [30] for details.

We recall that a topological space D is said rigid if each continuous mapping f: D — D
is either a constant mapping or the identity. The following property is satisfied:

(1)Let X, X' be sets and D a rigid space. Denote by D~ the product space (i.e., with the
topology of the pointwise convergence). Let a and b be distinct elements of D. Denote by c,
(resp. ¢.) the element of DX (resp. DX') constantly equal to a. Consider, similarly, ¢, and
¢y Let g - DX — DX be a continuous mapping such that g(c,) = co and g(c}) = g(cp).
Then, there exists a mapping [ : X — X' such that g(a) = aof for all a € DX,

Given a graph (X, R) we say that Y C X is an independent set of (X, R) if no two vertices
of Y are joined by an edge, i.e., if {z,y} C Y = {x,y} € R. A characteristic mapping
hy : X — {0,1} of a set Y C X is defined to be hy(y) =1 for y € Y and hy(y) = 0
otherwise.

Now, we proceed with the construction of ¢, which is done after several steps, as follows:

e Choose A, B, C, H pairwise disjoint subcontinua of a Cook continuum. Thus, between
two distinct continua of the system A, B, C, H no other continuous mappings are allowed
than the constant ones. Moreover, each one of those spaces is rigid.

e Choose distinct elements ag,a1 € A, by, by € B, ¢g,c1 € C,0,1,a,b € H.

e Given a graph (X, R) € UndGraph, a compact Hausdorff space ¢(X, R) is constructed
considering the following elements:



the product space HX:

— ¢, and ¢, the elements of HX constantly equal, respectively, to a and to b;

the subspace X, C {0, 1}X C HX consisting of the characteristic mappings of all
independent sets of (X, R). The set X, is a closed subset of H* ([30, VI.16.9]);

the following identifications in the topological sum

S=AVBVHYV(X,xC)

agq ~ Cq,

bo ~ cp,

hy ~ (hy,CO) for all hy € XR’

ap ~ b ~ (hy,cl) for all hy € XR'

e Define 1(X, R) as the quotient space S/.. Since S is a finite sum of compact spaces,
S is still compact. Then, (X, R) is compact and it is easily seen that it is Hausdorf,
too.

To simplify the notation, allow us to suppose that A, B, H~, X x C are subsets of (X, R)
and ag = ¢q, ..., a1 = by = (hy,c1).

Let f: (X,R) — (X', R) be a morphism in UndGraphy,

77b(f) =4g: ¢(XI7R,) — w(Xv R)
is defined as follows,

g(z) =z for z € AU B,
g(a) = aof for a € HX,,
g(hy,z) = (hyof,z) for (hy,z) € XR’ xC.

The mapping ¢ is correctly defined, since it preserves the identifications made in the
definition of the space ¥ (X, R). It is straightforward that ¢ is continuous. Clearly, 1 is a
one-to-one functor. A detailed proof of the fullness can be found in [30, VI.16.8-VI.16.14].
For the sake of clarity, we present a sketch of that proof.

Let

g: $(X',R') — (X, R)

be a non-constant continuous mapping. According to the following properties:

(2) Let L be one of the spaces H, A, B,C. Letd: L — (X, R) be a non-constant continuous
mapping. Then, either L € {A,B} and d(z) = z for all z € L, or L = C and there ezists
precisely one independent set Y such that d(z) = (hy,z) for all z € L, or L = H and
g(L) C HY;

(3) Let d : HX' — (X, R) be a non-constant continuous mapping. Then d(HX') C HX;

the mapping ¢ cannot be constant neither on A, B, HX nor {hy }xC for no hy € X - Thus,
by (2) and (3) again g(HX') C HX and g(z) = z for all z € AU B. Therefore g(c,,) = ¢,
and g(c,) = ¢,. By property (1) there exists a mapping f : X — X' such that g(a) = aof
for all &« € HX'. Then, g(hy,c1) = (hyof,c1) for every hy € X s, which means that f is a
homomorphism of undirected graphs. Again, by property (2) we have g(hy,z) = (hyof, z)

for all hy € Xp,, z € C. We conclude ¢(f) = g. O

The next Lemma, is for later use. It will help us to calculate the interiors and the closures
of subsets of the spaces of the form (X, R) for some graph (X, R).



Before proceeding we will fix some notation. By use of "cl”, "int”, "ext” and "b” we
denote, respectively, the closure, the interior, the exterior and the boundary taken in the
space which will index those keywords. Whenever the index space is ), we won’t use the
index if there is no ambiguity. We also we use the bar ~ to denote the closure of subsets of
Q. Given a set S we denote by S¢ the complement of S. We denote the canonical projection

by p: S — S/ =¢(X,R).
LEMMA 4.2. Let G be a subset of Y(X, R). Then
(i) G=pldsp H(G)));
(i) p(ints(p~(G)))is open = int(G) = p(ints(p~"(G)))-

Proof. (i) Firstly, consider F' closed in S. Then F' is compact. Therefore, p(F') is compact
in the Hausdorff space (X, R). That is, p(F') is closed. The immediate consequence is that
p(cls(p~1(G)) is closed. Now, the question is whether p(cls(p !(G)) is the least closed set in
(X, R) containing G, which is obvious.

(ii) Mutatis mutandis. Note that p(ints(p *(G))) is not open in general. Choose, for
instance, G = A. O

5. Construction of the embedding

¢ : Y(UndGraphg?) — SKri°P

The construction of ¢ is made after two steps. Several lemmas are established to insure
the correct definition of ¢. Let (X, R) be a graph of UndGraphg. Let’s denote Q = (X, R).
In order to define ¢(Q)) we are interested in a family of subsets of () stable under pre-images
under non-constant continuous mappings. For that we will choose a particular family 7 of
regularly open subsets of () and prove that it is a basis of (). We recall that an open subset
is said regularly open (r.o. for brevity) if it is equal to the interior of its closure. The basis
T will determine the Boolean part and also the action part of ¢(Q)) and was refined in a way
that, concerning the required fullness for ¢, the Boolean part will contribute to the definition
of a convenient mapping and the action part will force the continuity of that mapping. We
choose y1,y2 distinct points of A\{ap,a1} to be added to the structure of ¢(Q) in a manner
that the continuous mapping defined won'’t be constant.

We divide the construction of 7 into 8 parts to describe the specific situation around the
points ag,ay,...,hy (for hy € X) in Q. That is, 7 is defined to be the union

where

Ti={UsCQ:Uaro. of A, ag,a1 & cla(Us), y1,y2 & ba(Ua)},

Ts={Up CQ:Usp ro. of B, by, by & clp(Up) },

T3 = {UHX CQ:Ugpx €Ty, cayep & clgx(Upx) and clgx (Ugx) Xp= Q)}v

here, 7y denotes the set

]e_[ U, : Uz roo. of Hyx € X and only a finite number of U,’s is different of H}
TEX



Ta={(Upx N Xp)xUc € Q: Ux € T, Uc is ar.0. of C,co,c1 & cle(Uc) },
T ={UaUUgx CQ:Usro. of A, ag € Us, a1 & cla(Ua), y1,y2 & ba(Ua)
Upx € To, ca € Ugx, ¢y & clyx (Upx), clyx (Ugx) N Xp
5 = {UBUUHX CQ:Ugr.o. of B, by € Up, by € clp(Up),
{
{

\‘|

0},
Ugx €T, cp € Ugx,cq QCZHX(UHX),CZHX(UHX)Q XR (Z)},

Ugx UUgxx N XR)XUC CQ:Uyx €Ty, cayep & clgx (Ugx),
clrx (Ugrx) N X, = Uprx N Xy # 0,Uc 10, of C, e € Ug, 1 € cle(Uc) }

Ts = \UaUUpU(XzxUc) CQ:Usr.0. of A, a3 € Ua,ag & cla(Ua),
y1,y2 €ba(Ua),Up r.0. of B, by € U, by & clp(Ug),Uc r.0. of C, ¢; € Ug,
<o chc(UC)}-

LEMMA 5.1. The family T is a basis for the topological space Q.

Proof. Let G be an open in Q, that is, p~}(G) is an open in S, where p is the canonical
projection. Consider z € G. We are going to show that there exists U € 7T such that
zeU CAG.

The spaces A, B,C, H are regular, since they are compact Hausdorff spaces. Thus, each
one of them has a basis of regularly open sets.

We have several cases for z:

1. z € A\{ap, a1}
Therefore there exists a regularly open Uy in A such that

2€Uy Cp YG)NA.

A is Hausdorff and regular, so it is possible to choose Uy such that
ag,a1 & cla(Ua) and y1,y2 & ba(Ua). Thus, Ug = p 1 (U4) is an open in Q belonging
to 71.

2. z € B\{bo,bl}.

Mutatis mutandis for 1.

3. z € HX\ ({ca,cb}U XR).
Therefore there exists [] U, € Ty, such that
reX

ze MU, Cp " (G)NH™.
reX

Since X is closed in H X (cf. 4) and since HY is Hausdorff and regular, we can choose

[I U, such that
reX

s ((ILU2) 0 (XU fener}) =0,

Moreover [] U, is open in Q since p~! ( I1 Ux> = [I U,. Thus, [] U, € Ts.
reX reX reX reX

4. 2z € Xpx(C\{co,c1}).

Mutatis mutandis for 1.
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5. z =ap = cq.

On one hand, there exists U4 regularly open in A such that

ap €Us Cp YHG)NA.

Again, since A is by Hausdorff and regular it is possible to choose Ug such that
a1 & cla(Uas) and y1,y2 & ba(Uas). On the other hand, there exists Uyx € Ty such
that

co € Ugx Cp Y G)NHY.

And since H* is Hausdorff and regular it is possible to choose Ugx such that
dpx (Upx)N(XpU{e}) = 0.
Therefore U = Uy |JUpgx is an open in ) belonging to 7s.

6. z =by = .

Mutatis mutandis for 5.

7. z=hy = (hy,CU) S XR'
In this case there exists Uy € 7 such that

hy €Uy Cp H(G)NHY.
We can choose U; in such a way that
CasCy & clyx (Ur).
Concurrently, there are Us € Ty and Ue regularly open in C, such that
(hy o) € (V2N Xg) xUe € pH(G) N (X xC).

Uc can be chosen such that
a1 & ce(Ue).
Let’s put U’ = Uy NUs. We can choose CUIE_[XUx € To, such that xle_[XUgg CU', hy(z) € U,
and clg(U,)N{0,1} = U, N{0,1} for each z € X. Thus,
U= <x1€_[XUa,) U <<x1€_[XUx> N XR> x Uc is an open in ) belonging to 7.

8. z=a1 =b = (hy,Cl),VhY € XR'

Therefore, there are regularly open sets U4, Up, Uc in each space such that
2 e UsUUU (X, xUc) CpH(G)N (AUBU(XRXC)) .

Moreover, Us,Up,Uc can be chosen such that ag & cla(Ua), y1,y2 & ba(Ua),
bo & clp(Ug), co & clc(Uc). The open set Ua JUp U( X xUc) belongs to Ts. O

11



STEP 1. We define ¢(Q) = (Bg, Ag), where
e Bg is the Boolean subalgebra of exp(Q) generated by T | {{yl}, {yg}};

e Ag is the subalgebra of exp(Q x Q) relative to the operations U,o and * generated by
{AU U e T} U {Qx{yl},Qx{yg}} for Ay = {(x,x) x € U}.

LEMMA 5.2. Ag is the set of binary relations on Q of the following type

Ag UG x{y1} UGax{ya}
for every G,G1, Gy belonging to the subalgebra By of (exp(Q),U,N) generated by T .

The proof is an easy exercise in the Kripke structure operations. Notice that the elements
of B are open sets in (). O

LEMMA 5.3. (Bg,Aq) is a separable Kripke structure.

Proof. We have to show the closure under <>. Let p € Bg. It is enough to prove the
closure for Ag, G x{y} € Ag:

e <Ag,p>=GnNp € BQ,

G ifyep

¢ <G><{y},p>:{ ®  otherwise € Bo.

It remains to prove that (Bg, Ag) is separable. Let R;, Ry be binary relations belonging
to Ag, such that Ry # Ry. Suppose (z,y) € Ri\Rs.

o If y € {y1,y2} then {y} € Bg. We have z e<Ry,{y}>, but
x €<Ra,{y}>.

o If y & {y1,y2} then there exists Ag C Ry, such that y € G and y = z. Hence,
x €< Ry,G\{y1,y2} >. Suppose that z €< Ra, G\{y1,y2}>. Then, there exists i’ €
G\{y1,y2}, such that, (z,y) € Rs. Furthermore y # vy, i.e., y' # x. Therefore
y' € {y1,y2}, which is a contradiction. O

STEP 2. Let (X', R') be another graph in UndGraphg. Let Q', Ty, Ty, T, T 1y, ¢h
stand for (X', R') as Q, 7o, T1,---, T3, T, Ca, ¢y stand for (X, R). If g : Q' — @ is a morphism
of ¥(UndGraphg’), we define

d(9) = (85, 07) : (B, Aq) — (Bor, Agr)
by putting
(i) ¢g(p) =g~ (p) for p € Bo;
(i) ¢5(Ac) = Ag1(g) for Ag € Ag;
(iii) ¢5(Gx{y}) =g 1(G)x{y} for Gx{y} € Ag;

(iv) For the remaining elements of Ag use (ii), (iii) and the fact that qbz preserves finite
unions.

12



REMARK 5.4. Suppose that ¢ is a well defined full embedding. Then all the homo-
morphisms (hi,h2) : (Bg, Ag) — (Bgr, Ag') among the Kripke structures of the image
subcategory of ¢ are of the described form, that is (hy, he) = ¢(g) for some continuous state
mapping g : Q' — Q. In particular, hi(p) = g (p) for each p belonging to the basis 7.
Besides, for every z € @) the singular set {z} is the intersection of all its open neighbour-
hoods belonging to 7~ and pre-images under g preserve those intersections. Therefore (hq, h2)
is uniquely grounded and ¢ is uniquely compatible. Thus, the mentioned class of Kripke
structures will be perfect.

Since 1 is a full embedding, we have g = ¢(f) for one and only one morphism of graphs
f:(X,R) — (X',R).

The rest of this section is devoted to the proof that ¢ is a well defined embedding.

LEMMA 5.5. We have

(i) 7' {m}) ={m}r € By and g '({y2}) = {v2} € Be;
(ii) ForUeT, ¢ (U)eT;

(iii) For p € Bg, g (p) € By

Proof. (i) Follows from last remark.
(iii) Follows from (i) and (ii).
(ii) Beginning with some remarks we will reach the aimed conclusions for each set U € T.

(a) For [1 U, € To, g ! ( [1 Ux> = ,H Ul €7, where U, = (| Us, as weare
TEX TEX r'ex’

vef~1({a'})
going to verify.

It happens that ¢! < 11 Ux) C g Y(HY) C HY'. Then,
reX

o € 971 <a:16_[XU:v) < aof € xle_[XUx = Vee X, af(z) €U, =

—Va' € X', az') € N Us.
ve{z:f(z)=a'}
Notice that it may happen {z : 2’ = f(z)} = 0. In that case, we make the usual convention
ﬂ U, = H. Moreover, each U, appears in the expression of only one of the U!, otherwise the

zeD
mapping f wouldn’t be a well defined mapping. Consequently, only finitely many U,’s are

distinct from H in the expression of U.,, then U, is a regularly open set. Therefore, we can
conclude that the product ,H U!, is in 7g.
z'ex’

(b) For U € Ty, we have
clyxr (g7 (U)) C g~ (clgx (U)).
Now, we consider the different types of elements of 7.

1. If U € T1, trivially we have ¢~ (U) =U € T;.
2. If U € Ta, mutatis mutandis for 1.

3. If U € T3, it follows from the above remarks that ¢=1(U) € T3.

13



4. U = (( IT Ux> N XR> xUq € Ta, we have
reX

g <<<:cle_[XU$) N XR) XUC) S gil(XRXUC) C XpxC.

As a consequence, we can write

(e )] - () e

5. fU=UsU le_[ U, € Ts, it happens that
rEX

(o0 (1) =00 (102)-

Moreover, if ¢, € ( [I Ux> we have ¢, € le_[ U.:. Therefore, the conclusion that g 1(U) € T
TEX 'ex’

follows easily from the above remarks.

6. If U € Tg, mutatis mutandis for 5.

7. U = < IE_IXUJ;) U << IE_IXU$> N XR> xUc € Tz, we will have ¢71(U) € T/UT{. In

fact,
P () U (1) o)) -
N <$'1€_[X’U;B,> J <<w’1€_[X'U‘Z”') 4 XR') *e

By remark (b), if a characteristic function hy € clgx ( ’le_[ U:;,> then
rex’

g(hy) = hg-1(y) € clyx < IE_IXUQ,). Since U € Tz, we have g(hy) € IE_IXUQ,. Conse-

quently, hy € ,H U.:. Therefore,
z'ex’

CZHX/ (x’le_[XlU!v,> n XR’ = ( H Ué/) n XR"

x'ex’

The conditions on ¢, and ¢} are also verified. Finally, if
I1 ’,> X
(x’e X/Uiv N R a 0

then g 1(U) € T7. Otherwise, ¢ 1(U) € T3.

8. It U= Us UUp U(X, xUc) € Ts then ¢ (U) = UaUUpU(X,, xUc) € T3. O

LEMMA 5.6. ¢(g) is a well defined homomorphism of Kripke structures.
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Proof. It follows from Lemma 5.5 that qb; is a well defined map. Besides, qﬁg is a well defined
mapping too, since each R € Ag admits only one decomposition
R = AgUG1x{y1} UGyx{ys} (is a consequence of the choice of the elements of 71,75 and
Ts). qb}l is, trivially, a homomorphism of Boolean algebras. ¢§ is additive by construction.
The preservation of the composition is a direct consequence of the following fact

(*) for p € By and y € {y1,42}, y€p iffy €g 'p).

We will verify that qbz preserves . For Aq UGy x{y1} UGax{y2} € Ag we have

92 (Mg UGy} U Gax{ye}))*) =
= Mg Ug M (G1) < (i} Ug™H(Ga) x {un} U (@' x5, Y N g7 (G1) x {1} U
U@ %05 Y g (Ga) < {m}) =
= (AQ’ Ug™(G1)x{y} Ug™(G2) X{yz})* =

= ($2(AG UG x{n} U Gax{pa}))
where the Kronecker symbol § is used with the following meaning, for y € Q" and F C Q":

y () otherwise.

5F:{ Q ifyeF

It remains to prove that ¢, preserves <>. It is enough to analyze the cases
Ag,Gx{y} € Ag, for p € By:

o ¢5(<Ag,p>) = ¢p(GNp) =g H(G)Ng 1 (p) =<Ay 1), 9 ' (p)>=
=<7 (Ac), g (p)> .

o $L(<Gx{y}hp>) = { glw(G) ifyep

otherwise,
_ _ HG) ifyeg!
<g2(Gx (). 4(p)>=<g7 (C) x {u}.g 1(p>>={ e e @)
and then the conclusion follows from (*). O

PROPOSITION 5.7. ¢ is an embedding.

Proof. 1Tt is trivial to show that ¢ is a one-to-one functor on objects. In order to show
that ¢ is also faithful consider

9.9 :Q —Q,
non-constant continuous mappings such that g # ¢’. So, there exists z € Q' such that
g(2z) # ¢'(2). Since Q is Hausdorff there are opens U, U’ in T verifying,
g(z) €U, ¢'(2) €U and UNU' =10,

that is,
2 € ¢y(U), 2 & oy (U).

Consequently, ¢(g) # ¢()- O
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6. The embedding is full

This section is devoted to the proof of the fullness of the functor ¢ constructed in the previous
section. The proof is still rather involving. We maintain the notation of the previous section.

Let
(h17h2) : (BQv‘AQ) — (BQ'“AQ')

be a homomorphism of Kripke structures. We are going to construct a non-constant continu-
ous mapping ¢ : Q' — @Q and show that g satisfies ¢(g) = (h1, h2).

Let z € Q'. Consider
Fo={F €Bg:Fisclosed in Q and z € hy(F)}.
We have
(i) FeFp = F #1;
(ii) F1,Fy € Fp = Fi N Fy € Fy;
(i) I, =N{F : F € F,} # 0 (it follows from the compactness of @, (ii) and (i));
(iv) I, contains one element only.
We prove (iv). If there are z1, 29 € I, with z; # 29, then there are Uy, Us € T such that
21 €Uq, 20 € Uy and Uy NU, = 0.
Thus, hy(Ur) N hy(Uz) = 0, since hy is a Boolean homomorphism.
Therefore, if © € hy(U1) we would have x & hy(Us), i.e., x € hy(Us). It would then follow

Us € F, and 22 € Ug, which is a contradiction.
If & & h1(Uy) we would reach a contradiction in the same way.

Thus, we define g(z) to be the unique element of the set I,. Let us write
g@)= (] F.
FeFs
LEMMA 6.1. g is a non-constant mapping.
Proof. We have,

<Qx{y},{y1}>=Q and <Qx{y2}, {y2}>= Q.

Applying the homomorphism £ to these equalities, necessarily we conclude

hi({y1}) # 0 and hy({y2}) # 0.

Taking one element z; in the first set and one element x2 in the second set, we get
9(x1) = y1 # y2 = g(22). 0

LEMMA 6.2. The mapping g is continuous.

Proof. The conclusion comes after the following sub-lemmas 6.3-6.7. O
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LEMMA 6.3. If U € T then hi(U) is open in Q'.

Proof. If U € T we have Ay € Ag. Thus,

<Ay, U>=U and <Ay, U>=0.
Applying the homomorphism i we conclude
(*) <h2(AU),h1(U)>: hl(U) and (**) <h2(AU), (hl(U))c>: 0.

Besides,
ho(Ay) = Ag UG x{yi1} UGax{y>}

for some open sets G,G1, G2 € Byr.
Then, (**) yields

<Ag UG x{y1} UGax{ys}, (hi(U)) >= 0.

Thus,
GN(h (U)) =0,

G C hi(U).
On the other hand, (*) gives, successively,

<Aqg UG, x{yl} U Ga X {yg}, hl(U)>: hl(U),

(Gnm@)u (G @) u (G o) = m (),
NS

G
Consequently, hq(U) is open. O

LEMMA 6.4. For U € T it holds:
(i) extg(U) is a finite union of elements of T ;
(ii) U € By;

(iii) hy(U) is closed in Q'.

Proof. (ii) Follows immediately from (i).
(iii) By (i) there are Uy,...,U, € T such that

ext(U) = U Ui.

Therefore

hi(T) = hy (ext(U)°) = (Lnj hl(Ui)> .
i=1

The conclusion follows from Lemma 6.3.

(i) Firstly, we decompose each space A, B, C and H* in some finite union of regularly
open sets in the respective space. Then, Q will be a finite union of elements of the basis by
means of those decompositions.

Since A is Hausdorff and regular there are regularly open sets UQ and U} in A such that

ap €UY, a1 € U} and USNUL = 0.
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Thus, UY C (U})¢ and since U}, is open, we get cl4(US) C (U})¢. Therefore, a; /€ cla(UY)
and the same applying to ag. Now, by regularity there are regularly open sets G° and G in
A such that
ag € G° C cla(G%) C UY,
a1 € G* Ccla(GY) C U}
The exterior of regularly open sets is still regularly open. Denoting by Ufl the set
ext 4(G°) Next4(G'), which is still regularly open, we have

A=UUU3UU3.

The same applying to B and C.

Since {0, I}X is a closed set, the same reasoning allows us to choose in 7y regularly
open neighborhoods Uf,x and U?;x of ¢, and ¢, respectively, in such a way that they
have their closure disjoint of {0,1}* and moreover, ¢, & clyx(Ulx), ¢, € clyx(Ugx).
Then, it is possible to choose U;(IX = [lU, € 7Ty such that Xp C U;;X, (thus

reX
cle(U;;X) NXp= U;;X N Xg), Cas ¢ & cle(U;;X) and
= Ul x UL UUYN

Actually, as Uf,x UUZX is strictly contained in HX, there exists o € X such that
Ug, U Ub is strictly contained in H as well, where Uy and Ub are the xg-factors of U? X and

ng, respectlvely Then, it is enough to consider in H U, all the U,’s equal to H, but Uz, -

As it was made for the space A, U,, can be chosen Such that
b
H =U; UUy, UUy,

and a,b & clg (Uy,).
We decompose X ,xC' by means of the corresponding decomposition of C' = ULUULYUE:

XpxC = (XpxUG) U (XpxUs)U (X, xUZ).

Given U € T, we find a finite decomposition of extg(U) in terms of the elements of T,
after replacing A, B, H* and X g < C in the following expression by their decompositions:

ext(U) = (ext(U)NA) U (ext(U)NB) U (ext(U)ﬂHX) U (emt(U)ﬂ(XRxC))

O

Denote by R7 the family of open sets of () which are finite unions of open sets of the
basis 7.

LEMMA 6.5. For G € RT and G4 € BQ, ZfG_l C G then hl(Gl) - hl(Gz).

Proof. Let G1 € T, since the conclusion about the more general case follows immediately
from this one.
Thus, the monotony of h; yields

h1(G1) C hi(G1) and hi(Gy) C hi(G2).
The required inclusion holds since h1(Gy) is closed. O

The following Lemma, is valid in every regular compact space.
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LEMMA 6.6. For every closed F in Q) we have

F= (1 G

{GERT:GDF}

Proof. The inclusion (C) is obvious. Suppose that it is a strict one. Let = be one element
of the intersection which doesn’t belong to F'. By regularity, there are open sets V1, V5 such
that

x €V, FCV, and VlﬂVQZ@.

For each y € F' there exists U, € T such that y € U, C V5. F' is compact, so there exists a
finite union of those Uy, let’s say G, satisfying F C G2 C Va. The hypothesis implies © € Ga.
Now, we have successively,

Vinh=0=WwCcVf = Gy C V¢ =z € V%, which is a contradiction. ]

LEMMA 6.7. For every closed F in Q the following equalities hold

g ' (F) = N m@= [] mG).

FCGeRT FCGEeRT

Proof. We begin with the proof of the second equality. The inclusion (C) is obvious. For
the proof of the other inclusion we consider G € Ry such that F' C G. @ is a normal space,
so there exists an open U’ such that

FCU CU CQ@G.

By an argument similar to the one used to prove the last Lemma, there exists U € Ry such
that
FCUCU.

Consequently,

FCUCUCAQG.
G).

By Lemma 6.5 we have hy(U) C hq(
Next, we prove the first equality.
(C) Let G € Ry such that F C G. Then, G° is closed and still belongs to Bg. By

definition of g we write z € h1(G¢) = g(z) € G°. That is, h1(G°) C ¢g~1(G°), which is

the same as ¢ 1(G) C h1(G), since h; is a Boolean homomorphism. From this together with

F C G, we conclude

97 (F) € hi(G)
as it was required.

(D) Let x € ﬂ h1(G). Thus, for every G € Ry, we have
FCGERT

It follows g(z) € G, then by Lemma 6.6, g(z) € F, that is, z € g~ }(F). O

REMARK 6.8. If g : Q" — Q is a non-constant continuous mapping, we can guarantee
the existence of a homomorphism of graphs

f:(X,R)— (X',R)
such that 1(f) = ¢g. Therefore, we know the form of g.
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The following proposition will complete the establishment of the fullness.

PROPOSITION 6.9. ¢(g) = (hq, ha).

Proof. To conclude that ¢; = hy is enough to prove that q%(U) = hy(U), for every

UeTU {{yl}, {yz}}, since this set generates Bg. The proof of this fact is finished after the
Lemmas 6.10-6.14.

LEMMA 6.10. It holds h1({y1}) = g7 ({y1}) and hi({y2}) = g7 ({y2})-

Proof. We have <Q x{y1},{y1}>= Q. Applying hq, it follows that

<hy(@x{y}), ({1 })>= Q'

and so hy({y1}) # 0.
On the other hand, by definition of ¢, ¥ € h1({y1}) = ¢(y) = y1. Remark 6.8 implies

y = y1. Therefore,

h({y1}) = 97 ({un}).
Similarly for ys. O

Now, we have to prove that hi(U) = ¢g~1(U) for U € T. The definition of ¢ yields
hi(F) C g 1(F) for every closed F € By,.
So, we can write immediately

97 (U) € (U) € (U) C g~ (D).
If we show that int(g *(U)) C g '(U), then we will be able to conclude the required
equality, since h;(U) is open (Lemma 6.3).

LEMMA 6.11. For U € T, we have
int (¢71(T)) € 971D,

Proof. We consider the proof for U € T7, the other cases being similar or straightforward.
Note that g = ¢ (f) for some graph homomorphism f.

We begin with the calculation of ¢! ( le_[ U$> for le_[ U, € To. As in the proof of Lemma
reEX TEX

5.5(ii), we can write

g1 < I1 Ux) =gt ( I1 clH(Ua,)) = ,H Ve, where V= ﬂ g (Us).
e zEX rex’ vef-1({2'})

Now, if U = (xle_[XUQE) U ((:UIE_[XUx) N XR) xUc € Tz, we have
U = <x]€_[ clH(Ux)> Uel X, <<x1€_[XUx) N XR> xcle(Ue).

X
Since U € T, the set < IT Ux) N X is closed in X .
reX
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Therefore,

g YU) = ( 1 Vx,> U <<x,1gX,U;,) N xR,) xcle(Uc),

z'ex!
where
!U/ - ﬂ U$
zef~1({2'})
Since
! . , _ /,
czHX(<x,1€TX,Ux,) NXg,) = (wlng,Vx> N X (wlng,Ux) N Xp,

and each Vs is, effectively, a finite intersection, we have, successively,

int(g~(0)) =

= < Il th(Vx,)> Uintx, <<x,IGTX,U;,) N XR,) xinty (clo(Uc)) =

x'ex’
() 0 (02) Dng) e :

To finalize the proof of the fullness it remains to prove

It is sufficient to show that

ho(Av) = Agrwy,  ha(@x{yi}) = Q' x{y} and ha(@x{y2}) = Q" x{y2}

since those binary relations generate Ag.
We begin with the proof of a special case, which will be useful to solve the other cases.

LEMMA 6.12. hy(Ag) = Agr.

Proof. Let’s suppose that hy(Ag) Z Agr. Then, there exists z,y € @', with = # y, such
that (z,y) € ho(Ag). Necessarily, y € {y1,y2}.
Applying the homomorphism h to <Ag, {y}>= {y}, we have

<h2(Aq), hi({y})>= h1({y})-
Since hi({y}) = {y}, it follows that

z €<ha(Ag), {y}>= {y}

which is a contradiction. Consequently, ha(Ag) C Agr, i.e.,

ha(Ag) = Ag for some subset G C Q.

But, from <Ag, @>= Q, we have, successively,

<hy(A@), M(Q)>=m(Q) = GNQ'=Q' = G=Q". O
Ag Q' Q'

LEMMA 6.13. Let Ag € Ag. Then ha(Ag) = Ag-1()-
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Proof. We have Ag = (Ag)*. Therefore ha(Ag) = (h2(Ag))*, that is,
hg(AQ) = AQI Uhe(Ag) U (he(Ag); he(Ag)) U. ..

Then hy(Ag) C hao(Ag) = Agr. Thus, ha(Ag) = A, for some G' C Q'. Applying h to
<Ag,Q>= G we get

<AG1,QI>: hl(G)
Consequently, G' = h1(G) = g7 1(G). O

LEMMA 6.14. It holds hg(QX{yl}) = Q’X{yl} and hz(QX{yz}) = Q'X{yg}.

Proof. Applying h to <Qx{y1},{y1}>= Q we can write

<h2(Qx{y1}),{y1}>= Q'

due to Lemma 6.10. Then Q' x{y1} C h2(Q*x{v1}).
Similarly,

<Qx{y}, {ny}>=0 =<ha(Qx{m1}), {1 })>=0.

Consequently,
(@ x ({1} Nh2(@x{y1}) = 0.

Thus, we can finally conclude that
ha(Q@x{y1}) = Q" x{y1}.

Mutatis mutandis for ys. O

7. Applications
Now, we list some of the consequences of the alg-universality of SKri .
COROLLARY 7.1. The category SDA is alg-universal.

COROLLARY 7.2. Any monoid is isomorphic to the endomorphism monoid of some
separable Kripke structure.

Proof. This result is due to the fact that every small category is algebraic. Thus, it
is enough to fully embed in SKri the small category with one object and having the given
monoid as its endomorphism monoid. O

COROLLARY 7.3. For every group G there exists a separable Kripke structure K such
that G = Aut(K) = End(K).

Proof. Consider the small category with one object and having G as its set of endomor-
phisms. Notice that every endomorphism in this category is an isomorphism. O

The following property is established in every algebraic and algebraically universal cate-
gory as it was proved by Hedrlin and Sichler [12].

COROLLARY 7.4. SKri contains a proper class of mutually disjoint copies of itself.
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It was independently proved by Magill [24], Maxson [25] and Schein [36] that a Boolean
algebra is uniquely determined by its endomorphism monoid (that is, for Boolean algebras
B, B', if End(B) = End(B') then B = B’'). This property is not shared by the objects of
alg-universal categories as we show bellow.

COROLLARY 7.5. For any monoid M and for every cardinal n, there exists a family of
separable Kripke structures (K;)i<n with End(K;) = M and Hom(K;,K;) = 0 for distinct
1,7 <n.

Proof. 1t is enough to fully embed in SKri a small category S with n objects and with

morphisms
M ifi=y
S0, ) = { () otherwise

for objects i and j of S (composition in S is defined according to the product in the monoid
M). O

COROLLARY 7.6. Let (I,<) be a poset and let (Gi)icr be a family of groups. Then,
there exists a set S and a family (K;)icr of separable Kripke structures on S, such that
G; = Aut(K;), fori € I. Moreover, a Kripke structure K; is a subalgebra of K; iff i < j.

Proof. The statement above is, once more, due to the possibility of fully embedding a
convenient small category & in SKri.

The construction of S is as follows. We suppose that there exists the meet i A ' of each
pair 4,7" € (I, <) and that there exists the maximum 1 of (I, <) as well. Otherwise, the set T
is enlarged, and the corresponding new groups G;’s are taken arbitrarily. Thus, we define

ObjS =T
and for every 4,4" € T the set S(4,4") of all morphisms of S from i to 7' is
8(7’71,) = {(pljvgvvjl') rjel,j < Z/\Zlag € G]}v

where p;; and 7, are formal symbols making the set of morphisms disjoint for different pairs
of objects in order to have the domain and the codomain of an object in S correctly defined.
The composition of morphisms in § (which is written, for convenience, from the left to the
right) is defined by

(pijs9-9'svjin) i j=(ini)=5"

Nl _ ) (pij; 9, ngwf) if  j=(ini") 2"

(b2 9.750)e(piy 9 i) = (pijrs g yjrin) i G#GAD=5"
(pljoa s YVioi! 1) it jo=(inj"),do#d. jo#i',

where g € G, ¢’ € Gj and 1 is the unit of G},. It is routine to check the associativity of the
composition, hence S is really a category. This category was defined in [16].

For every pair i,j € I, with i < j, let us denote ¢;; = (psi, 1,7ij), (where 1 is the unit of
the group G;) and rj; = (pji, 1,7ii). Then, for every i, rj; = ¢;; is the identity 1;. For the
sake of simplicity, we denote by g (€ G;) the morphism (p;i,g,7i;). Thus, each morphism
(pijs 9:vjir) is the result of the composition r;jogoc;y.

(*) For each ¢ < j, ¢;; is a monomorphism (moreover, since c¢;jorj; = 1;, each ¢;; is a
coretraction and r;; is the correspondent retraction). Besides, whenever i £ j, there are no
monomorphisms in S(7,j) since every morphism in S(4, j) is the composition of r;;jocin;.i
with itself.
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(**) Every g € Gy, seen as a morphism in §(i,¢) is an isomorphism, and there is no other
isomorphism in S(4,1).

Let FF : S — SKri be a full embedding. Then, K; = F(1) is a separable Kripke
structure on a set, let’s say, S. Consider, for each ¢ € I, the separable Kripke structure
K; = (F(ci1)) (F(4)) on S, which is the image of F'(¢) under the monomorphism F(c;1).

The conclusion follows from remarks (*) and (**). O

Recalling the condition (M) referred in the section 3, since SKri is algebraic we can
establish,

COROLLARY 7.7. SKri it is universal iff (M) happens.

Every class of finitary algebras closed under the formation of homomorphic images, sub-
algebras and products is a variety, that is, can be presented by a set of equations. This is the
well known Birkhoff theorem. Therefore, a countable set of variables is enough to describe
the equations satisfied by all the algebras of such classes of algebras.

Now, the question to be addressed is about the number of variables necessary to describe
classes of finitary algebras presented by implications. Regarding the existing flexibility in the
definition of the concepts used bellow, we follow [2].

To define implication we fix a type €2 of finitary algebras and a set V' of variables. So, a
V-implication for Q-algebras is a formal expression

{ti = tli}iej —— 8§ = 8’

where I is an index set and all ¢;, #/;, s and s’ are terms of the absolutely free Q-algebra V#
generated by V.
We say that an Q-algebra A satisfies that implication if for each substitution of variables

f:Vv—A
we have f#(s) = f#(s'), whenever
() = f#(t;) for all i € I,
where f# : V# — A is the homomorphic extension of f.

Classes of algebras closed under subalgebras and products, which we will designate by
SP-classes, are presented by implications. This is a Theorem of Mal’cev (cf. [2]). The set of
premises of an implication can be infinite, which gives rise to the question whether the number
of variables to describe the class of implications satisfied by a given SP-class of algebras is
always bounded or not. If we define a quasivariety to be a class of similar algebras presented
by a set of implications then the question is whether SP-classes are always quasivarieties.
(Although, in [1] a quasivariety is defined to be an SP-class of similar algebras.). The answer
turns out to be dependent of the set theory we live in.

The problem was solved by Addmek in [1] where he proved that each SP-class of algebras
is a quasivariety iff the following condition is stated:

Vopénka’s Principle: every class of models of a first order theory in which no model has
an embedding to another one is a set.

Vopénka’s Principle can be reformulated in terms of the category of graphs yielding:

The category of graphs does not have a discrete full subcategory whose objects form a
proper class.
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Notice that, by Theorem 7.5, in every algebraically universal category there exists a
discrete full subcategory whose objects form a set of prescribed cardinality.

In Bernays-Godel set theory with the axiom of choice for classes (BGC) measurable car-
dinals do exist if Vopénka’s Principle holds. Therefore, the negation of Vopénka’s Principle
is consistent with BGC set theory.

Simultaneously, Vopénka’s Principle is also consistent with BGC set theory if huge cardi-
nals exist. For details see [2] and [15]. From the alg-universality of SKri another formulation
of Vopénka’s Principle is possible:

COROLLARY 7.8. Vopénka’s Principle holds iff there is no discrete full subcategory of S
Kri whose objects form a proper class.

Moreover, as in [1] one can deduce,

COROLLARY 7.9. Under the negation of Vopénka’s Principle there exists an SP-class of
Kripke structures which is not a quasivariety.

8. Open problem on test algebras

A test algebra is a dynamic algebra endowed with one more operation ([29]), the test:

7:B— A

and one more equation, namely

<pl,q>=pAq.

A Kripke test structure (B,.4,S) is a Kripke structure equipped with a binary relation
p? = {(s,8) : s € p} for every p € B. In the presence of test, Kripke structures gain
expressiveness, since the meaning of the programs if p then a else b and while p do a can be
captured, respectively, by (p?)a U (=p?)b and ((p?)a)*(—p?). Some results on test algebras
can be obtained with slight modifications on results on dynamic algebras. See, e.g. [32].

The open problem is ” Is the category of test algebras and their homomorphisms alg-
universal’?
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