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Abstract
It is often useful to be able to deal with locales in terms of presentations of their underlying
frames, or equivalently, the geometric theories which they classify. Given a presentation for
a locale, presentations for its sublocales can be obtained by simply appending additional
relations, but the case of quotient locales is more subtle. We provide simple procedures
for obtaining presentations of open quotients, proper quotients or general triquotients from
presentations of the parent locale. The results are proved with the help of the suplattice,
preframe and dcpo coverage theorems and applied to obtain presentations of the circle from
ones for R and [0, 1].
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1 Introduction

An advantage of the pointfree approach to topology is the ability to present frames by gener-
ators and relations. This can also be interpreted as describing a locale by giving axioms for
a geometric theory which it classifies.

Since sublocales correspond to quotient frames, presentations for them the be found by
simply adding additional relations to the a presentation for the parent frame. However, there
is no such simple relationship between presentations of a frame and presentations of its
subframes, and so quotient locales can be more difficult to deal with with this approach.

The aim of this paper is to give simple procedures for turning a presentation of a locale
into a presentation of one of its quotients in a number of important cases. These include open
quotients, proper quotients and triquotients, as well as certain ‘lax’ variants of these.
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While the results are straightforward applications of the coverage theorems stated below,
I have not seen these results mentioned before and I hope that this paper will be a useful
reference for dealing with quotients. The last section provides a number of examples to
demonstrate the how the results would be used in practice and to showcase their utility.

2 Background

Wedenote the categoryof framesbyFrm and its opposite category—the category locales—by
Loc. To avoid confusion we will distinguish notationally between locales and their corre-
sponding frames: we writeOX for the underlying frame of the locale X and f ∗ : OY → OX
for the frame homomorphism corresponding to the locale map f : X → Y .

The category Frm, and thus Loc, has a natural order-enrichment given by the usual
pointwise ordering on frame homomorphisms. Thus it makes sense to consider not only
locale coequalisers, but also coinserters. The coinserter of a parallel pair f , g : A ⇒ B is
the initial map q : B → C such that qg ≤ q f . In this paper we use the convention where the
lower path in the diagram is the smaller composite.

A dcpo is a poset admitting joins of directed subsets. To emphasise that a join
∨

S is of
a directed subset we we will use the notation

∨↑ S. The usual morphisms between dcpos
preserve these directed joins and are called Scott-continuous functions. The forgetful functor
from Frm toDCPO factors through both the category of suplattices Sup and the category of
preframes PreFrm. Recall that a suplattice is a poset which admits all joins and a suplattice
homomorphism is a join-preservingmap between these, while a preframe is a dcpowith finite
meets and a preframe homomorphism is a Scott-continuous ∧-semilattice homomorphism.

Of course, frames and suplattices can be presented by generators and relations, but so can
preframes (see [5]) and dcpos (see [14]). We write 〈G | R〉A for the object of the category
A presented by the generators from G and the relations from R (which we view as a set of
formal equalities and inequalities between elements of the free structure on G). For case the
A = Frm we will omit the subscript when there is no chance of confusion.

Sometimes it is useful to take the generators to have more structure than a mere set. For
instance, if G has the structure of a ∧-semilattice, then we can use the free frame on the
∧-semilattice G to form the presentation. This is equivalent to taking the free frame on the
set G and adding in relations to force the finite meets in the presented frame to agree with
the finite meets in G. To indicate we are viewing G as a ∧-semilattice and not just a set we
will write such a presentation as 〈G ∧ -semilattice | R〉.

We now recall some theorems relating different kinds of presentations which will be
crucial for proving our results. See [13, 14] for further details.

Definition 2.1 Let G be a ∧-semilattice. We will call 〈G ∧ -semilattice | R〉Frm a Sup-type
frame presentation if every relation in R is of the form

∨
A ≤ ∨

B and furthermore, when∨
A ≤ ∨

B is a relation, then so is
∨

a∈A a ∧ c ≤ ∨
b∈B b ∧ c for each c ∈ G.

Theorem 2.2 (Suplattice coverage theorem [1]) For a Sup-type frame presentation given by
G and R, there is an order isomorphism

〈G ∧ -semilattice | R〉Frm ∼= 〈G poset | R〉Sup.

Definition 2.3 Let G be a ∨-semilattice. We will call 〈G ∨ -semilattice | R〉Frm a PreFrm-
type frame presentation if every relation in R is of the form

∨↑
α

∧
Aα ≤ ∨↑

β

∧
Bβ where
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each Aα and Bβ is finite, and if furthermore, when
∨↑

α

∧
Aα ≤ ∨↑

β

∧
Bβ is a relation, then

so is
∨↑

α

∧
a∈Aα

(a ∨ c) ≤ ∨↑
β

∧
b∈Bβ

(b ∨ c) for each c ∈ G.

Theorem 2.4 (Preframe coverage theorem [5]) For a PreFrm-type frame presentation given
by G and R, there is an order isomorphism

〈G ∨ -semilattice | R〉Frm ∼= 〈G poset | R〉PreFrm.

Definition 2.5 Let G be a (bounded) distributive lattice. We will call a presentation
〈G dist. lattice | R〉Frm a DCPO-type frame presentation if every relation in R is of the
form

∨↑ A ≤ ∨↑ B and furthermore, when
∨↑ A ≤ ∨↑ B is a relation, then so are

∨↑
a∈A a ∧ c ≤ ∨↑

b∈B b ∧ c and
∨↑

a∈A(a ∨ c) ≤ ∨↑
b∈B(b ∨ c) for each c ∈ G.

Theorem 2.6 (Dcpo coverage theorem [14]) For a DCPO-type frame presentation given by
G and R, there is an order isomorphism

〈G dist. lattice | R〉Frm ∼= 〈G poset | R〉DCPO.

Remark 2.7 The generators in a Sup-type presentation form a base of opens for the topology
in question. In aPreFrm-type presentation, it is perhapsmost intuitive to think of the elements
of the frame, not as beingopens, but as closed sublocaleswith the reverse order. Thegenerators
then give a set of ‘basic’ closed sublocales which are closed under finite meets and generate
all the closed sublocales under finite joins and downward-directed meets. For DCPO-type
presentations either viewpoint is appropriate.

Remark 2.8 The restriction to Sup-type, PreFrm-type or DCPO-type presentations does
not really constrain us, since it is easy to turn any presentation into one of the appropriate
form by simply closing the generators under meets or joins as appropriate, manipulating the
relations into the appropriate form, and adding any additional relations needed for meet- or
join-stability.

Finally, let us consider the various kinds of maps we will encounter in this paper. A locale
map f : X → Y is said to be open if f ∗ : OY → OX has a left adjoint f! : OX → OY
satisfying the so-called Frobenius condition

f!(a ∧ f ∗(b)) = f!(a) ∧ b.

This is equivalent to the map f ∗ being a complete Heyting algebra homomorphism. Note
that as a left adjoint f! preserves joins and is thus a suplattice homomorphism. We say f is
an open quotient if f is open and epic—or equivalently, if f is open and f ∗ is injective, in
which case f! is a left inverse of f ∗ in Sup.

A locale map f : X → Y such that f ∗ has a left adjoint that does not necessarily satisfy
the Frobenius condition is called semi-open. We will call epic semi-open maps semi-open
quotients. These are arguably not true quotient maps, since they need not be regular epimor-
phisms. However, they do appear as coinserters, and since many of our results will not need
the Frobenius conditions, they are a natural class of maps to condition in this setting.

A map f : X → Y is called proper if the right adjoint f∗ of f ∗ is Scott-continuous and
satisfies the Frobenius condition

f∗(a ∨ f ∗(b)) = f∗(a) ∨ b.

Note that since right adjoints preserve meets, if f is proper then f∗ is a preframe homo-
morphism. An epic proper map is called a proper quotient. In this case f∗ is a left inverse
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to f ∗ in PreFrm. Similarly to above a map f is said to be semi-proper (or sometimes lax
proper or perfect) if f∗ preserves directed joins, but does not necessary satisfy the Frobenius
condition. It will be useful to call epic semi-proper maps semi-proper quotients.

A locale map f : X → Y is said to be a triquotient surjection if there exists a dcpo
morphism f# : OX → OY , called a triquotiency assignment, satisfying f#(a ∧ f ∗(b)) =
f#(a)∧b and f#(a∨ f ∗(b)) = f#(a)∨b. These generalise open and proper quotients (taking
f! and f∗ as the triquotiency assignments respectively). The map f# is automatically a left
inverse of f ∗ in DCPO. See [8] for details.

3 Working with Locale Quotients

If q : X � Y is a semi-open quotient, then the composite of q∗q! gives a suplattice endo-
morphism onOX . In fact, this is a closure operator andOY is isomorphic to its fixed points.
Moreover, the fixed points of any join-preserving closure operator onOX form a frame (since
they are closed under all meets and joins) and give rise to a semi-open quotient. Thus, these
will be a useful way for us to specify the quotient locale Y without already knowing the
precise form of Y . The map q will be open if and only if its corresponding closure operator
j satisfies j(a) ∧ j(b) ≤ j(a ∧ j(b)).

If q : X � Y is a semi-proper quotient, then q∗q∗ similarly gives a preframe endomor-
phism and interior operator on OX . As before, OY is isomorphic to its fixed points and the
fixed points of any such operator form a frame and give a semi-proper quotient. The quotient
is proper if and only if the interior operator satisfies p(a) ∨ p(b) ≥ p(a ∨ p(b)).

It is shown in [6] that if p1, p2 : R ⇒ X are open morphisms and are the domain and
codomain maps of a localic groupoid (or in particular, an equivalence relation), then their
coequaliser q : X � Y is an open quotient andOY is given by the fixed points of the closure
operator (p1)! p∗

2 (or (p2)! p∗
1). Furthermore, even if only the upper (domain) map p1 map

is open and they form a localic category (or in particular, a preorder), the coinserter is a
semi-open quotient and the corresponding closure operator is still (p1)! p∗

2 . Dual results with
proper maps replacing open maps are given in [7, 10]. (There it is only stated for internal
equivalence relations and preorders, but the proofs work equally well for localic groupoids
and categories.) This time the lower map p2 should be proper and OY is given by the fixed
points of the interior operator (p2)∗ p∗

1 .
In fact, we can obtain similar results in a more general situation. Suppose the following

diagram is a coinserter in Loc.

R X Y
f

g

q

Since the forgetful functor fromFrm toPos createsweighted limits,OY can be identifiedwith
{u ∈ OX | g∗(u) ≤ f ∗(u)}. If f is semi-open, then g∗(u) ≤ f ∗(u) ⇐⇒ f!g∗(u) ≤ u and
soOY consists of the pre-fixed points of the suplattice endomorphism f!g∗ onOX . Similarly,
if g is semi-proper, thenOY consists of the post-fixed points of the preframe endomorphism
g∗ f ∗.

Remark 3.1 If the above is a reflexive coinserter (with common section r ), then g∗ f ∗ =
r∗g∗g∗ f ∗ ≤ r∗ f ∗ = id and so g∗ f ∗ is automatically deflationary. Similarly, if it exists,
f!g∗ is automatically inflationary. So in this case the coinserter is given by the fixed points
of f!g∗ or g∗ f∗, not just the pre-fixed points or post-fixed points.
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Proposition 3.2 If j is a suplattice endomorphism on a frame OX, then the pre-fixed points
of j form a subframeOY ofOX. The frame inclusion q∗ : OY ↪→ OY has a left adjoint and
thus corresponds to a semi-open locale quotient. The associated closure operator is given
by

∨∞
n=0 jn .

Consequently, given a coinserter diagram as above, if f is semi-open then so is q.

Proof The map j ∨ id is an inflationary suplattice endomorphism, the fixed points of which
coincide with the pre-fixed points of j . As in the Kleene fixed point theorem, we find the
map

∨∞
n=0 jn is a join-preserving closure operator, which again has the same fixed points.

This provides a left adjoint to the inclusion q∗ : OY ↪→ OX .
Now consider the coinserter where f is semi-open. The result follows by applying the

above to the suplattice endomorphism f!g∗. ��
Remark 3.3 Since g∗(u) = f ∗(u) whenever g∗(u) ≤ f ∗(u) and f ∗(u) ≤ g∗(u), it follows
that if both f and g are semi-open then their coequaliser is given by the pre-fixed points of
f!g∗ ∨ g! f ∗. Furthermore, if there is a ‘symmetry’ map s : R → R such that g = f s (as
in the case of a localic groupoid) then it can be shown that the coequaliser and coinserter
coincide.

Remark 3.4 The fact that the coequaliser of semi-open maps is semi-open is also immediate
from the fact that equalisers in the category of complete lattices and agree with those in Frm
(since they are both computed as in Set). Similarly, we see that the coequaliser of open maps
is open by taking the equaliser in the category of complete Heyting algebras.

The case of proper quotients is somewhat more subtle.

Example 3.5 Let N be N equipped with the order topology for the reverse of the usual order
(i.e. opens are downsets with respect to the usual order) and let s : N → N be the successor
function. This map is proper. Then the coequaliser and the coinserter of s and idN (with idN
the lower map) are both the terminal locale. But the unique map ! : N → 1 is proper if and
only if it is semi-proper if and only if N is compact and it is clear that N is not compact.
Thus, a coequaliser or coinserter of proper maps need not even be semi-proper.

The problem is that we cannot iterate the preframe endomorphism to obtain an idempotent
one as we did for the suplattice endomorphism in Proposition 3.2. The following proposition
gives conditions under which idempotence is automatic and so we do obtain a semi-proper
quotient.

Proposition 3.6 Consider a coinserter diagram as above and suppose g is proper. Further
suppose that there is a locale map t : R ×X R → R such that gπ2 ≤ gt and f t ≤ f π1

(for example, the transitivity map of an internal preorder or the composition of an internal
category). Then the coinserter morphism q is semi-proper and g∗ f ∗ ∧ id is the associated
interior operator.
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R ×X R

R

X

R X

X

π1

π2

g

f

f

g

R

f

g

t

≤

≤

Proof Since g is proper, so is the pullback projection π2. Moreover, we have the Beck–
Chevalley condition: f ∗g∗ = (π2)∗π∗

1 . Thus,

g∗ f ∗g∗ f ∗ = g∗(π2)∗π∗
1 f ∗

≥ g∗(π2)∗t∗ f ∗

≥ g∗(π2)∗t∗g∗g∗ f ∗

≥ g∗(π2)∗π∗
2 g

∗g∗ f ∗

≥ g∗g∗g∗ f ∗

= g∗ f ∗.

Now g∗ f ∗ ∧ id is a deflationary preframe endomorphism on OX and by the above we have
(g∗ f ∗ ∧ id)2 = g∗ f ∗g∗ f ∗ ∧ g∗ f ∗ ∧ id = g∗ f ∗ ∧ id and hence g∗ f ∗ ∧ id is an interior
operator. Finally, the elements of OY are precisely the post-fixed points of g∗ f ∗ and thus
the fixed points of g∗ f ∗ ∧ id. ��
Remark 3.7 If g is only semi-proper, then a similar result holds if the domain of t is replaced
with the comma object g/ f .

Remark 3.8 If in the above proposition f and g are both proper, gπ2 = gt and f π1 = f t ,
then their coequaliser is given by the fixed points of the interior operator g∗ f ∗ ∧ f∗g∗ ∧ id.
Moreover, the resulting quotient map is proper. Finally, if there is a symmetry map as in
Remark 3.3 the coequaliser and coinserter coincide.

More general than proper and open quotients is the case of triquotients. While there is
unfortunately no good result relating these to coequalisers, we can still represent them by
idempotent dcpo endomorphisms in analogy to the interior and closure operators discussed
above. In fact, just as proper and open quotients can be generalised to semi-proper and semi-
open quotients, we consider general locale maps q : X � Y whose corresponding frame
map q∗ has a Scott-continuous retraction q#, but without any additional assumptions. These
do not seem to have an established name, but one might call them semi-triquotient maps or
perhaps even sesqui-quotient maps.

If q : X � Y is a semi-triquotient, the map q∗q# is an idempotent dcpo endomorphism
on OX , whose poset of fixed points is isomorphic to OY . This satisfies q∗q#(1) = 1,
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q∗q#(0) = 0, q∗q#(a) ∧ q∗q#(b) ≤ q∗q#(q∗q#(a) ∧ q∗q#(b)) and q∗q#(a) ∨ q∗q#(b) ≥
q∗q#(q∗q#(a) ∨ q∗q#(b)). Moreover, the fixed points of any dcpo endomorphism e on a
frame OX satisfying these conditions form a subframe of OX whose inclusion corresponds
to a semi-triquotient with dcpo retraction e.

An idempotent dcpo endomorphism e corresponds to a triquotient if it satisfies the stronger
laws e(a) ∧ e(b) ≤ e(a ∧ e(b)) and e(a) ∨ e(b) ≥ e(a ∨ e(b)), in addition to e(1) = 1 and
e(0) = 0.

Finally, we note that by general categorical principles in all the cases above the frame
of fixed points of the suplattice, preframe or dcpo endomorphism describing the quotient
locale can be found not only as a subobject, but also a quotient in the appropriate category.
For example, the map q# : OX � OY is the dcpo coequaliser of q∗q# and idOX . Thus, OY
can be obtained as a dcpo quotient of OX by setting a ∼ q∗q#(a) for each a in OX (or
equivalently, for each a in some subset that generates OX under directed joins).

Similarly, if j : OX → OX is a join-preserving closure operator, the suplattice quotient
onto the frame of fixed points is obtained by setting j(a) � a for each a in some base of
OX . If p : OX → OX is a preframe endomorphism and an interior operator, the preframe
quotient is obtained by setting a � p(a) for each a in some subset of OX which generates
OX as a preframe.

4 Main Results

While presenting quotients of locales is tricky in general, there is one case where it is trivial.
This is when the quotient q : X � Y has a section s : Y ↪→ X . Then Y is a sublocale of
X and so we simply need to add the additional corresponding additional relations to the
presentation of X in the usual way.

In the cases wewill consider, we will not be quite so lucky to have a frame homomorphism
which is left inverse to q∗, but we will instead have morphisms of suplattices, preframes or
dcpos that will play the same role.

4.1 Presenting Open Quotients

We know that a semi-open quotient q : X � Y can be specified by a join-preserving closure
operator j : OX → OX and that the map q! : OX → OY is a suplattice quotient with kernel
congruence generated by j(a) � a.

Now suppose we have a presentation forOX . Without loss of generality, we may assume
that this is a Sup-type presentation OX = 〈G ∧ -semilattice | R〉Frm. We can then use the
suplattice coverage theorem (2.2) to obtain OX ∼= 〈G poset | R〉Sup.

Adding the relations from the suplattice quotient given by q! we obtain a suplattice pre-
sentation for OY . We find OY ∼= 〈G poset | R, j(g) ≤ g, g ∈ G〉Sup. Note that here the
relations j(g) ≤ g can be understood purely in terms of generators by writing each j(g) as
a join of generators in OX .

We still need to turn this into a frame presentation of OY . In general if a suplattice
L happens to be a frame, then L ∼= 〈{♦a | a ∈ L} suplattice | ♦1 = 1, ♦a ∧ ♦b =
♦(a∧b), a, b ∈ L〉Frm, where the meet a∧b is taken in L . In fact, it suffices to only include
(in addition to ♦1 = 1) the relations ♦a ∧ ♦b = ♦(a ∧ b) for a and b restricted to some
base of L , since the remaining relations will follow from these ones by taking joins and using
the fact that ♦(−) preserves the joins. In our case generators a, b in OX map to q!(a), q!(b)
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in the suplattice quotient and so taking the meet in OY corresponds to j(a) ∧ j(b) in our
presentation. Thus, combining this with the above suplattice presentation, we have

OY ∼= 〈{♦g | g ∈ G} poset | R, ♦ j(g) ≤ ♦g, g ∈ G, ♦1 = 1,

♦s ∧ ♦t = ♦( j(s) ∧ j(t)), s, t ∈ G〉Frm,

where ♦ j(g) is defined to mean
∨

α ♦gα for j(g) = ∨
α gα and similarly, we interpret

♦( j(s) ∧ j(t)) = ∨
σ,τ ♦(gσ ∧ gτ ) for j(s) = ∨

σ gσ and j(t) = ∨
τ gτ (where the meet is

taken in the ∧-semilattice G).
Finally, note that the relation ♦ j(g) ≤ ♦g follows from the meet conditions by taking

s = 1 and t = g, and the inequalities from the poset of generators then also follow from the
meet condition by taking s ≤ t . We have arrived at the following result.

Proposition 4.1 Suppose OX = 〈G ∧ -semilattice | R〉Frm is a Sup-type presentation and
let q : X � Y be a semi-open quotient. Then

OY ∼= 〈♦g, g ∈ G | R, ♦1 = 1,

♦s ∧ ♦t = ♦(q∗q!(s) ∧ q∗q!(t)), s, t ∈ G〉Frm,

where we interpret ♦(q∗q!(s) ∧ q∗q!(t)) = ∨
α,β ♦(sα ∧ tβ) for specified representations

q∗q!(s) = ∨
α sα and q∗q!(t) = ∨

β tβ in terms of generators.

If q is an open quotient then we can simply this further still.

Corollary 4.2 Suppose OX = 〈G ∧ -semilattice | R〉Frm is a Sup-type presentation and let
q : X � Y be an open quotient. Then

OY ∼= 〈♦g, g ∈ G | R, ♦1 = 1,

♦s ∧ ♦t = ♦(s ∧ q∗q!(t)), s, t ∈ G〉Frm,

where we interpret ♦(s ∧ q∗q!(t)) = ∨
β ♦(s ∧ tβ) for specified representation q∗q!(t) =∨

β tβ .

Proof Again, taking s = 1 and t = g gives the relation ♦g = ♦q∗q!(g). Then the Frobenius
condition gives q∗q!(s) ∧ q∗q!(t) = q∗q!(s ∧ q∗q!(t)). Combining these we obtain the meet
relations given in Proposition 4.1 and the converse direction is straightforward. ��
Remark 4.3 Our derived presentation can be understood as describing the quotient locale Y
as a sublocale of the lower powerlocale of X . The frame of opens of the lower powerlocale is
the free frame on the underlying suplattice ofOX and its points correspond to (overt, weakly)
closed sublocales of X . We can identify points of Y with the sublocales of X that appear as
the (weak) closures of their fibres under q : X → Y . Intuitively, we can view it as a space of
equivalence classes. See [11, 12] for more details on the lower powerlocale and its relation
to semi-open maps.

4.2 Presenting Proper Quotients

We can proceed similarly for semi-proper quotients. Recall that a semi-proper quotient
q : X � Y can be specified by an interior operator and preframe endomorphism p : OX →
OX . The map q∗ is the preframe quotient given by setting a � p(a).

Suppose OX has a PreFrm-type presentation 〈G ∨ -semilattice | R〉Frm. Applying the
preframe coverage theorem (2.4) and taking the quotient we have OY ∼= 〈G poset | R, g ≤
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p(g), g ∈ G〉PreFrm. Here we expand each p(g) as a directed join of finite meets of genera-
tors.

Now we need to turn this into a frame presentation. Similarly to before, if a preframe
L happens to be a frame, then L ∼= 〈{�a | a ∈ L} preframe | �0 = 0, �(a ∨ b) =
�a ∨ �b, a, b ∈ L〉Frm. We may also restrict a, b to lie in a preframe generating set. In our
case, the generators a, b inOX map to q∗(a), q∗(b) in the preframe quotient and so their join
in OY corresponds to p(a) ∨ p(b) in OX . Combining this with the preframe presentation
above and eliminating redundant relations as before we arrive as the following result.

Proposition 4.4 Suppose OX = 〈G ∨ -semilattice | R〉Frm is a PreFrm-type presentation
and let q : X � Y be a semi-proper quotient. Then

OY ∼= 〈�g, g ∈ G | R, �0 = 0

�s ∨ �t = �(q∗q∗(s) ∨ q∗q∗(t)), s, t ∈ G〉Frm,

where �(q∗q∗(s) ∨ q∗q∗(t)) = ∨↑
α,β

∧
iα, jβ �(siαα ∨ t

jβ
β ) for specified representations

q∗q!(s) = ∨↑
α

∧
iα s

iα
α and q∗q!(t) = ∨↑

β

∧
jβ t

jβ
β in terms of generators.

If q is an proper quotient we can again use the Frobenius condition to give the following
simplification.

Corollary 4.5 SupposeOX = 〈G ∨ -semilattice | R〉Frm is a PreFrm-type presentation and
let q : X � Y be a proper quotient. Then

OY ∼= 〈�g, g ∈ G | R, �0 = 0

�s ∨ �t = �(s ∨ q∗q∗(t)), s, t ∈ G〉Frm,

where �(s ∨ q∗q∗(t)) = ∨↑
β

∧
jβ �(s ∨ t

jβ
β ) for specified representation q∗q!(t) =

∨↑
β

∧
jβ t

jβ
β .

Remark 4.6 This time our presentation can be thought of as expressing Y as a sublocale of
the upper powerlocale of X . The frame of opens of the upper powerlocale is the free frame on
the underlying preframe of OX and its points correspond to compact fitted sublocales of X .
As before, we can think of Y as a space of equivalence classes: the points of Y correspond to
the fitting of the fibres of q : X → Y . Again see [11, 12] for more details on these concepts.
Propositions 4.1 and 4.4 can also be compared to the construction given in the proof of (ii)
⇒ (iii) of [9, Theorem 2].

4.3 Presenting Triquotient Locales

The general semi-triquotient case is again similar. Let q : X � Y be a localemap such that q∗
has a left inverse dcpo morphism q# : OX → OY . Such a semi-triquotient can represented
by a dcpo endomorphism e satisfying the necessary conditions and the retraction onto the
fixed points induced by e corresponds the dcpo quotient map q#, which is specified by setting
a ∼ e(a).

Now supposeOX has aDCPO-type presentation 〈G dist. lattice | R〉Frm. Using the dcpo
coverage theorem (2.6) and taking the quotient we haveOY ∼= 〈G poset | R, g = e(g), g ∈
G〉DCPO, where each e(g) is expressed explicitly as a directed join of generators. Then as
before we can turn this into a frame presentation to obtain the following.
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Proposition 4.7 Suppose OX = 〈G dist. lattice | R〉Frm is a DCPO-type presentation and
let q : X � Y be a semi-triquotient with triquotiency assignment q# : OX → OY . Then

OY ∼= 〈�g, g ∈ G | R, �1 = 1, �0 = 0

�s ∧ �t = �(q∗q#(s) ∧ q∗q#(t)),
�s ∨ �t = �(q∗q#(s) ∨ q∗q#(t)), s, t ∈ G〉Frm,

where�(q∗q#(s)∧q∗q#(t)) = ∨↑
α,β�(sα∧tβ) and�(q∗q#(s)∨q∗q#(t)) = ∨↑

α,β�(sα∨tβ)

for specified representations q∗q#(s) = ∨↑
αsα and q∗q#(t) = ∨↑

β tβ in terms of generators.

Finally, if q is an triquotient we can again simplify things a little.

Corollary 4.8 Suppose OX = 〈G dist. lattice | R〉Frm is a DCPO-type presentation and let
q : X � Y be a triquotient with triquotiency assignment q# : OX → OY . Then

OY ∼= 〈�g, g ∈ G | R, �1 = 1, �0 = 0

�s ∧ �t = �(s ∧ q∗q#(t)),
�s ∨ �t = �(s ∨ q∗q#(t)), s, t ∈ G〉Frm,

where �(s ∧ q∗q#(t)) = ∨↑
β�(s ∧ tβ) and �(s ∨ q∗q#(t)) = ∨↑

β�(s ∨ tβ) for specified

representation q∗q#(t) = ∨↑
β tβ .

Remark 4.9 While these (semi-)triquotient results technically subsume the previous ones,
they are all useful, since the presentations obtained from the more specific results will be
simpler those given by the most general one.

Remark 4.10 This time the intuition is less clear, but the presentation is related to viewing
Y is a sublocale of the double powerlocale of X (see [13]). The double powerlocale arises
from the adjunction between frames and dcpos is equal to the composition of the upper and
lower powerlocales (in either order). Its points can be viewed as certain overt collections of
compact sublocales.

It is natural to ask if more yet general quotients might arise by using further composites
of upper and lower powerlocales, but essentially because the double powerlocale is a retract
of the ‘quadruple powerlocale’, no new quotients are obtained after the second level.

5 Examples and Applications

The main utility of these results is in deriving concrete presentations, but they do have at
least one theoretical consequence: namely, that the size of the presentation of the quotient
is not so different from that of the presentation of the parent locale. In particular, we can
immediately deduce the following.

Proposition 5.1 A semi-triquotient of a countably presented locale is countably presented.

Classically, countably presented locales coincide with quasi-Polish spaces (see [2, 4]).
Thus, as a corollary we obtain the following result, which known for open quotients, but
which I have not seen stated before at this level of generality.

Corollary 5.2 Let X be a quasi-Polish space, let Y be sober and let X � Y be a triquotient
map. Then Y is quasi-Polish.
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We now conclude with some illustrative examples. First we obtain a presentation of the
circle T from the presentation of R using the open quotient R � T.

Example 5.3 The usual presentation for the frame of reals OR has a generator ((q,∞)) and
a generator ((−∞, q)) for each q ∈ Q. They satisfy the following relations.

• ((p,∞)) ∧ ((−∞, q)) = 0 for p ≥ q ,
• ((p,∞)) ∨ ((−∞, q)) = 1 for p < q ,
• ((q,∞)) = ∨

p>q((p,∞)) and ((−∞, q)) = ∨
p<q((−∞, p)) for all q ∈ Q,

• ∨
q∈Q((q,∞)) = 1 and

∨
q∈Q((−∞, q)) = 1.

To apply our result the presentation must be modified to be of the appropriate form. In
particular, the generators should be closed under finite meets. Setting ((p, q)) = ((p,∞)) ∧
((−∞, q)) and ((−∞,∞)) = 1 we have defined generators ((p, q)) for each p ∈ Q � {−∞}
and q ∈ Q � {∞}. These form a ∧-semilattice with ((p, q)) ∧ ((p′, q ′)) = ((p ∨ p′, q ∧ q ′)).
The remaining axioms become:

• ((p, q)) = 0 for p ≥ q ,
• ((p, q)) ∨ ((p′, q ′)) = ((p, q ′)) for p ≤ p′ < q ≤ q ′,
• ((p, q)) = ∨

p<p′<q ′<q((p
′, q ′)) for all p ∈ Q � {−∞} and q ∈ Q � {∞}.

In fact, the first bullet point here is redundant, since it follows from the third. We note that
these relations (essentially) satisfy the necessary meet-stability conditions for this to be a
Sup-type presentation. Let us show this for a representative case.

Since ((a, b)) = ((a,∞)) ∧ ((−∞, b)), it suffices to only consider meets with ((a,∞)) and
((−∞, b)). Consider the relation ((p, q))∨((p′, q ′)) = ((p, q ′)) for p ≤ p′ < q ≤ q ′. Meeting
with ((a,∞))we obtain the equality ((p∨a, q))∨ ((p′ ∨a, q ′)) = ((p∨a, q ′)). Meet stability
demands that this is also a relation in the presentation. If a ≤ p′ then p∨a ≤ p′ ∨a < q ≤ q
and so this is indeed an assumed relation of the same form. If not, then p′ < a and it becomes
((a, q)) ∨ ((a, q ′)) = ((a, q ′)). Technically, this is not one of the original relations, but it is
trivial in the sense that it always holds.

Indeed, evenmore generally, our results will still hold as long as the desired relations lie in
the suplattice congruence generated from the core relations and the order on the generators,
since we can add these relations in to achieve meet stability, but then omit them from the
final presentation (since they follow from the others by assumption).

Meeting with ((−∞, b)) works similarly and meet stability for the final relations can also
be shown to hold, at least in this weaker sense.

Now consider the coequaliser

R R T.
id

+1

q

This is an open coequaliser, since the both of the parallel arrows are isomorphisms. So by
Propositions 3.2 and 3.3, the corresponding closure operator q∗q! is given by

∨
n∈N(id! ◦

(+1)∗)n ∨ ∨
n∈N((+1)! ◦ id∗)n , which equals

∨
n∈Z(+n)∗, since the left adjoint of (+1)∗ is

simply its inverse. Note that (+1)∗((p, q)) = ((p − 1, q − 1)) and so in terms of generators,
we have q∗q!((p, q)) = ∨

n∈Z((p + n, q + n)).
We can now use Proposition 4.2 to obtain a presentation for OT with generators ((p, q))

for p ∈ Q � {−∞} and q ∈ Q � {∞} and the following relations:

• ((−∞,∞)) = 1,
• ((p, q)) ∧ ((p′, q ′)) = ∨

n∈Z((p ∨ (p′ + n), q ∧ (q ′ + n))),
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• ((p, q)) ∨ ((p′, q ′)) = ((p, q ′)) for p ≤ p′ < q ≤ q ′,
• ((p, q)) = ∨

p<p′<q ′<q((p
′, q ′)).

This presentation for the circle is essentially the same as the one in [3, Section 5] which
was obtained by ad hoc methods. In contrast, we observe that our derivation was very natural
and mechanistic.

For our next example, we will deduce a different presentation for T from the proper
quotient [0, 1] � T.

Example 5.4 A standard presentation for the frame O[0, 1] has generators ((q, 1� and �0, q))

for each q ∈ Q ∩ [0, 1] which satisfy the relations:

• ((p, 1� ∧ �0, q)) = 0 for p ≥ q ,
• ((p, 1� ∨ �0, q)) = 1 for p < q ,
• ((q, 1� = ∨

p>q((p, 1� and �0, q)) = ∨
p<q�0, p)) for all q ∈ Q ∩ [0, 1].

To use our result for proper quotients this presentation must also be modified. This time
we want the generators to be closed under finite joins. We set �p, q� = �0, p)) ∨ ((q, 1�.
Intuitively, these are the complements of closed intervals.

Indeed, recall that for PreFrm-type presentations the elements of the frame are best
thought of as closed sublocales under the reverse order, so we can imagine the generator
�p, q� as corresponding to the closed interval [p, q]. From this perspective it is intuitive that
under intersections of the corresponding closed intervals these form a very similar semilattice
to the formal open intervals considered above. Formally, we can check that these indeed form
a ∨-semilattice with �p, q� ∨ �p′, q ′� = �p ∨ p′, q ∧ q ′� and �0, 1� = 0.

In terms of these new generators the remaining axioms become:

• �p, q� ∧ �p′, q ′� = �p, q ′� for p ≤ p′ ≤ q ≤ q ′,
• �p, q� = 1 for p > q ,
• �p, q� = ∨↑

q’>q �p, q ′� for p, q < 1 and �p, q� = ∨↑
p’<p �p′, q� for 0 < p, q .

Again note that these essentially satisfy the join-stability conditions for these to form a
PreFrm-style presentation.

We can now consider the locale coequaliser

1 [0, 1] T.
0

1

q

The parallel arrows are closed inclusions and hence proper—the right adjoints are given
by taking joins with �0, 0� and �1, 1� respectively. The pullback of these parallel arrows
is the empty locale and so the unique map t : 0 → 1 trivially satisfies the assumptions of
Propositions 3.6 and 3.8 and hence q is a proper quotient and the corresponding interior
operator q∗q∗ is (1)∗(0)∗ ∧ (0)∗(1)∗ ∧ id.

In terms of generators we have that (0)∗(�p, q�) = 1 ⇐⇒ p > 0 and (1)∗(�p, q�) =
1 ⇐⇒ q < 1. Thus, we find

q∗q∗ : �p, q� �→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�p, q� if p > 0 and q < 1

�p, q� ∧ �1, 1� if p = 0 and q < 1

�p, q� ∧ �0, 0� if p > 0 and q = 1

0 if p = 0 and q = 1

,

which intuitively adds {0} to any closed interval containing 1 and {1} to any closed interval
containing 0.
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We are now in a position to use Proposition 4.5 to immediately obtain a presentation for
OT with generators �p, q� for p, q ∈ Q ∩ [0, 1] and the relations:
(i) �0, 1� = 0,
(ii) �p, q� ∨ �p′, q ′� = �p ∨ p′, q ∧ q ′� for p′ > 0 and q ′ < 1,
(iii) �p, q� ∨ �0, q ′� = �p, q ∧ q ′� ∧ �1, q�,
(iv) �p, q� ∨ �p′, 1� = �p ∨ p′, q� ∧ �p, 0�,
(v) �p, q� ∧ �p′, q ′� = �p, q ′� for p ≤ p′ ≤ q ≤ q ′,
(vi) �p, q� = 1 for p > q ,
(vii) �p, q� = ∨↑

q’>q �p, q ′� for p, q < 1 and �p, q� = ∨↑
p’<p �p′, q� for 0 < p, q .

This can be further simplified by noting that �1, q� = 1 unless q = 1 by relation (vi) and
similarly for �p, 0�. Thus, we can extend relation (ii) to hold for all p, p′, q, q ′ such that
(p′, q), (p, q ′) �= (0, 1). Then the remaining cases of (iii) and (iv) can be reduced to a single
rule: �0, q� ∨ �p′, 1� = �p′, q� ∧ �0, 0� ∧ �1, 1�.
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