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Abstract

Using a coupling technique we prove a Central Limit Theorem for associated random vari-
ables supposing only the existence of moments of second order, and assumptions that imply
some sort, of weak stationarity. Supposing the existence of absolute moments of order 3 and
without any stationarity condition, we derive a convergence rate, based on a convenient version
of the classical Berry-Esséen inequality.

1 Introduction

The rate of convergence on the Central Limit Theorem as been a subject of wide interest and for
which there exists an extensive literature. An account of results and references may be found in
Hall [6] or Rachev [8]. Many of the results obtained refer to the uniform distance and use the
Berry-Esséen inequality as a tool to derive the appropriate bounds. A modification of the classical
procedure was proposed by Wallace [13] by considering formal expansions of the characteristic
functions with respect to some reference distribution function, typically some gaussian distribution
function. This procedure, called in the literature as Edgeworth expansion, provide bounds that
are asymptotically better than those attainable via the classical Berry-Eséen inequality, although
requiring the existence of moments of order 4 or 5, depending on the way the errors are controlled.
For independent identically distributed random variables it is known that the best attainable rate
based on the Berry-Esséen inequality is of order n~'/2, when only requiring the existence of third
order absolute moments. If there exists moments of order bigger than 3, then this convergence
rate may be improved. Some results on the convergence rate where also obtained using distances
other than the uniform. A discussion about some distances and their relations may be found in
Maejima, Rachev [4]. Dropping the identically distributed assumption, it is still possible to retain
essentially the same convergence rate although the normalization required becomes different. Our
interest is to look at this sort of results replacing the independence by an association assumption.
Results for this dependence structure were obtained by Wood [14] with respect to the uniform
distance keeping a stationarity assumption, and by Suquet [11] with respect to an weighted L?
distance which metrises convergence in distribution. We will restrict ourselves to bounds based on
the Berry-Esséen inequality as these still provide, for reasonable sized samples, better bounds than
those obtained via Edgeworth expansions. As mentioned before, these produce rates which are
asymptotically better, as the error becomes of order n~3/2, but the constants involved seem to be
so large, that Edgeworth expansion based inequalities only become better than their Berry-Esséen
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counterparts for very large samples. Results by Seoh, Hallin [9] show that for the Wilcoxon signed
rank statistic the sample size should be at least 128 098 in order to improve the Berry-Esséen
bounds. Besides, once the result for independent variables is established, the corresponding one
for associated variables is derived easily reproducing exactly the same arguments as in the proof of
our Theorem 3.5 below. The bounds for independent variables being classical, we include here a
version of the Berry-Esséen Theorem for sake of completeness.

We shall now define our framework and make more precise some of the mentioned results. Let
X1,..., X, be centered random variables, S, = X; + -+ + X,, and s2 = ES2. If the variables
are independent and identically distributed with finite third order moments, then the classical
Berry-Esséen Theorem states that
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where F is the distribution function of s;;1S,,, N, the distribution function of a gaussian variable
with mean 0 and variance a, 3 = E| X, | and 02 = EX2. The constant ¢, as proved by Shiganov [10],
may be taken less or equal than 0.7915. If the variables are not identically distributed the upper
bound in (1) my be replaced by cs,,? i—1 Bj, where 3; = E |Xj|3 (see, for example, Galambos [3]).
The main tool for proving these upper bounds is the following inequality proved independently by
Berry [1] and Esséen [2].

sup |F(2) — Ni(w) < ¢ (1)

Lemma 1.1 Let Fy and F» be distribution functions with characteristic functions @1 and s, re-
spectively, and assume that Fy is differentiable with fo = Fy. Then, for every U > 0,

sup |Fi(z) — Fa(z)| < 1 /j] p1(t) — 902(15)‘ dt + 2:5 )

™

where B = sup |fa(z)|.

This will be used here to derive a convenient version of the Berry-Esséen Theorem, referring to
a different normalization of the sum S;,,. In what follows F}, denotes the distribution function of
n~1/28, and we will suppose that there exists a constant ¢y > 0 such that
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2 A convergence rate for independent variables

Following the proof of Theorem 10 in Galambos [3] we derive a Berry-Esséen result, which will be
used later when studying the convergence rate for associated random variables. We will denote by
gz the characteristic function of the random variable Z.

Theorem 2.1 Let Xi,...,X, be independent centered random wvariables with finite third order
absolute moments 3; = E |Xj|3. If (3) holds then
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Proof : The proof will consist on deriving convenient bounds for ‘(pg tn=12) — exp(

and then apply (2). Suppose first that
nl/2 con®/?

(zﬁmﬂ—m—4&@

2
As ‘(p X ‘ is the characteristic function of X; —Y; where Y; has the same distribution as X; and is

independent of X, a Taylor expansion gives, for some 6 € (—1,1)
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as E(X; —Y;) = 0, Var(X; — Y)) = 207 = 2EX? and E|X; - V;|* < E(1X;] + |Y;))* < 2B| X, +

6E |1 X;| EY? < 86;. Now
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taking account of the upper bound for ¢ and (3). Finally, for ¢ in the stated interval
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From the Taylor expansion
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for some 6 € (—1,1), it follows
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using Holder’s inequality and the fact that the 3; are non negative. It follows that in the interval
(tn~1/2) is bounded away from zero. On the other

|t] < Ty, 1;2 75 the characteristic function px;

hand
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from which follows that
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where vy € (—1,1) and n; < § + & € (—1,1). Thus we find the expansion
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from what follows, remembering that s2 = 2 UJZ,
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To finish the proof just use (2) with U = 4002733/; to find
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Inequality (4) in the case of independent and identically distributed variables gives the n—1/2
rate as usual.

Corollary 2.2 Let X1,...,X, be independent and identically distributed centered random variables
with finite third order absolute moments 3 = E|X1|>. Then
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3 A CLT for associated variables

In this section we will present a Central Limit Theorem and a convergence rate for associated
random variables. We include here the definition and a basic inequality which is essential to our
proofs. For a better account on association of random variables we refer the reader to Newman [5].

Definition 3.1 The random variables X1,...,X,,, are associated if, for every f, g coordinatewise
increasing real valued functions defined on R",

COV(f(Xl, te 7Xn)7 g(Xla te 7Xn)) > 0.

The random variables X,, n € IN, are associated if, for every n € IN, the variables X1,..., X,
are associated.

A nice tool for proving Central Limit Theorems is the Newman’s inequality, which provides a
control on the characteristic functions by the covariance structure of the variables.

Theorem 3.2 (Newman [5]) Let Xi,...,X, be associated random wvariables with finite second
order moments. Then
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According to this inequality, after some adequate control on the covariances, the variables may
be replaced by another ones with the same distributions but independent. This coupling will be the
basis of the results we will prove for associated variables. We begin with a Central Limit Theorem
for which the proof is an adaptation to a somewhat simpler framework of the technique that was
used in the proof of Theorem 9 in Oliveira, Suquet [7].

Theorem 3.3 Let X, n € IN, be associated centered random variables. For each k € IN, let m be
the largest integer less or equal to n/k and define Yy ; = Zgi(]‘q)kﬂ X1 =1,...,m. Suppose
that the following conditions are verified
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Then n~1/28,, converges in distribution to a gaussian random variable with mean 0 and variance
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Proof : The blocks Y} 1,...,Y} ,, being increasing functions of the X, n € IN, are associated,
so the method of proof will consist on approximating the sum S, by the sum of these blocks and



reason as if these blocks were independent, based on (6). First we shall look at
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which converges to zero according to (7). Next, we approach ¢g _, by the product of the character-
istic functions of the blocks Y}, ;, using (6). According to (7) and (8), there exists a constant ¢ > 0
such that for m (thus n) large enough,
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From this point on we may reason as if the blocks Yy, 1, ..., Y}, were independent (to be completely

accurate we should introduce a new set of random variables with the required properties, but we
will not do so to keep the notation simpler). That is, we must now check that these blocks verify
a Central Limit Theorem, what we will accomplish by verifying the Lindeberg condition Put
ra = (mk)"1 7, EYkQ,j. From (8) and Lemma 4 in Oliveira, Suquet [7], it follows 72 — 2k so
the Lindeberg condition for the blocks Y} 1,..., Yy », writes
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where ¢ > 0 is fixed. From Lemma 4 in Utev [12] this integral is less or equal than
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which converges to zero when n — 400 (k fixed) according to (9). Summing up the inequalities
above we have, for each k fixed, that there exits some constant ¢ > 0 such that
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Finally, letting & — +o00 and taking account of (8) it follows wgn(ﬁ) — e 2, which proves
the theorem. H
We may state an immediate corollary for the case of stationary random variables.
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Corollary 3.4 Let X,,, n € IN, be associated, weakly stationary centered random variables verifying
(7) and (9). Then n='/28, converges in distribution to a gaussian random variable with mean 0

and variance o2.

Based on the bounds derived in the previous section and in inequality (6) we may prove a
convergence rate for the Central Limit Theorem for associated variables. A result on this setting
has been proved by Wood [14] who, supposing that the variables are stationary, obtained for
n=m-k,
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where a? = EX? +23°%2, Cov(X1, X;). The stationarity assumption was dropped by Suquet [11]
considering an weighted L? distance instead of the supremum distance.

Theorem 3.5 Let X, n € IN, be associated centered random wvariables. For each k € IN let m be
the largest integer less or equal to n/k. Define Y ; = Zgi(j—l)k-}-l Xii=1,...,m, UI%J = EYkQ,j
and 7, ; = B |Yk,j|3. Suppose that inf,,cn % > U,%’j >co > 0. Then, form=m -k,
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The integral I; is bounded using (6),
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according to the proof of Theorem 2.1. Finally, to bound I> we

Tk,j

243, Tkj 963, Tk,j
T mml2Y 00 e 27rm(zja,%7j)1/2’

where we may choose U = iy
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use (4) to find

and we get (10) by summing up these bounds. B
Note that the conditions of Theorem 3.3 imply both that inf,, % > o,%,j > cg for some constant

cp > 0 and that % - %Ej O',%yj — 0 according to (7) and (8), respectively. The extra term
appearing in (10) when comparing to what appears in the independent case was already present in
the stationary version of Wood [14] who also provided an example showing that this term can not
be avoided, in general, and is responsible for a possibly arbitrarily slow convergence rate.

If we wish to derive an Edgeworth expansion based inequality, we need only to replace the
bound of I by the convenient one, as the integral I; remains the same, and I3 is modified in a
way that does not affect its final treatment, as in this case instead of N, -1, (x) we will have this
function plus a convenient perturbation.

Finally note that Newman’s inequality (6) holds in a somewhat more general setting, as associ-
ation is not really required. Indeed, it is easy to check that the proof of this inequality only requires
that the variables are linear positive quadrant dependent (LPQD), thus as this inequality was the
main tool to prove our results, they also hold for LPQD random variables. We refer the reader to
Newman [5] for the definition of LPQD and the proof of (6).

The upper bounds (4), (5) and (10) derived here seem to be of interest only for large samples.
Indeed, even in the independent and identically distributed case the upper bound (5) is, for rea-
sonable values of n, larger than 1, thus rendering the bound useless. Some numerical evaluations
suggest that there is a big gap to be filled by optimizing the constants involved. This question was
not addressed here. The lack of optimization evidently reflects also on the bounds for associated
variables, as these are derived by adding a convenient term to the independent version. The follow-
ing tables, containing simulated values, confirm these comments. The first table reports simulated
results for independent variables with distribution 5(5 5 + 6 10 compared with the upper bound
(5), and to what we find when the variables are Shghtly assogcmted. By ”slightly” associated we
mean that the variables are associated but X; and X}, are in fact independent whenever |k —i| > 2,
thus leaving us to deal only with the covariances of X; and X;;;. We will denote this by saying
that the variables are associated(2).

n | upper bound (5) | independent | associated(2)
100 2.015192 0.093087 0.042001
200 1.424956 0.062520 0.058189
300 1.163472 0.036359 0.047569
500 0.901221 0.038086 0.042813

It is interesting to note that the observed upper bounds for associated variables seem to behave
not very differently from the ones observed for independent variables. This seems to be connected



to the fact that the variables are only ”slightly” associated. If we call the variables associated(m)
whenever they are associated and X;, X} are in fact independent if |k —i| > m, the effect of
m is illustrated on the table below for variables constructed from variables with the distribution
mentioned above, for the choice n = 100,

m | 3 4 5 10 20
associated(m) | 0.041783 0.102225 0.069066 0.376153  0.495995

The last values of this table show the effect of the correction term for associated variables appearing
in (10).

The same effect is observed if we use absolutely continuous variables. The next table reports
simulated values for exponentially distributed variables with parameter A and n = 100,

A=0.25 A=1
m  independent associated (m) | m independent associated (m)
2 0.047228 0.047049 2 0.043543 0.024927
3 0.064108 0.069020 3 0.037238 0.045861
4 0.045430 0.099881 4 0.036112 0.059330
) 0.031737 0.093499 ) 0.038310 0.107544
10 0.029662 0.162102 10 0.026067 0.145102

Note that the bound (5) is 10.32186 when A = 0.25 and 4.788111 when A = 1 due to the fact
that the absolute third order moments are quite large.
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