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SUMMARY
Age-related macular degeneration (AMD) is a leading cause of blindness in older adults. Investigating shared
genetic components between metabolites and AMD can enhance our understanding of its pathogenesis. We
conduct metabolite genome-wide association studies (mGWASs) using multi-ethnic genetic and metabolo-
mic data from up to 28,000 participants. With bidirectional Mendelian randomization analysis involving
16,144 advanced AMD cases and 17,832 controls, we identify 108 putatively causal relationships between
plasma metabolites and advanced AMD. These metabolites are enriched in glycerophospholipid meta-
bolism, lysophospholipid, triradylcglycerol, and long chain polyunsaturated fatty acid pathways. Bayesian
genetic colocalization analysis and a customized metabolome-wide association approach prioritize putative
causal AMD-associated metabolites. We find limited evidence linking urine metabolites to AMD risk. Our
study emphasizes the contribution of plasma metabolites, particularly lipid-related pathways and genes,
to AMD risk and uncovers numerous putative causal associations between metabolites and AMD risk.
INTRODUCTION

Age-related macular degeneration (AMD) is a leading cause of

vision loss among adults aged 50 and above, with a global preva-
Cell
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lence of 8.7%.1–4 Clinically, AMD is characterized by the presence

ofmacular drusen andpigmentary changes in early and intermedi-

ate phases when most patients exhibit as minimally asymptom-

atic.Nevertheless, asubsetofpatientsprogress to the lateblinding
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forms—choroidal neovascularization or geographicatrophy. It is

currentlywell established thatAMD isacomplexdisease, involving

a combination of environmental and genetic risk factors.3,5

Genome-wide association studies (GWASs) have identified more

than 50 single-nucleotide polymorphisms (SNPs) associated with

AMD risk, predominantly within the complement pathway (CFH,

CFI, C3, and C9) and in lipid-related genes (APOE, CETP, LIPC,

and ABCA1).6,7 Recent genetic studies have also identified lipid

and inflammatory biomarkers that are associated with AMD

susceptibility.8–11 Despite important advances in elucidating

AMD etiology, the underlying pathogenic mechanisms remain

incompletely understood. The interplay between genes and envi-

ronmental risk factors in the development of AMD is largely un-

known. Consequently, there is a lack of FDA-approved treatments

for non-exudative AMD, which accounts for 90% of cases, and

limited therapeutic options to impede the progression of early

and intermediate AMD to its severe, vision-impairing forms. A

deeper understanding of the biological pathways involved in

AMD is essential to inform potential treatment targets.

Metabolites, as small molecules representing intermediate

products of a variety of physiological processes, hold promise in

addressing the challenges in understanding AMD.12–14 Metabolo-

mics, a high-throughput technology, enable the capture of meta-

bolic activity by assaying a large number of metabolites in a given

biological sample, such as blood,15 urine,16 and saliva.17 In obser-

vational studies,we and others have demonstrated an association

between plasmametabolites, predominantly lipids, and AMD risk,

as well as a higher likelihood of metabolite association with AMD

risk variants located in or near lipid genes.18,19 In urine, amino

acid metabolites have been linked to AMD.20 However, existing

studies have not determinedwhethermetabolites serve asmedia-

tors between risk genes and AMD susceptibility or merely reflect

AMD-induced changes.Moreover, the observed associations be-

tween metabolites and AMD could be influenced by confounding

factors. In such circumstances, traditional observational epidemi-

ological association studies are susceptible to biases stemming

from reverse causality and confounding factors.

To partially mitigate against the biases from confounding and

reverse association, Mendelian randomization (MR) offers an

analytical approach for estimating the putative causal effect of

an exposure factor (X; e.g., metabolite) on an outcome (Y; e.g.,

AMD) using genetic instruments (e.g., lead SNPs associated with

the exposure).21 MR can be intuitively understood as analogous
2 Cell Reports Medicine 4, 101085, July 18, 2023
to randomizedclinical trials inwhichparticipantsare randomlyallo-

cated into treatment and control groups. Similarly, in MR analysis,

genetic risk alleles and non-effect alleles are assumed to be

randomly assigned at conception.21 In a two-sample MR frame-

work,metabolomic quantitative trait loci (mQTLs) can be identified

from a study independent of AMD (e.g., SNP-metabolite and

SNP-AMDassociations are from two separate studies) to evaluate

the potential causal relationships between metabolites and

AMD.22,23 In addition, other genetic approaches may reveal novel

insights into the sharedgenetic components betweenmetabolites

and AMD. For instance, the Bayesian colocalization approach has

identified causal genomic loci shared between complex traits or

diseases,24 andametabolome-wideassociation study (analogous

to transcriptome-wide association study [TWAS]) can uncover

new metabolite-disease associations.25,26

Here, we conduct a large-scale integrative genetic andmetabo-

lomic analysis across six multi-ancestry and multi-fluid studies to

investigate putative causal relationships between metabolites

and AMD. The current study comprises five aims: first, we

evaluate thediscoveryand replicationofmQTLs indifferent ances-

tries and biofluids from up to 28,000 participants; second, metab-

olites from six multi-ancestry and multi-fluid studies are used to

comprehensively investigate the putative causal relationships be-

tween metabolites and risk of AMD in a bidirectional two-sample

MR framework; third, we identify causal risk variants shared be-

tween metabolites and AMD; fourth, we develop a metabolome-

wide association study (MWAS) framework to identify metabo-

lite-AMDassociationsbyaggregatinggenetic effects frommultiple

mQTLs; and finally, we link the genetic findings to clinical pheno-

types, including different AMD subtypes and lipid biomarkers, to

interpret the biological mechanisms of the identified metabolites.

RESULTS

Study design
The overall study design is presented in Figure 1. We performed

metabolite-based GWASs (mGWASs) using six large-scale

datasets (Table S1), comprising plasma data from the Nurses’

Health Study (NHS), NHSII, the Health Professionals Follow Up

Study (HPFS), the Canadian Longitudinal Study on Aging

(CLSA),27,28 a metabolite study in Finnish (Metabolic Syndrome

in Men [METSIM]),29 and the Hispanic Community Health

Study/Study of Latinos (HCHS/SOL),30 as well as urinary
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Figure 1. Overview of the study design
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metabolomic data from Schlosser et al.16 and both plasma and

urine measurements from our AMD Biomarkers Study.19 We

conducted meta-analysis for plasma and urine separately using

the aforementioned studies (Table S2).We obtained AMDGWAS

summary statistics from the International AMD Genomics Con-

sortium with 16,144 advanced AMD cases and 17,832 controls

(Table S3).7 We performed various genetic analyses to charac-

terize the associations between metabolites and AMD risk.

mGWASs
The mGWASs were performed in each study, and detailed re-

sults are described in Table S2. For instance, in the NHS,

NHSII, and HPFS cohorts, we observed no evidence of genomic

inflation in the mGWAS, with genomic inflation factors (lambda)

ranging from 0.99 to 1.03 and linkage disequilibrium (LD) score

regression intercepts from 0.977 to 1.01 (Figure S1). Out of the

346metabolites available in NHS/NHSII/HPFS, themedian value

of SNP-based heritability was 14.7% (interquartile range [IQR]:

7.2%–21.4%, maximum 70%), with 123 metabolites passing
the nominal significance level (SNP-based heritability p < 0.05).

Among the 346 metabolites, 243 (70.2%) exhibited at least one

genome-wide significant mQTL (p < 5 3 10�8), with a median

value of two mQTLs Figure S1). In total, 729 mQTLs were identi-

fied from the NHS, NHSII, and HPFS cohorts (Table S2).

Figure 2 (Figure S2) displays a circle Manhattan plot showing

genomic hits from the NHS/NHSII/HPFS, the CLSA, the

METSIM, the HCHS/SOL, the plasma meta-analysis, and the

urine meta-analysis, exhibiting shared peak signals across

different ancestries and biofluids. For plasma data, we meta-

analyzed 2,064 plasma metabolites in 26,340 participants and

identified 13,065 mQTLs (p < 5 3 10�8 ,Table S2; Figure S3).

We meta-analyzed the urine mGWAS from Schlosser et al.16

and the AMD Biomarkers Study for 1,781 urine metabolites in

2,072 participants (Figure S4), identifying 1,443 mQTLs.

Multi-ancestry and multi-fluid validation of mQTLs
The mQTLs identified from NHS, NHSII, and HPFS plasma

were well replicated in the CLSA, METSIM, and HCHS/SOL
Cell Reports Medicine 4, 101085, July 18, 2023 3



Figure 2. Circular Manhattan plot illustrating metabolite-based genome-wide association studies

The circular Manhattan plot displays the p values from metabolite-based genome-wide association studies (mGWASs). Each circle represents an mGWAS in a

specific study. From innermost to outermost circle: NHS/NHSII/HPFS, Canadian Longitudinal Study on Aging (CLSA), Metabolic Syndrome in Men (METSIM)

study, HCHS/SOL, plasma meta-analysis, and urine meta-analysis. The circular Manhattan plot is customized to display all genome-wide significant SNPs

(p < 5 3 10�8) for available metabolites in each study, with p values truncated at 1 3 10�50.
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studies (Figure 3). For instance, of the 307 SNP-metabolite

pairs (mQTLs) with mGWAS summary statistics available in

the HCHS/SOL, 111 (36%) achieved genome-wide significance

(p < 5 3 10�8 in the HCHS/SOL), and the overall concordance

of effect sizes between the discovery (NHS/NHSII/HPFS) and

replication cohorts (HCHS/SOL) was remarkably high (Pearson

correlation 0.86, p = 6.09 3 10�91; Figure 3A3). We then

compared the NHS, NHSII, and HPFS plasma mQTLs with

urine mGWAS reported by Schlosser et al.16 (Figure 3A4). Of

the 188 mQTLs that were also available from the latter, only

13 (6.9%) passed the genome-wide significance level

(p < 5 3 10�8 in Schlosser et al.16). The Pearson correlation

of plasma mQTLs and urine was 0.45 (p = 8.25 3 10�11; Fig-
4 Cell Reports Medicine 4, 101085, July 18, 2023
ure 3A4), revealing a lower correlation of mQTLs shared be-

tween plasma and urine data. Restricting the effect sizes of

SNPs to �0.5 to 0.5 showed similar correlations, confirming

that the correlations were not solely driven by SNPs with larger

effects (Figure S5).

The meta-analysis mQTLs were highly correlated with each

input study (Figure S6). In line with the above findings, the

mQTLs from plasma meta-analysis exhibited a lower correla-

tion with urine data (Figure 3B). Collectively, these results sug-

gest that effect sizes of metabolites in the same fluid from

different ancestries and measurement platforms have a high

correlation, whereas the concordance between plasma and

urine is lower.
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Figure 3. Multi-ancestry and multi-fluid validation of mQTLs across different studies

These plots show the effect sizes for metabolomic quantitative trait loci (mQTLs) from various datasets, labeled on the x and y axes. mQTLs were selected from

the studies labeled on the x axis. Effect sizes are represented as green dots, while the 1.96 standard errors are depicted as gray bars (vertical and horizontal error

bars). The red lines indicate the best-fit lines, and the 95% confidence intervals are shown in gray. The plasma meta-analysis included plasma metabolites from

NHS/NHSII/HPFS, CLSA, METSIM, HCHS/SOL, and AMD Biomarker Study (Boston and Portugal plasma data). The urine meta-analysis included urine me-

tabolites from Schlosser et al.16 (urine) and AMD Biomarker Study (Boston and Portugal urine data). p = 0 signifies a very small p value in R (smaller than the

smallest representable positive double-precision floating point value at 2.225074 3 10�300).
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Putative causal associations between metabolites and
advanced AMD
We performed two-sample MR analysis using the identified

mQTLs and advanced AMD GWAS summary statistics. We

discovered a high concordance of MR estimates among 143

available overlapping plasma metabolites in different studies

(Figures 4A and S3). We identified 19 metabolites that were

associated with advanced AMD risk in at least one study

(NHS/NHSII/HPFS, CLSA, METSIM, or HCHS/SOL) and demon-

strated a high concordance in effect sizes and directions across

different studies, indicating that the high concordance of plasma

mQTLs from various platforms and ancestries provided robust

MR estimations.

To increase power, we then performed MR analysis using the

mQTLs from plasma meta-analysis. In total, we identified 108

plasma metabolites that were associated with advanced AMD

after adjusting for multiple testing (false discovery rate [FDR]-

corrected p < 0.05; Figure 4B; Table S4). The most common

pathways of the associated metabolites were lysophospholipid,

glycerophospholipid (i.e., glycerophosphoethanolamine and

glycerophosphocholine pathways), triradylcglycerols, long chain

polyunsaturated fatty acids (PUFAs), and plasmalogen (Figures 5

and S7). We performed reverse-directional MR analyses and

observed limited evidence supporting reverse effects that

advanced AMD might alter metabolite levels (Table S4). In the

meta-analysis of urine metabolites, we only identified five me-

tabolites associated with advanced AMD (Table S5), reflecting
the smaller sample size of urine data or fewer true associations

between urine metabolites and advanced AMD. In the urine

MR analysis, we found that indolelactate in the tryptophan meta-

bolism pathway was negatively associated with advanced AMD.

We performed various MR sensitivity analyses to evaluate the

MR estimates that may violate MR assumptions. Different MR

sensitivity analyses provided consistent estimates and direc-

tions (Figure 4A; Table S4). The full descriptions to probe MR as-

sumptions were presented in the discussion section.

Our MR analyses exhibited sufficient power to detect moder-

ate effect sizes for advanced AMD, such as an odds ratio (OR) of

1.2 per standard deviation increase of metabolites (with a mean

variance of 3.8% for metabolite genetic instruments). The

powers of our analysis for advanced AMD, choroidal neovascu-

larization (CNV), geographic atrophy (GA), mixed AMD, and inter-

mediate AMD are 88%, 77%, 44%, 30%, and 64%, respectively

(as shown in Table S6). The genetic instruments used in our anal-

ysis are available in Table S7.

Shared common causal variants between metabolites
and advanced AMD
From the Bayesian colocalization analysis, we identified 114 po-

tential causal variants for metabolite and advanced AMD pairs

(Figure 6; Table S8). The identified colocalization genetic variants

between metabolites and advanced AMD were most commonly

located in or near APOE, ABCA1, LIPC, and CETP. For example,

the SNP rs429358 at the APOE locus was shared between
Cell Reports Medicine 4, 101085, July 18, 2023 5
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Figure 4. Replication of MR estimates for the associations between metabolites and AMD from NHS, NHSII, HPFS, CLSA, METSIM, and

HCHS/SOL

(A) The replication of 19 overlapping metabolites between NHS/NHSII/HPFS, CLSA, METSIM, and HCHS/SOL. The x axis represents the effect size (beta) of

metabolites on advanced AMD risk, while the vertical dashed line corresponds to beta = 0. Four MR methods are depicted with different colors and line types

(inverse-variance weightedmethod, weightedmedian, weightedmode, andMR-Egger). For metabolites with a single SNP as a genetic instrument, theWald ratio

method is used (grouped into the inverse-variance weighted method).

(B) Comparison of the MR Z scores (MR effect sizes divided by standard errors) from plasma meta-analysis (x axis) and each individual study (y axis). The "MR

discovery" indicates whether a metabolite is associated with advanced AMD risk in the plasma meta-analysis. Significant MR p values in each study (MR
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Figure 5. Prioritized metabolite pathways from Mendelian randomization analysis
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advanced AMDand 47metabolites, of which 81%were lipidme-

tabolites (Table S8). Overall, we found that 90 (79%) metabolites

sharing causal variants with AMDwere from lipid pathways, sup-

porting the important role of lipid metabolites in AMD risk

(Figure 6).

MWAS
We developed a MWAS pipeline to identify metabolite-AMD as-

sociations. From MWAS, we identified 155 plasma metabolites

whose combined genetic effects were associated with risk of

advanced AMD after adjusting for multiple testing (FDR-cor-

rected p < 0.05; Table S9). Of the 155 metabolites, 96 were

also associated with advanced AMD in the MR analysis, and

all but one showed a consistent direction of effect sizes between

MWAS and the four MR methods (weighted median, weighted

mode, and inverse-variance weighted MR methods) (Figure 7).

As with the MR analysis, from MWAS, we identified very few

urine metabolites that were associated with advanced AMD

(Table S10).

Association of metabolites with AMD subtypes and lipid
biomarkers
We systematically evaluated the association of the 108 plasma

metabolites identified from the MR analysis in the plasma

meta-analysis with four AMD subtypes (CNV, GA, intermediate,

and mixed AMD types) and six lipid-related biomarkers

(ApoA1, ApoB, CHOL, HDL-C, direct LDL-C, and TG). In the

AMD subtype analysis, most identified metabolites for advanced

AMD were also significantly associated with CNV AMD, with a

high concordance of Z scores (association effect sizes divided
by standard errors; Figure S8). For GA, intermediate, and mixed

AMD subtypes, the concordances of Z scores with advanced

AMD were also high; however, there were substantially fewer

significant metabolites, reflecting the much smaller sample size

in these AMD subtypes. We also observed that most of the

108 metabolites were associated with the six lipid-related bio-

markers (Figure S9), indicating the metabolites are likely to be

involved in lipid pathways for the risk of AMD.

DISCUSSION

In this large-scale integrative genetic and metabolomic analysis

based on metabolite data from six multi-ancestry studies,

including up to 28,000 participants, we identified novel metabo-

lites associated with AMD. Our results demonstrated high

concordance of mQTL effect sizes across different ancestries

and metabolomic platforms but lower concordance between

urine and plasma. This robust mQTL database enabled us to un-

dertake an MR approach to evaluate the causal associations be-

tween metabolites and AMD. After accounting for multiple

testing, we identified 108 metabolites with potential causal ef-

fects on advanced AMD. We further employed colocalization

analysis to uncover 114 genetic variants shared betweenmetab-

olite and advanced AMD pairs, where the most frequent causal

variants belong to lipid pathways. The MWAS analysis illustrated

that 155 metabolites were associated with advanced AMD, of

which 96 metabolites were also significant in the MR analysis.

The identified metabolites were enriched in pathways of glycer-

ophospholipid metabolism, lysophospholipid, triradylcglycerols,

and long-chain PUFAs. Finally, we systematically evaluated the
Cell Reports Medicine 4, 101085, July 18, 2023 7
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association of the identified metabolites with different AMD

subtypes and lipid biomarkers. To our knowledge, this study

presents the first comprehensive large-scale mGWAS in multi-

ancestry and multi-fluid datasets to establish putative causal

associations of metabolites with risk of AMD.

In the mGWAS, we demonstrated high concordance of ge-

netic effects for metabolites across different ancestries, indi-

cating that the genetic determinants of metabolites in European

and Hispanic populations largely overlap. Consistent with a

recently published cross-platform mGWAS,15 our mQTLs from

different metabolomic platforms based on different instruments

(the Broad versus Metabolon) also exhibited high concordance,

supporting the use of large-scale data from different studies in

this work. Notably, while the correlation between mQTL effect

sizes was high from the same fluids, we observed lower concor-

dance between plasma and urine, suggesting that the genetic

associations of SNPs with metabolite measurements in plasma

and urine are at least partly distinct, yet these results may also

be influenced by statistical power.

Despite previous reports of associations between AMD

risk SNPs and plasma metabolites, no work has followed a

genome-wide approach.18,19,31 For example, we previously as-

sessed AMD risk SNPs and identified 28 significant mQTLs in

the LIPC and ASPM genes associated with phosphatidyletha-

nolamine and branched-chain amino acid metabolites.19

Another study from the EYE-RISK Consortium reported 60 me-

tabolites phenotypically associated with AMD, and seven AMD

risk SNPs were associated with 34 of the identified metabo-

lites.18 In the current study, we performed a large-scale

mGWAS across different ancestries and biofluid samples

instead of restricting SNPs to only AMD risk variants (approxi-

mately 50 lead SNPs). This approach allowed us to charac-
8 Cell Reports Medicine 4, 101085, July 18, 2023
terize the genetic architecture of metabo-

lites, enabling causal inference based on

MR principles and a formal colocalization

analysis to provide a comprehensive

view of shared genetic effects between

metabolites and AMD. For example, SNP

rs429358 at the APOE locus is shared be-

tween AMD and 47 unique metabolites.

As reported, rs429358 is a well-estab-

lished AMD risk variant (p = 2.39 3

10�42).7 In this study, metabolites with

the highest posterior probability of sharing

rs429358 with AMD risk were primarily
lipid metabolites, such as N-palmitoyl-sphingosine (d18:1/

16:0), 1-stearoyl-2-oleoyl-GPE (18:0/18:1), and 1-stearoyl-

GPI (18:0).

Crucially, previous metabolite-AMD association studies have

not included statistical methods designed to address causality.

In this work, the large-scale mGWAS enabled a bidirectional

two-sampleMR approach to investigate putative causal relation-

ships between metabolites and AMD, overcoming limitations of

observational association studies prone to confounding factors

and reverse causality. From the MR analysis, we identified 108

metabolite-AMD associations enriched in glycerophospholipid

metabolism pathways (i.e., glycerophosphoethanolamine and

glycerophosphocholine pathways), lysophospholipid, triradylc-

glycerols, long chain PUFAs, and plasmalogen. Glycerophos-

pholipids play an important role in structural and functional com-

ponents of biological membranes and serum lipoproteins.32

Most associated metabolites in glycerophospholipid meta-

bolism were negatively associated with AMD risk, suggesting

that higher metabolite levels protect against AMD. This observa-

tion aligns with our previous work, which demonstrates

significant dysregulation of glycerophospholipid metabolism in

AMD.33 A recent study in patients treated with anti-VEGF indi-

cated lower glycerophosphocholine levels in the treatment

responder group compared with the treatment non-responder

group.34 Additionally, we observed that most of these 108 me-

tabolites were associated with six lipid-related biomarkers

(such as HDL-C and LDL-C). Notably, metabolites including ly-

soplasmalogens, 1-(1-enyl-palmitoyl)-GPC (P-16:0), 1-(1-enyl-

palmitoyl)-GPE (P-16:0), and 1-(1-enyl-stearoyl)-GPE (P-18:0),

transported in lipid particles, are potential putative causal me-

tabolites associated with AMD risk. Altogether, these findings

support the important role of glycerophospholipids in AMD risk
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susceptibility, disease severity, and treatment response. The as-

sociation of hepatic lipase generation of lysophospholipids with

AMD possibly involves complement activation.35 In this study,

we also identified PUFAs and plasmalogen (reservoirs of

PUFAs), which may exhibit anti-oxidative and anti-inflammatory

effects in retinal functions.36 Further functional experiments are

warranted to investigate the role of the identified pathways in

AMD risk.

A major concern in MR analysis is the possibility of pleiotropic

effects of genetic instruments violating MR assumptions.37 For

instance, it is possible that a subset of metabolite SNPs might

associate with other AMD risk factors through measured or un-

measured confounders, violating one of the MR assumptions.38

Two types of pleiotropy exist in MR analysis: vertical pleiotropy

and horizontal pleiotropy.39 In vertical pleiotropy, genetic vari-

ants associate with multiple traits on the same pathway, not

invalidating the MR assumption, while horizontal pleiotropy indi-

cates genetic variants affecting multiple traits through separate

pathways (confounders). We observed that metabolites in the

same pathway are more likely to share the same mQTLs, which

could be classified as vertical pleiotropy. However, pathways

observed through metabolomic platforms do not always corre-

spond to the same biological pathways, leading to the possibility

of horizontal pleiotropy effects. To address this concern, we per-

formed various MR sensitivity analyses in the current study. For

instance, the MR-Egger method can model directional pleiot-

ropy (non-zero intercept term), and weighted model MR and
Cell R
weighted median MR require only a subset

or up to 50% weights from valid variants.

We have shown that different MR

sensitivity analyses provided consistent

estimates and directions (Figure 4A;

Table S4).

A key strength of this study is thatweper-

formed large-scale mGWASs in different

ancestries and biofluid samples, enabling

a comprehensive evaluation of the shared

genetic components between metabolites

and AMD using multiple genetic ap-

proaches. We demonstrated that causal

metabolite findings were consistent across

European and Hispanic ancestral popula-
tions. The bidirectional MR approach can delineate association

directions and is less likely to be biased by confounding factors

and reverse causality.

Limitations of the study
Our results should be interpreted in light of the study limita-

tions. First, in the MR analysis, a concern is the existence of

horizontally pleiotropic effects of genetic instruments, where

a genetic variant may influence AMD independently of the

metabolite exposure. To address this concern, we showed

that different MR sensitivity analyses provided consistent es-

timates and directions (Figure 4A; Table S4). Second, the ef-

fect of an exposure is assumed to be stable across a lifetime,

meaning the temporary and short-term effects of metabolites

on AMD risk would not be reflected. Third, metabolite mea-

surements in this study are from different populations, biolog-

ical samples, and measurement platforms. Consequently, not

all plasma metabolites in the European population were

available in the Hispanic population or urine data. However,

using overlapping metabolites, the replication of MR findings

in different ancestries provided evidence supporting the

generalizability of AMD-associated metabolites. In this study,

we found limited evidence of associations between urine me-

tabolites and AMD risk, potentially reflecting the smaller sam-

ple size of urine mGWASs and the absence of links between

urine and ocular tissue. While our study identified a link be-

tween lipid-related metabolites and AMD risk using plasma
eports Medicine 4, 101085, July 18, 2023 9
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metabolites, it is important to recognize that circulating

metabolite concentrations may not accurately reflect the

metabolic pathways associated with AMD in the eye. Further

research is needed to investigate the influence of metabolites

in the retina tissue on AMD risk. Lastly, most study partici-

pants were of European descent. To obtain a more compre-

hensive understanding of the impact of genetic variations on

metabolite measurements and AMD risk, it is essential to

conduct additional studies that include individuals of Asian

and African ancestries.

In conclusion, this study showcases an extensive integrative

analysis of multi-omics data pertaining to AMD risk. The metab-

olites identified with potential causal impact on AMD, along with

the shared causal genetic variants between these metabolites

and AMD and its subtypes, offer novel insights into the patho-

genesis of AMD.
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The clinical protocol of AMD Biomarkers Study was conducted in accordance with Health Insurance Portability and Accountability

Act requirements and the tenets of the Declaration of Helsinki, and was approved by the Institutional Review Boards at Mass Eye and

Ear, Mass General Brigham, FMUC, and the Portuguese National Data Protection Committee. All participants enrolled in the study

provided written informed consent.

METHOD DETAILS

In the current study, we included large-scale genetic and metabolomic studies. Detailed information for each study is described

below.

The nurses’ health study, nurses’ health study ii, and health professionals follow up study
The NHS, NHSII, and HPFS are three large longitudinal studies comprising approximately 290,000 participants with extensive expo-

sures and outcomes followed for more than 40 years. The detailed descriptions of the study design, data collection, and genotyping

have been described previously.48–50 Briefly, the NHS was launched in 1976 with 121,701 female nurses aged between 30 and 55

years in the United States; the NHSII started in 1989 involving 116,429 younger female nurses aged between 25 and 42 years at base-

line; and the HPFS was established in 1986 and consisted of 51,529 men aged 40 to 75 years at baseline.

Genetic data
In the NHS, NHSII, and HPFS, merging, quality control, and imputation procedures of genetic datasets were previously described.50

Genotype data were available from five genotype platforms aftermerging genetic data using overlap SNPs. The Haplotype Reference

Consortium Release 1.1 data were used as the reference panel for imputation. In this study, we filtered variants with minor allele fre-

quency (MAF) > 0.01 and imputation quality score >0.6, resulting in approximately 8 million SNPs available for metabolite GWAS.

Metabolomic data
Themeasurements of 346 named plasmametabolites were retrieved from previous sub-studies based on the NHS, NHSII, and HPFS

as reported elsewhere.51 Metabolites were measured at the Broad Institute of Harvard University and MIT (Cambridge, MA) using

high-throughput liquid chromatography-tandemmass spectrometry (LC-MS) technique. Quality control and standardization proced-

ures were previously described.51 Briefly, we removed low-quality measurements (individuals or metabolites with <75% detection

rate, or metabolites with no between-person variations or with an intraclass correlation coefficient <0.4) and imputing missing values

for each metabolite with the half minimum values. In the present study, participants with both genetic and metabolomic data were

included in the subsequent association analysis to identify genetic variants associated with metabolites. The median sample size of

GWAS for the 346 metabolites was 6,610 participants (interquartile range [IQR]: 3,829 - 6,961).

Metabolite-based genome-wide association studies (mGWAS)
The mGWAS were performed in the NHS, NHSII, and HPFS within each genotype platform using the RVTESTS software (version

20190205).43 For each metabolite, after adjusting for age, fasting status, cohort (NHS, NHSII, and HPFS), indicators of subcohort

outcome for both the original genetic and metabolomic studies, batch effects in metabolomics, and the first four genetic principal

components, the residual phenotypes were inversely normal transformed to obtain score statistics (–inverseNormal and –useResi-

dualAsPhenotype in RVTESTS).43 The mGWAS summary statistics were meta-analyzed across different genotype platforms based

on the inverse variance-weighted method (METAL software).45

The canadian longitudinal study on aging (CLSA)
The Canadian Longitudinal Study on Aging (CLSA) is a national, longitudinal study encompassing 51,338 participants aged between

45 and 85 years from 10 Canadian provinces.27,28

Genetic data
In the CLSA, genetic data were available for 26,622 participants (version 3) genotyped for 794,409 markers on the Affymetrix Axiom

array and were further imputed to approximately 308 million SNPs based on the TOPMed reference panel.52 The genetic quality

assessment and imputation procedures were described elsewhere.52 In the current study, we removed non-European ancestry par-

ticipants based on genetic principal components, and 9,021 participants with both genetic and metabolomic data were included in

the genetic association analysis.53 SNPs with MAF >0.01 and imputation quality score >0.6 were retained for association tests.

Metabolomic data
In the CLSA, the metabolomic data were profiled by Metabolon using non-targeted LC-MS. In total, 1,458 metabolites were

measured in 10,204 participants. In this study, no sample was removed for missing rate >50%, and no samples had outliers >6 stan-

dard deviation in the first two metabolite principal components. We observed that 36 metabolites have a missing rate >90%.

With a missing rate at 10%, the effective sample is still approximately 1,000, therefore, these metabolites were included in the

following GWAS. 21 metabolites were removed with no variance. In this study, 144 samples were measured in each batch.
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A batch-normalization method was applied to adjust for batch effects. The missing values were imputed using the minimum value in

each batch. The measurements of metabolites were transformed using the rank-based inverse normal method to interpret the me-

tabolites in one standard deviation unit. We included 1,437 metabolites from 9,021 European ancestry participants based on the

batch-normalized data in the genetic association tests.

mGWAS
The association tests were performed in REGENIE (v2.2.4)42 to runGWAS for 50metabolites in each job. In the regressionmodels, we

adjusted for age, gender, fasting time, genetic batch, and the first ten genetic principal components.

Plasma metabolite study in finnish
Genetic associations for 1391 plasma metabolites in 6136 Finnish men were recently performed from the METabolic Syndrome In

Men (METSIM) study.29 Briefly, The genotype data (OmniExpress platform) were imputed using the METSIM integrative panel

genome sequence data. 1,544 plasma metabolites were assayed by Metabolon using non-targeted LC-MS/MS, and 1,391 metab-

olites quantified were included in the mGWAS. For each metabolite, inverse normalized metabolite residual values were used in as-

sociation tests by linear mixed models.29 The detailed genetic data, metabolite data, and association analysis were described

elsewhere.29

The hispanic community health study/study of latinos
TheHispanic Community Health Study/Study of Latinos (HCHS/SOL) is a community-based cohort study comprising 16,415Hispan-

ic adults aged between 18 and 74 years in the United States.54 The study design, metabolite measurements, and genetic data have

been described elsewhere.30,54 Briefly, the metabolite measurements were quantified using untargeted LC-MS at Metabolon

(Durham, NC). We included only known metabolites with missing rates %25%. The participants of HCHS/SOL were genotyped

on a customized Illumina array and were further imputed based on the 1000 Genomes Project phase III reference panel. SNPs

were filtered with MAF R1% and imputation quality R0.3 for the genetic association analyses. In the current study, we included

mGWAS summary statistics for 640 plasma metabolites in a random subset of 3,926 participants.30

Urine metabolite GWAS from schlosser et al.
A previous study reported urinary mGWAS for 1,172 metabolites among 1,627 patients with reduced kidney function.16 The metab-

olites were quantified using non-targeted MS analysis performed by Metabolon using ultra-high-performance liquid chromatog-

raphy-tandem mass spectrometry (UPLC-MS/MS) method.16 In this study, we obtained urinary mGWAS summary statistics.

AMD biomarkers study
We developed a cross-sectional observational study including AMD cases and controls at two sites: the Department of Ophthal-

mology at Massachusetts Eye and Ear (Mass Eye and Ear) and Harvard Medical School (Boston, MA), and the Faculty of Medicine

of theUniversity of Coimbra (FMUC) and the ‘‘CentroHospitalar e Universitário deCoimbra’’ (Coimbra, Portugal). The clinical protocol

was conducted in accordance with Health Insurance Portability and Accountability Act requirements and the tenets of the Declara-

tion of Helsinki, and was approved by the Institutional Review Boards at Mass Eye and Ear, Mass General Brigham, FMUC, and the

Portuguese National Data Protection Committee. All participants enrolled in the study provided written informed consent.

Sample collection
The detailed study protocol for blood and urine samples have been described elsewhere.19,55 In summary, patients diagnosed with

AMD, as well as participants with no evidence of AMD, aged more than 50 years were included at both study sites (Boston and

Portugal) and underwent a complete ophthalmological exam for phenotypic characterization. For all participants, overnight fasting

samples were collected the next morning. Two blood samples were collected: one into a sodium-heparin tube that was centrifuged

within 30min to obtain plasma for metabolomic analysis and the other into an ethylenediaminetetraacetic acid tube that was used for

DNA extraction.19 We also collected urine samples into sterile cups and then stored into sterile cryovials of 1.5 mL (MEE) and 5 mL

(FMUC/AIBILI), which were stored at �80�.55

Metabolomic data
The non-targeted MS analysis (UPLC-MS/MS) was used for metabolomic profiling by Metabolon.19,55 The standard quality control

and data processing pipeline were used for metabolite measurements, with 907 plasma metabolites and 1,417 urine metabolites

included in the current analysis after batch normalization. Briefly, we removed metabolites with missing rate >50% or no variance.

Measurement outliers were defined as values >5 standard deviation andwere winsorized. Datasets weremerged after batch normal-

ization andmissing values were imputed with half of theminimum value in each batch. The rank-based inverse normal transformation

algorithm was applied to the metabolite measurements.
e3 Cell Reports Medicine 4, 101085, July 18, 2023
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Genetic data
Genetic profiling was performed at the Broad Genomics Institute using the OmniExpress array. Before imputation, we performed

genetic quality control in both variant and sample levels. Briefly, we excluded variants with MAF less than 1%, p values less than

1 3 10�5 from Hardy-Weinberg equilibrium tests, and missing rates greater than 5%. Non-European participants were removed

based on self-reported ancestry information and genetic principal components. The Michigan Imputation Server was used for impu-

tation with the 1,000 Genomes Project Phase III as the reference panel. Approximately 8.6 million SNPs with MAF >0.01 and impu-

tation quality score >0.6 were retained for association analysis.

mGWAS
In the AMD Biomarkers Study, after quality control of metabolomics and genetic data, for plasma mGWAS, 183 participants from

Boston, MA and 286 from Coimbra, Portugal were included (total sample size 647). For urine mGWAS, 183 participants from Boston,

MA and 286 from Coimbra, Portugal were included (total sample size 445). We performed mGWAS separately for Boston, MA and

Coimbra, Portugal separately using the PLINK software (version 20190205).41 Gender, age, and the first ten genetic principal com-

ponents were adjusted for in the association tests.We thenmeta-analyzed themGWAS summary statistics from the two sub-cohorts

using the inverse variance-weighted method (METAL software).45

The International AMD Genomics Consortium
The International AMDGenomicsConsortium (IAMDGC) has reported a large AMDGWAScollected from 26 studies, including 16,144

advanced AMDcases and 17,832 controls of European ancestry.7 Cases of advanced AMD included both geographic atrophy and/or

choroidal neovascularization, and the controls were without any known advanced or intermediate AMD. In the present study, AMD

GWAS summary statistics of 12,023,117 SNPs were available in our analysis. We also included different AMD subtype GWAS,

including 5,336 intermediate AMD cases, 8,544 CNV cases, 2,656 GA cases, and 1,511 mixed AMD cases with both CNV and GA

(Supplementary Table 3). The detailed diagnosis criteria of advanced AMD and different AMD subtypes were described else-

where.7,10,11 Briefly, advanced AMD included choroidal neovascularization and/or geographic atrophy in at least one eye and age

at first diagnosis more than 50 years old; intermediate AMD cases had pigmentary changes in the retinal pigment epithelium or

more than five macular drusen greater than 63 mm in diameter and age at first diag-nosis more than 50 years old.7,10,11

UK biobank lipid biomarker GWAS
To evaluate the effects of metabolites on lipid related biomarkers, we included 6 lipid related biomarkers: apolipoprotein A1 (ApoA1),

apolipoprotein B (ApoB), total cholesterol (CHOL), high-density lipoprotein cholesterol (HDL-C), direct low-density lipoprotein

cholesterol (LDL-C), and triglycerides (TG).11 The GWAS were performed on approximately 400,000 participants in the UK Biobank.

The detailed descriptions of UK Biobank, the lipid data, and GWAS analyses were described elsewhere.11

QUANTIFICATION AND STATISTICAL ANALYSIS

Metabolite-based genome-wide association studies and meta-analysis
The mGWAS for each study was described above. mGWAS summary statistics were meta-analyzed based on the inverse variance-

weighted method (METAL software).45 For plasma meta-analysis, we included plasma metabolites from NHS/NHSII/HPFS, CLSA,

METSIM, HCHS/SOL, and AMDBiomarker Study (Boston and Portugal plasma data). For urinemeta-analysis, we included urineme-

tabolites fromSchlosser et al. (urine), AMDBiomarker Study (Boston and Portugal urine data). The detailed information of sample size

and number of metabolites were available in the Supplementary Table 2. Genome-wide significant SNPs were obtained using the

clumping method in PLINK 1.9 software (MAF >0.01, p value <53 10�8, r2 < 0.01, and a window of 1Mb).41 The European ancestry

participants from 1000 Genomes Project phase III were used as the reference panel.

Bidirectional mendelian randomization analysis
We performed bidirectional MR to evaluate the associations between metabolites and risk of AMD (R package TwoSampleMR,

version 0.5.6).44 For metabolites, top independent SNPs were selected using the PLINK software (MAF >0.01, p value <5 3 10�8,

r2 < 0.01, and a window of 1Mb).41 We utilized the mRnd method (http://cnsgenomics.com/shiny/mRnd/) to evaluate the power of

our MR analyzes across various AMD subtypes.46 We conducted a series of MR analyses with different assumptions and strengths

to investigate the putative causal associations between metabolites and AMD in the two-sample MR framework, including inverse-

variance weighted method (MR-IVW), weighted median, weighted mode, and MR-Egger.37,56,57 Some MR methods (MR-Egger

weighted mode, weighted median) requiring at least three genome-wide significant SNPs as genetic instruments.58 For metabolites

with only one SNP as the genetic instrument, the Wald ratio method was used in the MR analysis. To assess the potential reverse

causality, we selected top genetic risk variants for AMD and calculated the effects on each metabolite to perform reverse-directional

MR analysis (AMD precedes and leads to changes in metabolites instead of vice versa). To adjust for multiple testing, we used false

discovery rate (FDR, Benjamini & Hochberg method) < 5% as the significant threshold to account for multiple MR tests and

metabolites.59
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Colocalization analysis
A Bayesian colocalization approach by the coloc package (R package, version 5.1.0) was used to identify shared genetic variants for

metabolites and AMD.24 In the Bayesian colocalization analysis, the posterior probabilities were calculated for the following five hy-

potheses: H0, no association with either trait; H1 and H2, association with trait 1 or trait 2; H3, association with both traits but two

independent SNPs; and H4: association with both traits with a shared variant. A posterior probability for H4 (PP4) more than 0.8 sup-

ports a shared causal variant affecting both metabolite and AMD. To identify the shared variants in the colocalization analysis, we

tested independent metabolite SNPs (p < 53 10�8) and AMDSNPs (p < 13 10�6) with a genomic window of 2Mb of the independent

SNPs.

Metabolome-wide association study
The metabolome-wide association studies (MWAS) pipeline was adapted from the transcriptome-wide association analysis

(FUSION) to leverage the metabolites and AMD GWAS summary statistics identifying metabolite-AMD associations.26 In the

TWAS approach, the individual level data of genotypes and gene expression measurements in a training sample were used to model

genetically regulated gene expression.25,26 With a reference panel of genotype, TWAS can impute gene expression in an outcome

dataset with only GWAS summary statistics, allowing to evaluate the association between gene expressions and the outcome. In our

MWAS analysis, the individual level data were not available for all studies, therefore, we applied a clump method to select indepen-

dent genome-wide significant SNPs (r2 = 0.01, p value <5 3 10�8) for prediction (a polygenic risk score approach), imputed the

metabolite levels into the AMD GWAS summary statistics, and performed MWAS to identify significant metabolite-AMD associa-

tions.25,26,60 In our sensitivity analysis, we modeled two other approaches: the single most significantly associated SNP (top1)

and all independent SNPs with p values <1 3 10�5 when there were no genome-wide significant metabolite SNPs available. The

FDR (Benjamini & Hochberg method) corrected p value <5% was used to control for multiple testing.

Pathway analysis
We counted the number of significant metabolites from MR analysis in each pathway based on available pathway annotation infor-

mation. Then we performed chemical classification enrichment statistical analysis using the Kolmogorov-Smirnov test. Enrichment

significance was calculated based on the chemical similarity of these metabolites (ChemRICH method).47,61
e5 Cell Reports Medicine 4, 101085, July 18, 2023


	Integrating genetics and metabolomics from multi-ethnic and multi-fluid data reveals putative mechanisms for age-related ma ...
	Introduction
	Results
	Study design
	mGWASs
	Multi-ancestry and multi-fluid validation of mQTLs
	Putative causal associations between metabolites and advanced AMD
	Shared common causal variants between metabolites and advanced AMD
	MWAS
	Association of metabolites with AMD subtypes and lipid biomarkers

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Acknowledgments
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Ethics statement

	Method details
	The nurses’ health study, nurses’ health study ii, and health professionals follow up study
	Genetic data
	Metabolomic data
	Metabolite-based genome-wide association studies (mGWAS)
	The canadian longitudinal study on aging (CLSA)
	Genetic data
	Metabolomic data
	mGWAS
	Plasma metabolite study in finnish
	The hispanic community health study/study of latinos
	Urine metabolite GWAS from schlosser et al.
	AMD biomarkers study
	Sample collection
	Metabolomic data
	Genetic data
	mGWAS
	The International AMD Genomics Consortium
	UK biobank lipid biomarker GWAS

	Quantification and statistical analysis
	Metabolite-based genome-wide association studies and meta-analysis
	Bidirectional mendelian randomization analysis
	Colocalization analysis
	Metabolome-wide association study
	Pathway analysis




