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LINEAR TIME EQUIVALENCE OF
LITTLEWOOD–RICHARDSON COEFFICIENT SYMMETRY

MAPS

OLGA AZENHAS, ALESSANDRO CONFLITTI AND RICARDO MAMEDE

Abstract: Benkart, Sottile, and Stroomer have completely characterized by Knuth
and dual Knuth equivalence a bijective proof of the conjugation symmetry of the
Littlewood–Richardson coefficients, i.e. cλ

µ,ν = cλt

µt,νt . Tableau–switching provides

an algorithm to produce such a bijective proof. Fulton has shown that the White
and the Hanlon–Sundaram maps are versions of that bijection. In this paper one
exhibits explicitly the Yamanouchi word produced by that conjugation symmetry
map which on its turn leads to a new and very natural version of the same map
already considered independently. A consequence of this latter construction is that
using notions of Relative Computational Complexity we are allowed to show that
this conjugation symmetry map is linear time reducible to the Schützenberger invo-
lution and reciprocally. Thus the Benkart–Sottile–Stroomer conjugation symmetry
map with the two mentioned versions, the three versions of the commutative sym-
metry map, and Schützenberger involution, are linear time reducible to each other.
This answers a question posed by Pak and Vallejo.

Keywords: Symmetry maps of Littlewood–Richardson coefficients; conjugation
symmetry map; linearly time reduction of Young tableaux bijections; tableau–
switching; Schützenberger involution.

1. Introduction

Given partitions µ and ν, the product sµsν of the corresponding Schur
functions is a non-negative integral linear combination of Schur functions

sµsν =
∑

λ

cλ
µ νsλ,

where λ runs over all partitions, and cλ
µ ν are called Littlewood–Richardson

coefficients [LiRi, Mac, Sa, St]. Let λt denote the conjugate or transpose of
the partition λ. Applying, for instance, to that product the involutive algebra
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Supported by CMUC - Centro de Matemática da Universidade Coimbra and by FCT Por-

tuguese Foundation of Science and Technology (Fundação para a Ciência e a Tecnologia) Grant
SFRH/BPD/30471/2006.

Supported by CMUC - Centro de Matemática da Universidade Coimbra.
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automorphism ω [LiRi, Mac, Sa, St], defined by ω(sλ(x)) = sλt(x), it follows
that cλ

µ ν = cλt

µt νt, called the conjugation symmetry of Littlewood-Richardson
coefficients. There are several combinatorial models for the Littlewood-
Richardson coefficients besides the one given originally by Littlewood and
Richardson in terms of tableaux [LiRi]. However in all of them the conju-
gation symmetry is somewhat hidden. In the tableau model, one denotes
by LR(λ/µ, ν) the set of Littlewood-Richardson (LR for short) tableaux of
shape λ/µ and content ν, and cλ

µ ν counts the number of elements of this set.
The boundary data of a LR tableau of shape λ/µ and content or weight ν
is (µ, ν, λ∨), with λ∨ the complement partition of λ regarding the smallest
rectangle containing λ. We write cλ

µ ν = cµ ν λ∨. The Littlewood-Richardson
coefficients cµ ν λ∨ are invariant under the following action of Z2 ⊕ S3: the
non–identity element of Z2 transposes simultaneously µ, ν and λ∨, and S3

permutes µ, ν and λ∨ [BSS]. In this model, the conjugation symmetry map
is a bijection [PV]

̺ : LR(λ/µ, ν) −→ LR(λt/µt, νt).

The Berenstein-Zelevinsky interpretation of the Littlewood-Richardson coef-
ficients [BZ] makes clear that these coefficients are symmetric with respect to
the action of S3. But the invariance of the Littlewood-Richardson coefficients
under the conjugation of partitions is hidden. Postnikov shows in [GP] that
this symmetry can be revealed from a bijection between web diagrams and
Berenstein-Zelevinsky patterns. The Knutson-Tao puzzles [KTW] manifest
partially the conjugation symmetry through the so–called puzzle duality, viz.
cλ
µ ν = cλt

νt µt. However a bijection between hives and puzzles can be used to

reveal the commutative symmetry [KTW, K1, K2] and thus get cλ
µ ν = cλt

µt νt.

More recently, Purbhoo [Pu] introduced a new tool mosaics (puzzles with
extra rhombi) naturally in bijection with puzzles and with LR tableaux, re-
vealing the hidden symmetries of puzzles.

Let T be a tableau and T̂ its standardization. The Benkart-Sottile-
Stroomer conjugation symmetry map [BSS] is the bijection

̺BSS : LR(λ/µ, ν) −→ LR(λt/µt, νt)

T 7→ ̺BSS(T ) = [Y (νt)]K ∩ [(T̂ )t]d
,

where [Y (νt)]K is the Knuth class of all tableaux with rectification the Ya-

manouchi tableau Y (νt) of shape the conjugate of ν, and [T̂ t]d is the dual
Knuth class of all tableaux of shape λt/µt with Q-symbol the the transpose
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of T̂ . The image of T by the BSS-bijection is the unique tableau of shape
λt/µt, rectification Y (νt) and where the Q-symbol of its column reading word
is the transpose of the evacuation of the Q-symbol of the word of T . Fulton
showed in [F] that the White-Hanlon-Sundaram map ̺WHS [W, HS] coincides
with ̺BSS. Thus ̺BSS(T ) can be obtained either by tableau-switching or by

the White-Hanlon-Sundaram transformation ̺WHS. In the BSS-bijection, T̂
constitutes a set of instructions telling where jeu de taquin expanding slides
can be applied to Y (µ); thus changing the orientation of T̂ by transposition,

T̂ t is a set of instructions telling where jeu de taquin expanding slides can be
applied to Y (µ)t. Similar procedure is used in mosaics: operations on mo-
saics, called migration, are moves of flocks, i.e. rhombi arranged in the shape
of a Young diagram, which correspond to some sequence of jeu de taquin
operations. Giving to the flock two orientations, transposed of each other,
a mosaic is simultaneously in bijection with a LR-tableau of shape λ/µ and
content ν, and with a LR-tableau of shape λt/µt and content νt.

As words are in bijection with pairs of tableaux, we may determine
explicitly the Yamanouchi word of ̺BSS(T ): the column word of ̺BSS(T )
is a Yamanouchi word of weight νt, with the Q-symbol of the column word
of T̂ t. The following transformation ̺3 [Z, A1, A2, ACM] makes clear the
construction of that word and affords a simple way to construct ̺BSS(T )

̺3 : LR(λ/µ, ν) −→ LR(λt/µt, νt)

T
with word w

7→ ̺3(T )
with column word (σ0w)∗ ⋄





T =
1 1 1 1

1 2 2
2 3 3

e
−→

reversal
Te =

1 1 3 3
2 2 2

3 3 3

transposition
−→
of λ/µ

3
2 3

1 2 3
1 2
3
3

−→

w = 1111221332
σ0−→ σ0w = 3311222333

reverse
−→

the word
3332221133 −→






−→

1
1 2

1 2 3
2 3
4
5

= ̺3(T)

−→ 1231231245 column word of ̺3(T ) = ̺BSS(T )
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where σ0 = σi · · · σj · · · σk is such that si · · · sj · · · sk, with sl the transposition
(l, l + 1), is the longest permutation of Sνt

1
, and σi is the reflection crystal

operator acting on the subword over the alphabet {i, i+1}, for all i [LS, Loth];
∗ denotes the dualization of a word; and ⋄ is the operator which transforms
a Yamanouchi word of weight ν, into a Yamanouchi word of weight νt, by
replacing the subword iνi with 12 . . . νi, for all i. The action of the operator
⋄ is defined analogously on dual Yamanouchi words. More precisely, the ⋄
operator is a bijection between the Knuth classes of Y (ν) and Y (νt), and
also between their dual. Indeed the operators ∗ and ⋄ are involutive and
commute. The reversal e of a LR tableau can be computed by the action
of σ0 on its word. The image of a LR or dual LR tableau U under rotation
of the skew-diagram by 180 degrees, with the dualization ∗ of its word is
denoted by U •; and the image of U under the rotation and transposition of
the skew-diagram , with the action of the operation ⋄ on its word is denoted
by U�. Again • and � are involutive maps. Then

̺3(T ) = T e •� = T�• e = T •� e

and (σ0w)∗ ⋄ = (σ0w)⋄ ∗ = σ0(w
⋄ ∗) is the column word of T e•� = [Y (νt)]K ∩

[(T̂ )t]d.
This is easily seen recalling that two tableaux of the same shape are

dual Knuth equivalent if and only if their words have the same Q-symbol.
On the other hand crystal reflection operators preserve the Q-symbol.

Following the ideas established in [PV], we also address the problem
of studying the computational cost of the conjugation symmetry map ̺BSS

utilizing what is known as Relative Complexity, an approach based on re-
duction of combinatorial problems, see § 4. To this aim we use the version
̺3. We consider only linear time reductions; since the bijections we consider
require subquadratic time the reductions have to preserve that. Let A and
B be two possibly infinite sets of finite integer arrays, and let δ : A −→ B be
an explicit map between them. We say that δ has linear cost if δ computes
δ (A) ∈ B in linear time O (〈A〉) for all A ∈ A, where 〈A〉 is the bit–size of
A. The transposition of the recording matrix of a LR tableau is the record-
ing matrix of a tableau of normal shape. We have then a linear map τ
which defines a bijection between tableaux of normal shape and LR tableaux
[Lee1, Lee2, PV, O]. The rotation map • and the bijection τ are linear maps
and so clearly operations of linear cost. Therefore reversal T e of a LR tableau
T can be linearly reduced to the evacuation E of the corresponding tableau
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τ(T ) = P of normal shape, i.e. τ(PE) = T e •. Additionally we prove that
the bijection � is of linear cost. This means that ̺3 is linearly time reducible
to the evacuation operation E. The following scheme shows that the conju-
gation symmetry map ̺3, and therefore ̺BSS and ̺WHS, is linear equivalent
to the Schützenberger involution or evacuation map on tableaux of normal
shape,

T
e •
←→ T e• �

←→ T e•�

τ l τ l

P
evacuation
←→

E
PE.

We may now extend the list of linear equivalent maps on tableaux in
[PV], Theorem 1, which includes the Young tableau symmetry maps showing
the action of Z2 ⊕ S3 on Littlewood Richardson coefficients.

Theorem 1.1. The following maps are linearly equivalent:
(1) [PV] RSK correspondence.
(2) [PV] Jeu de taquin map.
(3) [PV] Littlewood–Robinson map.
(4) [PV] Tableau switching map s.
(5) [PV] Evacuation (Schützenberger involution) E for normal shapes.
(6) [PV] Reversal e.
(7) [PV]First and second fundamental symmetry maps.
(8) [A3] Third fundamental symmetry map ρ3.
(9) ̺BSS, ̺WHS and ̺3 conjugation symmetry maps.
In particular, first and second fundamental symmetry maps are iden-

tical [DK2]; first and third fundamental symmetry maps are identical [A3];
̺BSS, ̺WHS and ̺3 are identical conjugation symmetry maps.

2. Preliminaries

2.1. Young diagrams and transformations. A partition (or normal
shape) λ is a sequence of non–negative integers λ = (λ1, λ2, . . . , λℓ), with
λ1 ≥ λ2 ≥ · · · ≥ λℓ ≥ 0. The number of parts is ℓ(λ) = ℓ and the weight is
|λ| = λ1 + λ2 + · · · + λℓ. The Young diagram of λ is the collection of boxes
{(i, j) ∈ Z2| 1 ≤ i ≤ ℓ, 1 ≤ j ≤ λi}. The English convention is adopted in
drawing such a diagram. Throughout the paper we do not make distinction
between a partition λ and its Young diagram. If (rℓ) is a rectangle con-
taining λ, that is r ≥ λ1, the complement of λ regarding r is the partition
λ∨r = (r−λℓ, . . . , r−λ1). When r = λ1 we omit the r as subindex. We define
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λt the conjugation or transposition of λ as the image of λ under the trans-
position (i, j)→ (j, i). For example, the Young diagram of λ = (3, 2, 2) and
its transpose λt = (3, 3, 1) are depicted below; and λ∨ = (3, 2, 2)∨ = (1, 1, 0),
(λt)∨ = (λ∨)t = (2, 0, 0) are depicted by dotted boxes

λ = , �

�

= λ∨ , λt = ,
� �

= (λ∨)t.

Given partitions λ, µ, we say that µ ⊆ λ if µi ≤ λi for all i > 0. A skew-
diagram (skew-shape) λ/µ is {(i, j) ∈ Z2| (i, j) ∈ λ, (i, j) /∈ µ} the collection
of boxes in λ which are not in µ. When µ is the null partition, the skew-
diagram λ/µ equals the Young diagram λ. The number of boxes in λ/µ is
|λ/µ| = |λ|−|µ|. The transpose (conjugate shape) (λ/µ)t is the skew-diagram
λt/µt obtained by transposing the skew-diagram λ/µ. Let r = λ1. The
rotation (dual shape) (λ/µ)∗ is the image of λ/µ by rotation of 180 degrees,
or the image of λ/µ under (i, j) −→ (ℓ − i + 1, r − j + 1). Equivalently
(λ/µ)∗ = µ∨r /λ∨. In particular, λ∗ is the skew-diagram rℓ/λ∨. The dual
conjugate shape (λ/µ)♦ is the image of λ/µ under (i, j) −→ (r−j+1, l−i+1).
The map ♦ is the composition of the transposition with the rotation maps
♦ = ∗t = t∗. In particular, λ♦ = lr/(λ∨)t. For instance, if µ = (2) ⊂ λ =
(4, 3, 1), we have

λ/µ = (λ/µ)t =

(λ/µ)∗ = (λ/µ)♦ = .

2.2. Tableaux and words. The Littlewood–Richardson (LR for short)
numbering (reading) of the boxes of a skew-diagram λ/µ is an assignment
of the labels 1, 2, . . . which sorts the boxes of λ/µ in increasing order from
right to left along each row, starting in the top row and moving downwards;
and the column LR numbering of the boxes sorts in increasing order, from
right to left along each column, starting in the rightmost column and moving
downwards. Analogously the reverse LR numbering and the column LR
numbering of λ/µ are defined.
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Example 2.1. If λ/µ = , the LR–numbering, column LR–numbe-

ring and the corresponding reverse LR–numberings of λ/µ are, respectively,

2 1
6 5 4 3

3 1
6 5 4 2

5 6
1 2 3 4

4 6
1 2 3 5

.

Clearly, the column LR–numbering of λ/µ is the LR–numbering of
(λ/µ)♦, and the reverses of LR–numbering and column LR–numbering of
λ/µ define, respectively, the LR–numbering of (λ/µ)∗ and (λ/µ)t.

A Young tableau T of shape λ/µ is a filling of the boxes of the skew-
diagram λ/µ with positive integers in {1, . . . , t}which is increasing in columns
from top to bottom and non-decreasing in rows from left to right. When µ
is the empty partition we say that T has normal shape λ. The weight of a
tableau T is a sequence m = (m1, m2, . . . , mt), where mi denotes the number
of integers i in T, for all i, and put ℓ(m) = t. The word w(T) of a Young
tableau T is the sequence obtained by reading the entries of T according to
its LR numbering, that is, reading right-to-left the rows of T, from top to
bottom. The column word wcol(T ) is the word obtained according the column
LR numbering. The weight of w is the weight of T . Denote by YT(λ/µ, m)
the set of Young tableaux of shape λ/µ and weight m.

Example 2.2. T =
1 1 1 1

1 2 2
2 3 3

, w(T ) = 1111221332 and wcol(T ) =

1112123132.

A Young tableau with ℓ boxes is standard if it is filled with {1, . . . , ℓ}
without repetitions. Given a tableau T, the standardization of T is denoted
by T̂. If (m1, . . . , mt) is the weight of T, then T̂ is obtained by replacing, west
to east, the letters 1 in T with 1, 2, . . . , m1; the letters 2 with m1+1, . . . , m1+
m2; and so on. The standardization ŵ of a word w is defined accordingly,
from right to left. For instance, the standardization of the tableau T in the

previous example is T̂ =
2 3 4 5

1 7 8
6 9 10

, and ŵ(T ) = w(T̂ ) = 54328711096.

If T is a standard tableau of normal shape λ, with |λ| = ℓ, and α is a
permutation in the symmetric group Sℓ, we let αT denote the filling of the
diagram λ obtained replacing in T the letter i by α(i), for all i = 1, . . . , ℓ.
Clearly, αS does not need to be a tableau. If w = w1w2 . . . wℓ is a word, define
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αw = wα(1) . . . wα(ℓ). In the case T is standard we have wcol(T̂ ) = rev w(T̂ t),
with rev the reverse permutation.

A Young tableau T is said a Littlewood–Richardson (LR for short)
tableau if its word, when read from the beginning to any letter, contains at
least as many letters i as letters i + 1, for all i. More generally, a word such
that every prefix satisfies this property is called a lattice permutation or a
Yamanouchi word. Notice that the column word of a LR–tableau is also a
Yamanouchi word of the same weight. Denote by LR(λ/µ, ν) the set of LR
tableaux of shape λ/µ and weight ν. When µ = 0 we get the Yamanouchi
tableau Y (ν), the unique tableau of shape and weight ν. In example 2.2, T is
a LR tableau with Yamanouchi word w(T ) = 1111221332 and column word
wcol(T ) = 1112123132.

There is an one–to–one correspondence between Yamanouchi words
of weight ν and standard tableaux of shape ν. Let w = w1w2 · · ·wℓ be a
Yamanouchi word and put the number k in the wkth row of the diagram ν.
The labels of the ith row are the k’s such that wk = i, thus the length is νi

and the shape is ν. We denote this standard tableau by U(w). In example

2.2, w = 1111221332, U(w) =
1 2 3 4 7
5 6 10
8 9

where the entries of the ith row

are the positions of the i’s in the LR reading of T .

2.3. Matrices and tableaux. Given T ∈ Y (λ/µ, m), let
M = (Mij)1≤i≤ℓ(λ),1≤j≤ℓ(m) be a matrix with non–negative entries such that
Mij is the number of j′s in the ith row of T , called the recording matrix of
T [Lee1, Lee2, PV]. The recording matrix of a tableau of normal shape is an
upper triangular matrix, and the recording matrix of an LR tableau is a lower
triangular matrix. Thus we have an one–to–one correspondence between LR
tableaux and tableaux of normal shape as follows. Considering T in example

2.2, the recording matrix of T is M =




4 0 0
1 2 0
0 1 2


. On the other hand, the

transposition M t =




4 1 0
0 2 1
0 0 2


 encodes the tableau B =

1 1 1 1 2
2 2 3
3 3

of

normal shape ν, weight λ−µ. For two Young diagrams µ and ν, define ν◦µ =
(ν1+µ1, . . . , ν1+µℓ, ν1, . . . , νr)/(µ1+ν1, . . . , µℓ+ν1), ℓ = ℓ(µ), r = ℓ(ν). Then
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with µ = (1), B ◦ Y (µ) =

1
1 1 1 1 2
2 2 3
3 3

∈ LR(ν ◦ µ, λ). Given partitions

λ, µ, ν such that |λ| = |µ| + |ν|, define CF (ν, µ, λ) = {B ∈ Y T (ν, λ− µ) :
B ◦ Y (µ) ∈ LR(ν ◦ µ, λ)} [PV]. The map τ : LR(λ/µ, ν)→ CF (ν, µ, λ) such
that τ(M) is the tableau of normal shape with recording matrix M t, where
M is the recording matrix of T , is a bijection. Taking again example 2.2, we
have τ(T ) = B.

2.4. Rotation and transposition of LR tableaux. Given an integer i in
{1, . . . , t}, let i∗ := t−i+1. Given a word w = w1w2 · · ·wℓ, over the alphabet
{1, . . . , t}, of weight m = (m1, . . . , mt), w∗ := w∗ℓ · · ·w

∗
2w
∗
1 is the dual word of

w and m∗ = (mt, . . . , m1) its weight. Indeed w∗∗ = w. A dual Yamanouchi
word is a word whose dual word is Yamanouchi. Given a Young tableau T of
shape λ/µ and weight (m1, . . . , mt), T• denotes the Young tableau of shape
(λ/µ)∗ and weight m∗, obtained from T by replacing each entry i with i∗,
and then rotating the result by 180 degrees. The word of T• is w(T)∗, and
T•• = T. A dual LR tableau is a tableau whose word is a dual Yamanouchi
word. LR(λ/µ, ν∗) denotes the set of dual LR tableaux of shape λ/µ and
weight ν∗, and it is the image of LR((λ/µ)∗, ν) under the rotation map •.
Thus the rotation map • defines a bijection between LR((λ/µ)∗, ν∗) and
LR(λ/µ, ν). Given a Yamanouchi word w of weight ν, define the standard
tableau U(w∗) of shape ν∗ such that the label k is in row i if and only if
wℓ−i+1 = k∗. Thus U(w∗) = U(w)• and this affords a bijection between
dual Yamanouchi words of weight ν∗ and standard tableaux of shape ν∗.
The rotation map • can also be easily defined using the notion of recording
matrix: M = (Mij) is the recording matrix of T if and only if the recording
matrix of T • is M• = (Mℓ(λ)+1−i,ℓ(m)−j+1).

There is another natural bijection, denoted by �, between LR tableaux
of conjugate weight and dual conjugate shape, see also [Z, A1, A2]. Given
a Yamanouchi word w of weight ν = (ν1, . . . , νt), write νt = (νt

1, . . . , ν
t
k) and

observe that w is a shuffle of the words 12 . . . νt
i for all i, and its dual word is

a shuffle of the words t t− 1 · · · t− νt
i +1, for all i. Thus, we define w⋄ as the

Yamanouchi word of weight νt obtained by replacing the subword consisting
only on the letters i with the subword 12 · · · νi, for each i. The operation
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⋄ is defined similarly on dual Yamanouchi words, giving rise to a dual Ya-
manouchi word of weight ν∗t. Clearly, w⋄∗ = w∗⋄ is a dual Yamanouchi word
of weight νt∗. The word w⋄∗ can be obtained in only one step: replace the
subword of w consisting only on the letters i with the subword ν1 ν1−1 · · · ν1−
νi+1, for all i. Clearly, U(w⋄) = U(w)t is of shape νt, and U(w∗⋄) = U(w)•t is
of shape ν∗. Given T ∈ LR(λ/µ, ν) (LR(λ/µ, ν∗)) with word w, define T� as
the LR tableau of shape (λ/µ)♦ and weight νt obtained from T by replacing
the word w with w⋄, and then rotating the result by 180 degrees and transpos-
ing. Then � : LR(λ/µ, ν)(LR(λ/µ, ν∗)) −→ LR((λ/µ)♦, νt)LR((λ/µ)♦, ν∗t)
is a bijection such that T� has column word w⋄ and T�� = T . Since �• = •�,
T�• = T •� ∈ LR((λ/µ)t, νt∗) (LR((λ/µ)t, νt)) has column word w∗⋄.

Example 2.3. T =
1 1

1 2 2
1 3

is a LR tableau with word w = 1122131 of

weight ν = (4, 2, 1). Then T =
1 1

1 2 2
1 3

replace w(T)
←→

by w(T)⋄

2 1
3 2 1

4 1

rotate
←→

transpose

1 1
2 2

1 3
4

= T�←→
•

1
2 4

3 3
4 4

= T�• . T� is a LR tableau with shape (λ/µ)♦

and column word w⋄ = 1212314 of weight νt. T�• is a dual LR tableau with
shape (λ/µ)t and column word w⋄∗ = 1423434 of weight νt∗, where U(w) =

1 2 5 7
3 4
6

, U(w⋄) =

1 3 6
2 4
5
7

= U(w)t, and U(w⋄∗) =

1
3

4 6
2 5 7

= U(w)•t.

3. Conjugation symmetry maps

3.1. Knuth equivalence and dual Knuth equivalence. Whenever par-
titions ν ⊂ µ ⊂ λ, we say that λ/µ extends µ/ν. An inside corner of λ/µ is
a box in the diagram µ such that the boxes below and to the right are not
in µ. When a box extends λ/µ, this box is called an outside corner. Let T
be a Young tableau and let b be an inside corner for T. A contracting slide
[Sch, BSS] of T into the box b is performed by moving the empty box at
b through T, successively interchanging it with the neighboring integers to
the south and east according to the following rules: (i) if the empty box has
only one neighbor, interchange with that neighbor; (ii) if it has two unequal
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neighbors, interchange with the smaller one; and (iii) if it has two equal
neighbors, interchange with that one to the south. The empty box moves in
this fashion until it has become an outside corner. This contracting slide can
be reversed by performing an analogous procedure over the outside corner,
called an expanding slide. Performing a contracting slide over each inside
corner of T reduces T to a tableau Tn of normal shape. This procedure is
known as jeu de taquin. Tn is independent of the particular sequence of inside
corners used [Th], and so Tn is called the rectification of T. A word w cor-
responds by RSK–correspondence to a pair (P (w), Q(w)) of tableaux of the
same shape, with Q(w) standard, called the Q–symbol of w. Here we con-
sider a variation of RSK-correspondence known as the Burge correspondence
[B, F]. Given w = w1w2 · · ·wℓ, P (w) is the insertion tableau obtained by
column insertion of the letters of w from left to right [F]. The corresponding
recording tableau Q(w) is obtained by placing 1, 2, . . . , ℓ. If w is the word of
T then P (w) = Tn. Insertion can be translated into the language of Knuth
elementary transformations. Two words w and v are said Knuth equivalent
if they have the same insertion tableau. Each Knuth class is in bijection with
the set of standard tableaux with the shape of the unique tableau in that
class. Two tableaux T and R are Knuth equivalent, written T ≡ R, if and
only if P (w(T )) = P (w(R)). Equivalently, T n ≡ Rn, i.e. one of them can
be transformed into the other one by a sequence of jeu de taquin slides. The
insertion tableau of a Yamanouchi word w with partition weight ν, is the Ya-
manouchi tableau Y(ν). The recording tableau of a Yamanouchi word w is
U(w). By symmetry of Berge correspondence Q(w∗) = P (U(w)•) = U(w)•n.
Given w ≡ Y(ν), we may now define the word w⋄ as being the unique word
satisfying w⋄ ≡ Y(νt) such that Q(w⋄) = Q(w)T = U(w)t. Since (w⋄)⋄ = w,
the map w 7→ w⋄ establishes a bijection between the Knuth classes of Y(ν)
and Y(νt). The word w∗ is the unique word satisfying w ≡ Y(ν∗) such that
Q(w∗) = U(w)•n.

Two tableaux T and R of the same shape are dual equivalent, written

T
d
≡ R, if any sequence of contracting slides and expanding slides that can

be applied to one of them, can also be applied to the other, and the sequence
of shape changes is the same for both [H, F]. Dual equivalence may also

be characterized by recording tableaux: T
d
≡ R if and only if Q(w(T)) =

Q(w(R)). Thus two tableaux of the same normal shape are dual equivalent.
Let S and T be tableaux such that T extends S, and consider the set union
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S ∪ T. The tableau switching [BSS] is a procedure based on jeu de taquin
elementary moves on two alphabets that transforms S∪T into A∪B, where
B is a tableau Knuth equivalent to T which extends A, and A is a tableau
Knuth equivalent to S. We write S ∪ T

s
−→ A ∪ B. In particular, if S is of

normal shape, A = Tn, and S = Bn. Switching of S with T may be described
as follows: T̂ is a set of instructions telling where expanding slides can be
applied to S. Thus switching and dual equivalence are related as below and
tableaux are completely characterized by dual and Knuth equivalence.

Theorem 3.1. [H] Let T and U be tableaux with the same normal shape

and let W be a tableau which extends T. (1) If T ∪ W
s
−→ Z ∪ X and

U ∪W
s
−→ Z ∪Y, then X

d
≡ Y.

(2) Let D be a dual equivalence class and K be a Knuth equivalence
class, both corresponding to the same normal shape. Then, there is a unique
tableau in D ∩K.

Algorithm to construct D ∩ K: Let U ∈ D and let V ∈ K be the only
tableau with normal shape in this class, and W any tableau that U extends:
W ∪ U W ∪X

s↓ ↑ s

Un ∪ Z → V ∪ Z.
Thus X

d
≡ U , X

k
≡ V , and D ∩ K = {X}. since two

words in the same Knuth class can not have the same Q–symbol.

3.2. The transposition of the rotated reversal LR tableau. Given a
tableau T of normal shape, the evacuation TE is the rectification of T•, that
is TE = T•n. TE is also obtained either as the insertion tableau of the word
w(T)∗, or according to the Schützenberger evacuation algorithm, or applying
the reverse jeu de taquin slides to T , in the smallest rectangle containing T , to
obtain T a the anti-normal form T and then T a• = TE. If w is a Yamanouchi
word, Q(w∗) = U(w)E and Q(w⋄∗) = U(w)E t. Given a tableau T of any
shape, the reversal Te is the unique tableau Knuth equivalent to T•, and
dual equivalent to T [BSS]. By Theorem 3.1, T e = [T n E]K ∩ [T ]d, where [
]K denotes Knuth class and [ ]d dual Knuth class. If T has normal shape
TE = T e. If T ∈ LR(λ/µ, ν), then Te is the only tableau Knuth equivalent
to Y(ν∗) and dual equivalent to T. Since crystal reflection operators, for
the definition see [LS, Loth], preserve the Q–symbol, we may in the case of
LR tableaux characterize explicitly the word of T e as follows. Let w be a
Yamanouchi word of weight ν = (ν1, . . . , νt), and let σi denote the reflection
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crystal operator acting on the subword over the alphabet {i, i + 1}, for all i.
If si1 · · · sir is the longest permutation in St, put σ0 := σi1 · · · σir. Then σ0w
is a dual Yamanouchi word of weight ν∗. Moreover, w ≡ w′ if and only if
σi(w) ≡ σi(w

′), and Q(w) = Q(σi(w)). Thus, we have proven the following

Theorem 3.2. Let T be a LR tableau with shape λ/µ and word w. Then
Te is the dual LR tableau of shape λ/µ and word σ0w, and T e �• is the LR
tableau of shape (λ/µ)t and column word (σ0w)⋄ ∗.

Corollary 3.1. T e �• is the unique tableau Knuth equivalent to Y (νt) and

dual equivalent to T̂ t.

Proof : It is enough to see that the column words of T e �• and T̂ t have the
same Q–symbol. Let ŵ be the word of T̂ . As rev ŵ the reverse word of T̂
is the column word of T̂ t, then Q(rev ŵ) = Q(ŵ)E t = Q(w)E t = Q(w⋄ ∗) =
Q(σ0(w

⋄ ∗)) = Q((σ0w)⋄ ∗).

Let w be a Yamanouchi word of weight ν. There is a natural bijection
between words σ0w and U(w)a of shape ν∗, the the anti-normal form of
U(w). The labels in row i of U(w)a are the k’s such that (σ0w)k = i∗.
If θi denotes the jeu de taquin action on consecutive rows i and i + 1 of
U(w), then θiU(w) = U(σiw) is the tableau of skew-shape (i i + 1)ν, where
the shorter row is adjusted on the right with the longer one if above, and
on the left otherwise, having the label k in row j if and only if wk = j.
Put θ0 := θi1 . . . θir with i1, . . . , ir as in σ0. Thus θ0U(w) = U(σ0w) and
Q(σ0w) = U(w)a n. This was the procedure in [A1]. Similarly, we get

Theorem 3.3. Let T be a LR tableau and τ(T ) = P . Then,

T
e
←→ T e •

←→ T e•

τ l τ l τ l

P ←→
a

P a •
←→ PE.

3.3. Main bijections. Let

̺BSS : LR(λ/µ, ν) → LR(λt/µt, νt)

T 7→ ̺BSS(T ) = [Y (νt)]K ∩ [T̂ t]d
[BSS].

The image of T by the BSS-bijection is the unique tableau of shape λt/µt

whose rectification is Y (νt) and the Q–symbol of the column reading word is

Q(T )Et. The idea behind this bijection can be told as follows: T̂ constitutes
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a set of instructions telling where expanding slides can be applied to Y (µ).

Then T̂ t is a set of instructions telling where expanding slides can be applied
to Y (µ)t. Tableau–switching provides an algorithm to give way to those
instructions:

Y (µ) ∪ T
standardization
−→ Y (µ) ∪ T̂

transposition
−→ Y (µt) ∪ T̂ t s

−→ (T̂ t)n ∪ Z
s
−→

s
−→ Y (νt) ∪ Z

s
−→ Y (µt) ∪ ̺BSS(T ).

Then ̺BSS(T ) ≡ Y (νt) and ̺BSS(T ) ≡d T̂ t.

Example 3.4.

T =
1 1 1 1

1 2 2
2 3 3

→ T̂ =
2 3 4 5

1 7 8
6 9 10

→ T̂ t =

6
1 9

2 7 10
3 8
4
5

→

→ Y (µt) ∪ T̂ t =

1 1 6
2 1 9
2 7 10
3 8
4
5

s
−→ (T̂ t)n ∪ Z =

1 6 9
2 7 10
3 8 1
4 2
5
1

s
−→

s
−→ Y (νt) ∪ Z =

1 1 1
2 2 2
3 3 1
4 2
5
1

s
−→ Y (µt) ∪ ̺BSS(T ) =

1 1 1
2 1 2
1 2 3
2 3
4
5

.

Let

̺3 : LR(λ/µ, ν) → LR(λt/µt, νt)
T 7→ ̺3(T ) = T e ∗�

w 7→ σ0w
∗⋄

[Z, A1, A2].

As T e∗� is the unique tableau Knuth equivalent to Y (νt) and dual equivalent

to (T̂ )t, ̺BSS = ̺3.
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Example 3.5.




T =
1 1 1 1

1 2 2
2 3 3

e
−→

reversal
Te =

1 1 3 3
2 2 2

3 3 3

transpose
−→

3
2 3

1 2 3
1 2
3
3

−→

w = 1111221332 −→ σ0w = 3311222333
reverse
−→ 3332221133 −→





−→

1
1 2

1 2 3
2 3
4
5

= ̺BSS(T)

−→ 1231231245 column word of ̺3(T ) = ̺BSS(T )

or

T =
1 1 1 1

1 2 2
2 3 3

−→ Te =
3 3 1 1

2 2 2
1 1 1

rotate
−→ Te∗

=
1 1 1

2 2 2
1 1 3 3

rotate
−→

transpose
Te∗� =

1
1 2

1 2 3
2 3
4
5

.

4. Computational complexity of bijection � and conju-

gation symmetry map

We show that the computational complexity of bijection � is linear on
the input. We follow closely [PV] for this section. Using ideas and techniques
of Theoretical Computer Science, see [AHO], each bijection can be seen as an
algorithm having one type of combinatorial objects as input, and another as
output. We define a correspondence as an one–to–one map established by a
bijection; therefore, obviously several different defined bijections can produce
the same correspondence. In this way one can think of a correspondence as
a function which is computed by the algorithm, viz. the bijection. The com-
putational complexity is, roughly, the number of steps in the bijection. Two
bijections are identical if and only if they define the same correspondence.
Obviously one task can be performed by several different algorithms, each
one having its own computational complexity, see [AHO]. For example we
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recall that there are several ways to multiply large integers, from naive al-
gorithms, e.g. the Russian peasant algorithm, to that ones using FFT (Fast
Fourier Transform), e.g. Schönhage–Strassen algorithm; see e.g. [GG] for a
comprehensive and update reference. Formally, a function f reduces linearly
to g, if it is possible to compute f in time linear in the time it takes to
compute g; f and g are linearly equivalent if f reduces linearly to g and
vice versa. This defines an equivalence relation on functions, which can be
translated into a linear equivalence on bijections.

Let D = (d1, . . . , dn) be an array of integers, and let m = m (D) :=
maxi di. The bit–size of D, denoted by 〈D〉, is the amount of space required
to store D; for simplicity from now on we assume that 〈D〉 = n ⌈log2m + 1⌉.
We view a bijection τ : A −→ B as an algorithm which inputs A ∈ A and
outputs B = τ (A) ∈ B. We need to present Young tableaux as arrays of
integers so that we can store them and compute their bit–size. Suppose
A ∈ Y T (λ/µ; m): a way to encode A is through its recording matrix (ci,j),
which is defined by ci,j = ai,j−ai,j−1; in other words, ci,j is the number of j’s
in the i–th row of A; this is the way Young tableaux will be presented in the
input and output of the algorithms. Finally, we say that a map γ : A −→ B
is size–neutral if the ratio 〈γ(A)〉

〈A〉 is bounded for all A ∈ A. Throughout the

paper we consider only size–neutral maps, so we can investigate the linear
equivalence of maps comparing them by the number of times other maps are
used, without be bothered by the timing. In fact, if we drop the condition
of being size–neutral, it can happen that a map increases the bit–size of
combinatorial objects, when it transforms the input into the output, and
this affects the timing of its subsequent applications. Let A and B be two
possibly infinite sets of finite integer arrays, and let δ : A −→ B be an explicit
map between them. We say that δ has linear cost if δ computes δ (A) ∈ B
in linear time O (〈A〉) for all A ∈ A. There are many ways to construct new
bijections out of existing ones: we call such algorithms circuits and we define
below several of them that we need.

: ◦ Suppose δ1 : A1 −→ X1, γ : X1 −→ X2 and δ2 : X2 −→ B, such that
δ1 and δ2 have linear cost, and consider χ = δ2 ◦ γ ◦ δ1 : A −→ B. We
call this circuit trivial and denote it by I (δ1, γ, δ2).

: ◦ Suppose γ1 : A −→ X and γ2 : X −→ B, and let χ = γ2 ◦ γ1 : A −→
B. We call this circuit sequential and denote it by S (γ1, γ2).

: ◦ Suppose δ1 : A −→ X1 × X2, γ1 : X1 −→ Y1, γ2 : X2 −→ Y2, and
δ1 : Y1 × Y2 −→ B, such that δ1 and δ1 have linear cost. Consider
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χ = δ2 ◦ (γ1 × γ2) ◦ δ1 : A −→ B: we call this circuit parallel and
denote it by P (δ1, γ1, γ2, δ2).

For a fixed bijection α, we say that i is an α–based ps–circuit if one of
the following holds:

: • i = δ, where δ is a bijection having linear cost.
: • i = I (δ1, α, δ2), where δ1, δ2 are bijections having linear cost.
: • i = P (δ1, γ1, γ2, δ2), where γ1, γ2 are α–based ps–circuits and δ1, δ2

are bijections having linear cost.
: • i = S (γ1, γ2), where γ1, γ2 are α–based ps–circuits.

In other words, i is an α–based ps–circuit if there is a parallel–sequen-
tial algorithm which uses only a finite number of linear cost maps and a finite
number of application of map α. The α–cost of i is the number of times the
map α is used; we denote it by s (i).

Let γ : A −→ B be a map produced by the α–based ps–circuit i. We
say that i computes γ at cost s (i) of α. A map β is linearly reducible to α,
write β →֒ α, if there exist a finite α–based ps–circuit i which computes β.
In this case we say that β can be computed in at most s (i) cost of α. We
say that maps α and β are linearly equivalent, write α ∼ β, if α is linearly
reducible to β, and β is linearly reducible to α. We recall, gluing together,
results proved in §4.2 of [PV].

Proposition 4.1. Suppose α1 →֒ α2 and α2 →֒ α3, then α1 →֒ α3. Moreover,
if α1 can be computed in at most s1 cost of α2, and α2 can be computed in
at most s2 cost of α3, then α1 can be computed in at most s1s2 cost of α3.
Suppose α1 ∼ α2 and α2 ∼ α3, then α1 ∼ α3 Suppose α1 →֒ α2 →֒ . . . →֒
αn →֒ α1, then α1 ∼ α2 ∼ . . . ∼ αn ∼ α1.

We state now the computational complexity of bijection � and conju-
gation symmetry map.

Algorithm 4.1 (Bijection �.).
Input: LR tableau T of skew shape λ/µ, with λ = (λ1 ≥ . . . ≥ λn),
µ = (µ1 ≥ . . . ≥ µn), and filling ν = (ν1 ≥ . . . ≥ νn), having A = (ai,j) ∈
Mn×n (N) (ai,j = 0 if j > i) as (lower triangular) recording matrix.

Write Ã, a copy of the matrix A.
For j := n down to 2 do

For i := 1 to n do
Begin
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If i = j then ãi,i := ãi,i + λ1 − λi

else
If j > i then ãi,j = 0 else ãi,j := ãi,j + ãi,j+1.

End

So far the computational cost is O
(
n2
)

= O (〈A〉).

Remark: For all 1 ≤ i ≤ n and 0 ≤ j ≤ n− i + 1, we have

ãi+j+1,i − ãi+j,i ≥ ai+j+1,i.

Set a matrix B = (bi,j) ∈Mλ1×λ1
(N) such that bi,j = 0 for all i, j.

For i := 1 to n do
Begin

Set c := 0.
For j := 0 to n do

Begin
r := ãi+j,i − ai+j,i.
For t := 1 to ai+j,i do br+t,c+t := 1.
c := c + ai+j,i.

End
End

This part has total computational cost at most equal to

O

(
∑

1≤i.j≤n

ai,j

)
= O (|λ \ µ|) = O (|λ| − |µ|) = O (〈T 〉) .

Output: B recording matrix of the output tableau.

Theorem 4.2. The conjugation symmetry maps ̺BSS, ̺WHS and ̺3 are
identical, and linear equivalent to the Schützenberger involution E,

T
e •
←→ T e• �

←→ T e•�

τ l τ l

P
evacuation
←→

E
PE.
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