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Abstract

Non parametric inference for point processes is approached using histograms� which provide a

nice tool for the analysis of on�line data� The construction of histograms depend on a sequence of

partitions� which we take to be non embedded� This is quite natural in what regards applications�

but presents some theoretical problems� On another direction� we drop the usual independence

assumption on the sample� replacing it by an association hypothesis� Under this setting� we

study the convergence of the histogram� in probability and almost surely� �nding conditions on

the covariance structure� which is well known to be the determinant factor under association� to

ensure the convergence� On the �nal section we look at the similar question regarding the �nite

dimensional distributions� proving a convergence in distribution to a gaussian centered vector

with a covariance we can describe� The main tool of analysis will be a decomposition of second

order moment measures�

AMS Classi�cation� ��G��� ��G��

� Introduction

Non parametric inference for point processes has developed using methods based on those used
in classical functional estimation� where the estimators belong essentially to two big families� his	
tograms on one side and kernel on the other
 Although kernel type estimators have became increas	
ingly popular as they produce smoother estimators� the use of histograms still proves e�cient in
many situations
 Besides� some recent variations on the classical histogram enables an improvement
of the convergence rates for this type of estimator� see Beirlant� Berlinet� Gy�or� 
��
 Histograms
have been used in estimation of several models depending on point processes
 Some examples in	
clude regression� as in Bensa��d 
��� Palm distributions� as in Karr 
��� ��� ��� or Ni�er�e 
���� mean
local distributions of composed random measures� as in Mendes Lopes 
��� or Saleh 
��� ���� or
density estimation� as in Ellis 
���
 This list of references by no means pretends to give an ac	
count of the existing literature� but only mentions some examples illustrating each problem
 For
a more complete list of publications on these subjects we refer the reader to one of the following
monographs� Bosq� 
��� Bosq� Lecoutre 
��� Bosq� Nguyen 
�� or Karr 
���
 All the above mentioned
problems produce results which look similar� in many cases reducing to translations to a di�erent
setting of what is known in some previous one
 This similarity is due to the fact that these problems
may be addressed to in an uni�ed way by de�ning a convenient general setting� reducing the esti	
mation of the functions in each case to the estimation of a Radon	Nikodym derivative between the
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means of two given random measures
 Some examples on how this framework may include some
of the referred problems will be given later
 This general framework has been used in Bensa��d�
Fabre 
��� Ellis 
���� Ferrieux 
��� ���� Jacob� Mendes Lopes 
���� Jacob� Oliveira 
��� ��� ��� and
Roussas 
��� ��� ���� where the articles 
��� and 
��� are concerned with histograms� while the others
study kernel type estimators� although 
��� and 
��� ��� ��� used a somewhat reduced framework by
imposing some special properties on the random measures� namely� supposing one of them� the one
with respect to which we need the absolute continuity to be veri�ed� typically a Lebesgue measure�
to be almost surely �xed� and 
��� deals with absolutely continuous random measures� thus passing
the problem to an analysis of the random densities involved
 Half of the articles referenced study
estimation based on an independent sampling of the point processes
 Some results for dependent
sampling have been obtained by Bensa��d� Fabre 
�� where the kernel estimator is studied based
on samples which are strong mixing
 On another direction on suppressing the independence as	
sumption� Roussas 
��� and� more recently Ferrieux 
��� ���� considered associated samples� both
studying kernel estimators
 Roussas 
��� ��� also studied kernel estimates for associated random
�elds


Here we will be concerned with histograms for associated compound point processes
 These
models provide the more interesting examples to illustrate our conditions
 The use of histograms
relies on the choice of a sequence of partitions of the base space� which in some cases� is constructed
by splitting some of the sets of a partition to construct the next one
 This procedure produces nice
embedded partitions which are very convenient as they allow the use of martingale results as a tool
for proving the required convergences
 This was used by the authors in 
���
 This procedure is quite
unnatural from an applications point of view� where it is more common to require that the sets in
each partition are of same size� with respect to some reference measure
 This requirement� together
with the embedding procedure� produces sets which decrease quite fast� and this may mean that the
results thus obtained are of limited interest� as the number of new observations needed to change
to the next partition would be very large
 Some work	arounds to this feature have been made by�
for example� Abou	Jaoud�e 
��� Grenander 
��� or Karr 
���
 The conditions used typically linked
the number of sets in each partition to the moments of the unknown distribution� as it is done in
Karr 
���
 The authors gave another solution to this problem� using the same general framework
as here� but for independent samples in 
���� where the conditions imposed depend only on the
distribution or only on the sizes of the sets
 As this seems a more natural procedure to apply� the
results in 
��� will be the base for the extension to the associated sampling setting


� Preliminaries

In order to de�ne more precisely our framework let S be a complete� separable and locally compact
metric space� B the ring of relatively compact Borel subsets of S� andM the space of non negative
Radon measures on S
 A random measure is any function de�ned on some probability space with
values inM measurable with respect to the �	algebra induced by the topology of vague convergence
�we refer the reader to Daley� Vere	Jones 
���� Kallenberg 
��� or Karr 
��� for basic properties on
random measures�
 In what follows � and � are random measures that are supposed integrable�
that is� such that the set functions ��B� � E��B� and ��B� � E��B� de�ne elements of M� and
that these mean measures verify the absolute continuity relation �� �
 As it will be evident� we
will be interested in estimating a version of the Radon	Nikodym derivative d�

d� 
 We will denote by
�IA the indicator function of the set A


We now exhibit how some of the mentioned estimation problems may be included in the present
framework
 We will be interested on the interpretations� in each setting� of the Radon Nikodym

�



derivative d�
d� 


� �Ellis 
���� Density estimation� let � be a measure on S and take � � � a
s
� � � �X � where
X is a random variable with absolutly continuous distribution with respect to �
 Then d�

d� is
the density of X with respect to �


� Regression� suppose Y is an almost surely non negative real random variable and X a random
variable on S
 Then� if � � �X and � � Y �X � the conditional expectation E�Y jX � s� is a
version of d�

d� 


� Thinning� suppose � �
PN

i�� �Xi
� where the Xn� n � IN� are random variables on S� �n� n �

IN� are Bernoulli variables� conditionally independent given the sequence Xn� n � IN� with
parameters p�Xn�� and put � �

PN
i�� �i�Xi


 Then p � d�
d� is the thinning function giving the

probability of suppressing each point


� Marked point processes� let 	 �
PN

i�� ��Xi�Ti� be a point process on S � T such that the

margin � �
PN

i�� �Xi
is itself a point process
 If B � T is measurable� choosing �n � �IB�Tn��

and � �
PN

i�� �i�Xi
� we have

E	�A�B� �

Z
A

d�

d�
�s� E	�ds� IR��

thus d�
d� is the marking function


� Cluster point processes� suppose 	 �
PN

i��

PNi
j�� ��Xi�Yi�j� is a point process on S�S such

that
PN

i��

PNi
j�� �Yi�j is also a point process �for which it su�ces that� for example� N and

the Nn� n � IN are almost surely �nite�
 The process � �
PN

i�� �Xi
identi�es the cluster

centers and the processes 	Xi
�
PNi

i�� �Yi�j identify the points
 The distribution of 	 may be
characterized by a markovian kernel of distributions �
x� x � S� with means ��x� x � S� such
that� conditionally on � �

PN
i�� �xi � �	x� � � � � � 	xn� has distribution 
x� � � � � � 
xn 
 De�ning

��A� � 	�A�B�� with B � B �xed� we have d�
d� �x� � �x�B� �	almost everywhere


� Markovian shifts� this is a special case of the previous example� when Ni � � a
s
� i 	 �

Looking at the previous example� the conclusion is that �Y�� � � � � Yn� has distribution �x� �
� � � ��xn �we replaced the double index of the Y variables by a single one as� for each i �xed�
there is only one such variable�
 Then it would follow that d�

d� �x� � �x�B� � P�Y � BjX � x�


So� as illustrated by the examples� we will be concerned with the estimation of d�
d� based on

a sample ����� ���� � � � � ��n� �n�� of the random pair ��� ��
 As mentioned before� we suppose the
pairs ��i� �i�� i � �� � � � � n� to be associated� that is� given n � IN and any two coordinatewise non
decreasing functions f� g de�ned on M�n� for which the covariance below exists� we have

Cov�f���� ��� � � � � �n� �n�� g���� ��� � � � � �n� �n�� 	 ��

�Given 	�� 	� �M� we say that 	� 
 	� if 	��	� �M�
 For basic results on association we refer the
reader to Newman 
���� and for association of random measures to Burton� Waymire 
�� or Evans

���
 An account of the relevant results for our purposes may be found in Ferrieux 
��� ���


We note that the density estimation and the regression cases mentioned above do not make
sense for the associated sampling
 In fact� it is easily checked that� whenever a point process has
a �xed number of independent points� it can not be associated with itself� so it is impossible to
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construct a sequence of associated point processes with that same distribution
 To check the above
suppose � � �X 
 Then it is easily seen that Cov��� �� � E��X�X� � PX �PX 
 More generally� if
� �

Pn
i�� �Xi

� for some independent random elements Xi with distributions PXi
� not necessarily

equal� then

Cov��� �� �
nX
i��

�
E��Xi�Xi� � PXi

�PXi

�
�

As E��Xi�Xi� is a measure on S�S with support included in the diagonal and PXi
�PXi

is not
supported by the diagonal �except in degenerate cases�� we really �nd a signed measure


It should also be noted that it is not clear if there is any connexion between the X�� � � � �Xn

being associated and the �X� � � � � � �Xn being associated� thus meaning that there is probably no
overlap with the work of Ellis 
��� or Roussas 
��� ��� ���


In order to de�ne our histograms we need a sequence of partitions
 For reasons that will be
explained later we will take �k� k � IN� to be a sequence of partitions of a �xed compact set B � S�
instead of partitions of the whole space
 We consider the following assumptions

�P�� for each k � IN� �k � B�
�P�� for each k � IN� �k is �nite�

�P�� �k � sup fdiam�I� � I � �kg �� ��

�P�� for each k � IN and I � �k� ��I� 
 ��

�P�� maxI��k
��I� �� �


When including in our conditions the assumptions �P�� or �P�� we may specify the measure to
which these conditions are to be veri�ed� meaning that � is to be replaced by some other measure

When not stating anything about this� it means that we really keep the measure �
 The correct
indication of this measure is of importance when coupled with conditions �M�� and �M��� to be
introduced later� where there exists a measure playing a role of reference
 We will need these two
reference measures to be identical


Before proceeding introducing further assumptions� we may introduce an approximator of �a
suitable version of� d�

d� 
 Given s � B we denote by Ik�s� the unique set of �k containing the point
s� and de�ne� for each k � IN� the function

gk�s� �
X
I��k

��I�

��I�
�II�s� �

��Ik�s��

��Ik�s��
�

In the case of embedded partitions the convergence of gk to some version of
d�
d� is just a martingale

result� which is no longer available in our setting
 As it is well known� if there exists a continuous
version of the Radon	Nikodym derivative d�

d� � and if the sequence of partitions �k� k � IN� veri�es
�P��	�P��� the convergence

sup
s�B

jf�s�� gk�s�j �� �

holds
 The fact that everything is happening within a compact set is crucial to the proof of this
uniform convergence
 This is why we only consider partitions of a �xed compact set B


Based on the sample ����� ���� � � � � ��n� �n��� de�ne �n � �
n

Pn
i�� �i and �n � �

n

Pn
i�� �i
 The

histogram estimator is then

fn�s� �
X
I��k

�n�I�

�n�I�
�II�s� �

�n�Ik�s��

�n�Ik�s��

�



�we de�ne fn�s� as zero whenever the denominator vanishes� as usual�� where the dependence of k on
n is to be precised later
 The convergence of fn to some version of

d�
d� follows from the convergence

of fn � gk to zero
 The treatment of this later convergence was made� in the independent case� via
a martingale result concerning product measures of type E	��	�� where 	�� 	� � f�� �g �see Lemma
�
� in 
����
 Again� this was a consequence of the embedding of the partitions� no longer available
in our present framework
 To get around the di�culty we consider an assumption concerning a
decomposition of measures on the product space S�S� as considered in 
���
 We will say that a
measure m on S�S veri�es condition �M� with respect to the measure � on S if m � m� � m�

where m� is a measure on �� the diagonal of S�S and m� is a measure on S�S n�� verifying
�M�� m� � � � � and there exists a version �� of the Radon	Nikodym derivative dm�

d��� which is
bounded�

�M�� m� � ��� where �� is the measure on � de�ned by lifting �� that is� such that ���A�� � ��A�
with A� � f�s� s� � s � Ag� and there exits a continuous version �� of the Radon	Nikodym
derivative dm�

d�� 


Then the following result� which will play the role of the above mentioned martingale Lemma
in the independent case� holds


Theorem �	� �
���� Suppose m is a measure on S�S that veri�es condition �M� with respect to

� and the sequence of partitions �k� k � IN� veri�es �P����P��� Then

X
I��k

m�I � I�

��I�
�II�s� �� ���s� s�

uniformly on B�

Proof 
 Using the decomposition included in �M� we have two terms to look at� corresponding
to m� and m�
 As for the �rst

X
I��k

m��I � I�

��I�
�II�s� �

X
I��k

�

��I�

Z
I�I

�� d� � � �II�s� 



 sup
s�t�B

j���s� t�j
X
I��k

��I��II�s� 
 sup
s�t�B

j���s� t�jmax
I��k

��I� �� ��

As for the second term

X
I��k

m��I � I�

��I�
�II�s� �

X
I��k

m��I
��

���I��
�II�s� �

X
I��k

�
�

���I��

Z
I�

�� d�
�
�
�II�s�

and the uniform convergence of this expression to ���s� s� is just another version of the result giving
the already mentioned convergence of the sequence gk� k � IN


Note that �M� must be de�ned with respect to some measure
 If we do not mention any such
measure� it will be understood as being �
 As stated after introducing conditions �P��	�P�� what
will be important is that the reference measure is the same in both cases
 Then� the convergence
stated in Theorem �
� still holds with the obvious modi�cation on the de�nition of ��� becoming
the Radon	Nikodym derivative of m� with respect to the lifting of the used reference measure


We �nish this section quoting an useful result� enabling the separation of the variables in the
expression fn


�



Lemma �	� �
���� Let X and Y be non�negative integrable random variables then� for � 
 � small

enough�

�����XY � E�X�

E�Y �

���� 
 �

�
�
����� X

E�X�
� �

���� 
 �

�

E�Y �

E�X�

�


����� Y

E�Y �
� �

���� 
 �

�

E�Y �

E�X�

�
�

Using this Lemma� it follows that� for � 
 � small enough�

fjfn�s�� gk�s�j 
 �g �
	������n�Ik�s���n�Ik�s��

� ��Ik�s��

��Ik�s�

����� 
 �




���

�
	
j�n�Ik�s��� ��Ik�s��j 
 �

�
��Ik�s��





	����n�Ik�s��� ��Ik�s��

��� 
 �

�

���Ik�s��

��Ik�s��



�

� Convergence of the estimator

Having introduced all the de�nitions and preliminary results needed� we may now look at the
convergence of the estimator fn
 We begin by the convergence in probability� for which we state
two versions� the second one extendable to an almost complete result which we will not state here
for reasons that will be explained later
 In order to be more explicit about the dependence between
the di�erent indexes used� we will denote the set involved by Ik�n�� to stress on the dependence of
k� identifying which partition is to be considered� on n� the size of the sample


Theorem �	� Let B � B be compact and f a version of d�
d� continuous on B� Suppose the sequence

of partitions �k� k � IN� veri�es �P����P��� that there exist measures m��� and m��� such that� for

every n � IN�

�

n

nX
i�j��

Cov��i� �j� 
 m��� and
�

n

nX
i�j��

Cov��i� �j� 
 m���

with m��� and m��� both verifying �M� with respect to � and

n min
I��k�n�

��I� �� ��� ���

Then fn�s� converges in probability to f�s� for every s � B�

Proof 
 After separation of variables using ���� we apply Chebyshev�s inequality
 The term
corresponding to � leads to

P

�����n�Ik�n��s��� ��Ik�n��S��
��� 
 ���Ik�n��s��

�

�




 ��

��n���Ik�n��s��

�

n

nX
i�j��

Cov��i�Ik�n��s��� �j�Ik�n��s��� 



 ��

��n��Ik�n��s��

m���
� �Ik�n��s�� Ik�n��s�� �m���

� �Ik�n��s�� Ik�n��s��

��Ik�n��s��
�

�



and this converges to zero according to ��� and Theorem �
�
 The other term after separation of
variables is treated analogously


Note that in the preceding result� association implies that the covariance measures introduced
are really measures and not just signed measures
 It is possible to relax a little the requirements
imposed on the bounds for the covariances
 If we just impose that those covariances are uniformly
bounded by some constant� without supposing there is any kind of additivity on the constants for
each set� we may still �nd the convergence in probability at the cost of a slower decrease rate of
measures of the sets


Corollary �	� Let B � B and f a version of d�
d� continuous on B� Suppose there exist constants

c�� c� 
 � such that

�

n

nX
i�j��

Cov ��i�B�� �j�B�� 
 c�

���

�

n

nX
i�j��

Cov ��i�B�� �j�B�� 
 c��

If

n��� min
I��k�n�

��I� �� ��� ���

then fn�s� converges in probability to f�s� ��almost everywhere in B�

The proof follows the same steps as the proof of the theorem� using association to replace each
set by B and Markov�s inequality leading to rth order moments� that are� afterwards� controlled
using inequalities proved by Birkel 
��


Note that conditions ���� for the case � � �X � rewrites as

�

n

nX
i�j��

h
P
�
Xi � Ik�n��s�� Xj � Ik�n��s�

�
� P

�
Xi � Ik�n��s�

�
P
�
Xj � Ik�n��s�

�i

 c��

This kind of sum appears in other situations when studying association
 In fact� a general condition
for thightness of empirical processes in L�
�� �� is the uniform convergence of these expressions� as
proved in Oliveira� Suquet 
��� ���
 The same problem� but in the space D
�� ��� also depends on a
convenient treatment of these expressions� as in Yu 
��� and Shao� Yu 
���


A result about almost complete convergence for associated sampling seems to be out of reach�
unless we impose a signi�cantly slower decrease rate on the sets of each partition
 This is due to the
fact that there is no available version of the Bernstein inequality valid in this setting
 The method
used for proving Corollary �
�� based on moment inequalities for sums of associated variables by
Birkel 
��� may be used to derive an almost complete result but leads to conditions on the partitions
requiring a quite slow convergence rate of the sets used at each step and� further� this convergence
rate should be well tuned with the decrease rate of the covariance structure of the sequences
�n�B�� �n�B�� n � IN
 Thus� we would �nd conditions with the same drawbacks as those already
mentioned linking the size of the sets to the moments of the unknown distribution� that we are
trying to avoid here
 So� we must look for another type of convergence
 Instead of using separation
of variables based on Lemma �
�� the crucial step towards an almost sure theorem is to observe
that we do not change the partition each time a new observation is added to our sample� that is�

�



we go on using the same sets until the number of observations increases enough to justify the use
of the next partition
 This is what is implicitly included in conditions such us ��� or ���
 Besides�
we will not look at the di�erence fn � gk� but rewrite

fn�s� �
��Ik�n��s��

��Ik�n��s��

�n�Ik�n��s��

��Ik�n��s��

�n�Ik�n��s��

��Ik�n��s��

�

so� to prove the almost sure convergence� it is enough to prove that both
�n�Ik�n��s��

��Ik�n��s��
and

�n�Ik�n��s��

��Ik�n��s��

converge almost surely to �
 We will suppress the mention to the point s in all cases where confusion
does not arise
 For the almost sure convergence we need to identify where we really change from
one partition to the next one
 De�ne tk as the size of the sample where we use� for the �rst time�
sets belonging to partition �k
 These numbers will report how much more information will be
needed to change partition� and their increase must be well balanced in order to obtain the almost
sure convergence� as it is proved in the following result


Theorem �	� Let B � B be compact and f a version of d�
d� continuous and bounded away from

zero on B� Suppose the sequence of partitions �k� k � IN� veri�es �P����P��� that there exist

measures m��� and m���� such that� for every n � IN�

�

n

nX
i�j��

Cov��i� �j� 
 m��� and
�

n

nX
i�j��

Cov��i� �j� 
 m���

with m��� and m��� both verifying �M�� and

tk��
tk

is bounded ���

�X
k��

�

tkminI��k
��I�

��� ���

Then fn�s� converges almost surely to f�s�� for every s � B�

Proof 
 We shall check that� under the hypothesis of the theorem
�n�Ik�n��

��Ik�n��
converges to � a
s
�

the term corresponding to � being treated analogously
 The proof will follow the classical approach�
�rst we verify the convergence along the subsequence de�ned by the indexes tk� k � IN� and then
control the di�erence between these and the remaining terms of the sequence
 The �rst step reduces
to an application of Chebyshev�s inequality� as follows

P

�������tk�Ik���Ik�
� �

����� 
 �

�
� P

������
tkX
i��

��i�Ik�� ��Ik��

����� 
 �tk��Ik�

�




 �

��t�k��Ik�

tkX
i�j��

Cov��i�Ik�� �j�Ik�� 
 �

��
�

tk��Ik�

���Ik�

���Ik�

m���
� �Ik � Ik� �m���

� �Ik � Ik�

��Ik�

and this de�nes a convergent series� according to ��� and Theorem �
�


�



Suppose now that n � 
tk� tk���
 According to the de�nition of tk� it follows that Ik�n� � Ik� so

�n�Ik�n��

��Ik�n��
� �tk�Ik�

��Ik�
�

tkX
i��

�
�

n
� �

tk

�
�i�Ik�� ��Ik�

��Ik�
�
�

n

nX
i�tk��

�i�Ik�� ��Ik�

��Ik�
� ���

The �rst term equals
�
tk
n � �

���tk
�Ik�

��Ik�
� �

�

 As tk 
 n� the �rst factor is bounded� and the other

factor in this last expression converges almost surely to �� as proved in the �rst step
 As for the
second term in ���� we have� using the generalization of Kolmogorov�s inequality for associated
variables proved by Newman� Wright 
����

P



� max
tk�n�tk��

�

n

������
nX

i�tk��

�i�Ik�� ��Ik�

��Ik�

������ 
 �

�
A 



 P



� max
tk�n�tk��

������
nX

i�tk��


�i�Ik�� ��Ik��

������ 
 �tk��Ik�

�
A 



 �

��t�k�
��k�

tk��X
i�j�tk

Cov��i�Ik�� �j�Ik�� 



 �

��
tk��
tk

�

tk��Ik�

���Ik�

���Ik�

m���
� �Ik � Ik� �m���

� �Ik � Ik�

��Ik�
�

which de�nes a convergent series according to ���� ��� and Theorem �
�� so the second term in ���
also converges almost surely to zero� and this concludes the proof


� Finite dimensional distributions

We now look at the �nite dimensional asymptotics of fn�gk� conveniently normalized
 As in Jacob�
Oliveira 
���� in this section we will suppose that � is absolutely continuous with respect to some
�xed non atomic measure � on S� with Radon	Nikodym derivative f� continuous on the compact
set B� and that the sets in each partition have equal � measure
 Denote by hn the � measure of
each set in �k�n�
 Obviously� � will also be absolutely continuous with respect to � and we will

denote by f� a version of the Radon	Nikodym derivative d�
d	 that we will suppose also continuous

on B
 Further� we will suppose that both f� and f� are bounded away from zero on B
 Let us
�x s�� � � � � sr � B and denote by In��� � � � � In�r the sets in partition �k�n� containing each one of the
given points
 To prove the convergence in distribution of the �nite dimensional distributions we
will need some weak form of weak stationarity on the sample� expressed on the conditions we will
impose on the decomposition of the covariance measures ���
 The proof is based on the method used
in the proof of Theorem � in Oliveira� Suquet 
���� consisting in approximating the sums involved
by the sums of conveniently de�ned blocks and showing that we may reason as if these blocks were
independent
 For this later part� the main tool is the inequality proved in Theorem �� in Newman

���� relating the characteristic functions of associated random vectors with what should appear if
the coordinates were independent� setting up an upper bound using the covariances of the variables

Before proceeding to the result on the �nite dimensional distributions of the estimator� we state a
lemma giving a conveniently adapted version of this inequality


�



Lemma �	� Let Yn� n � IN� be associated random variables� r � IN and ��� � � � � �r � IR� For each

n � IN� de�ne
Xn �

rX
k��

�kYk�n and Xn �
rX

k��

�kYk�n�

Then� for every u�� � � � � ur � IR�������Ee
i
Pm

j��
ujXj �

mY
j��

EeiujXj

������ 
 �
X
k ��l

���ukul Cov�Xk� X l�
��� �

Proof 
 For each n � IN de�ne the functions fn�y�� y�� � � �� �
Pr

k�� �kyk�n and fn�y�� y�� � � �� �Pr
k�� j�kj yk�n
 Then fn�y�� y�� � � �� � fn�y�� y�� � � �� �

Pr
k�� ��k � j�kj�yk�n and fn�y�� y�� � � �� �

fn�y�� y�� � � �� �
Pr

k�� �j�kj � �k�yk�n� both are coordinatewise increasing� as the coe�cients of
these linear combinations are non negative
 Thus we may apply Theorem �� from Newman 
����
which gives the conclusion of this lemma


Let us introduce the measures� for each j� k � IN�

�j�k �
�

k

jkX
l�l���j	��k��

Cov�	��l� 	��l��� ���

where 	��l � �l or 	��l � �l for every l � IN� and analogously for 	��l
 Decomposition �M� de�nes

measures that we will denote m
��
�
��j�k and m
��
�

��j�k � where 	�� 	� � f�� �g� and analogously for the
corresponding Radon	Nikodym derivatives


In the course of proof of the next theorem we need to suppose that the sequence tk� k � IN�
is such that the di�erences tk�� � tk are strictly increasing
 As this is true� at least for some
subsequence� we will assume on the sequel this property veri�ed


Theorem �	� Suppose the sequence of partitions �k� k � IN� verify �P����P�� with respect to �
and

nhn �� �� ���

hn��
hn

�� �� ����

Given k � IN denote m the largest integer less or equal than n�k� Suppose that the measures �j�k
verify condition �M� with respect to � and the Radon�Nikodym derivatives de�ned there verify� for

each choice of 	�� 	� � f�� �g�
sup

j�k�n�IN�jk�n
sup
x�B

����
��
���j�k �x�
��� 
 c� �� ����

lim
m
��

�

m

mX
j��

�
��
���j�k � g
��
���k uniformly on B ����

lim
k
��

g
��
���k � g
��
�� uniformly on B ����

for some functions g
��
���k and g
��
�� continuous on B� Suppose further that for every sequence In �

�k�� �k decreasing to a discrete set and every constant C 
 ��Z

f
�� �In��Cnhng
�

hn
	�� �In� dP �� � ����

��



for every choice 	�� 	� � f�� �g� Then� the random vector

n���h	���n

�
�n�In���� ��In���� � � � � �n�In�r�� ��In�r�� �n�In���� ��In���� � � � � �n�In�r�� ��In�r�

�
����

converges in distribution to a centered gaussian random vector with covariance matrix

 �

�
����������������

g���� �s�� s�� � � � � � g���� �s�� s�� � � � � �
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� � � � � g���� �sr� sr� � � � � � g���� �sr� sr�
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� g���� �s�� s�� � � � � � g���� �s�� s�� � � � �
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� � �

���

� � � � � g���� �sr� sr� � � � � � g���� �sr� sr�

�
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Proof 
 Let c�� � � � � cr� d�� � � � � dr � IR be �xed and de�ne� for each n � IN� i � �� � � � � n� q �
�� � � � � r the random variables

T q
n�i �

�p
hn


cq��i�In�q�� ��In�q�� � dq��i�In�q�� ��In�q���

and

T q
n �

�p
n

nX
i��

T q
n�i� Zn�i �

rX
q��

T q
n�i� Zn �

�p
n

nX
i��

Zn�i �
rX

q��

T q
n �

For each j � �� � � � �m and q � �� � � � � r de�ne

Y q
n�j �

�p
k

jkX
l��j	��k��

T q
n�l�

Then

T q
mk �

�p
mk

mkX
i��

T q
mk�i �

�p
m

mX
j��

Y q
mk�j�

The variable Zn is the linear combination of the coordinates of ����� needed to use the Cramer	Wold
Theorem� while the variables Y q

n�j correspond to the blocks in which we will decompose our sums

The proof will be accomplished in �ve steps


Step �� We �rst approximate the characteristic function of Zn by the characteristic function
of Z indexed by a convenient multiple of k� which will be mk or �m � ��k as explained in the
following� with k � IN �xed
 As k is �xed and for n large enough� there is at most one change
of partition between the sample sizes mk and �m � ��k
 Suppose for the moment there are no
changes of partitions� or� if there is one corresponding to the sample size tl � 
mk� �m � ��k�� that
mk 
 n � tl
 In this case we approximate Zn by Zmk
���EeiuZn � EeiuZmk

��� 
 jujVar����Zn � Zmk� 



 juj
�
� �p

n
Var���

�
mkX
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�Zn�i � Zmk�i�

�
�

�
�p
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� �p
n

�
Var���

�
mkX
i��

Zmk�i

�
� ����
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n
Var���



� nX
i�mk��

Zn�i

�
A
�
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We now prove that this sum converges to zero
 The square of the �rst term is

�

n
Var

�
mkX
i��

�Zn�i � Zmk�i�

�
�

����

�
�

n

mkX
i�j��


Cov�Zn�i� Zn�j�� Cov�Zn�i� Zmk�j�� Cov�Zmk�i� Zn�j� � Cov�Zmk�i� Zmk�j�� �

Developing the �rst of these terms we �nd

�

nhn

rX
q�q���

mkX
i�j��

�
cqcq� Cov��i�In�q�� �j�In�q��� � cqdq� Cov��i�In�q�� �j�In�q����

����

�dqcq� Cov��i�In�q�� �j�In�q��� � dqdq� Cov��i�In�q�� �j�In�q���
�
�

The �rst term of this last expansion equals� using the decomposition �M��

mkhmk

nhn

m���
����mk�In�q � In�q�

hmk
�

mk

n

m���
����mk�In�q � In�q�

hmk
�

Now�

m���
����mk�In�q � In�q�

hmk

 c�

��In�q���In�q��

hn
�� �

according to the assumptions on the partitions
 The second term on the decomposition equals �
if q �� q�� as in this case the set In�q � In�q� does not intersect the diagonal of the product space

When q � q� we �nd� according to �����

m���
����mk�In�q � In�q�

hmk
�

m���
����mk�I

�
n�q�

���I�n�q�
�� g���� �sq� sq��

The remaining terms in ���� are treated analogously� thus we get� remembering that mk
n �� ��

�

n

mkX
i�j��

Cov�Zn�i� Zn�j� ��
rX

q��

�
c�qg

���
� �sq� sq� � �cqdqg

���
� �sq� sq� � d�qg

���
� �sq� sq�

�

�note that we should consider two terms corresponding to g���� and to g���� � but as we only need
their values on the diagonal� these coincide�
 The fourth term in ���� is analogous to the one just
treated� but the second and third are slightly di�erent� requiring the use of the sequence tl� l � IN


��



In fact�

�

n

mkX
i�j��

Cov�Zn�i� Zmk�j� �

�
�

n
p
hnhmk

rX
q�q���

mkX
i�j��

�
cqcq� Cov��i�In�q�� �j�Imk�q��� � cqdq� Cov��i�In�q�� �j�Imk�q����

�dqcq� Cov��i�In�q�� �j�Imk�q��� � dqdq� Cov��i�In�q�� �j�Imk�q���
�
�

As we supposed that there was no change of partition between mk and �m���k or that mk 
 n �
tl � �m� ��k� in either case� it follows that Imk�q� � In�q�� so the convergence of this expression toPr

q��

�
c�qg

���
� �sq� sq� � �cqdqg

���
� �sq� sq� � d�qg

���
� �sq� sq�

�
follows as in the analysis of the �rst term

in ����


So� adding up these terms� we �nally get that

�p
n
Var

�
mkX
i��

�Zn�i � Zmk�i�

�
�� ��

We proceed now to the second term in ����
 Again developing its square we �nd

�
�p
mk

� �p
n

�� �

hmk

mkX
i�j��

Cov�Zmk�i� Zmk�j� �

�

�
��

p
mkp
n

��
�

mkhmk

rX
q�q���

mkX
i�j��

�
cqcq� Cov��i�Imk�q�� �j�Imk�q����

�cqdq� Cov��i�Imk�q�� �j�Imk�q��� � dqcq� Cov��i�Imk�q�� �j�Imk�q����

�dqdq� Cov��i�Imk�q�� �j�Imk�q���
�
�

All the terms have now the same form as those of ����� so this converges to zero� as
�
��

p
mkp
n

�� ��
�


Finally� we look at the third term in ����
 Developing its square we �nd

�

n

nX
i�j�mk��

Cov�Zn�i� Zn�j� �

�
�

nhn

rX
q�q���

nX
i�j�mk��

�
cqcq� Cov��i�In�q�� �j�In�q��� � cqdq� Cov��i�In�q�� �j�In�q����

�dqcq� Cov��i�In�q�� �j�In�q��� � dqdq� Cov��i�In�q�� �j�In�q���
�
�

and these terms all converge to zero because of ���� and the non negativity of the covariances due
to association of the variables


��



So� we have �nally proved that ���EeiuZn � EeiuZmk

��� �� ��

It remains to check the case mk 
 tl 
 n � �m � ��k
 In this case we approximate the
characteristic function of Zn by the one of Z�m���k
 The majorizations carried before modify as
follows
 In the �rst two terms of ���� just replace m by m� �
 This does not a�ect the arguments
used in the subsequent analysis
 In fact� this change re!ects on ���� and ����� thus the remarks
made before hold� as now In�q � I�m���k�q� thus we still have the convergence to zero of these two
�rst terms in ����
 The third term in ���� is replaced by

�p
n
Var���



��m���kX

i�n��

Zn�i

�
A �

and this converges to zero as the corresponding term in the previous case
 So� also in this case� we
have �nally that ���EeiuZn � EeiuZ�m���k

��� �� ��

thus we mat proceed the proof looking only at those values of n that are multiples of k

Step �� We now control the di�erence between Zmk �

P
q T q

mk and what we would �nd if the
variables T �

mk� � � � � T
r
mk were independent
 For each n � IN� i � �� � � � � n� q � �� � � � � r de�ne the

random variables

T
q
n�i �

�p
hn


jcqj ��i�In�q�� ��In�q�� � jdqj ��i�In�q�� ��In�q��� and T
q
n �

�p
n

nX
i��

T
q
n�i�

From Lemma �
��������EeiuZmk �
rY

q��

EeiuT
q

mk

������ �
������Ee
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q
T q

mk �
rY

q��

EeiuT
q

mk

������ 
 �u�
X
q ��q�

Cov�T
q
mk� T

q�
mk��

This converges to zero� as it is easily seen developing one of the covariance terms�

Cov�T
q
mk� T

q�
mk� �

�

mk

mkX
i�j��

Cov�T
q
mk�i� T

q�
mk�j� �

�
�

mkhmk

mkX
i�j��

���cqcq���Cov��i�Imk�q�� �j�Imk�q��� �
��cqdq� ��Cov��i�Imk�q�� �j�Imk�q����

�
��dqcq� ��Cov��i�Imk�q�� �j�Imk�q��� �

��dqdq� ��Cov��i�Imk�q�� �j�Imk�q���
�
�

Using decomposition �M�� the �rst term of this sum equals

m���
����mk�Imk�q � Imk�q��

hmk
�

m���
����mk�Imk�q � Imk�q��

hmk
�

and this converges to zero� as before� taking account that q �� q�� so for n large enough Imk�q�Imk�q� �
�
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Step 	� The sums T q
mk �

�p
m

Pm
j�� Y q

mk�j are now approximated by what we would �nd if the

summands were independent
 We may reason with q �xed as������
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c�q Cov��i�Imk�q�� �j�Imk�q�� � jcqdqjCov��i�Imk�q�� �j�Imk�q�� �

� jdqcqjCov��i�Imk�q�� �j�Imk�q�� � d�q Cov��i�Imk�q�� �j�Imk�q���

which� as seen before� converges to
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The remaining term in ���� may also be treated using decomposition �M�� as
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using ����
 Going back to ����� we have thus that
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Step 
� To prove now the Central Limit Theorem we may proceed as if the variables Y q
mk�j� j �

�� � � � �m� were independent
 In this case we may verify the Lindeberg condition which reduces to
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as the variance of the sum of these variables is easily shown to converge to aqk �� c�qg
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As k is �xed� this sum has the same form as the one treated in the proof of Theorem �
� in Jacob�
Oliveira 
��� �see also� Theorem �
� in 
����� where it was proved to converge to zero from ����

Thus we have the convergence in distribution of the vector �Y q

mk��� � � � � Y
q
mk�m� to a centered gaussian

vector with covariance matrix of the same form as  but with the g
��
�� replaced by g
��
���k 
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Consider k �xed for the moment
 The �rst term in this upper bound converges to zero according
to Step � 
 The third term converges to zero according to Step 
 
 So� taking account of Step 	 � we
have� for each k � IN�
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Finally� letting k �� ��� this converges to zero� according to ����� thus proving the convergence
in distribution of ����


A discussion concerning conditions ���� has been carried by the authors in 
���� showing that
it is a reasonable condition which is veri�ed for Poisson processes and some other point processes
constructed from Poisson processes


An application of the �	method yields the convergence of the �nite dimensional distributions of
the estimator fn itself


Theorem �	� Suppose the conditions of theorem 
�� are veri�ed� Then
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converges in distribution to a centered gaussian random vector with diagonal covariance matrix  ��
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Proof 
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Pr

q�� bq
yq
yr�q

� where b�� � � � � bq are real numbers� so

that
p
nhn ���Un�� ��EUn�� is a linear combination of the coordinates of ����
 Using the Taylor

expansion� we �nd

p
nhn ���Un�� ��EUn�� �

�
�rX
q��

hn
��

�yq
�EUn�

r
n

hn
�Un�q � EUn�q� � hn

r
n

hn
k Un � EUn k ��k Un � EUn k�

where � is continuous and limy
� ��y� � �
 As Un �� EUn in probability� according to Theorem

�
�� and n���h
	���
n k Un � EUn k converges in distribution� the last term converges in probability to

zero
 Consider now the vector u � �f��s��� � � � � f��sr�� f��s��� � � � � f��sr�� and rewrite the �rst term
of the Taylor expansion as

�rX
q��

��

�yq
�u�

r
n

hn
�Un�q � EUn�q� �

�rX
q��

�
hn

��

�yq
�EUn�� ��

�yq
�u�

�r
n

hn
�Un�q � EUn�q��

Computing the derivatives� it is easily checked that hn

�

yq

�EUn� �� 
�

yq

�u�� so the limiting distri	

bution of
p
nhn ���Un�� ��EUn�� is characterized by the limit of

P�r
q


�

yq

�u�
q

n
hn

�Un�q � EUn�q��

which has been shown to be gaussian in the previous theorem
 Its variance is easily shown to be

�rX
q��

b�q

�
g���� �sq� sq�

f���sq�
� �g���� �sq� sq�f��sq�

f	� �sq�
�

f���sq�g
���
� �sq� sq�

f
� �sq� sq�

�
�

replacing� in the computation of the variance in the previous theorem� cq by
bq

f��sq�
and dq by

bqf��sq�
f�� �sq�

�

according to the derivatives of �


��
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