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Abstract. This manuscript contains a small portion of the algebraic theory
of orthogonal polynomials developed by Maroni and their applicability to
the study and characterization of the classical families, namely Hermite,
Laguerre, Jacobi, and Bessel polynomials. It is presented a cyclical proof
of some of the most relevant characterizations, particularly those due
to Al-Salam and Chihara, Bochner, Hahn, Maroni, and McCarthy. Two
apparently new characterizations are also added. Moreover, it is proved
through an equivalence relation that, up to constant factors and affine
changes of variables, the four families of polynomials named above are
the only families of classical orthogonal polynomials.
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1. Orthogonal Polynomials: The Algebraic Theory

Denote by Mm(A) the ring of all square matrices of order m over the com-
mutative ring with unit A. Consider the free module M = Mm(A)[X] of all
“polynomials” in one indeterminate X with coefficients in Mm(A). (Assume
that the indeterminate is contained in the centre of M.) Any free system of
polynomials over Mm(A) is a basis of M. Moreover, the dual of a finite gener-
ated free module is a finitely generated free module. However, the dual system
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associated with a free sequence (pn)n≥0 in M, (an)n≥0, is not a system of
generators of its algebraic dual, M∗, in general (cf. [3, VII, Sect. 3, Exercise
10]). But if we consider, for instance, P = C[X], instead of M, endowed with
an “appropriate” topology, then P∗ = P ′ (cf. [23, Exercise 13.1, p. 134]), P ′

being the topological dual P. Hence

u =
∞∑

n=0

〈pn,u〉an, (1.1)

for all u ∈ P ′. (Recall that for every pair of elements x ∈ E and x ∈ E∗,
the element x(x) of E is denoted by 〈x,x〉, where E is a left A-module whose
domain of operators is A.) This observation is the cornerstone of Rota’s umbral
calculus (cf. [22]) and the algebraic theory of orthogonal polynomials (OP)
founded by Maroni (cf. [12–14]). For further reading on how to re-establish
the “symmetry” between an infinite dimensional vector space and its dual see
[4, II, Sect. 6].

This manuscript contains a short exposition of Maroni’s approach on
OP and their applicability to the study and characterization of the classical
families of OP. A must read on this topic are Maroni [11,15–18]. A more
detailed historical overview about classical orthogonal polynomials can be find
in the works by Maroni or the survey paper [1], among other references. Even
a proof of Theorem 3.1 can be found, in one way or another, in the works of
Maroni. However, among other questions of pedagogical nature, in this survey
we present a cyclical proof of our main results, Theorem 3.1. Moreover, the
characterizations (C4) and (C4’) are apparently new ones. While is true that
any classical functional is equivalent to one of the canonical forms given in
Table 1 below, Theorem 3.2 rigorously reflects this property and, as far as we
know, it is not available in the literature. Many results are stated without proof,
either because they are simple to prove or because they can be easily found
in the literature. Other results that fit in these two categories are, however,
proved when the proof methods are different or more attractive, from our
point of view, to the existing ones. The positive definite case, widely discussed
in the literature, is intentionally omitted. Finally, as the reader will notice,
some results are “purely” algebraic. In any case, we will not make distinction
between P∗ and P ′ after Proposition 1.1 below.

1.1. The Spaces P and P ′

It is useful to consider OP as test functions living in an appropriate locally
convex space (LCS), which we denote by P. This LCS is the set of all polyno-
mials (with real or complex coefficients) endowed with a strict inductive limit
topology, so that

P =
∞⋃

n=0

Pn = ind limn Pn , (1.2)
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where Pn is the space of all polynomials of degree at most n. (For the sake of
simplicity, we do not distinguish between polynomial and polynomial function.)
Since Pn is a finite dimensional vector space, all its norms are equivalent,
so there is no need to specify any particular one. For the development of
the theory to be presented here it is not important to know much about the
topology (the definition and basic properties of LCS, including inductive limit
topologies, can be found, e.g., in Chapter V of Reed and Simon’s book [21],
but the reader should keep in mind that the reason why such topology is
introduced is because it implies the following fundamental property:

Proposition 1.1. Let P = ind limn Pn, as in (1.2), and let P∗ and P ′ be the
algebraic and the topological duals of P, respectively. Then

P ′ = P∗. (1.3)

Proof. Obviously, P ′ ⊆ P∗. To prove that P∗ ⊆ P ′, take u ∈ P∗. From
the basic properties of the inductive limit topologies, to prove that u ∈ P ′

it suffices to show that the restriction u|Pn is continuous for every n. But
this is a trivial assertion, since u|Pn is a linear functional defined on a finite
dimensional normed space. �

Equality (1.3) means that every linear functional defined in P is continu-
ous (for the strict inductive limit topology in P). This is a “curious” property,
because, for instance, (1.3) is not true for a normed vector space N . Indeed,
N ′ = N∗ if dimN < ∞, whilst N ′ �= N∗ whenever dim N = ∞. Note that
being a strict inductive limit of the spaces Pn, and taking into account that
each Pn is a proper closed subspace of Pn+1 (so that P is indeed an hyper
strict inductive limit of the spaces Pn), the general theory of LCS ensures that
P cannot be a metrizable space, and so a fortiori it is not a normed space—or,
to be more precise, it is not possible to provide P with a norm that generates
in it the above inductive limit topology.

In P ′ we consider the weak dual topology, which, by definition, is gener-
ated by the family of semi-norms sp : P ′ → [0,+∞[, p ∈ P, defined by

sp

(
u
)

= |〈u, p〉| , u ∈ P ′ . (1.4)

It turns out that this family of semi-norms sp is equivalent to the family of
semi-norms | · |n : P ′ → [0,+∞[, n ∈ N0, defined by

|u|n = max
0≤k≤n

|〈u, xk〉| , u ∈ P ′ . (1.5)

Indeed, the following proposition holds.

Proposition 1.2. S = {sp : p ∈ P} and S� = {| · |n : n ∈ N0}, with sp and
| · |n given by (1.4)–(1.5), are equivalent families of seminorms in P ′, provided
P = ind limn Pn.
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Proof. Given p ∈ P, putting p(x) =
∑n

j=0 ajx
j and C(p) =

∑n
j=0 |aj |, we

have

sp(u) = |〈u, p〉| =
∣∣∣

n∑

j=0

aj〈u, xj〉
∣∣∣ ≤ C(p)|u|n, ∀u ∈ P ′.

On the other hand, given n ∈ N0, setting pj(x) = xj (j = 0, 1, . . . , n), we have

|u|n = max
0≤j≤n

|〈u, xj〉| ≤
n∑

j=0

|〈u, xj〉| =
n∑

j=0

spj
(u), ∀u ∈ P ′.

Thus, S and S� are equivalent families of semi-norms (see [21, p.126]). �

Remark 1.1. Since S� is a countable family of seminorms, then P ′ is a metriz-
able space, a metric being given by

�(u,v) =
∞∑

n=0

1
2n

|u − v|n
1 + |u − v|n , u,v ∈ P ′ .

Moreover, P ′ is a Fréchet space.

1.2. Dual Basis in P∗

In P∗, addition and multiplications by scalars can be defined by

〈u + v, xn〉 = 〈u, xn〉 + 〈v, xn〉 , v ∈ P∗,

〈αu, xn〉 = α 〈u, xn〉
for all n ∈ N0. P∗, endowed with these operations, is a vector space over C. In
the vector space P∗, the identity for the additivity is denoted by 0 and called
the zero (or the null element). The zero is therefore defined by the relation
〈0, xn〉 = 0 for all n ∈ N0. Of course, the elements of P∗ can not only be added,
but also multiplied (the Cauchy product) in order to make the vector space P∗

into an algebra. Since we work mainly on P∗ instead of P, it would be explicitly
build bases in P∗. This makes sense, since (1.3) allows us writing expansions
(finite or infinite sums) of the elements of P∗ in terms of the elements of a
given basis, in the sense of the weak dual topology. Such a basis in P∗ may be
achieved in a natural way, by analogy with the case of finitely generated free
modules. A simple set in P is a sequence of polynomials, {Rn}n≥0, such that
deg Rn = n for every n ∈ N0 (where R0 ≡ const. �= 0). To any simple set in P,
{Rn}n≥0, we may associate a dual basis, which, by definition, is a sequence of
linear functionals {an}n≥0, being an : P → C, such that

〈an, Rk〉 = δn,k, n, k = 0, 1, 2, . . . ,

where δn,k represents the Kronecker symbol (δn,k = 1 if n = k; δn,k = 0 if
n �= k).
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Proposition 1.3. Let {Rn}n≥0 be a simple set in P and {an}n≥0 the associated
dual basis. Let u ∈ P∗. Then

u =
∞∑

n=0

〈u, Rn〉an , (1.6)

in the sense of the weak dual topology in P ′.

Proof. Notice first that the assertion makes sense, according with (1.3). To
prove it, fix N ∈ N and let

sN =
N−1∑

n=0

λnan, λn = 〈u, Rn〉

be the partial sum of order N of the series appearing in (1.6). We need to show
that

lim
N→∞

〈sN − u, p〉 = 0, ∀p ∈ P.

Clearly, it suffices to prove that this equality holds for p ∈ {R0, R1, R2, . . . }.
Indeed, fix k ∈ N0. Then, for N > k,

〈sN − u, Rk〉 =
N−1∑

n=0

〈u, Rn〉〈an, Rk〉 − 〈u, Rk〉 = 0 ,

hence limN→∞〈sN − u, Rk〉 = 0. �

1.3. Basic Operations in P and P ′

Given a functional u ∈ P ′, we will denote by

un = 〈u, xn〉, n ∈ N0 ,

the moment of order n of u. Clearly, if u and v are two functionals in P ′ such
that the corresponding sequences of moments satisfy un = vn for all n ∈ N0,
then u = v. Therefore, each functional u ∈ P ′ is uniquely determined by its
sequence of moments. Define operators Mφ and T , from P into P, by

Mφp(x) = φ(x)p(x), Tp(x) = −p′(x), (1.7)

where φ ∈ P (fixed) and ′ denotes derivative with respect to x. Let M ′
φ and T ′

be the corresponding dual operators. For each u ∈ P ′, the images M ′
φu and

T ′u are elements (functionals) in P ′, hereafter denoted by φu and Du.

Definition 1.1. Let u ∈ P ′, φ ∈ P, and c ∈ C.
(i) the left multiplication of u by φ, denoted by φu, is the functional in P ′

defined by

〈φu, p〉 = 〈u, φp〉, p ∈ P;

(ii) the derivative of u, denoted by Du, is the functional in P ′ defined by

〈Du, p〉 = −〈u, p′〉, p ∈ P;
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Note that these definitions, introduced by duality with respect to the
operators defined in (1.7), are in accordance with those usually given in the
Theory of Distributions (this explains the minus sign appearing in the second
definition). Note also that

D(φu) = φ′u + φ Du, u ∈ P ′, φ ∈ P.

Definition 1.2 (Translation operators). Let b ∈ C.
(i) The translator operator on P is τb : P → P (p �→ τbp) defined by

τbp(x) = p(x − b), p ∈ P; (1.8)

(ii) The translator operator on P ′ is τ b = τ ′
−b, i.e., τ b : P ′ → P ′ is the dual

operator of τ−b, so that

〈τ bu, p〉 = 〈u, τ−bp〉 = 〈u, p(x + b)〉, u ∈ P ′, p ∈ P. (1.9)

Definition 1.3 (Homothetic operators). Let a ∈ C \ {0}.
(i) The homothetic operator on P is ha : P → P (p �→ hap) defined by

hap(x) = p(ax), p ∈ P. (1.10)

(ii) The homothetic operator on P ′ is ha = h ′
a, i.e., ha : P ′ → P ′ is the dual

operator of ha, so that

〈hau, p〉 = 〈u, hap〉 = 〈u, p(ax)〉, u ∈ P ′, p ∈ P. (1.11)

Proposition 1.4. Let {Pn}n≥0 be a simple set in P and {an}n≥0 its associated
dual basis. Let a ∈ C \ {0} and b ∈ C. Define

Qn = a−n
(
ha ◦ τ−b

)
Pn, n = 0, 1, 2, . . . . (1.12)

Then {Qn}n≥0 is a simple set in P, and its dual basis, {bn}n≥0, is given by

bn = an
(
ha−1 ◦ τ−b

)
an, n = 0, 1, 2, . . . . (1.13)

Remark 1.2. The polynomial Qn in (1.12) is, indeed,

Qn(x) = a−nPn(ax + b), n = 0, 1, 2, . . . , (1.14)

so that Qn is obtained from Pn by an affine change of the variable, being Qn

normalized so that it becomes a monic polynomial whenever Pn is monic.

Proposition 1.5. Let u ∈ P ′ and p, q ∈ P \ {0}, and denote by Zp and Zq the
zeros of p and q, respectively. Then the following property holds:

Zp ∩ Zq = ∅ ∧ pu = qu = 0 ⇒ u = 0. (1.15)

Proof. Assume that pu = qu = 0. Since p and q are coprime, there exist
polynomials a, b for which a p+b q = 1. Since, for all n, 〈pu, a xn〉 = 〈qu, b xn〉 =
0, we see that

〈u, xn〉 = 〈u, (a p + b q)xn〉 = 0.

The converse is obvious. �
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1.4. Orthogonal Polynomial Sequences

Definition 1.4. Let u ∈ P ′ and let {Pn}n≥0 be a sequence in P.

(i) {Pn}n≥0 is called an orthogonal polynomial sequence (OP1) with respect
to u if {Pn}n≥0 is a simple set and there exists a sequence {hn}n≥0, with
hn ∈ C \ {0}, such that

〈u, PmPn〉 = hnδm,n, m, n = 0, 1, 2, . . . ;

(ii) u is called regular (or quasi-definite) if there exists an OP with respect
to u.

As usual, denoting by uj = 〈u, xj〉, j ∈ N0, the moments of u, we define
the associated Hankel determinant Hn ≡ Hn(u) as

H−1 = 1, Hn = det
{
[ui+j ]ni,j=0

}
, n ∈ N0. (1.16)

It is well known that, given u ∈ P ′, then u is regular if and only if

Hn �= 0, ∀n ∈ N0. (1.17)

One of the most important characterizations of OP relies upon the fact
that any three consecutive polynomials are connected by a very simple relation,
expressed as a three-term recurrence relation (TTRR).

Theorem 1.1. Let {βn}n≥0 and {γn}n≥0 be two arbitrary sequences of complex
numbers, and let {Pn}n≥0 be a sequence of (monic) polynomials defined by the
three-term recurrence relation

Pn+1(x) = (x − βn)Pn(x) − γnPn−1(x), n = 0, 1, 2, . . . , (1.18)

with initial conditions P−1(x) = 0 and P0(x) = 1. Then there exists a unique
functional u ∈ P ′ such that

〈u, 1〉 = u0 = γ0, 〈u, PnPm〉 = 0 if n �= m (n,m ∈ N0). (1.19)

Moreover, u is regular and {Pn}n≥0 is the corresponding monic OP if and only
if γn �= 0 for each n ∈ N0.

Remark 1.3. Note the relations

βn =
〈u, xP 2

n〉
〈u, P 2

n〉 , γn+1 =
〈u, P 2

n+1〉
〈u, P 2

n〉 =
Hn−1Hn+1

H2
n

, n = 0, 1, . . . .

(1.20)

1For abbreviation, we continue to write OP for orthogonal polynomial sequence.
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1.5. Orthogonal Polynomials and Dual Basis

Since every OP is a simple set of polynomials, it has an associated dual basis
in P ′.

Theorem 1.2. Let u ∈ P ′ be regular, {Pn}n≥0 the corresponding monic OP,
and {an}n≥0 the associated dual basis. Then:

(i) For each n ∈ N0, an is explicitly given by

an =
Pn

〈u, P 2
n〉 u.

As a consequence, {Pn}n≥0 is a monic OP with respect to a0, being

u = u0 a0.

(ii) Let v ∈ P ′ and N ∈ N0 such that

〈v, Pn〉 = 0 if n ≥ N + 1.

Then,

v =
N∑

j=0

〈v, Pj〉aj = φu , φ(x) =
N∑

j=0

〈v, Pj〉
〈u, P 2

j 〉 Pj(x).

Further, deg φ ≤ N , and deg φ = N if and only if 〈v, PN 〉 �= 0.

(iii) Let the TTRR fulfilled by {Pn}n≥0 be (1.18). Then {an}n≥0 fulfills

xan = an−1 + βn an + γn+1 an+1 , n ∈ N0,

with initial conditions a−1 = 0 and a0 = u−1
0 u.

Corollary 1.1. Let {Pn}n≥0 be a monic OP (with respect to some functional
in P ′) and let v ∈ P ′. Then {Pn}n≥0 is a monic OP with respect to v if and
only if

〈v, 1〉 �= 0, 〈v, Pn〉 = 0, n = 0, 1, 2 . . . . (1.21)

Theorem 1.3. Under the hypothesis of Proposition 1.4, assume further that
{Pn}n≥0 is a monic OP with respect to the functional u ∈ P ′, and let the
TTRR fulfilled by {Pn}n≥0 be (1.18). Then, {Qn}n≥0 is a monic OP with
respect to

v =
(
ha−1 ◦ τ−b

)
u, (1.22)

and the TTRR fulfilled by {Qn}n≥0 is

xQn(x) = Qn+1(x) + β̂nQn(x) + γ̂nQn−1(x), n = 0, 1, 2 . . . , (1.23)

with initial conditions Q−1(x) = 0 and Q0(x) = 1, where

β̂n =
βn − b

a
, γ̂n =

γn

a2
.

(1.24)
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2. Distributional Differential Equation

The distributional differential equation has the form

D(φu) = ψu, (2.1)

where φ ∈ P2 and ψ ∈ P1, and u ∈ P ′ is the unknown. Notice that we do not
require a priori u to be a regular functional. We may write

φ(x) = ax2 + bx + c, ψ(x) = px + q, (2.2)

being a, b, c, p, q ∈ C. We also define, for each integer or rational number n,

ψn = ψ + nφ′, dn = ψ′
n/2 = na + p, en = ψn(0) = nb + q. (2.3)

Notice that ψn(x) = d2nx+en ∈ P1. Finally, for each u ∈ P ′ and each n ∈ N0,
we set

u[n] = φnu. (2.4)

We begin with the following elementary result.

Lemma 2.1. Let u ∈ P ′. Then u satisfies the distributional differential equa-
tion (2.1) if and only if the corresponding sequence of moments, un = 〈u, xn〉,
satisfies the second order linear difference equation

dnun+1 + enun + nφ(0)un−1 = 0, n ∈ N0 . (2.5)

Moreover, if u satisfies (2.1), then u[n] satisfies

D
(
φu[n]

)
= ψnu[n], n ∈ N0. (2.6)

Notice that if both φ and ψ vanish identically then (2.1) reduces to a
trivial equation, so we will exclude this situation from our study.

Lemma 2.2. Let u ∈ P ′. Suppose that u is regular and satisfies (2.1), being
φ ∈ P2 and ψ ∈ P1, and assume that at least one of the polynomials φ and ψ
is nonzero. Then neither φ nor ψ is the zero polynomial, and

deg ψ = 1. (2.7)

Given a monic polynomial Pn of degree n (which needs not to belong to
an OP), we denote by P

[k]
n the monic polynomial of degree n defined by

P [k]
n (x) =

dk

dxk

Pn+k(x)
(n + 1)k

, k, n ∈ N0, (2.8)

where, for a given α ∈ C, (α)n is the Pochhammer symbol, defined as

(α)0 = 1, (α)n = α(α + 1) · · · (α + n − 1), n ∈ N. (2.9)

Clearly, if {Pn}n≥0 is a simple set in P, then so is {P
[k]
n }n≥0. Under such

conditions, there is a beautiful relation between the associated dual basis:

Dk
(
a[k]

n

)
= (−1)k(n + 1)k an+k, k, n ∈ N0, (2.10)
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where {an}n≥0 and
{
a[k]

n

}
n≥0

are the dual basis in P ′ associated with {Pn}n≥0

and {P
[k]
n }n≥0, respectively.

Lemma 2.3. Let u ∈ P ′, and suppose that u satisfies the distributional differ-
ential equation (2.1), with φ and ψ given by (2.2), being at least one of these
polynomials nonzero. Suppose further that u is regular. Then

dn = na + p �= 0 , ∀n ∈ N0 . (2.11)

Moreover, if {Pn}n≥0 denotes the monic OP with respect to u, and P
[k]
n is

defined by (2.8), then u[k] = φku is regular and {P
[k]
n }n≥0 is its monic OP,

for each k ∈ N0.

We may now establish necessary and sufficient conditions ensuring the
regularity of a given functional u ∈ P ′ satisfying (2.2). The next results was
proved in [10, Theorem 2] (see also [5] in a more general context).

Theorem 2.1. Let u ∈ P ′ \ {0}, and suppose that u satisfies

D(φu) = ψu, (2.12)

where φ and ψ are nonzero polynomials such that φ ∈ P2 and ψ ∈ P1. Set

φ(x) = ax2 + bx + c, ψ(x) = px + q, dn = na + p, en = nb + q (n ∈ N0).

Then, u is regular if and only if

dn �= 0, φ
(

− en

d2n

)
�= 0, ∀n ∈ N0. (2.13)

Moreover, under these conditions, the monic OP {Pn}n≥0 with respect to u is
given by the three-term recurrence relation

Pn+1(x) = (x − βn)Pn(x) − γnPn−1(x), n ∈ N0, (2.14)

with initial conditions P−1(x) = 0 and P0(x) = 1, being

βn =
nen−1

d2n−2
− (n + 1)en

d2n
, γn+1 = − (n + 1)dn−1

d2n−1d2n+1
φ
(

− en

d2n

)
, n ∈ N0.

(2.15)

In addition, for each n ∈ N0, Pn satisfies the distributional Rodrigues formula

Pnu = kn Dn
(
φnu

)
, kn =

n−1∏

i=0

d−1
n+i−1. (2.16)

3. Classical Orthogonal Polynomials

The classical functionals are the regular solutions (in P ′) of the distributional
equation (2.1). The corresponding OP are called classical orthogonal polyno-
mials. In this section we present the most significant results concerning this
important class of OP.
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3.1. Definition and Characterizations

Definition 3.1. Let u ∈ P ′. u is called a classical functional if the following
two conditions hold:

(i) u is regular;
(ii) u satisfies the distributional differential equation

D(φu) = ψu, (3.1)

where φ and ψ are polynomials fulfilling

deg φ ≤ 2, deg ψ = 1. (3.2)

An OP {Pn}n≥0 with respect to a classical functional is called a classical OP.

Remark 3.1. According with Lemma 2.2, in the above definition conditions
(3.2) may be replaced by the weaker conditions

φ ∈ P2, ψ ∈ P1, {φ, ψ} �= P−1 = {0}. (3.3)

Theorem 2.1 gives necessary and sufficient conditions for the existence
of solutions of the distributional equation (2.1), characterizing also such func-
tionals (and, in particular, solving the question of the existence of classical
functionals). Thus, we may state: a functional u ∈ P ′\{0} is classical if and
only if there exist φ ∈ P2 and ψ ∈ P1 such that the following conditions hold:

(i) D(φu) = ψu;

(ii) na + p �= 0, φ

(
− nb + q

2na + p

)
�= 0, ∀n ∈ N0,

(3.4)

where we have set φ(x) = ax2 + bx + c and ψ(x) = px + q.
In the next proposition we state several characterizations of the classical

OP. For convenience, we introduce the concept of admissible pair of polyno-
mials.

Definition 3.2. (φ, ψ) is called an admissible pair if

φ ∈ P2 , ψ ∈ P1 , dn = ψ′ +
n

2
φ′′ �= 0 , ∀n ∈ N0.

Introducing this concept makes sense, since according with conditions (ii)
in (3.4), only admissible pairs may appear in the framework of the theory of
classical OP.

Theorem 3.1 (Characterizations of the classical OP). Let u ∈ P ′, regular, and
let {Pn}n≥0 be its monic OP. Then the following properties are equivalent:

C1. u is classical, i.e., there are nonzero polynomials φ ∈ P2 and ψ ∈ P1

such that u satisfies

D(φu) = ψu ;

C1′. there is an admissible pair (φ, ψ) such that u satisfies

D(φu) = ψu ;
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C2. (Al-Salam and Chihara) there exist a polynomial φ ∈ P2 and, for
each n ∈ N0, complex parameters an, bn and cn, with cn �= 0 if n ≥ 1,
such that

φ(x)P ′
n(x) = anPn+1(x) + bnPn(x) + cnPn−1(x), n ≥ 0 ;

C3. (Hahn)
{

P
[k]
n = dk

dxk

Pn+k

(n+1)k

}

n≥0
is a monic OP for some k ∈ N ;

C3′.
{
P

[k]
n

}
n≥0

is a monic OP for each k ∈ N ;

C4. there exist k ∈ N and complex parameters r
[k]
n and s

[k]
n such that

P [k−1]
n (x) = P [k]

n (x) + r[k]
n P

[k]
n−1(x) + s[k]

n P
[k]
n−2(x) , n ≥ 2 ; (3.5)

C4′.2 for each k ∈ N, there exist parameters r
[k]
n and s

[k]
n such that (3.5)

holds;
C5. (Bochner) there exist polynomials φ and ψ and, for each n ≥ 0, a
complex parameter λn, with λn �= 0 if n ≥ 1, such that y = Pn(x) is a
solution of the second order ordinary differential equation

φ(x)y′′ + ψ(x)y′ + λny = 0, n ≥ 0;

C6. (Maroni) there is an admissible pair (φ, ψ) so that the formal Stieltjes
series associated with u, Su(z) = −∑∞

n=0 un/zn+1, satisfies (formally)

φ(z)S′
u(z) = [ψ(z) − φ′(z)]Su(z) +

(
ψ′ − 1

2
φ′′
)

u0 ;

C7. (McCarthy) there exists an admissible pair (φ, ψ) and, for each n ≥ 1,
complex parameters hn and tn such that

φ(PnPn−1)′(x) = hnP 2
n(x) − (ψ − φ′)PnPn−1(x) + tnP 2

n−1(x) ;

C8. (distributional Rodrigues formula) there exist a polynomial φ ∈ P2

and nonzero complex parameters kn such that

Pn(x)u = knDn
(
φn(x)u

)
, n ≥ 0.

Moreover, the polynomials φ and ψ may be taken the same in all properties
above where they appear. In addition, let the TTRR fulfilled by the monic OP
{Pn}n≥0 be

Pn+1(x) = (x − βn)Pn(x) − γnPn−1(x), n ≥ 0,

(P−1(x) = 0; P0(x) = 1). Write φ(x) = ax2+bx+c, ψ(x) = px+q, dn = na+p,
and en = nb + q. Then

βn = −d−2q + 2bndn−1

d2nd2n−2
, γn = − ndn−2

d2n−3d2n−1
φ
(

− en−1

d2n−2

)
,

2It was proved for k = 1 by Geronimus (see [8, (42)]).
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and the parameters appearing in the above characterizations may be computed
explicitly:

an = na, bn = − 1
2
ψ(βn), cn = −dn−1γn,

r[1]
n =

1
2

ψ(βn)
dn−1

, s[1]
n = − (n − 1)a

dn−2
γn,

λn = −ndn−1, hn = d2n−3, tn = −d2n−1γn, kn =
n−1∏

i=0

d−1
n+i−1.

Proof. By Lemma 2.3 and Theorem 2.1, C1⇔ C1′, C1⇒ C3′, and C1′ ⇔ C8.
Clearly, C3′ ⇒ C3 and C4′ ⇒ C4. We show that C3′ ⇒ C4′ using the same
arguments of the proof of C3⇒ C4 given in bellow. The proof of C1′ ⇔ C6 is
left to the reader. Thus, we only need to show that:

C1′ ⇒ C2 ⇒ C3 ⇒ C4 ⇒ C1, C1 ⇔ C5, C2 ⇔ C7.

(C1 ′ ⇒ C2). Assume that C1′ holds. Fix n ∈ N0. Since deg(φP ′
n) ≤ n+1,

then

φP ′
n =

n+1∑

j=0

an,jPj , an,j =
〈u, φP ′

nPj〉
〈u, P 2

j 〉 . (3.6)

For each integer number j, with 0 ≤ j ≤ n + 1, we deduce

〈u, φP ′
nPj〉 = 〈φu, (PnPj)′ − PnP ′

j〉 = −〈D(φu), PnPj〉 − 〈φu, PnP ′
j〉

= −〈u, ψPjPn〉 − 〈u, φP ′
jPn〉. (3.7)

If 0 ≤ j ≤ n−2 we obtain 〈u, φP ′
nPj〉 = 0, and so an,j = 0. Thus, (3.6) reduces

to

φP ′
n = anPn+1 + bnPn + cnPn−1, n ≥ 0,

where, writing φ(x) = ax2 +bx+c and ψ(x) = px+q, an = na (by comparison
of coefficients), bn = an,n, and cn = an,n−1. Setting j = n − 1 in (3.7), we
deduce

〈u, φP ′
nPn−1〉 = −〈u, (ψPn−1 + φP ′

n−1)Pn〉 = −dn−1〈u, P 2
n〉,

hence

cn = an,n−1 =
〈u, φP ′

nPn−1〉
〈u, P 2

n−1〉
=

〈u, φP ′
nPn−1〉

〈u, P 2
n〉

〈u, P 2
n〉

〈u, P 2
n−1〉

= −dn−1γn, n ≥ 1.

Since, by hypothesis, (φ, ψ) is an admissible pair, then we may conclude that
cn �= 0 for each n ≥ 1. Thus C1′ ⇒ C2. Notice that taking j = n in (3.7)
yields

〈u, φP ′
nPn〉 = − 1

2
〈u, ψP 2

n〉 = − 1
2
(
p〈u, xP 2

n〉 + q〈u, P 2
n〉),
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hence we deduce the expression for bn given in the statement of the theorem:

bn = an,n =
〈u, φP ′

nPn〉
〈u, P 2

n〉 = − 1
2

(
p
〈u, xP 2

n〉
〈u, P 2

n〉 + q

)
= − 1

2
ψ(βn).

(C2 ⇒ C3). Suppose that C2 holds. We will show that {P
[1]
n = P ′

n+1/(n+
1)}n≥0 is a monic OP with respect to v = φu. Indeed, for each n ∈ N0 and
0 ≤ m ≤ n,

(n + 1)〈v, xmP [1]
n 〉 = 〈φu, xmP ′

n+1〉 = 〈u,
(
φP ′

n+1

)
xm〉

= 〈u, (an+1Pn+2 + bn+1Pn+1 + cn+1Pn)xm〉
= cn+1〈u, P 2

n〉δm,n .

Therefore, since cn+1 �= 0 for each n ≥ 0, we conclude that {P
[1]
n }n≥0 is a

monic OP (with respect to v = φu).
(C3 ⇒ C4). By hypothesis, {P

[k]
n = dk

dxk

( Pn+k

(n+1)k

)}n≥0 is a monic OP for

some (fixed) k ∈ N. Then there exists β
[k]
n ∈ C and γ

[k]
n ∈ C \ {0} such that

xP [k]
n = P

[k]
n+1 + β[k]

n P [k]
n + γ[k]

n P
[k]
n−1, n ∈ N0. (3.8)

Similarly, there exists βn ∈ C and γn ∈ C \ {0} such that

xPn = Pn+1 + βnPn + γnPn−1, n ∈ N0. (3.9)

Changing n into n + k in (3.9), then taking the derivative of order k in both
sides of the resulting equation and using Leibnitz rule on the left-hand side,
we find

xP [k]
n +

k

n + 1
P

[k−1]
n+1 =

n + k + 1
n + 1

P
[k]
n+1 + βn+kP [k]

n +
nγn+k

n + k
P

[k]
n−1, n ∈ N0.

In this equation, replacing xP
[k]
n by the right-hand side of (3.8), and then

changing n into n − 1, we obtain (3.5), with

r[k]
n =

n
(
βn+k−1 − β

[k]
n−1

)

k
, s[k]

n =
n
(
(n − 1)γn+k−1 − (n + k − 1)γ[k]

n−1

)

k(n + k − 1)
.

(C4 ⇒ C1). By hypothesis (3.5) holds. Let {an}n≥0 and {a[k]
n }n≥0 be

the dual bases for {Pn}n≥0 and {P
[k]
n }n≥0, respectively. By Proposition 1.3,

a[k]
n =

∑
j≥0〈a[k]

n , P
[k−1]
j 〉a[k−1]

j for each n ∈ N0. Using (3.5), we compute

〈a[k]
n , P

[k−1]
j 〉 = 〈a[k]

n , P
[k]
j 〉 + r

[k]
j 〈a[k]

n , P
[k]
j−1〉 + s

[k]
j 〈a[k]

n , P
[k]
j−2〉

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 , if j = n

r
[k]
n+1 , if j = n + 1

s
[k]
n+2 , if j = n + 2

0 , otherwise .
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Hence

a[k]
n = a[k−1]

n + r
[k]
n+1a

[k−1]
n+1 + s

[k]
n+2a

[k−1]
n+2 , n ∈ N0.

Taking the (distributional) derivative of order k in both sides of this equation,
and using the relations Dj

(
a[j]

n

)
= (−1)j(n + 1)j an+j , we obtain

D

(
1

n + k
an+k−1 +

r
[k]
n+1

n + 1
an+k +

(n + k + 1)s[k]
n+2

(n + 1)(n + 2)
an+k+1

)
=−an+k, n ∈ N0.

Therefore, since, by Theorem 1.2, aj = Pj

〈u,P 2
j 〉 u for j ∈ N0 and, by (1.20),

γj = 〈u,P 2
j 〉

〈u,P 2
j−1〉 for j ∈ N, being γj the parameter appearing in (3.9), we deduce

D
(
Φn+k+1 u

)
= −Pn+k u, n ∈ N0, (3.10)

where Φn+k+1 is a polynomial of degree at most n + k + 1, given by

Φn+k+1(x)

=
γn+k

n + k
Pn+k−1(x) +

r
[k]
n+1

n + 1
Pn+k(x) +

(n + k + 1)s[k]
n+2

(n + 1)(n + 2)γn+k+1
Pn+k+1(x) .

Since Φn+k+1 is a (finite) linear combination of polynomials of the simple set
{Pj}j≥0 and γn+k �= 0, then Φn+k+1 does not vanish identically, so Φn+k+1 ∈
Pn+k+1 \ {0}. Setting n = 0 and n = 1 in (3.10) we obtain the two equations

D
(
Φk+1 u

)
= −Pk u, D

(
Φk+2 u

)
= −Pk+1 u. (3.11)

If k = 1 it follows immediately from the first of these equations that C1 holds.
Henceforth, assume that k ≥ 2. Setting n = 0 and n = 1 in the definition of
Φn+k+1 and using the TTRR (3.9), we easily deduce

{
Φk+1(x) = E0(x; k)Pk+1(x) + F1(x; k)Pk(x),
Φk+2(x) = G1(x; k)Pk+1(x) + H0(x; k)Pk(x),

(3.12)

where E0(·; k),H0(·; k) ∈ P0 and F1(·; k), G1(·; k) ∈ P1, explicitly given by

E0(x; k) =
(k + 1)s

[k]
2

2γk+1
− 1

k
, F1(x; k) =

x − βk

k
+ r

[k]
1 ,

G1(x; k) =
(k + 2)s

[k]
3 (x − βk+1)

6γk+2
+

r
[k]
2

2
, H0(x; k) =

γk+1

k + 1
− (k + 2)s

[k]
3 γk+1

6γk+2
.

(3.13)

Let Δ2(x) ≡ Δ2(x; k) = E0(x; k)H0(x; k) − F1(x; k)G1(x; k), the determinant
of the system (3.12). Using (3.11)–(3.13), and taking into account that u is
regular, we may prove that Δ2 ∈ P2 \ {0}. Solving (3.12) for Pk and Pk+1 we
obtain

Δ2(x)Pk+1(x) = H0(x; k)Φk+1(x) − F1(x; k)Φk+2(x), (3.14)
Δ2(x)Pk(x) = E0(x; k)Φk+2(x) − G1(x; k)Φk+1(x). (3.15)
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Since Pk and Pk+1 are coprime, it follows from (3.14)–(3.15) that any common
zero of Φk+1 and Φk+2 (if there is some) must be a zero of Δ2. Let Φ be the
greatest common divisor of Φk+1 and Φk+2, i.e.,

Φ(x) = g.c.d. {Φk+1(x),Φk+2(x)}.

Any zero of Φ is also a zero of both Φk+1 and Φk+2, and so it is a zero of
Δ2. Therefore, Φ ∈ P2 \ {0}. (Notice that indeed Φ �≡ 0, since Φk+1 �≡ 0 and
Φk+2 �≡ 0.) Moreover, there exist polynomials Φ1,k and Φ2,k, with no common
zeros, such that

Φk+1 = ΦΦ1,k, Φk+2 = ΦΦ2,k, (3.16)
Φ1,k ∈ Pk+1−� \ {0}, Φ2,k ∈ Pk+2−� \ {0}, � = deg Φ ≤ 2. (3.17)

From (3.11) and (3.16) we deduce

Φ1,kD(Φu) = −(Pk + Φ′
1,kΦ)u, Φ2,kD(Φu) = −(Pk+1 + Φ′

2,kΦ)u.(3.18)

Combining these two equations yields
(
Φ1,k(Pk+1+Φ′

2,kΦ)−Φ2,k(Pk+Φ′
1,kΦ)

)
u

= 0, and so, since u is regular, Φ1,k(Pk+1 + Φ′
2,kΦ) = Φ2,k(Pk + Φ′

1,kΦ).
Therefore, taking into account that Φ1,k and Φ2,k are coprime and (3.17)
holds, we may ensure that there exists a polynomial Ψ ∈ P1 such that

Pk + Φ′
1,kΦ = −ΨΦ1,k, Pk+1 + Φ′

2,kΦ = −ΨΦ2,k. (3.19)

Combining equations (3.18) and (3.19) we deduce

Φ1,k

(
D(Φu) − Ψu

)
= Φ2,k

(
D(Φu) − Ψu

)
= 0.

From these equations, and using once again the fact that Φ1,k and Φ2,k are
coprime, we conclude, by Proposition 1.5, that D(Φu) = Ψu. Thus C4⇒ C1.
The formulas for r

[1]
n and s

[1]
n given in the statement of the theorem may

be derived as follows. We have already proved that C4⇒ C1⇒ C1′ ⇒ C2⇒
C3⇒ C4, and we see that the polynomials φ and ψ appearing in all these
characterizations may be taken the same. As we have seen, the formulas for bn

and cn given in the statement of the theorem hold. We now use these formulas
to obtain the expressions for r

[1]
n and s

[1]
n . Set Qn = P

[1]
n = P ′

n+1/(n + 1). By
C4, Pn = Qn + r

[1]
n Qn−1 + s

[1]
n Qn−2 if n ≥ 2. Hence, since {Qn}n≥0 is a monic

OP with respect to v = φu, we deduce, for each n ≥ 2,

r[1]
n =

〈u, φPnP ′
n〉

〈u, φP ′
nPn−1〉

=
〈u, P 2

n−1〉
〈u, φP ′

nPn−1〉
〈u, φP ′

nPn〉
〈u, P 2

n〉
〈u, P 2

n〉
〈u, P 2

n−1〉
=

1
cn

bnγn =
1
2

ψ(βn)
dn−1

,
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where the third equality holds taking into account C2. Similarly, for each n ≥ 2,

s[1]
n =

a〈u, P 2
n〉

1
n−1 〈u, φP ′

n−1Pn−2〉
=

(n − 1)a〈u, P 2
n〉

cn−1〈u, P 2
n−2〉

=
(n − 1)a

cn−1
γn−1γn = − (n − 1)a

dn−2
γn .

(C1⇒ C5). By hypothesis, D(φu) = ψu, where φ ∈ P2, ψ ∈ P1, and
deg ψ = 1 (cf. Lemma 2.2). Fix n ∈ N, and write

φP ′′
n + ψP ′

n =
n∑

j=0

λn,jPj . (3.20)

Then, for each j such that 0 ≤ j ≤ n,

〈u, P 2
j 〉λn,j = 〈u, (φP ′′

n + ψP ′
n)Pj〉 = 〈φu, P ′′

n Pj〉 + 〈ψu, P ′
nPj〉

= 〈φu, (P ′
nPj)′〉 − 〈φu, P ′

nP ′
j〉 + 〈ψu, P ′

nPj〉 = −〈φu, P ′
nP ′

j〉 .

Since by hypothesis C1 holds, and we have already proved that C1⇒ C1′ ⇒
C2⇒ C3, and in the proof of C2⇒ C3 we have shown that {Qn = P ′

n+1/(n +
1)}n≥0 is a monic OP with respect to v = φu, then 〈φu, P ′

nP ′
j〉 = 0 if j �= n,

hence (3.20) reduces to

φP ′′
n + ψP ′

n + λnPn = 0, n ≥ 0, (3.21)

where λn = −λn,n. Comparing leading coefficients in (3.21), and setting φ(x) =
ax2 + bx + c and ψ(x) = px + q, we obtain λn = −n

(
(n − 1)a + p

)
= −ndn−1,

hence λn �= 0 if n ≥ 1 (since C1 ⇒ C1′, so (φ, ψ) is an admissible pair). Thus
C1⇒ C5.

(C5⇒ C1). By hypothesis, there exists φ, ψ ∈ P, and λn ∈ C, with λn �= 0
if n ≥ 1, such that −φP ′′

n+1 = ψP ′
n+1 +λn+1Pn+1. Taking in this equation n =

0 and n = 1 we deduce ψ = −λ1P1 ∈ P1 \ P0 and φ = −(ψP ′
2 + λ2P2)/2 ∈ P2.

We will prove that D(φu) = ψu by showing that the actions of the functionals
D(φu) and ψu coincide on the simple set {Qn}n≥0. Indeed,

〈D(φu), Qn〉 =
1

n + 1
〈D(φu), P ′

n+1〉

= − 1
n + 1

〈u, φP ′′
n+1〉 =

1
n + 1

〈u, ψP ′
n+1 + λn+1Pn+1〉

= 〈u, ψQn〉 +
λn+1

n + 1
〈u, Pn+1〉 = 〈ψu, Qn〉.

Since at least one of the polynomials φ and ψ is nonzero (because λn �= 0), C1
holds.

(C2⇒ C7). Since by hypothesis (C2) holds, we may write

φP ′
n = anPn+1 + bnPn + cnPn−1 , (3.22)

φP ′
n−1 = an−1Pn + bn−1Pn−1 + cn−1Pn−2. (3.23)
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Multiplying (3.22) by Pn−1 and (3.23) by Pn and adding the resulting equal-
ities, we find that φ(PnPn−1)′ is a linear combination of the polynomials P 2

n ,
PnPn−1, P 2

n−1, Pn+1Pn−1 and PnPn−2. Substituting Pn+1 and Pn−2 by the
corresponding expressions given by the TTRR, we deduce

φ(PnPn−1)′ = AnP 2
n + (Bnx + Cn)PnPn−1 + DnP 2

n−1, n ≥ 1, (3.24)

where

An = an−1 − cn−1

γn−1
, Bn = an +

cn−1

γn−1
,

Cn = −anβn + bn + bn−1 − cn−1

γn−1
βn−1 , Dn = cn − anγn .

Write φ(x) = ax2 + bx + c and ψ(x) = px + q. We have already seen that
C2⇔ C1′, and while proving C1′ ⇒ C2 we have shown that the coefficients
an, bn, and cn appearing in (3.22) are given by an = na, bn = − 1

2ψ(βn), and
cn = −dn−1γn. It follows that

An = d2n−3 , Bn = 2a − p , Dn = −d2n−1γn,

Cn = −1
2
(
d2nβn − d2n−4βn−1

)− q = b − q , (3.25)

where the last equality is easily derived using the expressions for the β−
parameters given in the statement of the theorem. Therefore, Bnx+Cn = φ′−ψ
(independent of n). Finally, substituting (3.25) into (3.24) yields the equation
appearing in C7, being hn = An = d2n−3 and tn = Dn = −d2n−1γn for each
n ≥ 1. Thus C2⇒ C7.

(C7⇒ C2). Fix an integer n ≥ 1. For this n, rewrite the equation in (C7)
as

(
φP ′

n + ψPn − tnPn−1

)
Pn−1 =

(− φP ′
n−1 + φ′Pn−1 + hnPn

)
Pn.

Therefore, since Pn and Pn−1 are coprime, there is π1,n ∈ P1 such that

φP ′
n + ψPn − tnPn−1 = π1,nPn , (3.26)

−φP ′
n−1 + φ′Pn−1 + hnPn = π1,nPn−1. (3.27)

By comparing the leading coefficients on both sides of equation (3.26) we
deduce π1,n(x) = dnx+ zn for some zn ∈ C (and dn = na+ p). By hypothesis,
(φ, ψ) is an admissible pair, hence dn �= 0 and so deg π1,n = 1. Moreover, by
the TTRR for {Pn}n≥0, xPn = Pn+1 +βnPn + γnPn−1. Therefore, (3.26) may
be rewritten as

φP ′
n = anPn+1 + bnPn + cnPn−1 ,

where an = na, bn = naβn + zn − q, and cn = naγn + tn. To conclude the
proof we need to show that cn �= 0 for all n ≥ 1. Indeed, changing n into n+1
in (3.27) and adding the resulting equation with (3.26), we obtain

(ψ + φ′)Pn − tnPn−1 + hn+1Pn+1 =
(
(dn + dn+1)x + (zn + zn+1)

)
Pn .
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Since ψ +φ′ = (2a+p)x+ q + b and taking into account once again the TTRR
for {Pn}n≥0, the last equation may be rewritten as a trivial linear combination
of the three polynomials Pn+1, Pn, and Pn−1. Thus, we deduce

hn+1 = d2n−1, zn+1 = −zn − d2n−1βn + q + b, tn = −d2n−1γn.

Therefore, cn = naγn + tn = −dn−1γn �= 0 (since n ≥ 1). This completes the
proof. �

Remark 3.2. The parameters βn and γn appearing in Theorem 3.1 may be
written explicitly in terms of the coefficients of φ and ψ as follows:

βn = − (−2a + p)q + 2bn[(n − 1)a + p]
(2na + p)[(2n − 2)a + p]

,

γn+1 =
−(n + 1)[(n − 1)a + p][a(nb + q)2 − b(nb + q)(2na + p) + c(2na + p)2]

[(2n − 1)a + p](2na + p)2[2(n + 1)a + p]
.

Remark 3.3. Using the previous results and Table 1, it is easy to see that (see
also [2,6,7,9,19] and references therein)

Hn(x) = (2x)n
2F0

(−n
2 , 1−n

2

—
;− 1

x2

)
,

L(α)
n (x) =

(
n + α

n

)
1F1

( −n

α + 1
;x
)

,

P (α,β)
n (x) =

(
n + α

n

)
2F1

(−n, n + α + β + 1
α + 1

;
1 − x

2

)
,

Y (α)
n (x) = 2F0

(−n, n + α + 1
—

;−x

2

)
.

3.2. Classification and Canonical Representatives

We all always hear say: up to constant factors and affine changes of variables,
there are only four (parametric) families of classical OP, namely, Hermite,
Laguerre, Jacobi, and Bessel polynomials. But, what is the rigorous meaning
of this statement? The corresponding regular functionals will be denoted by
uH , u(α)

L , u(α,β)
J , and u(α)

B (resp.) and these will be called the canonical repre-
sentatives (or canonical forms) of the classical functionals. Their description
is given in Table 1. Each one of these functionals fulfils (3.1), being the corre-
sponding pair (φ, ψ) ≡ (Φ,Ψ) given in the table. The regularity conditions in
the table are determined by conditions (ii) appearing in (3.4).

Ultimately, denoting by [u] the equivalent class determined by a func-
tional u ∈ P ′ (see [17, Sect. 3.1.2.4, pp. 18–19]), and setting

P ′
C = {u ∈ P ′ |u is classical}

we will show that

P ′
C/∼ =

{
[u] |u ∈ P ′

C

}
=
{
[uH ], [u(α)

L ], [u(α,β)
J ], [u(α)

B ]
}
,
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Table 1. Classification and canonical forms of the classical functionals

Class u Φ Ψ Regularity conditions

Hermite uH 1 −2x –
Laguerre u(α)

L x −x + α + 1 −α �∈ N

Jacobi u(α,β)
J 1 − x2 −(α + β + 2)x + β − α −α,−β,−(α + β + 1) �∈ N

Bessel u(α)
B x2 (α + 2)x + 2 −(α + 1) �∈ N

where the parameters α and β vary on C subject to the regularity conditions
in Table 1, and ∼ is an equivalence relation in P ′ defined by

u ∼ v iff ∃A ∈ C\{0}, ∃B ∈ C : v =
(
hA−1 ◦ τ−B

)
u. (3.28)

We start by proving a proposition that allows to ensure that this equiv-
alence relation preserves the classical character of a given classical functional.

Lemma 3.1. Let u,v ∈ P ′ and suppose that u ∼ v, i.e., (3.28) holds. Suppose
that there exist two polynomials φ and ψ such that

D(φu) = ψu.

Let Φ(x) = Kφ(Ax+B) and Ψ(x) = KAψ(Ax+B), being K ∈ C\{0}. Then

D(Φv) = Ψv.

Moreover, if u is a classical functional, then so is v.

Proof. Since u and v fulfill (3.28), then

〈v, xn〉 =
〈
u,
( x − B

A

)n
〉

, n ∈ N0.

Therefore, for each n ∈ N0, we have

〈D(Φv), xn〉 = −n〈v,Φ(x)xn−1〉 = −n
〈
u,
(
τB ◦ hA−1

)(
Φ(x)xn−1

)〉

= −n
〈
u,Φ

( x − B

A

)( x − B

A

)n−1〉

= −
〈
u,Kφ(x) · A

d
dx

{(
x − B

A

)n}〉

= KA
〈
D
(
φ(x)u

)
,
( x − B

A

)n〉
= KA

〈
ψ(x)u,

( x − B

A

)n〉

=
〈
u,Ψ

( x − B

A

)( x − B

A

)n〉
=
〈
u,
(
τB ◦ hA−1

)(
Ψ(x)xn

)〉

= 〈v,Ψ(x)xn〉 = 〈Ψv, xn〉 .

Finally, the last sentence stated in the lemma follows by using Theo-
rem 1.3. �
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Theorem 3.2 (Canonical representatives of the classical functionals). Let u ∈
P ′ be a classical functional, so that u fulfils

D(φu) = ψu, (3.29)

where φ(x) = ax2+bx+c and ψ(x) = px+q, subject to the regularity conditions

na + p �= 0, φ

(
− nb + q

2na + p

)
�= 0, ∀n ∈ N0. (3.30)

Then, there exists a regular functional v ∈ P ′ such that

u ∼ v, D(Φv) = Ψv, (3.31)

where, for each classical functional determined by the pair (φ, ψ), the corre-
sponding pair (Φ,Ψ) is given by Table 1. More precisely, setting

Δ = b2 − 4ac; d = ψ

(
− b

2a

)
if a �= 0,

the following holds:
1. (Hermite) if a = b = 0, then:

v =
(
h√

−p/(2c)
◦ τ q/p

)
u = u

H
;

2. (Laguerre) if a = 0 and b �= 0, then:

v =
(
h−p/b ◦ τ c/b

)
u = u(α)

L
, α = −1 + (qb − pc)/b2;

3. (Bessel) if a �= 0 and Δ = 0, then:

v =
(
h2a/d ◦ τ b/(2a)

)
u = u(α)

B
, α = −2 + p/a;

4. (Jacobi) if a �= 0 and Δ �= 0, then:

v =
(
h−2a/

√
Δ ◦ τ b/(2a)

)
u = u(α,β)

J
,

α = −1 + p/(2a) − d/
√

Δ, β = −1 + p/(2a) + d/
√

Δ.

Proof. Taking into account Lemma 3.1, the theorem will be proved if we are
able to show that, for each given pair (φ, ψ), and for each corresponding pair
(Φ,Ψ) given by Table 1—where the “corresponding pair” (Φ,Ψ) is the one in
the table such that φ and Φ have the same degree and their zeros the same
multiplicity—, there exist A,K ∈ C \ {0} and B ∈ C such that the relations

Φ(x) = Kφ(Ax + B), Ψ(x) = KAψ(Ax + B) = KA2px + KA(Bp + q)(3.32)

hold, for appropriate choices of the parameters α and β appearing in Table 1
for the Laguerre, Bessel, and Jacobi cases. Indeed, considering the four possible
cases determined by the polynomial φ, we have:

1. Assume a = b = 0, i.e., φ(x) = c. The regularity conditions (3.30) ensure
that p �= 0 and c �= 0. Therefore, since in this case we require (Φ,Ψ) =
(1,−2x), from (3.32) we obtain the equations

1 = Kc, −2 = KA2p, 0 = Bp + q.
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A solution of this system of equations is

K = 1/c, A =
√

−2c/p, B = −q/p,

which gives the desired result for the Hermite case, by Lemma 3.1.
2. Assume a = 0 and b �= 0, so that φ(x) = bx + c. Since in this case we

require (Φ,Ψ) = (x,−x + α + 1), from (3.32) we obtain

1 = KAb, 0 = bB + c, −1 = KA2p, α + 1 = KA(Bp + q).

Solving this system we find

K = −p/b2, B = −c/b, A = −b/p, α = −1 + (qb − pc)/b2.

Notice that, in this case,

dn = p, φ

(
− nb + q

2na + p

)
= −b2

p

(
n + α + 1

)
,

hence the regularity conditions (3.30) ensure that p �= 0 (and so K and
A are well defined, being both nonzero complex numbers) and −α �∈ N.

3. Assume a �= 0 and Δ = 0. Then φ(x) = a
(
x + b

2a

)2

. In this case we

require (Φ,Ψ) =
(
x2, (α + 2)x + 2

)
, hence from (3.32) we obtain

1 = KA2a, 0 = B + b/(2a), α + 2 = KA2p, 2 = KA(Bp + q).

Therefore, taking into account that d = ψ
(− b

2a

)
= (2aq − pb)/(2a), we

deduce

K = 4a/d2, B = −b/(2a), A = d/(2a), α = −2 + p/a.

In this case we have

dn = a(n + α + 2), φ

(
− nb + q

2na + p

)
=

d2

a(2n + α + 2)2
,

hence conditions (3.30) ensure that −(α + 1) �∈ N and d �= 0, and so,
in particular, K is well defined, being both K and A nonzero complex
numbers.

4. Finally, assume a �= 0 and Δ �= 0. Writing φ(x) = a
[(

x + b
2a

)2

− Δ
4a2

]
,

since in this case we require (Φ,Ψ) =
(
1 − x2,−(α + β + 2)x + β − α

)
,

from (3.32) we obtain

−1 = KA2a, 0 = B + b/(2a), 1 = Ka
[(

B + b
2a

)2

− Δ
4a2

]
,

−(α + β + 2) = KA2p, β − α = KA(Bp + q).

A solution of this system of five equations is

K = −4a/Δ, B = −b/(2a), A = −√
Δ/(2a),

α = −1 + p/(2a) − d/
√

Δ, β = −1 + p/(2a) + d/
√

Δ.

(We choose A with the minus sign since whenever (φ, ψ) = (Φ,Ψ) that
choice implies A = 1 and B = 0, hence u = v = u(α,β)

J , and so it is a
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Table 2. Parameters for the classical monic OP appearing
in Theorem 3.1 with respect to the canonical forms given in
Table 1

Ĥn L̂
(α)
n P̂

(α,β)
n B̂

(α)
n

λn 2n n n(n+α+β+1) −n(n+α+1)

βn 0 2n+α+1
β2−α2

(2n+α+β)(2n+2+α+β)
−2α

(2n+α)(2n+2+α)

γn
n
2 n(n+α)

4n(n+α)(n+β)(n+α+β)
(2n+α+β−1)(2n+α+β)2(2n+α+β+1)

−4n(n+α)
(2n+α−1)(2n+α)2(2n+α+1)

an 0 0 −n n

bn 0 n
2(α−β)n(n+α+β+1)

(2n+α+β)(2n+2+α+β)
−4n(n+α+1)

(2n+α)(2n+2+α)

cn n n(n+α)
4n(n+α)(n+β)(n+α+β)(n+α+β+1)

(2n+α+β−1)(2n+α+β)2(2n+α+β+1)
4n(n+α)(n+α+1)

(2n+α−1)(2n+α)2(2n+α+1)

r
[1]
n 0 n

2(α−β)n
(2n+α+β)(2n+2+α+β)

4n
(2n+α)(2n+2+α)

s
[1]
n 0 0

−4(n−1)n(n+α)(n+β)
(2n+α+β−1)(2n+α+β)2(2n+α+β+1)

4(n−1)n
(2n+α−1)(2n+α)2(2n+α+1)

hn −2 −1 −(2n+α+β−1) 2n+α−1

tn n n(n+α)
4n(n+α)(n+β)(n+α+β)
(2n+α+β−1)(2n+α+β)2

4n(n+α)
(2n+α−1)(2n+α)2

kn
(−1)n

2n (−1)n
(−1)n

(n+α+β+1)n
1

(n+α+1)n

more natural choice.) Adding and subtracting the last two equations for
α and β, we find α+β+2 = p/a and α−β = −2d/

√
Δ, hence we deduce

dn = a(n + α + β + 2), φ

(
− nb + q

2na + p

)
= −Δ

a

(n + α + 1)(n + β + 1)
(2n + α + β + 2)2

,

Therefore, conditions (3.30) ensure that −(α + β + 1) �∈ N, −α �∈ N, and
−β �∈ N. This completes the proof. �

Remark 3.4. It follows from the proof of Theorem 3.2 that the parameters α
and β defined in the statement of this theorem (in cases 2, 3, and 4) fulfil the
regularity conditions appearing in Table 1.

The preceding theorem allows us to classify each classical functional ac-
cording with the degree of the polynomial φ appearing in equation (3.1).

Corollary 3.1. Let u be a classical functional, fulfilling (3.1)–(3.2).
(i) if deg φ = 0 (hence φ is a nonzero constant), then u ∼ uH ;
(ii) if deg φ = 1, then u ∼ u(α)

L for some α;
(iii) if deg φ = 2 and φ has simple zeros, then u ∼ u(α,β)

J for some pair (α, β);



155 Page 24 of 26 K. Castillo and J. Petronilho Results Math

(iv) if deg φ = 2 and φ has a double zero, then u ∼ u(α)
B for some α.

The monic OP with respect to the canonical representatives uH , u(α)
L ,

u(α,β)
J , and u(α)

B will be denoted by {Ĥn}n≥0, {L̂
(α)
n }n≥0, {P̂

(α,β)
n }n≥0, and

{B̂
(α)
n }n≥0 (resp.), and they will be called the (monic) Hermite, Laguerre, Ja-

cobi, and Bessel polynomials. (The integral representations of the canonical
representatives can be find in [11].) Table 2 summarizes the corresponding pa-
rameters appearing in all characterizations presented in Theorem 3.1. In view
of Theorem 3.2 and Theorem 1.3, we may now justify a sentence made at
the beginning of the section regarding Hermite, Laguerre, Jacobi, and Bessel
polynomials. As Maroni said in an interview when asked about Bessel poly-
nomials: “comme dans le roman d’Alexandre Dumas, les trois mousquetaires
étaient quatre en réalité”.
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polynômes orthogonaux semiclassiques, In: Brezinski, C., et al. (eds.) Orthogonal
Polynomials and their Applications, Proc. Erice 1990, IMACS, Ann. Comput.
Appl. Math., vol. 9, pp. 95–130 (1991)

[15] Maroni, P.: Variations autour des polynômes orthogonaux classiques. C. R.
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