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ABSTRACT

Spiking Neural Networks (SNNs) have attracted recent interest
due to their energy efficiency and biological plausibility. However,
the performance of SNNs still lags behind traditional Artificial
Neural Networks (ANNSs), as there is no consensus on the best
learning algorithm for SNNs. Best-performing SNNs are based on
ANN to SNN conversion or learning with spike-based backpropa-
gation through surrogate gradients. The focus of recent research
has been on developing and testing different learning strategies,
with hand-tailored architectures and parameter tuning. Neuroevo-
lution (NE), has proven successful as a way to automatically design
ANNs and tune parameters, but its applications to SNNs are still
at an early stage. DENSER is a NE framework for the automatic
design and parametrization of ANNSs, based on the principles of
Genetic Algorithms (GA) and Structured Grammatical Evolution
(SGE). In this paper, we propose SPENSER, a NE framework for
SNN generation based on DENSER, for image classification on the
MNIST and Fashion-MNIST datasets. SPENSER generates competi-
tive performing networks with a test accuracy of 99.42% and 91.65%
respectively.
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1 INTRODUCTION

The advent of Artificial Neural Networks (ANNs) and Deep Learn-
ing (DL) has revolutionized the field of Machine Learning (ML) over
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the last decade, allowing for the development of high-performing
models for computer vision, speech recognition, and natural lan-
guage processing [23]. However, the success of ANNs is highly de-
pendable not only on the availability of annotated data but mostly
on computationally powerful hardware such as Graphical Process-
ing Units (GPU). This hardware dependency foresees an unsustain-
able future for Artificial Intelligence (AI), as the state-of-the-art
models have millions of floating point parameters and require large
pipelines of power-hungry hardware for training resulting in large
carbon footprints [35].

Spiking Neural Networks (SNNs), often called the third genera-
tion of neural networks, are biologically inspired neural network
models built with spiking neurons, where information is encoded
in discrete binary events over time called action potentials or spikes
[31]. SNNs are innately sparse and highly parallelizable, which fa-
vors processing speed and energetic efficiency. Albeit still lagging
behind ANNSs in terms of performance, SNNs show great promise
for the future of biologically plausible and sustainable Al Current
bottlenecks in SNN research include the lack of an established
learning strategy, such as error backpropagation in ANNs, due to
the non-differentiability of the spiking neuron’s activation func-
tion, and high sensitivity to parameter tuning. Due to this, the
focus of recent research, especially regarding image classification
problems, has been on developing and testing different learning
strategies, with hand-tailored architectures and parameter tuning
usually based on successful ANN models [34]. However, it is unclear
if these ANN architectures are suited for SNNs as well.

Evolutionary computation (EC) methods are known to be an
effective optimization tool [3], and their application to the opti-
mization of ANNs, known as neuroevolution (NE), has proven
successful both as a learning strategy as well as a way to automat-
ically design networks and tune parameters [4]. DENSER [1, 2]
is a NE framework for the automatic design and parametrization
of ANNS, based on the principles of Genetic Algorithms (GA) and
Structured Grammatical Evolution (SGE). DENSER has attained
impressive results on several benchmark problems, and due to its
grammar-based engine, can easily be generalized to a multitude of
domains.

In this paper, we propose SPENSER (SPiking Evolutionary Net-
work StructurEd Representation), a NE framework for evolving
Convolutional Spiking Neural Networks (CSNN) based on DENSER.
This paper is a preliminary experimental study to validate SPENSER
for image classification problems. In this study, we evolved the ar-
chitecture and parameters of SNNs with SPENSER on the MNIST
[24] and Fashion-MNIST [42] public datasets, using a fixed learning
strategy (Backpropagation Through Time and surrogate gradients).
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To the best of our knowledge, this is the first work focusing on evolv-
ing SNNs trained with BPTT for image classification, including not
only different architectures but different neuronal dynamics and
optimizers in the search space. The main contribution of this paper
is the preliminary validation of neuroevolution through SPENSER
in the automatic generation of competitively performing CSNNs.
The main focus of the paper is on the performance of the generated
networks in terms of accuracy.

The remainder of this paper is structured as follows: Section 2
provides a review of important concepts regarding SNN; Section 3
covers related work regarding evolutionary approaches for SNNs;
Section 4 describes SPENSER; Section 5 describes the experimental
setup; Section 6 analyses the experimental results, covering the
evolutionary search and the testing performance of the generated
models; Section 7 provides some final remarks and suggested guide-
lines for future research.

2 SPIKING NEURAL NETWORKS

Spiking Neural Networks (SNNs) are a class of neural network
models built with spiking neurons where information is encoded in
the timing and frequency of discrete events called spikes (or action
potentials) over time [31]. Spiking neurons can be characterized
by a membrane potential V(t) and activation threshold V;p,esh-
The weighted sum of inputs of the neuron increases the membrane
potential over time. When the membrane potential reaches its ac-
tivation threshold, a spike is generated (fired) and propagated to
subsequent connections. In a feed-forward network, inputs are pre-
sented to the network in the form of spike trains (timed sequences
of spikes) over T time steps, during which time spikes are accu-
mulated and propagated throughout the network up to the output
neurons.

There are a number of spiking neuron models that vary in biolog-
ical plausibility and computational cost, such as the more realistic
and computationally expensive Hodgkin-Huxley [13], to the more
simplistic and computationally lighter models such as the Izhike-
vich [17], Integrate-and-Fire (IF) [22] and Leaky Integrate-and-Fire
(LIF) [9]. We refer to Long and Fang [26] for an in-depth review of
existing spiking neuron models and their behaviour.

The LIF neuron is the most commonly used in the literature due
to its simplicity and low computational cost. The LIF neuron can
be modulated as a simple parallel Resistor-Capacitor (RC) circuit
with a "leaky" resistor:

% =g v ~ B +1(0) o)

In Eq. 1, C is a capacitor, gy, is the "leaky" resistor (conductor), Ef,
is the resting potential and I(t) is the current source (synaptic in-
put) that charges up the capacitor to increase the membrane poten-
tial V (¢). Solving this differential equation through Euler method
(demonstration in [11]), we can calculate a neuron’s membrane
potential at a given timestep ¢ as:

V[t] = pVI[t — 1] + WX[t] - Act[t = 1] Vipresh )

In Eq. 2, f is the decay rate of the membrane potential, X [t]

is the input vector (corresponding to I(¢)), W is the vector of in-

put weights, and Act[¢] is the activation function. The activation
function can be defined as follows:
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if V[t] > Vihresh

Act[t] = otherwise
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A LIF neuron’s membrane potential naturally decays to its rest-
ing state over time if no input is received (fV [t — 1]). The potential
increases when a spike is received from incoming connections, pro-
portionally to the connection’s weight (WX[¢]). When the mem-
brane potential V (¢) surpasses the activation threshold V;,.sp @
spike is emitted and propagated to outgoing connections and the
membrane’s potential resets (—Act[t — 1]V;pyresh). Resetting the
membrane’s potential can be done either by subtraction, as is done
in the presented example, where V;,,..sp, is subtracted at the onset
of a spike; or to zero, where the membrane potential is set to 0 after
a spike. A refractory period is usually taken into account where a
neuron’s potential remains at rest after spiking in spite of incoming
spikes. The decay rate and threshold can be static or trainable.

Existing frameworks such as snntorch [11] allow for the develop-
ment of SNNs by integration of spiking neuron layers in standard
ANN architectures such as Convolutional Neural Networks, by
simply replacing the activation layer with a spiking neuron layer.

2.1 Information Coding

Spiking systems rely on discrete events to propagate information,
so the question arises as to how this information is encoded. We
focus on two encoding strategies: rate coding and temporal coding.
In rate coding, information is encoded in the frequency of firing
rates. This is the case in the communication between photoreceptor
cells and the visual cortex, where brighter inputs generate higher
frequency firing rates as opposed to darker inputs and respectively
lower frequency firing rates [14]. ANNSs rely on rate coding of
information, as each neuron’s output is meant to represent an
average firing rate. In temporal coding, information is encoded in
the precise timing of spikes. A photoreceptor system with temporal
coding would encode a bright input as an early spike and a dark
input as a last spike. When considering the output of an SNN for
a classification task, the predicted class would either be: the one
with the highest firing frequency, using rate coding; the one that
fires first, using temporal coding.

Temporal coding is advantageous in terms of speed and power
consumption, as fewer spikes are needed to convey information,
resulting in more sparse events which translate to fewer memory
accesses and computation. On the other hand, rate coding is ad-
vantageous in terms of error tolerance, as the timing constraint is
relaxed to the overall firing rate, and promoting learning, as the
absence of spikes can lead to the "dead neuron" problem, where
no learning takes place as there is no spike in the forward pass.
Increased spiking activity prevents the "dead neuron" problem.

2.2 Learning

Learning in SNNs remains one of the biggest challenges in the
community due to the non-differentiability of the activation func-
tion of spiking neurons (Eq. 3), which does not allow for the direct
transposition of the error backpropagation algorithm.

Commonly used learning strategies include unsupervised learn-
ing through Spike-Timing-Dependent Plasticity (STDP) [8], offline
conversion from trained ANNs to SNNs (also known as shadow
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training) [7, 36], and supervised learning through backpropagation
either using spike times [5] or adaptations of the activation function
to a continuous-valued function [15, 16, 25, 33, 38]. In this work,
we focus on the latter, by training SNNs using backpropagation
through time (BPTT) and surrogate gradients.

BPTT is an application of the backpropagation algorithm to
the unrolled computational graph over time, usually applied to
Recurrent Neural Networks (RNNs) [41]. In order to bypass the non-
differentiability of the spiking neuron’s activation function, one can
use surrogate gradients, by approximating the activation function
with continuous functions centered at the activation threshold
during the backward pass of backpropagation [33].

In this experimental study, we considered two surrogate gradient
functions available in snntorch [11]:

o Fast-Sigmoid

Act ¥ ————— 4
CETrRY @)
e ATan - Shifted arc-tan function
1 o
Act ~ —arctan(nV =) (5)
.4 2

Regarding the loss function, there are a number of choices avail-
able depending on the output encoding of the network (rate vs
temporal), that calculate the loss based on spikes or on membrane
potential. For this experimental study, we considered rate encoding
for inputs and outputs, and as such, chose the Mean Square Error
Spike Count Loss (adapted from [38]). The spike counts of both
correct and incorrect classes are specified as targets as a proportion
of the total number of time steps (for example, the correct class
should fire 80% of the time and the incorrect classes should only
fire 10%). The target firing rates are not required to sum to 100%.
After a complete forward pass, the mean square error between the
actual (Ztho Act[t]) and target (Act) spike counts of each class C
is calculated and summed together (Eq.6).

O

-1 T

L= % (Z Act;[t] - Actj)? (6)
t=0

ing

3 RELATED WORK

Recent works blending EC and SNNs are mostly focused on evolving
a network’s weights, using evolutionary approaches as a learning
strategy [20, 29, 30].

Schuman et al. [37] proposed Evolutionary Optimization for Neu-
romorphic Systems, aiming to train spiking neural networks for
classification and control tasks, to train under hardware constraints,
to evolve a reservoir for a liquid state machine, and to evolve smaller
networks using multi-objective optimization. However, they focus
on simple machine learning classification tasks and scalability is
unclear. Elbrecht and Schuman [10] used HyperNeat [40] to evolve
SNNs focusing on the same classification tasks. Grammatical Evo-
lution (GE) has also been used previously by Lopez-Vazquez et al.
[30] to evolve SNNss for simple classification tasks.

The current state of the art in the automatic design of CSNN
architectures are the works of Kim et al. [19] and AutoSNN by
Na et al. [32]. Both works focus on Neural Architecture Search
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(NAS), with an evolutionary search component implemented in
AutoSNN, and attain state-of-the-art performances in the CIFAR-10,
CIFAR-100 [21], and TinyImageNet datasets. However, both works
fix the generated networks’ hyperparameters such as LIF neuron
parameters and learning optimizer. Our work differs from these
works by incorporating these properties in the search space.

4 SPENSER

SPENSER (SPiking Evolutionary Network StructurEd Representa-
tion) is a general-purpose evolutionary-based framework for the
automatic design of SNNs, based on DENSER [1, 2], combining the
principles of Genetic Algorithms (GA) [39] and Dynamical Struc-
tured Grammatical Evolution (DSGE) [27, 28]. SPENSER works on
a two-level basis, separating the GA and the DSGE level, which
allows for the modeling of the overall network structure at the
GA level while leaving the network layer’s specifications for the
DSGE (Figure 1). The use of a grammar is what makes SPENSER
a general-purpose framework, as one solely needs to change the
grammar to handle different network and layer types, problems
and parameters range.

The GA level encodes the macrostructure representing the se-
quence of evolutionary units that form the network. Each unit
corresponds to a nonterminal from the grammar that is later ex-
panded through DSGE. With this representation, we can encode
not only the network’s layers as evolutionary units but also the
optimizer and data augmentation. Furthermore, by assigning each
evolutionary unit to a grammar nonterminal, we can encode prior
knowledge and bound the overall network architecture.

The DSGE level is responsible for the specification of each layer’s
type and parameters, working independently from the GA level.
DSGE represents an individual’s genotype as a set of expansion
choices for each expansion rule in the grammar. Starting from a
nonterminal unit from the GA level, DSGE follows the expansions
set in the individual’s genotype until all symbols in the phenotype
are nonterminals. Rules for the layer types and parameters are
represented as a Context-Free Grammar (CFG), making it easier
to adapt the framework to different types of networks, layers and
problem domains.

An example encoding to build CSNNs could be defined by Gram-
mar 1 and the following GA macro structure:

[(features, 1,10), (classification, 1, 3),
(output, 1,1), (learning, 1,1)]

The numbers in each macro unit represent the minimum and
maximum number of units that can be incorporated into the net-
work. With this example, the features block encodes layers for
feature extraction, and therefore we can generate networks with
convolutional and pooling layers, followed by 1 to 3 fully connected
layers from the classification units. The activation layers are re-
stricted to LIF nodes with different surrogate gradient options. The
learning unit represents the optimizer used for learning and its
parameters. The output unit encodes the network’s output layer.
Numeric parameters are defined by their type, the number of pa-
rameters to generate, and the range of possible values.
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<features> ::= <convolution> <activation>|<convolution> <pooling>
<activation>
<convolution> ::=layer : conv [num-filters, int, 1, 32, 256] [filter-shape, int, 1, 2, 5]
<classification> ::= <fully-connected> <activation>

<fully-connected> ::=layer : dense [num-units, int, 1, 16, 128]

<activation> ::=layer : LIF <surrogate-gradient>
<surrogate-gradient> ::= <ATan> |<FastSigmoid>
<output> ::=layer : dense num-units : 10 <activation>

<learning> ::= <Adam> |<SGD>

Grammar 1: Example of a Convolutional Spiking Neural
Network grammar.

<features> }:cIassmcation>}<classmca1i0n> <output= ‘ <learning ‘

<features>
<surrogate-
<classification=  <fully-connected>  <activation> gradient>
[{DSGE: 0, i
HDSGE: 0] layer: dense, \[iDjPEi:OI DSGE: 1}]
num-units: 32)] yer: LIF 1]
-~
Layer type: Fully Connected
» MNumber of units: 32
Activation layer: LIF
Surrogate Gradient: Fast
Sigmoid

Figure 1: Individual generation by SPENSER. The first line
represents the GA level where the macrostructure of the net-
work is defined (this individual has 2 features units and 2
classification units). The second line represents the specifi-
cation of a classification unit through DSGE. Each number
in the DSGE level represents the index of the chosen expan-
sion rule for the current non-terminal. The last line is the
resulting phenotype of the layer in question [1].

Regarding variation operators, SPENSER relies on mutations on
both levels. At the GA level, individuals can be mutated by adding,
replicating, or removing genes i.e. layers. At the DSGE level, mu-
tation changes the layers’ parameters by grammatical mutation
(replacing grammatical expansions), integer mutation (replacing an
integer parameter with a uniformly generated random one), and
float mutation (modifying a float parameter through Gaussian per-
turbation). SPENSER follows a (1 + 1) evolutionary strategy where
the parent individual for the next generation is chosen by highest
fitness and mutated to generate the offspring. This evolutionary
strategy was chosen due to the computational demands of the net-
work training process, which limits the population size in regard
to execution time.

5 EXPERIMENTAL SETUP

For this experimental study, we evolved and tested networks on the
MNIST [24] and Fashion-MNIST [42] datasets, available through
the Torchvision library of Pytorch. All images were converted to
grayscale and their original size was kept (28x28). In order to apply
SNNs to these datasets, the images were converted to spike trains
using rate coding. The pixel values are normalized between 0 and
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1 and each pixel value is used as a probability in a Binomial dis-
tribution, which is then sampled from to generate spike trains of
length T time steps. No data augmentation was used. We considered
different time steps for each dataset according to their complexity.

Datasets were split in three subsets: EvoTrain, Fitness and Test.
The Test split is the one provided by Torchvision. The EvoTrain
and Fitness splits are a 70/30 split of the original Train split. Each
independent run generates different EvoTrain and Fitness splits. Ta-
ble 1 summarises the chosen time steps and the number of samples
per split for each dataset.

Table 1: Time steps and number of samples per split for each
dataset (MNIST and Fashion-MNIST).

Train
Time Steps (T) | EvoTrain | Fitness | Test
MNIST 10
F-MNIST 25 42000 18000 | 10000

As this is a preliminary study to validate SPENSER, we settled on
one-pass training of individuals as a trade-off between speed and
accuracy. During the evolutionary search, individuals are trained
on the EvoTrain split for 1 epoch and tested against the Fitness split
for fitness assignment. After the evolutionary search is complete,
the best individual is further trained for 50 epochs on the entire
Train set, and tested against the Test set for accuracy assessment.

We used snntorch [11] to assemble, train and evaluate SNNs based
on rate coding. Individuals are trained using BPTT and the chosen
loss function was the Mean Square Error Spike Count described
in Section 2.2, with a target spiking proportion of 100% for the
correct class and 0% for the incorrect class. The predicted class for
a given instance is calculated based on the highest spike count of
the output neurons. Accuracy is used as the fitness metric during
the evolutionary search and as the final performance assessment
of the best found individuals.

The macro structure of individuals for the GA level was set as:

[(features, 1,6), (classification, 1, 4),
(output, 1,1), (learning, 1,1)]

Because we are dealing with an image recognition problem,
we defined a grammar that contains primitives allowing for the
construction of CSNNs, as shown in Grammar 2. Following is a
brief description of the grammar.

features units can be expanded to either Convolutional + Acti-
vation, Convolutional + Pooling + Activation, or Dropout layers.
Convolutional layers are defined by the number of filters, filter
shape, stride, padding and bias. Pooling layers are defined by the
pooling type (max or average) and the kernel size. classification
units can be expanded to either Fully-Connected + Activation or
Dropout layers. Fully-Connected layers are defined by the number
of units. Dropout layers are defined by the dropout rate. The output
unit is set as a Fully-Connected + Activation where the number of
units is fixed to the number of classes. Activation layers are cur-
rently limited to LIF neurons. LIF neurons are defined by the decay
rate f3, the activation threshold V;p,sp, and the reset mechanism
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(subtraction or zero). Furthermore, they are also defined by the
surrogate gradient function, which in this case can be either the
ATan or the Fast-Sigmoid functions described in Section 2.2. The
learning unit encodes the optimizer and can be expanded to either
Stochastic Gradient Descent, Adam, or RMSProp. We increased the
probability of choosing feature extraction layers over dropout for
features units (Grammar 2, line 1).

<features> ::= <aux-convolution> | <aux-convolution> | <aux-convolution>
| <dropout>

<aux-convolution> ::= <convolution> <pooling> <activation>

<activation> ::=layer : act <beta> <threshold> <surr-grad> <
reset-mechanism>

<reset-mechanism> ::=reset : subtract | reset : zero

<beta> ::= [beta, float, 1,0, 1] <beta-trainable>

= [threshold, float, 1, 0.5, 1.5] <threshold-trainable>

::=beta-trainable : True | beta-trainable : False

<threshold>
<beta-trainable>
<threshold-trainable> ::= threshold-trainable : True | threshold-trainable : False

<surr-grad> ::=surr-grad : atan | surr-grad : fast-sigmoid

<pooling> ::= <pool-type> [kernel-size, int, 1, 2, 4] | layer : no-op
<pool-type> ::=layer : pool-avg | layer : pool-max
<classification> ::= <fully-connected> <activation> | <dropout>
<convolution> ::=layer : conv [num-filters, int, 1, 32, 128] [filter-shape, int, 1, 2, 4]
[stride, int, 1, 1, 3] <padding> <bias>
<padding> ::= padding : same | padding : valid
<dropout> ::=layer : dropout [rate, float, 1,0, 0.5]

<fully-connected> ::=layer : fc [num-units, int, 1, 32, 256] <bias>

<bias> :=bias : True | bias : False
<output> ::= <fully-last> <activation>
<fully-last> ::=layer : fc num-units : 10 bias : True
<learning> ::= <gradient-descent> | <rmsprop> | <adam>

<gradient-descent> ::=learning : gradient-descent [Ir, float, 1,0.0001, 0.1]

[momentum, float, 1, 0.68, 0.99] [decay, float, 1,0.000001, 0.001]

<nesterov>
<nesterov> ::=nesterov : True | nesterov : False
<adam> ::=learning : adam [lIr, float, 1,0.0001, 0.1]
[betal, float, 1, 0.5,0.9999] [beta2, float, 1, 0.5, 0.9999]
[decay, float, 1,0.000001, 0.001] <amsgrad>
<amsgrad> ::=amsgrad : True | amsgrad : False
<rmsprop> ::=learning : rmsprop [lr, float, 1,0.0001, 0.1] [rho, float, 1,0.5, 1]

[decay, float, 1,0.000001, 0.001]

Grammar 2: Convolutional Spiking Neural Network gram-
mar.

Regarding SPENSER’s main hyper-parameters, we followed the
recommendations of [1, 2], summarised in Table 2. The table is
divided in two parts: i) evolutionary parameters, specifying the
evolutionary engine properties such as number of generations,
number of parents (1), number of offspring (1), mutation rates
and fitness function; ii) training parameters, specifying the overall
learning parameters fixed for all networks.

All the code, configuration files, grammar, and execution in-

structions for these experiments are publicly available at GitHub
1

https://github.com/henriquejsb/spenser
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Table 2: Hyper-parameters for SPENSER.

Evolutionary Parameter Value
Number of runs 5
Number of Generations 200

y (#Parents) 1

A (#Offspring) 10

Add Layer Rate 25%
Duplicate Layer Rate 15%
Remove Layer Rate 25%
Layer DSGE Rate 15%
Learning DSGE Rate 30%
Gaussian Perturbations (0,0.15)
Fitness Function Accuracy
Training Parameters Value
Number of epochs 1

Batch Size 64

Loss Function Mean Square Error Spike Count
Correct Rate 1.0
Incorrect Rate 0.0

6 EXPERIMENTAL RESULTS

6.1 Evolutionary Search

The evolutionary results are promising and show that SPENSER
is able to generate increasingly better-performing individuals. Fig-
ures 2 and 3 display the evolution of the best fitness and the aver-
age fitness of the population across 200 generations, and a violin
plot of the fitness of the best found individuals in the MNIST and
Fashion-MNIST datasets respectively. The more notable aspects of
the evolutionary search are the constant increase in best fitness and
the diminishing variance over generations (Fig. 2(a), 3(a)). These
aspects showcase SPENSER’s ability to uncover new and better
individuals, and its consistency over different runs in generating
better performing individuals. Furthermore, the average fitness of
the population also increases, particularly in the Fashion-MNIST
dataset (Fig. 3(b)), which demonstrates SPENSER’s stability, as a
random search would yield a constant average fitness.

In order to understand if there are any notably better design
choices for CSNNs, we summarized the best individuals’ (both
from MNIST and Fashion-MNIST) characteristics in Table 3. The
most interesting result is the total absence of Average Pooling
layers, as Kim et al. [19] had also stated that Average Pooling is not
preferred for SNNs during their NAS and degraded performance.
Furthermore, it is interesting to notice that the ATan surrogate
gradient is preferred over the Fast-Sigmoid. The choice of Adam
as a preferred optimizer is not surprising as it usually is the best-
performing optimizer of the three.

6.2 Test Results

After evolving for 200 generations, the best individuals were trained
further for another 50 epochs (totaling 51 epochs) and evaluated
on the Test set. Violin plots of the test accuracy on the MNIST
and Fashion-MNIST datasets are displayed in Fig. 4. Test results of
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Table 3: Network characteristics (percentage) for the best 10
individuals from MNIST and Fashion-MNIST.

Layer Types Reset Mechanism

Convolutional 35% Subtract 63%

Average Pooling 0%  Zero 37%

Max Pooling 19%

Dropout 11% Optimizers

Fully-Connected 35% Adam 70%
SGD 20%

Surrogate Gradients RMSProp 10%

ATan 76%

Fast-Sigmoid 24%
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Figure 2: Evolutionary analysis of SPENSER on the MNIST
dataset over 200 generations. The results are averaged over 5
runs.
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Figure 3: Evolutionary analysis of SPENSER on the Fashion-
MNIST dataset over 200 generations. The results are averaged
over 5 runs.

different have small variations, showcasing SPENSER’s robustness
in generating high-performing networks.

We compared the best attained test accuracy with other works
that also trained hand-tailored networks through spike based back-
propagation. A comparison of test results is presented in Tab. 4.
Albeit not surpassing the state-of-the-art, networks generated by
SPENSER are head-to-head with the best-performing networks in
the literature.

In order to validate our choice of one epoch training for fitness
assessment, we also trained the best networks found in the first
generation of each run for another 50 epochs and tested their per-
formance on the Test set. Fig. 5 displays violin plots for the test
accuracy of the best individuals from generation 1 and generation
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Figure 4: Violin plots of the Test accuracy of the best individ-
uals after further training for 50 epochs.

Table 4: Test accuracy comparison of state of the art and our
work.

MNIST | Fashion-MNIST
Zhang et al. [43] | 99.62% 90.13%
Cheng et al. [6] 99.50% 92.07%
Fang et al. [12] 99.72% 94.38%
Jiang et al. [18] 99.61% 94.35%
SPENSER (ours) | 99.42% 91.65%

200. It is clear that the networks’ performance is dependent on
the architecture rather than training epochs and that the networks
evolved by SPENSER perform better than random initialization.

Fitness Scores

Gen #200

Gen #1

Figure 5: Test accuracy on Fashion-MNIST for the best in-
dividuals from Generation 1 and Generation 200, after 50
epochs of training.

We hypothesize that a big limitation in this experimental study
was the choice of the loss function’s parameters, as it does not
follow the literature’s recommendations [34]. By setting the tar-
get firing rate of incorrect classes to 0%, we might be suppressing
output activity which is important to distinguish between closely
distanced inputs. Furthermore, this experimental setup is sluggish,
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as training with BPTT is slower than in traditional ANNs and highly
memory intensive. Kim et al. [19] have achieved impressive results
without training the generated networks during the search phase,
by estimating their future performance based on spike activation
patterns across different data samples, and we believe this might
be an important improvement to our framework. With faster ex-
periments, we can focus on increasing diversity and coverage of
the search space, so that SPENSER can yield better individuals.

7 FINAL REMARKS

In this paper we propose SPENSER, a NE framework to automat-
ically design CSNNs. SPENSER is able to generate competitive
performing networks for image classification at the level of the
state of the art, without human parametrization of the network’s
architecture and parameters. SPENSER generated networks with
competitive results, attaining 99.42% accuracy on the MNIST [24]
and 91.65% accuracy on the Fashion-MNIST [42] datasets. Current
limitations rely on the execution time, due to the computationally
intensive BPTT learning algorithm and the memory requirements.
Furthermore, we believe the configuration of the loss function
played a role in suppressing output activity and potentially decreas-
ing accuracy.

7.1 Future Work
In the future, we plan on:

e Experiment with different loss functions / encode the loss
function as an evolvable macro parameter;

Perform a more in-depth study of the preferred choices dur-
ing evolution and observable patterns in the best-performing
individuals. This could be relevant in uncovering novel opti-
mal architectures and parameters;

e Experiment with different learning algorithms.

e Implement skip connections and back connections.

o Apply regularisation methods to prevent vanishing and ex-

ploding gradients.
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