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Abstract: The occurrence of long periods of drought followed by extreme episodes of rainfall and
ineffective soil conservation practices are the main causes of soil erosion in the Mediterranean region.
The objective of this paper is to assess and compare the hydrological and erosional responses related
to land use changes in agricultural landscapes that are sensitive to erosion and that are a result of the
significant replacement of traditional land uses. Such changes are characterized by the replacement
of extensive olive groves associated with pastureland by intensive almond production, where deep
plowing and heavy machinery are required. In each sampling site, runoff initiation, runoff coefficient,
and soil loss were evaluated under simulated rainfall (55 mm h−1), at plot scale (0.25 m2), at the
end of the hot and dry summer period. Slope gradient, soil texture, bulk density, soil organic matter
content, soil water content, and plant cover were also determined. The results showed the impact of
recently planted intensive almond orchards (IAOs) on accelerating soil erosion risk compared with the
extensive traditional olive groves (EOGs), although runoff initiation and discharge are very similar
between the studied land uses. The mean values recorded for soil loss and sediment concentration
were 118 g m−2 h−1 and 12 g m−2 h−1 and 3.1 g L−1 and 0.7 g L−1, respectively, for IAOs and EOGs.
Our results also demonstrated that maintaining a vegetation cover is a determining factor for the
prevention and control of soil erosion, especially in IAOs, where retaining high percentages of natural
plant-residue mulch layers (>70%) reduced soil loss by about 70% in this study.

Keywords: soil erosion; intensive almond orchards; extensive olive groves; rainfall simulations; Portugal

1. Introduction

Soil is a key resource for life and a vital component of Earth’s ecosystems. Soils supply
a great variety of goods, services, and resources to meet human needs [1–4], and are an
essential item in the United Nations Sustainable Development Goals [5]. A sustainable
society needs healthy soils to keep humans healthy [6]. Soil erosion is a worldwide concern
and a major threat to achieving sustainability in agroecosystems [1,7–12].

Even though soil erosion varies with space and time, some drivers have been recog-
nized as facilitating soil erosion: (i) the slope and length of hillsides [13,14]; (ii) shallow
soils and highly erodible parent materials [15–17]; (iii) reduced water storage capacity or
hydrophobicity [18]; (iv) long periods of drought followed by intense rainfall events [19–23];
(v) exposed soils without vegetation cover [19,20,24,25]; and (vi) the use of heavy machinery
that compacts the top layers of soil [26].

Of these factors, precipitation leads the way in generating soil erosion, and higher intensity
and more frequent rainfall events generally result in more severe soil erosion [11,22,23]. Several
studies demonstrated that high-energy storms determined the annual soil loss [27,28].
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Conversely, vegetation cover can affect soil erosion spatial patterns since increased veg-
etation cover can reduce the sensitivity to erosion [17,29]. Vegetation reduces the kinetic
energy of raindrops through canopy interference or by the existence of litter, consequently
reducing soil erosion [19,30], while root systems contribute to soil aggregation and thus
help to reduce soil erosion [19]. Although soil type and topography have an important role
in soil erosion, they are more stable than other factors [10,31]. Therefore, more attention
should be paid to the impacts of rainfall and vegetation cover on soil erosion, especially in
agricultural areas.

A recent review of soil erosion volumes in agricultural areas shows that degrada-
tion rates are several orders of magnitude faster than the soil formation rate [32–35], thus
threatening the natural capital of soils [13] and promoting land degradation and desertifi-
cation [36,37]. In Mediterranean areas, soil erosion is one of the most important processes
driving land degradation [11,38] and thereby decreasing soil-related ecological services [39].
In this region, long periods of drought are followed by intense or even extreme rainfall
events, which coincide with the disturbance of topsoil layers (e.g., by cultivation, intensive
tillage, and plowing) or poor vegetation cover, very often in situations where good soil
conservation practices are absent, a deleterious combination that promotes serious soil
erosion [14,40,41]. Cereal crops and olive groves—traditional land uses in the Mediter-
ranean region—are among the rainfed agricultural land uses that exhibit higher soil and
water losses due to the impact of unsustainable practices, such as conventional tillage and
plowing [19,20,41,42].

On the other hand, in Portugal, as in other Mediterranean countries, traditional land
uses have been replaced by intensive land management practices in agricultural fields
designed to develop an agricultural system that is more productive and economically
viable. Such changes, mainly involving the expansion of olive and fruit orchards, are
responsible for an increase in the use of herbicides and heavy machinery, which may
promote soil and water degradation [13,43,44]. Studies carried out in intensive agriculture
systems have found high erosion rates in avocado [45] and olive orchards [46–51], new
citrus plantations [52,53], and vineyards [28,54–56]. Almond [13,57], persimmon [58,59],
and apricot [5,60,61] orchards have also shown high erosion rates.

In Portugal, although most of the research on soil erosion has been carried out in
areas occupied by rainfed cereal crops [19,20,42], more recently, it has considered the
increasingly rapid expansion of intensive orchards, especially olive groves. Some studies
have assessed how different management models can help to increase or mitigate soil loss
with crops [62,63], mainly in the Alentejo region. However, little research has been carried
out comparing traditional extensive land use vs. intensive land use management systems
in Portugal.

The main objective of this work was to assess how changes in land use alter hydrologi-
cal and erosional responses in Mediterranean agricultural landscapes when they result from
changes in land use systems related to the increase in intensive almond orchards, based
on irrigation and the use of heavy machinery. These have been replacing traditional uses
that are dominated by extensive olive groves and coupled with pastureland. To achieve
this goal, this study aimed to evaluate, under high-intensity rainfall simulations, (i) runoff
initiation by measuring the time to runoff outlet in plot surfaces; (ii) runoff and sediment
yield; and (iii) the influence of soil characteristics and vegetation cover on runoff and
erosion. Understanding hydrogeomorphic processes at the pedon and hillslope scales is
critical for planning and adopting soil management practices that decrease and control soil
erosion risk [5,64–66] to help to reduce the risk of soil degradation.

2. Material and Methods
2.1. Study Area

The research was carried out in the municipality of Idanha-a-Nova in the Beira Baixa
region, one of the areas in Portugal with high land degradation and susceptibility to
desertification [67]. The Idanha-a-Nova municipality is located in central Portugal, close
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to the Spanish border (Figure 1). The substratum comprises mainly schist from the Schist
Greywacke complex with poor, shallow soils, classified as dystric lithosols [68], and the
predominance of an undulating relief with elevation ranging from 200 to 400 m a.s.l.
Significant parts of the area dedicated to agriculture are associated with arkoses and
sandstones and with ferric and orthic luvisols, characterized by greater depth and a horizon
of clay accumulation at a certain depth.
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According to the Köppen climatic classification, the study area has a hot-summer
Mediterranean climate (Csa), characterized by wet, cool winters (10 ◦C average temper-
ature) and hot, dry summers (25.7 ◦C average maximum temperature for summer). The
mean annual precipitation of 600 mm has high inter-annual variability and a seasonal
concentration pattern. The wettest periods of the year are in autumn and winter, between
October and February, while the dry period lasts between May and September.

This variability reflects the seasonal pattern typical of the Mediterranean region, with
rainfall concentrated in the autumn and winter months. Considering the 12.7 mm threshold
proposed by Renard et al. [69] to define precipitation events that have erosive power,
daily and hourly precipitation were analyzed for the study area for the period 2002–2020.
As we can see in Figure 2, most of the daily erosive rainfall occurred in October and
November, with a record around 30 days with more than 12.7 mm of rainfall for the period
under analysis. Although there were not a significant number of days in September when
precipitation exceeded 12.7 mm, when precipitation did occur in this month, there was a
high probability that it would be concentrated in a short period of time (1 h) compared to
the other months of the year.
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According to the agricultural and forestry map of Portugal produced by the Service
of Agrarian Recognition and Management (SROA) [70], in the middle of the last century,
cereal cultivation and extensive olive groves were the dominant land uses in the study area
(%). As in most marginal areas of mainland Portugal, agricultural activities have become
less important since the mid-20th century when a rural exodus took place, mainly because
of poor conditions for agriculture (a Mediterranean climate and poor, shallow soils). The
peripheral location of the study area, the lack of alternative employment sectors, and the
fact that a great many farm owners were elderly were also determinants [23].

Not even the installation of the Idanha irrigation perimeter in the 1950s, supported
by the construction of the Marechal Carmona dam, which was intended to benefit an area
of approximately 8300 hectares, managed to stop the agricultural land abandonment that
was already being felt at that time. For several decades, forage and cereal crops were
the most irrigated crops. However, in the last decade, there has been a very significant
transformation in the landscape resulting from the installation of intensive and super-
intensive orchards, mainly of almond trees. In 2018, the area occupied by orchards was
around 250 ha [71]. In mid-2022, according to data obtained from satellite images, the area
of irrigated orchards exceeded 2800 ha, mainly concentrated in the parishes of Ladoeiro
(1078 ha) and Idanha-a-Nova and Alcafozes (1746 ha) [72]. These intensive orchards are
sustained by the use of large amounts of water all year round. In fact, since 2018, and based
on records from the perimeter irrigation system, the watering period, which generally
lasted from April to October, has become annual (from January to December).

In 2018, Idanha-a-Nova was classified as a bio-region, the first in Portugal. Accord-
ing to the International Network of Eco Regions (INNER), “a bioregion is a sustainable
management agreement of the territory based on organic agriculture” involving a whole
local community.

2.2. Methodology
2.2.1. Definition of Land Use System Types/Subtypes Used in the Study Area

The study design aimed to obtain data to compare two different land use systems,
one linked with traditional land use, based on traditional olive groves combined with
pastureland, and the other involving intensive, irrigated almond orchards. The main
characteristics of the selected land use systems are as follows:

Extensive olive groves (EOGs): This land use system has been providing a livelihood
for people in the region for centuries. The plant density is low, with less than 200 trees
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per hectare. EOGs continue a traditional land use of the territory typically combined with
pastureland for livestock and rarely for cereal crop production. The selected plots include
olives groves combined with pastures where soil conservation measures were adopted,
specifically no soil plowing and low or zero fertilization input. The traditional olive grove
often develops on irregular, mainly hilly terrain. The harvesting and management are still
mostly manual (Figure 3, left).
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study area.

Intensive almond orchards (IAOs): Intensive almond orchards have been introduced
in the area in the last decade. These plantations are installed after the deep plowing
and change of the local terrain, using heavy machinery and wheel traffic for harvesting
and maintenance. They are treated intensively with the use of pesticides, herbicides,
fertilizers, and irrigation. Plant density varies between 600 and 1600 almond trees per
hectare, with less distance between trees and arrangement in parallel rows. Due to the
shallow soils, most orchards are planted on ridges 30–40 cm high and 1 m wide to facilitate
root establishment. To control annual weeds, herbicides or mowing are applied using
heavy machinery. Consequently, at the end of the summer, we can find orchards with
a natural plant-residue mulch layer resulting from the death of the grass stratum that
has not been removed or soils without any kind of protective vegetation cover. To clarify
the role of vegetation cover, the sampling design includes plots with different vegetation
cover conditions, from plots with zero or a very low percentage of cover to others with a
significant percentage of cover by herbaceous plants or a natural plant-residue mulch layer
produced by mowing (Figure 3, right).

2.2.2. Rainfall Simulation Experiments

Rainfall simulation experiments have been widely used to evaluate runoff and sed-
iment delivery [19,20,35,55,58]. Runoff and soil erosion were quantified with a small
portable rainfall simulator based on the one described by Cerdà [73]. It consists of a
springlink device placed 2 m above the soil, a small pump responsible for supplying water,
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and a wind protector to avoid changes in the direction of the rain droplets falling and the
use of nozzles from Hardi (nozzle cone jet 1553/10). The pressure applied ranged from
1.5 to 1.6 kg cm−2, which is equivalent to an average intensity of around 55 mm h−1.

Twenty-two rainfall simulation experiments (eleven per land use system) were carried
out for 1 h on circular plots (0.55 m in diameter, 0.25 m2), covering different physical
conditions (slope and stoniness) and, above all, grades of vegetation cover. In order to
allow for comparisons between plots, all experiments were carried out at the end of the
summer when the soil moisture was low (end of September 2021).

During the rainfall simulation experiments, the time required by runoff to reach the
plot outlet was quantified in seconds (s). Runoff was then quantified gravimetrically at
2-min intervals (L m−2 h−1) and the water volume was measured. The runoff coefficient (%)
was estimated as the percentage of rainfall water running out of the circular plot, calculated
by subtracting the total sprayed rainfall and collected runoff. In the laboratory, the total
runoff was filtered using fine-meshed filter paper to determine, after drying at 105 ◦C, the
sediment load (g m−2 h−1) and concentration (g L −1).

2.2.3. Soil Cover and Soil Analysis

Plant cover, resistance to penetration, and water repellency were measured prior
to the rainfall simulation experiments. Vegetation cover (%) was quantified by visual
interpretation, considering the total herbaceous cover and plant-residue mulch layer in the
plot. Soil resistance was assessed using a pocket penetrometer. Soil water repellency was
measured using the molarity of ethanol droplet (MED), as suggested by Doerr [74]. The
ethanol concentrations used in this study area were 0, 1, 3, 5, 8.5, 13, 18, 24, and 36 percent,
representing liquid surface tension intervals of approximately 5 dynes cm−1. A zero value
corresponded to hydrophilic (or wettable) soil and 36 percent corresponded to extremely
water-repellent soils.

Soil samples (0–10 cm) were collected in the vicinity of the sampled plot to determine
a few soil properties (grain size distribution, bulk density, soil organic matter, and soil
moisture). Grain size distribution was defined after sieving the soil with a 2 mm mesh.
The stone content (stoniness) was determined, and the fine fraction was used to obtain
the soil texture (sand: 2 mm–63 µm; silt + clay: <63 µm). Dry bulk density was measured
by the use of a cylindrical core of known volume. Soil organic matter was determined
by the Tinsley method [75]. As the organic matter was very low (<2%) in all plots, this
variable was not included in the analysis. Soil moisture was determined previously by
the gravimetric method after drying samples (105 ◦C, 24 h). Local slopes (in %) were also
measured with a digital clinometer.

2.3. Data Analyses

Descriptive statistics were determined for the plot and soil characteristics (average,
standard deviation, maximum and minimum value and coefficient of variation). The results
for the land use systems (extensive vs. intensive) in the hydrological response and soil
erosion results were compared using general descriptive statistics and presented in box
plot charts, allowing for the analysis of the values for the mean (dash lines), median, 25th,
and 75th percentiles.

Prior to statistical comparisons, data normality was tested using the Shapiro–Wilk
test. A p-value of <0.05 signified that the null hypothesis was rejected, indicating that the
distribution was not normal. Of all the variables, only grain size distribution (silt, clay,
and sand percentage) and herbaceous cover followed the Gaussian distribution. Several
authors [76–78] consider that the alternative formulations of Levene’s tests are robust
against non-normality and they have been used for checking the homogeneity of variances.
Thus, Levene’s test was used to assess the equality of variances (homoscedasticity) between
the average values in all the variables included in the study. Once the homoscedasticity had
been evaluated, the Student’s t-test was performed, aiming to compare means and estimate
how significant the differences were. The null hypothesis assumed that no significant
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differences were identified between plots, considering soil properties, vegetation cover, and
hydrologic and erosion responses for the two land use systems under study. Test results
were considered significant at p < 0.05. Finally, in order to identify any possible influence
of environmental plot variables on hydrological responses and soil erosion, Spearman’s
rank (Sr) correlations among the variables were performed. The IBM SPSS program (27.0
for Windows) was used to carry out the statistical analysis.

3. Results
3.1. Soil Properties and Vegetation Cover

Slopes ranged from 2 to 39% in the sampled plots, with the highest values recorded
in the IAOs (Table 1). In fact, the IAOs registered a mean value of 19%, while the EOG
plots had a mean value of 10%. Both Levene’s test and the t-test showed p-values < 0.05,
meaning that there were significant differences between the land use systems. Soil water
content and soil water repellency recorded higher values in the IAOs, but no significant
differences were observed between the sites.

Table 1. Descriptive statistics, Levene’s test, and t-test for soil characteristics.

Land Use Systems
Intensive Almond

Orchards
(IAOs)

Extensive Olive Groves
(EOGs)

Levene’s Test
for Equality of

Variances

t-Test for Equality
of Means

min. mean max. SD min. mean max. SD Z Sig. t Sig.
(2-tailed)

Slope (%) 2.0 19.2 39.0 12.4 3.0 10.3 17.0 3.9 6.31 0.021 2.361 0.028
Soil moisture (%) 1.4 5.1 10.0 2.8 1.2 4.3 6.0 1.5 1.498 0.235 −0.849 0.406
Water repellence 0.0 7.1 24.0 8.2 0.0 4.8 13.0 5.2 3.779 0.066 0.801 0.432
Resistance to
penetration (g m−2) 2.5 3.9 4.5 0.6 1.5 3.6 4.5 1.2 9.772 0.005 −0.742 0.467

Bulk density (g cm−3) 1.1 1.3 1.5 0.1 0.9 1.1 1.6 0.2 4.924 0.038 1.538 0.140
Silt + clay (%) 3.8 10.9 26.2 8.1 6.6 30.5 59.2 20.2 7.45 0.013 −2.88 0.009
Sand (%) 46.9 61.5 89.4 15.6 12.6 39.9 67.4 17.3 0.076 0.786 3.062 0.006
Stoniness (%) 5.3 27.7 45.8 13.8 13.3 29.9 40.6 8.1 3.824 0.065 −0.461 0.650
Natural plant-residue
mulch layer (%) 0.0 45.4 90.0 43.6 10.0 59.9 95.0 34.9 4.79 0.045 −0.662 0.449

Significance level tests are in bold.

Resistance to penetration, bulk density, and silt + clay registered significant differences
when Levene’s test for the equality of variance was applied, whilst sand percentages
showed significant differences when the t-test was applied. In general, the IAOs recorded
the highest mean value of bulk density (1.3 g cm−3 against 1.1 g cm−3 for the EOGs),
resistance to penetration (3.9 g cm−2 vs. 3.6 g cm−2 for the EOGs), and percentage of
sand (median of 61.5% versus 39.9% for the EOGs). Conversely, the mean percentage
of silt + clay was higher for the EOGs than for the IAOs, with figures of 30.5% and
10.9%, respectively, showing significant differences when Levene’s test was applied. The
percentage of stoniness (27.7% and 29.9%, respectively, for IAOs and EOGs) was very
similar in both land use systems.

Finally, plant cover showed significant differences between the land use systems, with
the IAOs recording a mean of 45%, but with great variability between plots, ranging from
no cover (0%) to 90% plant cover. In the EOGs, the mean value was around 60%, with a
standard deviation of 34.9%.

3.2. Runoff and Soil Erosion Response

The mean time required for runoff initiation was very similar between the land use
systems, varying between 45 s and 720 s (mean: 249 s) for the IAOs and from 135 s and
960 s (mean: 302 s) for the EOGs. No differences were found between runoff responses,
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which varied from 4.4 to 81.5% (mean: 43%) and 1.1 to 69.5% (mean: 41.6%) for IAOs and
EOGs, respectively (Table 2 and Figure 4).

Table 2. Descriptive statistics, Levene’s test, and t-test for runoff and soil erosion.

Land Use System
Intensive Almond

Orchards
(IAOs)

Extensive Olive Groves
(EOGs)

Levene’s Test
for Equality of

Variances

t-Test for Equality
of Means

min. mean max. SD min. mean max. SD Z Sig. t Sig.
(2-tailed)

Runoff initiation (s) 45 249 720 212 135 302 960 252 0.155 0.698 −0.506 0.619
Runoff coefficient (%) 4.4 43.0 81.5 31.8 1.1 41.6 69.5 22.2 2.953 0.101 0.121 0.905
Soil loss (g m−2 h−1) 1.6 118.0 440.0 156.5 1.0 12.2 37.6 11.2 36.964 0.000 2.347 0.029
Sediment concentration
(g L−1) 0.3 3.1 10.3 3.6 0.1 0.7 1.8 0.6 26.921 0.000 2.33 0.030

Significance level tests are in bold.
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Conversely, significant differences were found between median soil loss from the two
land use systems. For IAO sites, the median value for soil loss was 118 g m−2 h−1, while
for EOG plots, it was 12.2 g m−2 h−1. For the IAOs, the recorded values varied between
1 g m−2 h−1 and 440 g m−2 h−1 (SD: 156 g m−2 h−1), whilst for the EOGs, the minimum
and maximum values were 1 and 37.6 g m−2 h−1 (SD: 11.2 g m−2 h−1).

Sediment concentration also registered a significant statistical difference when Lev-
ene’s and t-tests were applied. For the IAOs, the median and maximum values were 3.1
and 10.3 g L−1 (SD: 3.6 g L−1), whereas, for the EOG system, the recorded values ranged
between 0.7 and 1.8 g L−1 (SD: 0.6 g L−1).

3.3. Runoff and Soil Erosion Influencing Factors

To determine which variables had more influence on runoff and sediment loss, Spear-
man correlations were carried out (Table 3). The results show that runoff initiation was
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significantly and negatively correlated with slope (Rs: −0.450) and positively correlated
with herbaceous or natural plant-residue mulch cover (Rs: 0.642). Slope also showed posi-
tive and significant correlations with runoff discharge (Rs: 0.439) and soil loss (Rs: 0.445).

Table 3. Spearman’s rank correlation coefficients (Rs) for studied variables.

Runoff
Initiation (s)

Runoff
Coefficient

(%)

Soil Loss
(g m−2 h−1)

Sediment
Concentration

(g L−1)

Slope −0.450 * 0.439 * 0.445 * 0.101
Soil moisture −0.047 0.088 −0.095 −0.075
Water repellency −0.090 0.047 −0.263 −0.350
Resistance to penetration 0.054 −0.124 −0.024 −0.001
Bulk density 0.011 0.005 −0.288 −0.337
Silt + clay 0.032 0.039 0.028 −0.058
Sand 0.267 −0.379 0.442 * −0.080
Stoniness −0.258 0.374 −0.556 ** 0.190
Natural plant-residue
mulch layer 0.642 ** −0.633 ** −0.862 ** −0.639 **

Significance level notations are as follows: ** p < 0.01; * p < 0.05 (1-tailed).

Runoff discharge was also significantly and negatively correlated with soil cover
(Rs: −0.633). Soil loss also demonstrated a significant negative correlation with vegetation
cover (Rs: −0.862) and the percentage of stoniness (Rs: −0.556). Sandy soil showed a
positive correlation with sediment yield (Rs: 0.442). The sediment concentration was signif-
icantly and negatively correlated with soil cover (Rs: −0.639). As runoff and soil erosion
often occur in sequence, a significant correlation was observed between these variables
(Rs: 0.757).

4. Discussion

Beira Baixa is very susceptible to desertification. In this region, long periods of drought,
irregular precipitation, and intense storms, combined with unsustainable agricultural
practices and low vegetation cover, can leave soils vulnerable to erosion and, therefore,
hasten land degradation and encourage desertification. A better knowledge of the processes
driving runoff and soil erosion under different land uses is a key issue in fostering a more
sustainable land management system.

Longer rainstorms simulated in the two studied land use systems produced significant
runoff flow and soil loss. Differences between paired IAOs and EOG plots show an evident
impact of the intensive almond orchards on accelerating soil erosion risk compared with
extensive traditional olive groves, although runoff initiation and discharge are very similar
in the studied land uses. When mean values for soil loss and sediment concentration were
compared, the results were 118 and 12 g m−2 h−1 and 3.1 and 0.7 g L−1, respectively, for
IAOs and EOGs. These results confirm the widespread perceptions of negative environmen-
tal connotations linked to intensive orchards [79,80] related to substantial disturbances of
the soil, large-scale mechanized development, and installation on steep terrain conditions.
Furthermore, in many of them, the herbaceous under-cover has been removed, which leads
to a greater risk of soil erosion [55,79,80].

Considering the factors controlling runoff coefficient and soil erosion, the dominant
factors in the land use systems studied were slope, soil texture, and, especially, soil veg-
etation cover. In fact, the presence of a natural plant-residue mulch layer at the end of
the summer significantly reduced runoff and soil erosion. Our results are, therefore, con-
sistent with those of previous research developed in the field, in laboratory facilities, or
obtained by modeling approaches, which demonstrate that soil vegetation cover is the
key factor determining splash erosion and thus affects sediment delivery at the pedon
scale [10,12,13,19,20,41,46,81–84].
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In the study area, there was a clear contrast in soil loss between bare or less covered
soils and plots with high percentages of herbaceous communities or natural plant-residue
mulch layers in both land use systems (Figure 5). This difference was especially significant
in the IAOs where vegetation control was based on the application of herbicides or mowing
by using power tools or heavy machinery. In the areas where herbicide was applied, the
soil was uncovered almost all year. Conversely, where mowing was applied to control
vegetation between the rows, the soil cover was relatively high at the end of the summer.
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Consequently, for intensive soil use, the median value obtained at the end of the hot
and dry summer for plots without any or with less than 10% of soil cover was around
280 g m−2 h−1, in contrast to plots with more than 70% of soil cover, with an average
of 8 g m−2 h−1. For the EOGs, the values were 25 g m−2 h−1 and 5 g m−2 h−1 for plots
with less than 10% and more than 70% of soil cover, respectively. These results, in line
with other studies, confirm that maintaining vegetation cover is an important measure
for the prevention and control of soil erosion, especially for IAOs, where enduring high
percentages (>70%) of herbaceous or natural plant-residue mulch cover reduced soil loss
by about 70%.

In this regard, the results obtained by Rodríguez Sousa et al. [63] in the Alentejo
region also highlight that intensive olive groves with herbicide and vegetation stripe cover
densities lower than 20% showed higher erosion rates, in contrast with highly intensive
and organic groves, where the vegetation cover was higher than 50%, which showed a
minimal impact of erosive processes, as well as extensive groves with 100% vegetation
cover. Marques et al. [85] analyzed soil loss in an olive grove in central Spain and also found
that when cover exceeds 60%, rainfall erosivity declines drastically, reducing soil erosion.

The way that vegetation cover is spatially distributed on slopes is an important factor
in decreasing runoff and sediment transport [86,87]. In the study area, retaining high
percentages of soil cover was especially relevant on the highest slopes, and it was also a
variable that helped to foster higher runoff (Rs: 0.439) and soil erosion (0.445). Several
authors (64, 101–104) note that slopes play an important role in impacting runoff and soil
erosion intensity, finding that whilst infiltration decreases, runoff velocity and soil splash
detachment increase with increasing slope gradient. For example, Durán Zuazo et al. [84]
concluded that the conservation or cultivation of plants can help prevent runoff and
soil erosion on steep slopes, thereby reconciling sustainable agricultural practice and
environmental protection in a mountainous area of Spain.

On the other hand, the soils in the studied plots in both the IAOs and the traditional
EOGs were poor in organic matter; thus, there is an urgent need to stop further degradation
and restore soil quality and associated soil functions. A soil cover with a permanent natural
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plant-residue mulch layer is a natural product that enhances soil functions in the long term
and has an immediate effect on soil erosion and, therefore, can be an option to achieve these
goals [35]. Natural plant-residue mulch layers are also effective at boosting soil properties,
enhancing biological activity, balancing the nitrogen cycle, and controlling temperature
and water retention, among other benefits [87].

Deep plowing for the installation of almond orchards disturbs the soil, and the re-
peated passage of heavy machinery leads to soil compaction [26,88–90]. Several studies
demonstrate that higher values of bulk density and soil compaction help to reduce soil
infiltration and increase surface soil erosion [91,92]. Although higher bulk density and soil
resistance to penetration were recorded in the IAO plots, we did not find a significant cor-
relation between those variables and the hydrogeomorphic response of the soil. However,
the development of microcrusts in some IAO plots stimulated runoff and thus sediment
transport [93]. In general, soil erosion was positively associated with sandy soils, whilst
stoniness was linked with lower mean values of sediment transport [94–97].

Although the results of this work indicate that the large-scale mechanized development
of IAOs together with low vegetation cover on steep terrain leads to serious risks of soil
erosion, more research is needed. In fact, one of the limitations of this work is the small
number of rainfall simulations; these should be extended to include a larger number of
plots and strengthen the results obtained in both land use systems. Moreover, at the
hillslope scale, other processes such as rill and gully erosion and the impact of roads and
manmade structures must be analyzed. These attributes can increase total erosion and
accelerate sediment transport downstream or, conversely, large volumes of water and
sediment can also be retained along the hillslope [98]. There is a need to understand how
land management affects the connectivity of water and sediments along hillslopes.

Fieldwork allowed us to confirm that some farmers are increasingly aware of the
need to maintain vegetation cover as a measure to mitigate runoff and soil erosion. In
some cases, they have even started to implement techniques to manage vegetation cover
throughout the year. In this case, the measures applied to soil management systems that
greatly reduce on-site runoff and soil erosion and can also contribute to the improvement
of soil quality need urgent evaluation since this region is seriously affected by severe land
degradation and high susceptibility to desertification. This is an issue of special concern
considering that the Mediterranean region has been declared a climate change hotspot for
various reasons, but especially because an expected increase in torrential rains [99] will
increase the potential for soil loss by erosion.

5. Conclusions

Soil conservation is one of the main environmental challenges regarding Mediter-
ranean agricultural systems where soil erosion is a major environmental problem affecting
both the sustainability of agroecosystems and their capacity to supply ecosystem services.
Land use is clearly one of the most important determinants of soil erosion, and recent
trends associated with the replacement of traditional extensive land uses by intensive
farming might be exacerbating such problems. Based on the results obtained, it is possible
to confirm that intensive almond orchards suffer from higher rates of soil erosion than
extensive traditional olive groves do, mainly in low vegetation cover conditions. The
increasing erosion rates are as much as ten times those measured in extensive olive groves,
and sediment concentration is five times higher.

However, the maintenance of soil cover in IAOs, based on a natural plant-residue
mulch layer or herbaceous cover, especially at the end of the summer, might be a suitable
measure since it significantly reduces soil loss and sediment concentration. Our results
demonstrated that under high-intensity rainfall events, a high percentage (>70%) of natural
plant-residue mulch layer reduced soil loss by about 70% and reduced sediment concen-
tration by 90%. In this context, it is crucial to establish significant ground cover in IAOs
to reduce and control soil erosion with the aim of achieving the United Nations Goal 15,
centered around stopping and reversing land degradation and combating desertification.
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This study provides a useful suggestion for farmers that need to be convinced to implement
a type of management based on soil conservation tillage during the year that preserves
residue cover between intensive almond rows.
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