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Abstract: Forestry operations have become of great importance for a sustainable environment in
the past few decades due to the increasing toll induced by rural abandonment and climate change.
Robotics presents a promising solution to this problem; however, gathering the necessary data for
developing and testing algorithms can be challenging. This work proposes a portable multi-sensor
apparatus to collect relevant data generated by several onboard sensors. The system incorporates
Laser Imaging, Detection and Ranging (LiDAR), two stereo depth cameras and a dedicated inertial
measurement unit (IMU) to obtain environmental data, which are coupled with an Android app
that extracts Global Navigation Satellite System (GNSS) information from a cell phone. Acquired
data can then be used for a myriad of perception-based applications, such as localization and
mapping, flammable material identification, traversability analysis, path planning and/or semantic
segmentation toward (semi-)automated forestry actuation. The modular architecture proposed is
built on Robot Operating System (ROS) and Docker to facilitate data collection and the upgradability
of the system. We validate the apparatus’ effectiveness in collecting datasets and its flexibility by
carrying out a case study for Simultaneous Localization and Mapping (SLAM) in a challenging
woodland environment, thus allowing us to compare fundamentally different methods with the
multimodal system proposed.

Keywords: multi-sensor apparatus; multimodal dataset collection; forestry robotics; LiDAR; inertial
measurement unit; depth cameras; GNSS

1. Introduction

Forest and woodland maintenance are crucial and challenging tasks that require
monitoring forests, planting trees, and removing invasive species. These tasks can be
physically demanding and time-consuming for human workers, posing significant safety
risks. While autonomous robots have the potential to revolutionize forestry maintenance,
the existing technology has limitations that prevent widespread adoption. One of the most
important of these tasks, landscape maintenance, has become particularly relevant as forest
fires have become increasingly prevalent in recent decades.

Current forestry robots [1,2] often lack the flexibility needed to easily navigate through
complex and dynamic forest environments, making data acquisition slow and cumbersome.
Forest areas are characterized by various obstacles, such as dense vegetation, uneven
terrains, and dynamic changes due to growth and decay. Conventional forestry robots may
struggle to maneuver through these challenging conditions, leading to limited coverage
and incomplete data acquisition [3]. The lack of flexibility in conventional forestry robots
also hampers their ability to access hard-to-reach areas.

To overcome existing limitations, this paper proposes the development of a lightweight
and portable LiDAR-Camera-Inertial-GNSS apparatus with an onboard computer for
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acquiring datasets in forests and woodlands. The apparatus, illustrated in Figure 1, collects
multiple sensor modalities such as accelerometer, gyroscope and magnetometer data from
an Inertial Measurement Unit (IMU), RGB and 3D Depth information from two cameras,
3D Light Detection and Ranging (LiDAR) scans, and Global Navigation Satellite System
(GNSS) information to create detailed and accurate datasets of forest environments.

The apparatus aims to solve the critical challenge of data acquisition, facilitating the
planning, testing and deployment of autonomous robots for forestry maintenance, and it has
key potential benefits, including improving the safety and efficiency of acquiring datasets
and reducing costs associated with deploying an automated vehicle in the field. This paper
also presents an experimental evaluation of the system in a real forest environment, where
Simultaneous Localization and Mapping (SLAM) implementations have been tested as a
case study, demonstrating the feasibility, flexibility and potential of the system proposed.

By proposing a lightweight and portable multi-sensor apparatus, this study provides
significant contributions to the field of forestry robotics, such as a publicly available ready-
to-use dataset [4] that enables researchers to analyze forest environments in depth, and
developing and testing perception-based methods with real-world data. In addition to the
apparatus design description and important lessons learned, the architecture developed
to record and store datasets also represents an important contribution, bringing a novel,
modular, and user-friendly architecture for acquiring multisensory outdoor datasets, allow-
ing different sensor configurations to be used with minor adjustments. Moreover, we also
contribute with an in-house developed Android App for easily exposing smartphone GNSS
data with ROS for use in Robotics [5]. As such, this work has the potential to pave the way
for a more widespread use of autonomous robots in forests and woodland scenarios.

(a) (b)

Figure 1. Illustration of the LiDAR-Camera-Inertial-GNSS apparatus proposed for dataset collection.
(a) Operator carrying the apparatus backpack. (b) Close-up view of the sensors.

2. Use Case Scenario

Simultaneous Localization And Mapping, commonly referred to as SLAM, is the action
of progressively building a map of an environment perceived by a moving entity (e.g., a
robot) while persistently localizing in that map as the entity moves through space [6,7].
SLAM algorithms play a crucial role in enabling autonomous robots to navigate and
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perceive unknown environments in real time. However, the complex and dynamic nature
of forest environments presents particularly significant challenges, making it essential to
evaluate and refine SLAM methods offline using realistic datasets.

Below, we formulate a potential use case scenario to clarify our motivations and
demonstrate how the collection of datasets can be used to test methods for artificial percep-
tion in Forestry Robotics as well as for localization and mapping in particular:

In this use case, a research engineer undertakes a data collection mission in a remote forest
area using an in-house developed multi-sensor apparatus. The mission aims to gather a diverse
range of multimodal data, such as LiDAR, IMU, Depth and RGB cameras, and GNSS, to support
research efforts.

He follows a systematic circular route through the dense vegetation of the forest while equipped
with the multi-sensor apparatus worn as a backpack. The LiDAR sensor accurately measures the
three-dimensional structure of trees and vegetation, while the IMU tracks the backpack’s orientation,
including magnetic heading. Depth cameras and RGB images provide visual details of the forest,
and GPS records positioning data throughout the entire journey.

Upon completing the route and returning to the starting point, he concludes the data collection
process and disconnects the apparatus. Before sharing the data, he transfers the acquired dataset to
his laptop as a ROS bag file and performs initial assessments as well as functional checks to ensure
the quality of the dataset.

The shared dataset becomes a valuable resource for the Forestry Robotics community. For
instance, a PhD student utilizes the collected data to test and refine SLAM algorithms, aiming
to improve the precision and efficiency of robots in mapping and navigating forest environments,
and contributing to the progress of forestry management and conservation practices by harnessing
technological advancements.

3. Background and Related Work

In this section, we start with an analysis of previous multi-sensor apparatuses de-
signed for dataset collection, including those specifically tailored for SLAM and forestry
applications, followed by a review of seminal work on 3D SLAM for a better understanding
of existing state-of-the-art methods.

In the past, a few portable and light sensing apparatuses designed to collect data from
the environment around us have already been proposed. To the best of our knowledge,
Oveland et al. [8] was the first to develop a portable apparatus to be used in a forest
environment. They compared different methodologies to study the Diameter at Breast
Height (DBH), an important feature in forestry inventory, reaching the conclusion that
a portable apparatus with multiple sensors, such as LiDAR and an IMU, is a viable al-
ternative to perform forest inventory. In Proudman et al.’s work [9], a portable system
was designed for estimating the DBH of trees in forestry applications. However, their
choice of using a metal stick instead of a backpack introduces the issue of user fatigue.
This design may lead to excessive variations in stick position, resulting in unintelligible
and uncontrolled movements, which can negatively impact data collection. While their
system had the benefit of a built-in display for real-time data visualization, the design
limitation raises concerns about the accuracy and consistency of the measurements. On
the other hand, Su et al. [10] and Xiao et al. [10] developed an accurate backpack system
with two orthogonally positioned LiDARs. Their backpack design overcomes the user
fatigue issue associated with the metal stick approach, allowing for more stable movements
during data acquisition. Since Su et al. aimed to measure DBH, their paper lacks effective
metrics to assess the precision of localization. In contrast, Xiao et al. present the Relative
Translation Error metric, introduced in [11], but they lack RGB-D and stereo information.
Jelavic et al. developed a system for forestry-harvesting missions [2]. Their system aims to
acquire a dataset to generate an a priori map of the deployment location for an autonomous
harvesting excavator. While their implementation shares similarities with the present
study by providing metrics to evaluate the precision of the SLAM algorithm used, it falls
short in incorporating RGB-D and GNSS information. Sier et. al [12] designed a very
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complete apparatus on top of a cart wheel with the objective of comparing the performance
of six different LiDARs in GNSS denied environments. LiDARs with both spinning and
solid-state technologies were considered as well as a stereo fish-eye camera. The authors
compare different state-of-the-art SLAM methods with different LiDAR configurations to
assess the most appropriate combination. For forest environments, the authors concluded
that the most robust combinations are the FAST-LIO [13] implementation using the more
precise Ouster spinning LiDARs and the Livox Horizon using a LIO-based SLAM design
for the Livox Horizon. In a recent study conducted by Faitli et al. [14], a new measurement
setup was developed to collect LiDAR and IMU data for localization and mapping using a
LIO-SAM-based method. While the system design shares similarities with the previous
work of Proudman et al. [9], Faitli et al. focused more on evaluating the performance of their
SLAM algorithm specifically designed for forest environments. However, it is important
to note that their dataset did not include RGB information, which restricts the potential
applications of their dataset. Another recent study by Li et al. [15] presented a new sensing
kit that collected LiDAR-IMU datasets in multiple GNSS-denied scenarios, including a
forest environment. Instead of using a backpack or a handheld design, the authors chose to
develop a helmet that integrated the sensors, such as LiDAR, IMU, and GNSS, while storing
the rest of the hardware in a backpack. According to the authors, the motion characteristics
of the helmet approach were similar to those found in the handheld counterpart, involving
quick shifting and shaking, whereas the backpack design only accounted for quick shifting.
However, the level of fatigue that would result from supporting a 1.5 Kg load on top of the
operator’s head remains uncertain. Once again, the datasets produced in this study lacked
RGB-D information, which hinders the potential use cases of the collected datasets.

One of the most popular implementations of SLAM is Real-Time Appearance-Based
Mapping (RTAB-Map) [16]. RTAB-Map is a graph-based SLAM system that relies on an
image loop closure detector, offering several options for the back-end, namely GTSAM
(default) [17], g2o [18] and TORO [19]. The loop closure detector uses a bag-of-words
approach to determine the likelihood that a new image was taken from a previous or
a new location. It can estimate odometry from IMU and wheel encoders, but it also
supports Visual and LiDAR odometry as optional odometry sources. When executing loop
closure, RTAB-Map reuses the features that were previously matched in Visual or LiDAR
Odometry, which improves the overall performance. RTAB-Map can generate both 2D and
3D Occupancy grids.

Several LiDAR-based methods derive from LiDAR Odometry And Mapping, which is
commonly known as LOAM. Although LOAM can create highly accurate maps, it usually
performs poorly in places with few landmarks, such as long corridors. LeGO-LOAM [20]
adds two additional modules to the LOAM technique: point cloud segmentation and
loop closure. These extra components allow an improvement in computing performance
and drift reduction over long distances but does not improve the results when used in
a featureless environment. LeGO-LOAM uses the naive ICP algorithm to perform loop
closure, but a more robust approach based on a point cloud descriptor is implemented in
SC-LeGO-LOAM [20,21]. To help improve the performance in a low features environment,
researchers have been recently adding an IMU to similar systems in a tightly coupled
approach (see [13,22,23]), giving rise to the term LiDAR Inertial Odometry (LIO). For
instance, the LIO-SAM [24] approach proposes a tightly coupled LiDAR framework atop
of a factor graph. The implementation considers four different factors, namely IMU
preintegration, LiDAR odometry, GPS and a loop closure factor, making it ideal for multi-
sensor fusion and global optimization. Lately, several methods based on similar principles
have been proposed [25–32].

Cartographer is Google’s implementation to solve the SLAM problem [33]. It is also
a LiDAR-based graph SLAM divided into two main components: local SLAM (the front
end) and global SLAM (the back-end). This approach takes input of a range-finding sensor,
e.g., a LiDAR, and applies a band-pass filter to the input data. IMU can also be used to
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help figure out the robot rotation and to provide information on gravity direction, which is
used in the 3D variant.

In order to evaluate SLAM systems, vital metrics such as Relative Translation Error
(RTE) and Absolute Position Error (APE) were introduced in [11]. RTE measures the ac-
curacy of estimating the relative translation between two positions. If the two positions
are taken from the same location, a lower RTE implies a more precise localization estimate.
On the other hand, APE quantifies the accuracy of absolute position estimation by com-
paring the estimated positions with ground truth values. A smaller APE indicates better
localization accuracy.

The systems reviewed in this section provide valuable insights into the challenges and
opportunities in the development of a portable apparatus for forestry applications. Table 1
presents a comparison between the reviewed systems and the SLAM algorithms tested
using the data collected with each of these frameworks. Some systems focus on the forest
application inventory, and other applications are particularly focused on determining the
DBH of trees. Key metrics are missing in some works, making it difficult to effectively
evaluate their performance for SLAM. The majority of the apparatuses reviewed in this
study lack RGB-colored images of the environment. RGB information plays a crucial role
in various artificial perception algorithms and methods, and its absence limits the potential
use cases for both the apparatus and the dataset it generates. It is imperative to include
RGB information in recorded datasets to enable a wider range of use cases. Furthermore,
these systems are typically expensive, which is primarily due to the high costs associated
with the prevalent LiDAR technology incorporated in them.

Table 1. Comparison table between previously mentioned systems.

Work IMU LiDAR GNSS Stereo RGB-D SLAM Method Error (m) Forestry Structure 1 Cost (USD)

Oveland et al. [8], 2018 X X X — — GeoSLAM (proprietary) [34] N/A X Backpack $13,500

Proudman et al. [9], 2021 X X X — X
Factor-Graph LIO [35] +

Elevation Mapping [36]
0.11 (RTE) X Handheld $19,000

Su et al. [10], 2021 X X — — —
Custom LiDAR-SLAM

inspired by [37,38]
N/A X Backpack $9000

Jelavic et al. [2], 2021 X X — X — Cartographer [33] 0.41 (APE) X Handheld $10,500

Xiao et al. [39], 2022 X X X — — LIO-SAM [24] 0.03 (RTE) — Backpack $10,000

Sier et al. [12], 2022 X X X X —
FAST-LIO [13]

LIO-Livox [40]
0.05 (APE) X Wheeled Cart $43,000

Faitli et al. [14], 2023 X X X — — LIO-SAM-based [24] 0.02-0.16 (APE) X Handheld $34,000

Li et al. [15], 2023 X X X — —

FAST-LIO [13]

LOAM [41]

LIO-LIVOX [40]

0.13-0.35 (APE) X Helmet $41,000

Our solution X X X X X
RTAB-Map [16]

Cartographer [33]
0.09-0.28 (RTE) X Backpack $4000

1 The estimated costs outlined represent a lower bound value for the examined systems.

An estimate of the overall value of the above-mentioned works has been included in
Table 1. While some costs are provided by the authors, most are estimated based on the
current unit price of the sensors that make up the various apparatus systems.
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By building upon the lessons learned from previous works, we have built an appara-
tus that combines multiple sensor modalities into a single lightweight, inexpensive and
portable backpack system. The integration of multiple sensors allows for comprehensive
data acquisition, which in turn enables a detailed and accurate perception of the forest envi-
ronments. The apparatus presented in this study overcomes the limitations of prior systems
by providing a wider range of sensory information. Additionally, the collected datasets
are made publicly available, including high accuracy pose estimation off the shelf, with
applicability potential beyond localization and mapping algorithms, as we demonstrate
later on.

4. System Description

Among the reviewed approaches, the use of a wheel cart system, as demonstrated
in [12], offers the most ergonomic solution. However, this approach significantly hampers
the maneuverability of the apparatus. Forest environments present several challenges and
obstacles such as uneven terrain, rocky surfaces, and dense vegetation, making wheeled
vehicles generally impractical for navigation. On the other hand, mounting the entire
system on a metal rod held firmly in the operator’s hands greatly enhances maneuverability,
facilitating precise pointing and feature capture. Nonetheless, this approach comes with its
limitations. The human operator may experience fatigue over time, resulting in reduced
stability when holding the system and ultimately affecting the quality of the dataset.

The backpack method strikes a balance between ergonomics and maneuverability. It
offers easier portability and improved stabilization during extended distances compared to
the rod approach while remaining highly adaptable to uneven terrains. Taking into account
the unique demands of forestry scenarios, the backpack method emerges as the most
practical compromise, enabling operators to navigate through the challenging environments
while maintaining stability and minimizing fatigue. Therefore, as seen in Figure 1, we
decided on a backpack-based design for the apparatus proposed.

Our objective emphasizes the importance of collecting datasets that encompass a
diverse range of sensory information from different sensor types. In mapping applications,
accurate depth sensors play a crucial role, with LiDAR being widely recognized as the pre-
dominant sensor in this field. By incorporating an RGB-D camera, the datasets we generate
become more versatile and can be utilized for various applications, such as segmentation
and fuel identification algorithms. Unfortunately, this important component lacks in most
of the reviewed literature. The inclusion of an IMU and GNSS information in the datasets
enables a more efficient exploration and testing of sensor fusion algorithms and localiza-
tion methods. By encompassing these different sensor modalities, our datasets become
comprehensive resources for advancing research and development in various domains.

Alongside the sensor possibilities, there are additional requirements that must be
fulfilled to ensure a competent working solution. Firstly, it is critical that the system can
run continuously for a minimum of two hours so that longer expeditions and/or multiple
consecutive datasets can be collected without recharging its batteries. Additionally, the
software should be well integrated using a commonly used middleware for Robotics
applications such as ROS (Robot Operating System), and the system should be able to
endure high outdoor temperatures to allow working under most weather conditions. This
includes considering appropriate cooling solutions to avoid the sensors to go beyond their
maximum operating temperature. Other important requirements include modularity for
adding, swapping, or removing sensors and processing nodes and real-time notification of
sensor malfunctions during startup and runtime. These characteristics are mainly achieved
through ROS and Docker—further explained later on—and highly improve the system’s
robustness and potential for adoption in different scenarios. In addition, the apparatus
should be affordable (below $4500), and its weight should be kept to a minimum so as not
to cause discomfort to the user. Naturally, multiple sensors and a small-factor onboard
computer must be incorporated to achieve the proposed goals, and all sensors must be kept
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fixed in the apparatus structure with a well-known geometrical relationship between them
at all times.

As shown in Figure 2a, the system comprises the following components: a Xsens MTi
IMU, a Mid-70 Livox LiDAR, a Mynt Eye S1030 stereo camera, and an Intel Realsense D435i
RGB-D camera. The LiDAR publishes point clouds at 50 Hz with precise measurements and
a maximum range of 90 m. However, the LiDAR’s limited circular Field of View (FoV) of
70.4◦ restricts the amount of information it can capture. To complement the LiDAR data, the
Mynt Eye provides point clouds with a larger horizontal FoV of 146◦. The Intel Realsense
D435i camera not only provides additional depth information but also serves as the single
source of RGB and infrared information, which is useful for identifying relevant forest
entities, such as flammable material [3]. The system also contains an onboard computer,
the Udoo Bolt V3, that is responsible for receiving and recording data from every sensor.
The onboard computer is equipped with a high-speed M.2 NVMe Solid-State Drive (SSD)
to allow the simultaneous recording of high volumes of data acquired by the different
sensors. The entire system is powered by a 14.8 V Turnigy battery with 10,000 mAh, which
can provide approximately 4 h of continuous operation. For further clarification, a diagram
showing how the various modules are physically interconnected and powered is presented
in Figure 2b.

Livox Mid-
70

Mynt Eye
S1030

Intel Realsense
D435i Xsens IMU

(a)

Udoo
Bolt

Step-up
19V

Turnigy 14.8V
10,000mAh

Battery

Step-down
12V

Step-down
5V

Xsens
IMU

Realsense
D435i

Livox
LiDAR Fans

USB Hub

 

Mynt Eye
S1030

14.8V

5V 12V19V

U
SB 3.1

Type A

USB 3.1
Type C

Ethernet

Sensor Box

Backpack

Sensor
Component
Computer
Battery

(b)

Figure 2. A closer look at the multiple sensors incorporated in the system and their connectivity and
power management. (a) Sensor framework. (b) Physical system block diagram.

To ensure durability and functionality, the physical structure of the apparatus was
divided into two distinct components: “sensor box” and “backpack”. The sensor box
houses the sensors, while the backpack accommodates the computer, battery, and voltage
regulators (cf. Figure 2b). The system is intended for use in outdoor environments, where
ambient temperatures can reach over 35 °C for extended periods of time, and sensors
experience increased heating. In such conditions, the use of some plastic materials such as
Polylactic Acid (PLA) are not suitable due to their potential to deform or degrade. Given
that the host computer can reach high temperatures, the structure inside the backpack
is made of Acrylonitrile Butadiene Styrene (ABS), which can withstand temperatures of
about 80 ◦C without significant degradation [42]. The sensor box, on the other hand, is
built using polyethylene terephthalate glycol (PETG), which is a material that has a glass
transition temperature at around 75 ◦C [43] but offers more adequate ultraviolet resistance,
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which is important considering that this is the most exposed part of the apparatus. To
mitigate potential thermal issues in the sensor box, several fans are set up to blow fresh
air into the cameras, which tend to heat up after long periods of operation. A heat sink is
also attached to back of the Realsense D435i camera to improve heat dissipation. These
measures not only help maintain optimal performance but also ensure that the temperature
of the sensors remains within safe limits, minimizing any potential safety risks to the
operator. Moreover, to facilitate future upgrades, the Livox LiDAR is mounted on top,
allowing for easy replacement with a LiDAR with a larger horizontal FoV in the mid-term
future. Since the primary purpose of the Mynt Eye is to increase the FoV for mapping, the
mount that holds it in place was designed to allow easy rotation around the yaw axis. This
enables users to adjust the extent to which the Mynt Eye’s data overlaps with the FoV of
the LiDAR and the D435i as needed in their specific application.

Sensor poses are known in a common frame of reference from the Computer-Aided
Design (CAD) of the system with the exception of the yaw angle of the Mynt Eye due to its
adjustable nature. Sensor registration is completed manually using the transformations
provided by CAD. Once the Mynt Eye is physically set by the user in its final orientation,
its pose is passed as an input parameter of the system by visually comparing the 3D
intersection of the different sensor point clouds. From our experience, this procedure yields
appropriate results in general. Yet in the future, we intend to work on more precise and
automated extrinsic calibration of the apparatus’ sensors.

We use a software platform for packaging and running applications in isolated con-
tainers, since the sensor drivers run in different, not fully cross-compatible versions of ROS.
Therefore, the project’s complete architecture for the dataset recording process, as depicted
in Figure 3, is designed around Docker. It includes containers for the different ROS versions
needed as well as a container running a ROS bridge server, which exposes port 9090 on
the host computer to receive GNSS information from an in-house developed Android
Sensor ROS application (see [5] for more information). Additionally, another container is
responsible for writing the dataset into the rosbag format, and a debugging node runs on a
System Diagnostic container, recording a separate rosbag dataset with various useful moni-
toring information, such as sensor acquisition frequencies and CPU temperature. The use of
Docker also enables easy replication of the architecture for different apparatuses with sensor
configurations specific to each use case. The codebase for the complete system architecture
can be accessed at https://github.com/Forestry-Robotics-UC/fruc_dataset_apparatus,
accessed on 12 June 2023.

ROS Master
(Noetic)Record ROS Bridge

ROS
Noetic

ROS
Melodic

System
Diagnostic

Host

Livox
Mid 70

Realsense
D435i

Mynt Eye
S1030

Xsens
IMU

Sensor
StreamerWeb Socket

RGB @30Hz
Depth @30Hz
Accel @63Hz
Gyro @200Hz

Point Cloud @50Hz
Left Image @30Hz

Right Image @30Hz

USB A

USB A

USB C

Ethernet Accel @100Hz
Gyro @100Hz
Mag @100Hz

Docker Container
Android Application
Sensor

GNSS Fix @1Hz

Figure 3. Complete system architecture, highlighting the different sensors, devices and Docker containers.

https://github.com/Forestry-Robotics-UC/fruc_dataset_apparatus
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5. Experimental Procedure

A dataset [4] was collected at the Choupal National Woods (40◦13′13.3′′N; 8◦26′38.1′′W)
in Coimbra, Portugal, with the specific aim of evaluating the apparatus’ effectiveness in
challenging outdoor conditions. The dataset was collected on a sunny day, where the
user performed two circular loop laps, amounting to a distance of approximately 800 m
(as depicted in Figure 4) with a duration of 15 min 33 s. Throughout the experiment, the
smartphone collecting GNSS information was kept in a fixed position in relation to the
apparatus, with the android application running in the foreground with the phone’s screen
actively on. The phone was connected to a network carrier, and the cellular data plan was
activated to improve the Assisted GNSS estimation. The woodland environment featured a
diverse range of visual elements, including tree trunks, trees, bushes, and leaves, providing
rich features for evaluation.

(a)

3

2

5

1

6

7

4

100 m

(b)

Figure 4. Aerial/top views of the navigated path at the experimental site in the Choupal National
Woods. (a) Route map [44]. (b) Satellite view (Google Earth).

The dataset entails a diverse range of ROS sensor data acquired at different frequencies.
The stored data includes IMU readings, i.e., 3D orientation, angular velocity and linear
acceleration; magnetic field readings and its internal temperature values (all at 99.26 Hz).
The Livox LiDAR provides 3D point clouds at 49.88 Hz, while the smartphone provides
Assisted GNSS (A-GNSS) fix data (latitude, longitude, etc.) at 1.05 Hz. Left and right
monochromatic stereo images are obtained by the Mynt Eye camera at 19.82 Hz, while the
Intel Realsense acquires RGB and depth images at 29.68 Hz, together with accelerometer
(63.33 Hz) and gyroscope (197.90 Hz) measurements from the internal IMU. The data
captured offer a comprehensive view of the environment, enabling extensive analysis and
facilitating research and development for numerous applications.

In order to assess the quality of the collected dataset, we employ different SLAM
methods to obtain reliable localization data. Localization plays a critical role in various
applications that involve navigation, such as map building and transversability analysis.
It serves as the foundation for perception-based algorithms to operate effectively, and
therefore, it is paramount to provide localization information alongside raw data in a
dataset to increase the potential use cases. In addition, SLAM algorithms can also serve
as a valuable means to evaluate the quality of the dataset. For instance, if an RGB feature-
matching algorithm in SLAM performs well and successfully maps and recognizes loop
closures, it suggests that the images captured by the RGB-D camera possess sufficient
quality for other algorithms like metric-semantic mapping. The same logic can be applied
for the LiDAR scans. The utilization of various types of SLAM methods and the subsequent
evaluation of their performance enables us to gauge the dataset’s overall quality and its
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suitability for a wide range of applications. This showcases the flexibility and usability
potential of the dataset provided. For this, we focus on two prominent, distinct and
proven open-source ROS-based SLAM algorithms: Cartographer and RTAB-Map. These
are compared and evaluated based on a decoupled multimodal architecture, as illustrated
in Figure 5.

LiDAR
Odometry
Estimation

Odometry-Inertial
Filter

Simultaneous
Localization
and Mapping

Method

Fused
Odometry

Map

Absolute, map-referenced
localization

GNSS Fix Data

Madgwick
Filter

Stereo
Odometry
Estimation

RGBD
Odometry
EstimationImage Data

Point Cloud
Data

Odometry

Odometry

Odometry

IMU Data Filtered IMU Data

Pre-Processing module
Data Fusion module
SLAM module

Navsat
Transform

Odometry

Figure 5. High-level diagram of the process to acquire a map of the environment and an absolute,
map-referenced localization using the data from the available sensors. Dashed arrows represent
optional connections.

Relevant raw data collected with the diverse sensors have been processed using
dedicated ROS nodes to convert sensory information into odometry motion estimates.
LiDAR odometry from the Livox Mid 70 is computed using the livox_mapping [45] ROS
package, which extracts feature points from point clouds to obtain relative poses via frame
matching and is especially tailored for the Livox LiDAR series.

Odometry estimation from the Intel Realsense D435i’s RGB-D images is obtained using
rgbd_odometry, which is part of the RTAB-Map ROS package. The node computes visual
features and depth information from depth images; then, it applies feature correspondences
between images and Random Sample Consensus (RANSAC) to extract the most likely
transformation between consecutive images. For stereo images from the Mynt Eye S1030
camera, we use the stereo_odometry node, which is also included in the RTAB-Map ROS
package. The node computes visual features extracted from the left images with their depth
information computed by finding the same features on the right images. Then, it also uses
feature correspondences and a RANSAC approach to extract the most likely transformation
between the consecutive left images.

GNSS Fix data can also be converted into an odometry input for late fusion with the
remaining estimates of relative pose. For this, one can use the navsat_transform_node
included in the robot_localization ROS package. In our architecture, we set this input
as optional, given the limited capabilities of GNSS in the woodland scenario where the
experiments were performed due to tall trees and large canopies that can obstruct the line
of sight between the GNSS receiver and the satellites, and introduce multipath interference,
thus leading to a degradation of GNSS positioning.

The odometry estimates derived are then fused with the IMU measurements. For this,
the angular velocities, linear accelerations, and magnetic readings from the XSens MTi
IMU are firstly fused using a Madgwick Filter (see [46] and imu_filter_madgwick ROS
package). This provides a 3D orientation estimate that is passed on as an additional input
together with the odometry estimates into the data-fusion module to provide a 6D fused
odometry input (3D position and 3D orientation) to the SLAM method.
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The fusion node uses an Unscented Kalman Filter implementation from [47], which is
available in the robot_localization ROS package. The resulting fused odometry, along
with sensor point clouds and filtered IMU measurements feed either the Cartographer or the
RTAB-Map SLAM methods to generate a map and an absolute map-referenced localization.

It is important to note, however, that the dataset collected as described above is
unlabeled and also lacks ground-truth reference localization information. Therefore, a set
of quantitative and qualitative metrics need to be defined for algorithm evaluation and/or
training. For SLAM, in particular, since in this experiment, the user’s start pose matches
their final pose, the quantitative RTE and Relative Angular Error (RAE) metrics can be
computed as:

RTE =
√
(x f inal − xstart)2 + (y f inal − ystart)2 + (z f inal − zstart)2, (1)

and

RAE =
√
(φ f inal − φstart)2 + (θ f inal − θstart)2 + (ψ f inal − ψstart)2, (2)

where φ, θ, and ψ represent the Euler angles (roll, pitch, and yaw respectively).
To assess the alignment and consistency of the SLAM algorithm outputs with the real-

world environment, a qualitative metric was employed. This metric involves overlaying
the localization onto a map of the Choupal National Woods, which was generated by O-
Solutions [44] through the human practice of cartography. This visual comparison provides
clear insights into the alignment and consistency of the SLAM algorithms’ outputs with
respect to the real-world environment.

6. Results and Discussion

The experimental evaluation results reveal distinct characteristics of the two SLAM
methods tested. Cartographer and RTAB-Map employ different sensor modalities to es-
timate their respective localizations. RTAB-Map utilizes Odometry, IMU, and RGB-D
information, while Cartographer leverages Odometry, IMU, and LiDAR data. The versatil-
ity of the recorded dataset and the apparatus becomes evident in supporting these diverse
sensor configurations, showcasing its adaptability and effectiveness to accommodate SLAM
approaches with distinct assumptions.

Figures 6 and 7 illustrate the localization results of adopting the SLAM techniques
along the navigated path followed by the user while carrying the apparatus on his back.
It can be observed that both methods are able to continuously localize the system with
different levels of success when applied to the data collected.

Since the methods are based on GraphSLAM, special attention is placed on loop
closure identification and its impact on the overall results. RTAB-Map uses visual features
for loop closure, while Cartographer is supported by LiDAR-based loop closure. Both
approaches successfully identify loop closures along the path (see Figures 6 and 7), which
helps to significantly reduce the RTE and RAE for the two methods, as shown in Table 2.
This indicates that the dataset has enough distinct features from multiple modalities for
the SLAM implementations to recognize previously visited locations and enhance the
overall mapping accuracy. However, the RTAB-Map with loop closure exhibits a noticeable
negative variation along the Z-axis, despite the dataset being collected in a relatively flat
terrain. This is not observed when RTAB-Map operates without loop closure, as illustrated
in Figure 7c. This suggests that the Z-axis variation issue is primarily related to the back-
end graph optimization of the SLAM algorithm. In woodland and forest scenarios, visual
similarities and locations that look alike are common, which may cause false positives in
loop closure. This can also be caused by sensor noise and/or lighting changes, and it is
more likely to occur if visual features are used, as in the case of RTAB-Map. Moreover, we
made use of the default graph optimization approach GTSAM [48] in RTAB-Map. Yet, it
also supports TORO [19] and g2o [18]. We hypothesize that further tuning of the back-end
parameters could eventually enhance the Z-axis variation and the overall trajectory accuracy
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for RTAB-Map. In contrast, Cartographer demonstrates higher localization precision, with
the back-end successfully optimizing large sparse pose graphs with the Ceres Solver [49]
while keeping the trajectory on leveled ground (refer to Figure 7c). As a result, it achieves
superior overall localization performance as shown in Figure 8 when compared to RTAB-
Map, overlaying accurately on top of the reference route map from [44], as illustrated in
Figure 8a.

(a)

(b) (c)

Figure 6. Absolute map referenced localization of the traveled path computed with and without loop
closure by Cartographer. (a) Top view. (b) 3D isometric perspective. (c) Side view.

Table 2. Relative Pose Error (Translation and Rotation) of the SLAM methods tested at the same start
and end pose.

Method RTE (m) RAE (rad)

RTAB-Map 0.089 0.25

RTAB-Map without loop closure 77.10 1.18

Cartographer 0.28 0.069

Cartographer without loop closure 17.10 0.21
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(a)

(b) (c)

Figure 7. Absolute map referenced localization of the traveled path computed with and without loop
closure by RTAB-Map. (a) Top view. (b) 3D isometric perspective. (c) Side view.

The A-GNSS data recorded from the smartphone did not yield satisfactory results in
terms of accuracy and trajectory representation, as illustrated in Figure 9. While the two
loops followed by the user are discernible, the overall shape of the trajectory is not con-
sistent with the navigated path. The woodland environment, with its tall trees and dense
canopies, poses significant challenges for acquiring reliable GNSS data. The obstructed
visibility of satellites in such an environment hampers the quality and reliability of the
A-GNSS measurements. Even though the proposed architecture supports GNSS input and
this is provided in the dataset for further study, recognizing the sub-optimal nature of
these measurements, we have decided not to include them in the sensor fusion node. This
decision avoids the potential degradation of localization performance in both SLAM algo-
rithms, as the incorporation of unreliable data could introduce errors and inconsistencies
into the fusion process.

The maps built when executing the two SLAM methods are significantly different.
RTAB-Map supports the generation of 3D point clouds [50] or a 3D octomap [51] of the
environment, while Cartographer produces a 2D occupancy grid [52]. To allow for a side-
by-side comparison, one can use the localization yielded by the SLAM method together
with a mapping framework that reconstructs a comprehensive 3D RGB map utilizing the
RGB-D information contained in the dataset. In this work, we employ these SLAM methods
alongside the UFOMap 3D mapping framework [53] to build consistent and optimized 3D
colored octree maps of the environment, as depicted in Figure 10. Comparing the generated
maps with an image (Figure 10a) captured from a similar vantage point, it is evident that
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both maps exhibit consistency. The distinct features of the path are clearly discernible
amidst the surrounding vegetation, including small bushes and grass, highlighting the
accuracy and fidelity of the reconstructed map.

Traveled Path
RTAB-Map

Cartographer

(a) (b)

(c)

Figure 8. Absolute map referenced localization of the traveled path computed with loop closure by
Cartographer and RTAB-Map. (a) Overlay of RTAB-Map and Cartographer localization with the
route map of Figure 4a. (b) 3D isometric perspective. (c) Side view.

(a)

3

2

5

1

6

7

4

100 m

(b)

Figure 9. Assisted GNSS (A-GNSS) positioning from a smartphone integrated in the apparatus.
(a) A-GNSS data during first (blue) and second (orange) laps of the navigated path (Google Maps).
(b) Satellite view (Google Earth) of the navigated path. Replicated from Figure 4b for comparison.
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(a)

(b) (c)

Figure 10. Octree maps generated by using each method’s localization with loop closure correction
and the RGB-D outputs as inputs to the UFOMap package [53]. (a) Reference RGB image. (b) Scene
reconstruction using Cartographer. (c) Scene reconstruction using RTAB-Map.

In the above discussion, we have used the RGB-D camera data to build the 3D colored
octree map of the environment. However, another representation of the environment can
be accomplished by registering the colorless point clouds obtained from the 3D LiDAR
sensor using the localization data derived from the SLAM methods. This is illustrated
in Figure 11. This approach allows for the inclusion of more distant features in the map
due to the extended range of the LiDAR. The resulting map is consistent and provides
clear identification of salient features such as trees and the borders of the path. When
examining the map from a close-up of a 3rd person view of the apparatus shown in
Figure 11a, individual trees are reconstructed with a high level of detail, showcasing the
dataset’s ability to capture fine details. Figure 11b,c provide isometric perspectives on the
complete maps generated by the Cartographer and RTAB-Map localizations, respectively.
Although both maps demonstrate consistency, it is evident that the Cartographer map
exhibits significantly sharper details as the features on Figure 11c appear more blurred. A
video of the data acquired with the generation of the maps using the dataset is available
at https://youtu.be/9EXIwiExvWs, accessed on 16 June 2023. This detailed and precise
representation of the environment enables researchers to gain valuable insights into the
environment, facilitating tasks such as path planning and traversability analysis, and
further analysis of the forest landscape, for instance through semantic segmentation or
metric-semantic mapping.

As a final, bonus example going beyond our use case scenario, Figure 12 shows the
mechanical effort-based traversability technique proposed by Carvalho et al. [54] running
with the data provided in our dataset. It uses point clouds to infer terrain gradient and
the location of obstacles in space, and from there, it generates a global 2D costmap with
mechanical effort information to guide the agent from one place to another in a way that
minimizes the mechanical effort it is subject to and potentially its energy/fuel consumption.

https://youtu.be/9EXIwiExvWs
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The rich and accurate data extraction procedure also highlights the utility of acquiring
multimodal datasets with the proposed apparatus, enabling a deeper understanding of the
forest’s structural characteristics through robust perception capabilities.

(a)

(b) (c)

Figure 11. Livox LiDAR point clouds registered into a map using the 6D localization computed by
Cartographer and RTAB-Map, with both methods using loop closure correction. In this representation,
colors represent the LiDAR intensity, i.e., the strength of the backscattered echo at each point.
(a) Close-up view of registered point clouds while traversing the navigated path with localization
extracted from Cartographer. (b) 3D reconstruction of travelled path in isometric perspective using
Cartographer localization. (c) 3D reconstruction of travelled path in isometric perspective using
RTAB-Map localization.

Figure 12. Mechanical effort costmap generated by the method presented in [54] with data from our
dataset, in which lighter values in the grayscale represent easier to traverse areas and vice versa.
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7. Conclusions

In this study, we propose the development of a portable, lightweight and inexpensive
apparatus for collecting multisensory data considering the requirements for forest and
woodland environments while also allowing for the collection of datasets in any type of
environment. Through experimental evaluation, providing insights into the performance of
state-of-the-art SLAM implementations on the collected data, we demonstrate the versatility,
feasibility and potential of the proposed approach in facilitating the planning, testing, and
deployment of autonomous robots for forestry maintenance.

The dataset generated by the multi-sensor apparatus, openly available in [4], presents
a contribution to the field of forestry robotics, as it provides the bulk of data required
by researchers to analyze forest environments in depth, obtain an a priori map for robot
operations, and label and train segmentation algorithms. The novel architecture developed
for recording and storing the dataset provides a modular and user-friendly solution for
acquiring extensive and dense datasets, seamlessly integrating into diverse platforms with
various sensor combinations. Moreover, we also contribute to the community with an
Android mobile app implementation, available in [5], which delivers GNSS/A-GNSS data
for ROS systems out-of-the-box.

This opens up new possibilities for a more widespread adoption of autonomous robots
in the field, improving the efficiency of data acquisition and reducing costs associated with
automated vehicle deployment. Our study lays the foundation for future research and
development in autonomous forestry maintenance, ultimately leading to safer and more
efficient practices in forestry management.

Looking ahead, we plan to integrate a GNSS Real-Time Kinematic (RTK) station in our
multi-sensor apparatus to facilitate reliable comparison between localization and/or SLAM
algorithms. GNSS-RTK can deliver absolute gold standard positioning with centimeter-
level precision, which is particularly valuable for localization-dependent algorithms, en-
abling more precise and refined results in these areas of research. Future datasets will be
collected in various forest environments, with a particular focus on locations that have
significant terrain variations. The current dataset lacks annotated images, but this limita-
tion can be turned into an opportunity for users to apply their domain knowledge and
expertise in annotating the images according to their specific needs, making the dataset
more adaptable.
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Abbreviations
The following abbreviations are used in this manuscript:

A-GNSS Assisted Global Navigation Satellite System
ABS Acrylonitrile Butadiene Styrene
APE Absolute Position Error
CAD Computer-Aided Design
CPU Central Processing Unit
DBH Diameter at Breast Height
FoV Field of View
g2o General Graph Optimization
GNSS Global Navigation Satellite System
GPS Global Positioning System
GraphSLAM Graph-based Simultaneous Localization and Mapping
GTSAM Georgia Tech Smoothing and Mapping
ICP Iterative Closest Point
IMU Inertial Measurement Unit
LIO LiDAR-Inertial Odometry
LIO-SAM LiDAR-Inertial Odometry with Smoothing and Mapping

LiDAR Light Detection And Ranging
LeGO-LOAM Lightweight and Ground-Optimized LiDAR Odometry and Mapping
LOAM LiDAR Odometry and Mapping
PETG Polyethylene Terephthalate Glycol
RANSAC Random Sample Consensus
RGB-D Red, Green, Blue and Depth channels/sensor
ROS Robot Operating System
RTAB-Map Real-Time Appearance-Based Mapping
RAE Relative Angular Error
RTE Relative Translation Error
RTK Real-Time Kinematics
SC-LeGO-LOAM Scan Context Lightweight and Ground-Optimized LOAM
SLAM Simultaneous Localization And Mapping
SSD Solid-State Drive
TORO Tree-based netwORk Optimizer
UFOMap Unknown Free Occupied Map
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