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Abstract

Using a coupling technique we prove a Central Limit Theorem for associated random vari�

ables supposing only the existence of moments of second order� and assumptions that imply

some sort of weak stationarity� Supposing the existence of absolute moments of order � and

without any stationarity condition� we derive a convergence rate� based on a convenient version

of the classical Berry�Ess�een inequality�

� Introduction

The rate of convergence on the Central Limit Theorem as been a subject of wide interest and for
which there exists an extensive literature� An account of results and references may be found in
Hall ��� or Rachev ���� Many of the results obtained refer to the uniform distance and use the
Berry�Ess�een inequality as a tool to derive the appropriate bounds� A modi	cation of the classical
procedure was proposed by Wallace �
�� by considering formal expansions of the characteristic
functions with respect to some reference distribution function� typically some gaussian distribution
function� This procedure� called in the literature as Edgeworth expansion� provide bounds that
are asymptotically better than those attainable via the classical Berry�Es�een inequality� although
requiring the existence of moments of order 
 or �� depending on the way the errors are controlled�
For independent identically distributed random variables it is known that the best attainable rate
based on the Berry�Ess�een inequality is of order n����� when only requiring the existence of third
order absolute moments� If there exists moments of order bigger than �� then this convergence
rate may be improved� Some results on the convergence rate where also obtained using distances
other than the uniform� A discussion about some distances and their relations may be found in
Maejima� Rachev �
�� Dropping the identically distributed assumption� it is still possible to retain
essentially the same convergence rate although the normalization required becomes di�erent� Our
interest is to look at this sort of results replacing the independence by an association assumption�
Results for this dependence structure were obtained by Wood �

� with respect to the uniform
distance keeping a stationarity assumption� and by Suquet �

� with respect to an weighted L�

distance which metrises convergence in distribution� We will restrict ourselves to bounds based on
the Berry�Ess�een inequality as these still provide� for reasonable sized samples� better bounds than
those obtained via Edgeworth expansions� As mentioned before� these produce rates which are
asymptotically better� as the error becomes of order n����� but the constants involved seem to be
so large� that Edgeworth expansion based inequalities only become better than their Berry�Ess�een
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counterparts for very large samples� Results by Seoh� Hallin ��� show that for the Wilcoxon signed
rank statistic the sample size should be at least 
�� ��� in order to improve the Berry�Ess�een
bounds� Besides� once the result for independent variables is established� the corresponding one
for associated variables is derived easily reproducing exactly the same arguments as in the proof of
our Theorem ��� below� The bounds for independent variables being classical� we include here a
version of the Berry�Ess�een Theorem for sake of completeness�

We shall now de	ne our framework and make more precise some of the mentioned results� Let
X�� � � � � Xn be centered random variables� Sn � X� � � � � � Xn and s�n � ES�

n� If the variables
are independent and identically distributed with 	nite third order moments� then the classical
Berry�Ess�een Theorem states that

sup
x

jF �n�x��N��x�j � c
�

��
p
n

�
�

where F �n is the distribution function of s��n Sn� Na the distribution function of a gaussian variable
with mean � and variance a� � � E jX�j� and �� � EX�

� � The constant c� as proved by Shiganov �
���
may be taken less or equal than ����
�� If the variables are not identically distributed the upper
bound in �
� my be replaced by cs��n

Pn
j�� �j � where �j � E jXj j� �see� for example� Galambos �����

The main tool for proving these upper bounds is the following inequality proved independently by
Berry �
� and Ess�een ����

Lemma ��� Let F� and F� be distribution functions with characteristic functions �� and ��� re�

spectively� and assume that F� is di�erentiable with f� � F ��� Then� for every U � ��
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where B � sup jf��x�j�

This will be used here to derive a convenient version of the Berry�Ess�een Theorem� referring to
a di�erent normalization of the sum Sn� In what follows Fn denotes the distribution function of
n����Sn and we will suppose that there exists a constant c� � � such that

inf
n

s�n
n
� c�� ���

� A convergence rate for independent variables

Following the proof of Theorem 
� in Galambos ��� we derive a Berry�Ess�een result� which will be
used later when studying the convergence rate for associated random variables� We will denote by
�Z the characteristic function of the random variable Z�

Theorem ��� Let X�� � � � � Xn be independent centered random variables with �nite third order

absolute moments �j � E jXj j�� If ��	 holds then
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Proof � The proof will consist on deriving convenient bounds for
����Sn�tn

������ exp�� t�s�n
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and then apply ���� Suppose 	rst that
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���� is the characteristic function of Xj � Yj where Yj has the same distribution as Xj and is
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j and E jXj � Yj j� � E�jXj j � jYj j�� � �E jXj j� �

�E jXj jEY �
j � ��j � Now

�����Sn�
tp
n
�

����� �
nY

j��

�����Xj �
tp
n
�

����� � exp

�
�� t�

n

X
j

��j �

 jtj�
�n���

X
j

�j

�
A �

� exp

�
� t�s�n

n
�

t�s�n
�n

�
� exp

�
��t�s�n

�n

�

taking account of the upper bound for t and ���� Finally� for t in the stated interval�������Sn�
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using H�older�s inequality and the fact that the �j are non negative� It follows that in the interval
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from which follows that
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From the two upper bounds derived in each interval for t we deduce that������Sn�
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To 	nish the proof just use ��� with U � c�n���
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Inequality �
� in the case of independent and identically distributed variables gives the n����

rate as usual�

Corollary ��� Let X�� � � � �Xn be independent and identically distributed centered random variables

with �nite third order absolute moments � � E jX�j�� Then
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� A CLT for associated variables

In this section we will present a Central Limit Theorem and a convergence rate for associated
random variables� We include here the de	nition and a basic inequality which is essential to our
proofs� For a better account on association of random variables we refer the reader to Newman ����

De�nition ��� The random variables X�� � � � �Xn� are associated if� for every f� g coordinatewise

increasing real valued functions de�ned on IRn�

Cov�f�X�� � � � � Xn�� g�X�� � � � � Xn�� � ��

The random variables Xn� n � IN� are associated if� for every n � IN� the variables X�� � � � �Xn

are associated�

A nice tool for proving Central Limit Theorems is the Newman�s inequality� which provides a
control on the characteristic functions by the covariance structure of the variables�

Theorem ��� �Newman 	
�� Let X�� � � � �Xn be associated random variables with �nite second

order moments� Then������Eexp�i
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According to this inequality� after some adequate control on the covariances� the variables may
be replaced by another ones with the same distributions but independent� This coupling will be the
basis of the results we will prove for associated variables� We begin with a Central Limit Theorem
for which the proof is an adaptation to a somewhat simpler framework of the technique that was
used in the proof of Theorem � in Oliveira� Suquet ����

Theorem ��� Let Xn� n � IN� be associated centered random variables� For each k � IN� let m be

the largest integer less or equal to n
k and de�ne Yk�j �
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i��j���k�� Xi� i � 
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lim
n���

s�n
n

� lim
n���




n
ES�

n � �� � � ���

lim
m���




m

mX
j��

EY �
k�j � ak and lim

k���
ak
k

� �� ���

�
 � ��



n

nX
i��

Z
fjXij��n���g

X�
i dP �� �� ���

Then n����Sn converges in distribution to a gaussian random variable with mean 
 and variance

���

Proof � The blocks Yk��� � � � � Yk�m being increasing functions of the Xn� n � IN� are associated�
so the method of proof will consist on approximating the sum Sn by the sum of these blocks and

�



reason as if these blocks were independent� based on ���� First we shall look at�����Sn�
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which converges to zero according to ���� Next� we approach �Smk
by the product of the character�

istic functions of the blocks Yk�j� using ���� According to ��� and ���� there exists a constant c � �
such that for m �thus n� large enough��������Smk
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From this point on we may reason as if the blocks Yk��� � � � � Yk�m were independent �to be completely
accurate we should introduce a new set of random variables with the required properties� but we
will not do so to keep the notation simpler�� That is� we must now check that these blocks verify
a Central Limit Theorem� what we will accomplish by verifying the Lindeberg condition� Put
r�n � �mk���

Pm
j�� EY �

k�j� From ��� and Lemma 
 in Oliveira� Suquet ���� it follows r�n �� ak
k � so

the Lindeberg condition for the blocks Yk��� � � � � Yk�m writes
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�� this integral is less or equal than




m

mX
j��

jkX
i��j���k��

Zn
jXij� �

�

p
ak
k

p
m
k

oX�
i dP � 


m

mkX
j��

Zn
jXij� �

�k

p
ak
k

p
mk

oX�
i dP

which converges to zero when n �� �� �k 	xed� according to ���� Summing up the inequalities
above we have� for each k 	xed� that there exits some constant c � � such that
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Finally� letting k �� �� and taking account of ��� it follows �Sn�
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the theorem�
We may state an immediate corollary for the case of stationary random variables�
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Corollary ��
 Let Xn� n � IN� be associated� weakly stationary centered random variables verifying

��	 and ��	� Then n����Sn converges in distribution to a gaussian random variable with mean 


and variance ���

Based on the bounds derived in the previous section and in inequality ��� we may prove a
convergence rate for the Central Limit Theorem for associated variables� A result on this setting
has been proved by Wood �

� who� supposing that the variables are stationary� obtained for
n � m � k�
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considering an weighted L� distance instead of the supremum distance�
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The integral I� is bounded using ����
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and we get �
�� by summing up these bounds�

Note that the conditions of Theorem ��� imply both that infm
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P
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k�j � c� for some constant

c� � � and that s�n
n � �

m

P
j �

�
k�j �� � according to ��� and ���� respectively� The extra term

appearing in �
�� when comparing to what appears in the independent case was already present in
the stationary version of Wood �

� who also provided an example showing that this term can not
be avoided� in general� and is responsible for a possibly arbitrarily slow convergence rate�

If we wish to derive an Edgeworth expansion based inequality� we need only to replace the
bound of I� by the convenient one� as the integral I� remains the same� and I� is modi	ed in a
way that does not a�ect its 	nal treatment� as in this case instead of Nn��s�n

�x� we will have this
function plus a convenient perturbation�

Finally note that Newman�s inequality ��� holds in a somewhat more general setting� as associ�
ation is not really required� Indeed� it is easy to check that the proof of this inequality only requires
that the variables are linear positive quadrant dependent �LPQD�� thus as this inequality was the
main tool to prove our results� they also hold for LPQD random variables� We refer the reader to
Newman ��� for the de	nition of LPQD and the proof of ����

The upper bounds �
�� ��� and �
�� derived here seem to be of interest only for large samples�
Indeed� even in the independent and identically distributed case the upper bound ��� is� for rea�
sonable values of n� larger than 
� thus rendering the bound useless� Some numerical evaluations
suggest that there is a big gap to be 	lled by optimizing the constants involved� This question was
not addressed here� The lack of optimization evidently re�ects also on the bounds for associated
variables� as these are derived by adding a convenient term to the independent version� The follow�
ing tables� containing simulated values� con	rm these comments� The 	rst table reports simulated
results for independent variables with distribution �
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�

compared with the upper bound

���� and to what we 	nd when the variables are �slightly� associated� By �slightly� associated we
mean that the variables are associated but Xi and Xk are in fact independent whenever jk � ij � ��
thus leaving us to deal only with the covariances of Xi and Xi��� We will denote this by saying
that the variables are associated����
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It is interesting to note that the observed upper bounds for associated variables seem to behave
not very di�erently from the ones observed for independent variables� This seems to be connected
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to the fact that the variables are only �slightly� associated� If we call the variables associated�m�
whenever they are associated and Xi� Xk are in fact independent if jk � ij � m� the e�ect of
m is illustrated on the table below for variables constructed from variables with the distribution
mentioned above� for the choice n � 
���

m � 
 � 
� ��
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��� ��
����� �������� �����
�� ��
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The last values of this table show the e�ect of the correction term for associated variables appearing
in �
���

The same e�ect is observed if we use absolutely continuous variables� The next table reports
simulated values for exponentially distributed variables with parameter � and n � 
���
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m independent associated �m� m independent associated �m�
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Note that the bound ��� is 
����
�� when � � ���� and 
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 when � � 
 due to the fact
that the absolute third order moments are quite large�
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