MATRIX INTERPRETATION OF MULTIPLE ORTHOGONALITY

A. BRANQUINHO, L. COTRIM AND A. FOULQUIÉ MORENO

Abstract

In this work we give an interpretation of a $(s(d+1)+1)$-term recurrence relation in terms of type II multiple orthogonal polynomials. We rewrite this recurrence relation in matrix form and we obtain a three-term recurrence relation for vector polynomials with matrix coefficients. We present a matrix interpretation of the type II multi-ortogonality conditions. We state a Favard type theorem and the expression for the resolvent function associated to the vector of linear functionals. Finally a reinterpretation of the type II Hermite-Padé approximation in matrix form is given.

Keywords: Multiple-orthogonal polynomials, Hermite-Padé approximants, block tridiagonal operator, Favard type theorem.
AMS Subject Classification (2000): Primary 33C45; Secondary 39B42.

1. Introduction

Multiple orthogonal polynomials are a generalization of orthogonal polynomials in the sense that they satisfy orthogonality conditions with respect to a number of measures. Such polynomials arise, in a natural way, in the study of simultaneous rational approximation, and in particular for the study of Hermite-Padé approximation for a system of $d \in \mathbb{Z}^{+}$Markov functions (see [12]). In this way, multiple orthogonal polynomials are intimately related to Hermite-Padé approximation. In the literature we can find a lot of examples of multiple orthogonal polynomials (see $[1,2,3,4,8,10,14,15]$).
Let $\vec{n}=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}_{+}^{d}$ which is called a multi-index with length $|\vec{n}|:=$ $n_{1}+\cdots+n_{d}$ and let $\left\{u^{1}, \ldots, u^{d}\right\}$ be a system of linear functionals $u^{j}: \mathbb{P} \rightarrow \mathbb{C}$ with $j=1,2, \ldots, d$.

Definition 1. Let $\left\{P_{\vec{n}}\right\}$ be a sequence of polynomials where the degree of $P_{\vec{n}}$ is at most $|\vec{n}|$. We say that $\left\{P_{\vec{n}}\right\}$ is a type II multiple orthogonal with respect

[^0]to the system of linear functionals $\left\{u^{1}, \ldots, u^{d}\right\}$ and multi-index \vec{n}, if
\[

$$
\begin{equation*}
u^{j}\left(x^{m} P_{\vec{n}}\right)=0, \quad m=0,1, \ldots, n_{j}-1, \quad j=1, \ldots, d \tag{1}
\end{equation*}
$$

\]

For the particular case in which the system of linear functionals is a system of positive Borel measures, μ_{j}, on $I_{j} \subset \mathbb{R}, j=1, \ldots, d$, we have

$$
u^{j}\left(x^{k}\right)=\int_{I_{j}} x^{k} d \mu_{j}, \quad k \in \mathbb{N}, \quad j=1, \ldots, d
$$

and the conditions of multi-orthogonality, (1), can be rewritten as

$$
\int_{I_{j}} P_{\vec{n}}(x) x^{k} d \mu_{j}(x)=0, \quad k=0,1, \ldots, n_{j}-1, \quad j=1, \ldots, d
$$

Definition 2. A multi-index $\vec{n}=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}_{+}^{d}$ is said to be normal for the system of linear functionals $\left\{u^{1}, \ldots, u^{d}\right\}$, if for any non trivial solution $P_{\vec{n}}$ of (1), the degree of $P_{\vec{n}}$ is equal to $|\vec{n}|$. When all the multi-indices of a given family are normal, we say that the system of linear functionals $\left\{u^{1}, \ldots, u^{d}\right\}$ is regular.

In the works of K. Douak and P. Maroni [5], P. Maroni [11], V. Kaliaguine [9], J. Van Iseghem [16], and also in the work of V.N. Sorokin and J. Van Iseghem [13], we find that a sequence of type II multiple orthogonal polynomials with respect to the system of linear functionals $\left\{u^{1}, \ldots, u^{d}\right\}$ and multi-index $\vec{n}=\left(n_{1}, \ldots, n_{d}\right) \in \mathcal{I}$, where

$$
\begin{aligned}
\mathcal{I}=\{(0,0, \ldots, 0),(1,0, \ldots, 0), \ldots,(1,1, \ldots, 1), \\
(2,1, \ldots, 1), \ldots,(2,2, \ldots, 2), \ldots\}
\end{aligned}
$$

verify a $(d+2)$-term recurrence relation of type

$$
x B_{n}=B_{n+1}+\sum_{k=0}^{d} a_{n-k}^{n} B_{n-k} .
$$

They call such polynomials d-orthogonal, where d corresponds to the number of functionals.

In this work we consider sequences of type II multiple orthogonal polynomials for more general families of multi-indices, \mathcal{J}. We designate this multiindices by quasi-diagonal. In section 2 we build the sets of quasi-diagonal multi-indices, \mathcal{J}. Next we give the type II multi-orthogonality conditions for a sequence of monic polynomials $\left\{B_{n}\right\}$ with respect to the system of linear functionals $\left\{u^{1}, \ldots, u^{d}\right\}$ and a family of quasi-diagonal multi-indices, \mathcal{J}. We also prove that this sequence verifies a $(s(d+1)+1)$-term recurrence relation of type

$$
x^{s} B_{n}=B_{n+s}+\sum_{k=0}^{s(d+1)-1} a_{n+s-1-k}^{n+s-1} B_{n+s-1-k}
$$

To finish this section, we rewrite the previous $(s(d+1)+1)$-term recurrence relation in matrix form and we obtain a three-term recurrence relation for vector polynomials with matrix coefficients. In section 3 we present an algebraic theory which enables us to operate with the new presented objects. Here, our main goal, is to present a matrix interpretation of the multi-ortogonality conditions presented in the section 2 . Next we give a result of existence and uniqueness of a type II sequence of vector orthogonal polynomials with respect to a vector of linear functionals \mathcal{U}, and using a matrix three-term recurrence relations we establish a Favard type theorem. We remark that other characterization for sequences of orthogonal polynomials in terms of matrix three-term recurrence relations can be found in $[6,7]$. In section 4 we express the resolvent function in terms of the matrix generating function associated to the vector of linear functionals. Finally, we give a reinterpretation of the type II multiple orthogonality, in terms of a Hermite-Padé approximation problem for the matrix generating function associated to the vector of linear functionals. We remark that Hermite-Padé approximation problems can be found for example in $[12,14]$.

2. Quasi-diagonal multi-indices

2.1. Definition and some examples. Now we construct the set of multiindices, \mathcal{J}, that will be used in this work. We begin by considering blocks with $s d$ elements of \mathbb{Z}_{+}^{d} in the Table 1. The multi-indices $\left(k_{i}^{1}, \cdots, k_{i}^{d}\right)$ where

$n=\|\vec{n}\|$	$\vec{n}=\left(n_{1}, \ldots, n_{d}\right)$
0	$(0, \ldots, 0)$
1	$(1,0, \ldots, 0)$
\vdots	\vdots
i	$\left(k_{i}^{1}, \ldots, k_{i}^{d}\right)$
\vdots	\vdots
$s d-1$	$(s, \ldots, s, s-1)$

TABLE 1. Pattern blocks
$i=0,1, \cdots, s d-1$ are defined by the following conditions:

- $k_{i+1}^{j} \geq k_{i}^{j}, \quad i=0,1, \ldots, s d-2, j=1, \ldots, d$;

$$
\begin{aligned}
& \bullet k_{i}^{j+1} \leq k_{i}^{j}, \quad i=0,1, \ldots, s d-1, \quad j=1, \ldots, d-1 \\
& \bullet \sum_{j=1}^{d} k_{i}^{j}=i, \quad i=0,1, \ldots, s d-1, \quad j=1, \ldots, d \\
& \bullet k_{s d-1}^{j}=\left\{\begin{array}{l}
s, \quad j=1,2, \ldots, d-1 \\
s-1, \\
\end{array}\right. \\
& \hline
\end{aligned}
$$

Now, we identify as the pattern block, \mathcal{J}_{0}, the set whose elements are the ones of any of the blocks presented in the Table 1, i.e,

$$
\mathcal{J}_{0}=\{(0, \ldots, 0),(1,0, \ldots, 0), \ldots,(s, \ldots, s, s-1)\}
$$

From \mathcal{J}_{0} we generate a sequence of sets which we denote by $\mathcal{J}_{n}, n \in \mathbb{N}$, according to the formula:

$$
\begin{equation*}
\mathcal{J}_{n}=\mathcal{J}_{0}+n\{(s, \ldots, s)\}, n \in \mathbb{N} \tag{2}
\end{equation*}
$$

In this way we obtain a set of multi-indices, \mathcal{J}, given by

$$
\mathcal{J}=\left\{\mathcal{J}_{0}, \mathcal{J}_{1}, \ldots, \mathcal{J}_{n}, \ldots\right\}
$$

Remark that for $s=1$ we have that \mathcal{J}_{0} is given by,

$$
\mathcal{J}_{0}=\{(0, \ldots, 0),(1,0, \ldots, 0),(1,1, \ldots, 0), \ldots,(1, \ldots, 1,0)\}
$$

whose multi-indices we designate by diagonal.
In each of the following examples, we build the possible pattern blocks, \mathcal{J}_{0}, and the sets of quasi-diagonal multi-indices obtained from each one.

Example 1. $s=1, d=2$. We identify as \mathcal{J}_{0}, i.e. the pattern block $\mathcal{J}_{0}=$ $\{(0,0),(1,0)\}$. Thus, by using the formula (2) the sequence of sets, \mathcal{J}_{n}, $n \in \mathbb{N}$, are given by:

$$
\mathcal{J}_{n}=\mathcal{J}_{0}+n\{(1,1)\}=\{(n, n),(n+1, n)\} .
$$

Example 2. $s=3, d=2$. Following the same idea, we identify as \mathcal{J}_{0}, i.e. the pattern block

$$
\begin{aligned}
& \mathcal{J}_{0}=\{(0,0),(1,0),(1,1),(2,1),(2,2),(3,2)\}, \\
& \mathcal{J}_{0}=\{(0,0),(1,0),(2,0),(2,1),(3,1),(3,2)\}, \\
& \mathcal{J}_{0}=\{(0,0),(1,0),(2,0),(2,1),(2,2),(3,2)\}, \\
& \mathcal{J}_{0}=\{(0,0),(1,0),(1,1),(2,1),(3,1),(3,2)\}, \\
& \mathcal{J}_{0}=\{(0,0),(1,0),(2,0),(3,0),(3,1),(3,2)\} .
\end{aligned}
$$

Continuing in this manner, the sequence of sets, $\mathcal{J}_{n}, n \in \mathbb{N}$, obtained from the sets \mathcal{J}_{0} provided above, are given using the formula $\mathcal{J}_{n}=\mathcal{J}_{0}+3 n\{(1,1)\}$,
therefore, obtaining in each case:

$$
\begin{aligned}
\mathcal{J}_{n}= & \{(3 n, 3 n),(3 n+1,3 n),(3 n+1,3 n+1), \\
& (3 n+2,3 n+1),(3 n+2,3 n+2),(3 n+3,3 n+2)\} \\
\mathcal{J}_{n}= & \{(3 n, 3 n),(3 n+1,3 n),(3 n+2,3 n), \\
& (3 n+2,3 n+1),(3 n+3,3 n+1),(3 n+3,3 n+2)\} \\
\mathcal{J}_{n}= & \{(3 n, 3 n),(3 n+1,3 n),(3 n+2,3 n), \\
& (3 n+2,3 n+1),(3 n+2,3 n+2),(3 n+3,3 n+2)\} \\
\mathcal{J}_{n}= & \{(3 n, 3 n),(3 n+1,3 n),(3 n+1,3 n+1), \\
& (3 n+2,3 n+1),(3 n+3,3 n+1),(3 n+3,3 n+2)\}, \\
\mathcal{J}_{n}= & \{(3 n, 3 n),(3 n+1,3 n),(3 n+2,3 n), \\
& (3 n+3,3 n),(3 n+3,3 n+1),(3 n+3,3 n+2)\} .
\end{aligned}
$$

2.2. Multi-orthogonality conditions of type II. We identify the vectors $\vec{n}=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}_{+}^{d}$ with $n \in \mathbb{Z}_{0}^{+}$, as in our sets of quasi-diagonal multiindices, \mathcal{J}, there is an one-to-one correspondence, \mathbf{i}, between the sets \mathbb{Z}_{+}^{d} and \mathbb{Z}_{0}^{+}given by, $\mathbf{i}(\vec{n})=|\vec{n}|=n$.

Let us consider, $B_{\vec{n}}$, be a sequence of type II multiple orthogonal polynomial with respect to the system of linear functionals $\left\{u^{1}, \ldots, u^{d}\right\}$ and multiindex \vec{n}. We identify $B_{\vec{n}} \equiv B_{|\vec{n}|}=B_{n}$.
Now we describe how to obtain the multi-orthogonality conditions of a sequence of monic type II multiple orthogonal polynomials, $\left\{B_{n}\right\}$, with respect to the system of linear functionals $\left\{u^{1}, u^{2}\right\}$ and quasi-diagonal multiindex \mathcal{J}, where $\mathcal{J}_{0}=\{(0,0),(1,0),(2,0),(2,1),(2,2),(3,2)\}$. By using the Definition 1, we have

$$
\begin{aligned}
& u^{1}\left(B_{1}\right)=0 \\
& u^{1}\left(B_{2}\right)=0, u^{1}\left(x B_{2}\right)=0 \\
& u^{1}\left(B_{3}\right)=0, u^{1}\left(x B_{3}\right)=0, u^{2}\left(B_{3}\right)=0 \\
& u^{1}\left(B_{4}\right)=0, u^{1}\left(x B_{4}\right)=0, u^{2}\left(B_{4}\right)=0, u^{2}\left(x B_{4}\right)=0 \\
& u^{1}\left(B_{5}\right)=0, u^{1}\left(x B_{5}\right)=0, u^{2}\left(B_{5}\right)=0, u^{2}\left(x B_{5}\right)=0, u^{1}\left(x^{2} B_{5}\right)=0 \\
& u^{1}\left(B_{6}\right)=0, u^{1}\left(x B_{6}\right)=0, u^{2}\left(B_{6}\right)=0, u^{2}\left(x B_{6}\right)=0, u^{1}\left(x^{2} B_{6}\right)=0 \\
& u^{2}\left(x^{2} B_{6}\right)=0
\end{aligned}
$$

The monic polynomials B_{1}, \ldots, B_{6} are defined by the multi-orthogonality conditions in terms of $\left\{u^{1}, x u^{1}, x^{2} u^{1}, u^{2}, x u^{2}, x^{2} u^{2}\right\}$, this multi-orthogonality conditions appear with the order suggested by the pattern block, \mathcal{J}_{0},

$$
\left\{u^{1}, x u^{1}, u^{2}, x u^{2}, x^{2} u^{1}, x^{2} u^{2}\right\} .
$$

Defining the linear functionals

$$
v^{1}:=u^{1}, \quad v^{2}:=x u^{1}, \quad v^{3}:=u^{2}, \quad v^{4}:=x u^{2}, \quad v^{5}:=x^{2} u^{1}, \quad v^{6}:=x^{2} u^{2}
$$

we have

$$
\begin{aligned}
& v^{1}\left(B_{1}\right)=0 \\
& v^{1}\left(B_{2}\right)=0, v^{2}\left(B_{2}\right)=0 \\
& v^{1}\left(B_{3}\right)=0, v^{2}\left(B_{3}\right)=0, v^{3}\left(B_{3}\right)=0 \\
& v^{1}\left(B_{4}\right)=0, v^{2}\left(B_{4}\right)=0, v^{3}\left(B_{4}\right)=0, v^{4}\left(B_{4}\right)=0 \\
& v^{1}\left(B_{5}\right)=0, v^{2}\left(B_{5}\right)=0, v^{3}\left(B_{5}\right)=0, v^{4}\left(B_{5}\right)=0, v^{5}\left(B_{5}\right)=0 \\
& v^{1}\left(B_{6}\right)=0, v^{2}\left(B_{6}\right)=0, v^{3}\left(B_{6}\right)=0, v^{4}\left(B_{6}\right)=0, v^{5}\left(B_{6}\right)=0, v^{6}\left(B_{6}\right)=0
\end{aligned}
$$

Similarly the monic polynomials B_{7}, \ldots, B_{12} are defined by the multiorthogonality conditions in terms of

$$
\left\{u^{1}, x u^{1}, x^{2} u^{1}, u^{2}, x u^{2}, x^{2} u^{2}, x^{3} u^{1}, x^{4} u^{1}, x^{5} u^{1}, x^{3} u^{2}, x^{4} u^{2}, x^{5} u^{2}\right\},
$$

this multi-orthogonality conditions appear with the order suggested by the pattern block \mathcal{J}_{0}

$$
\left\{u^{1}, x u^{1}, u^{2}, x u^{2}, x^{2} u^{1}, x^{2} u^{2}, x^{3} u^{1}, x^{4} u^{1}, x^{3} u^{2}, x^{4} u^{2}, x^{5} u^{1}, x^{5} u^{2}\right\},
$$

that can be written in terms of the linear functionals v^{1}, \ldots, v^{6} as

$$
\left\{v^{1}, v^{2}, v^{3}, v^{4}, v^{5}, v^{6}, x^{3} v^{1}, x^{3} v^{2}, x^{3} v^{3}, x^{3} v^{4}, x^{3} v^{5}, x^{3} v^{6}\right\} .
$$

More precisely

$$
\begin{aligned}
& v^{1}\left(B_{6 \times 1+1}\right)=0, \ldots, v^{6}\left(B_{6 \times 1+1}\right)=0, v^{1}\left(x^{3} B_{6 \times 1+1}\right)=0, \\
& v^{1}\left(B_{6 \times 1+2}\right)=0, \ldots, v^{6}\left(B_{6 \times 1+2}\right)=0, v^{\alpha}\left(x^{3} B_{6 \times 1+2}\right)=0, \alpha=1,2, \\
& v^{1}\left(B_{6 \times 1+3}\right)=0, \ldots, v^{6}\left(B_{6 \times 1+3}\right)=0, v^{\alpha}\left(x^{3} B_{6 \times 1+3}\right)=0, \alpha=1,2,3, \\
& v^{1}\left(B_{6 \times 1+4}\right)=0, \ldots, v^{6}\left(B_{6 \times 1+4}\right)=0, v^{\alpha}\left(x^{3} B_{6 \times 1+4}\right)=0, \alpha=1,2,3,4, \\
& v^{1}\left(B_{6 \times 1+5}\right)=0, \ldots, v^{6}\left(B_{6 \times 1+5)}=0, v^{\alpha}\left(x^{3} B_{6 \times 1+5}\right)=0, \alpha=1,2,3,4,5,\right. \\
& v^{1}\left(\left(x^{3}\right)^{i} B_{6 \times 2+0}\right)=0, \ldots, v^{6}\left(\left(x^{3}\right)^{i} B_{6 \times 2+0}\right)=0, i=0,1 .
\end{aligned}
$$

In general we can consider $n=6 r+k$ where $k=0,1,2,3,4,5$ and $r=$ $0,1, \ldots$, and we obtain the following type II multi-orthogonality conditions

$$
\left\{\begin{array}{l}
v^{j}\left(\left(x^{3}\right)^{i} B_{6 r+k}\right)=0, \quad i=0,1, \ldots, r-1, \quad j=1,2,3,4,5,6 \tag{3}\\
v^{\alpha}\left(\left(x^{3}\right)^{r} B_{6 r+k}\right)=0, \quad \alpha=1, \ldots, k .
\end{array}\right.
$$

Let Γ be a linear functional acting on the the vector space of the polynomials \mathbb{P} over \mathbb{C}^{6}, i.e., $\Gamma: \mathbb{P} \longrightarrow \mathbb{C}^{6}$, by
$\Gamma(P(x)):=\left[v^{1}(P(x)), v^{2}(P(x)), v^{3}(P(x)), v^{4}(P(x)), v^{5}(P(x)), v^{6}(P(x))\right]^{T}$.
The multi-orthogonality conditions (3), can be written in an equivalent way by

$$
\left\{\begin{array}{l}
\Gamma\left(\left(x^{3}\right)^{i} B_{6 r+k}\right)=0_{6 \times 1}, \quad i=0,1, \ldots, r-1 \\
v^{\alpha}\left(\left(x^{3}\right)^{r} B_{6 r+k}\right)=0, \quad \alpha=1, \ldots, k
\end{array}\right.
$$

for any pattern block presented in Example 2, we can obtain a new set of linear functionals, $\left\{v^{1}, v^{2}, v^{3}, v^{4}, v^{5}, v^{6}\right\}$, of type $\left\{x^{j} u^{k}: j=0,1,2, k=1,2\right\}$.

All of these new sets of linear functionals are respectively:

$$
\begin{aligned}
& \left\{u^{1}, u^{2}, x u^{1}, x u^{2}, x^{2} u^{1}, x^{2} u^{2}\right\},\left\{u^{1}, x u^{1}, u^{2}, x^{2} u^{1}, x u^{2}, x^{2} u^{2}\right\} \\
& \left\{u^{1}, u^{2}, x u^{1}, x^{2} u^{1}, x u^{2}, x^{2} u^{2}\right\},\left\{u^{1}, x u^{1}, x^{2} u^{1}, u^{2}, x u^{2}, x^{2} u^{2}\right\}
\end{aligned}
$$

Algorithm (Construction of linear functionals). Let us consider the sequence of monic type II multiple orthogonal polynomials, $\left\{B_{n}\right\}$, with respect to the system of linear functionals $\left\{u^{1}, \ldots, u^{d}\right\}$ and family of quasi-diagonal multi-indices given in Table $1, \mathcal{J}=\left\{\mathcal{J}_{0}, \mathcal{J}_{1}, \ldots, \mathcal{J}_{n}, \ldots\right\}$.

Let $v^{1}=u^{1}, v^{i}=x^{k_{i-1}^{j}} u^{j}, i=2, \ldots, s d-1$ where j, for each i, is uniquely defined by the condition $k_{i}^{j}=k_{i-1}^{j}+1$ and $v^{s d}=x^{s-1} u^{d}$. Hence, we have

$$
v^{i} \in\left\{x^{k} u^{j}: k=0,1, \ldots, s-1, j=1,2, \ldots, d\right\}, i=1,2, \ldots, s d
$$

Theorem 1. The sequence of monic polynomials, $\left\{B_{n}\right\}$, where $n=s d r+k$, $k=0,1, \ldots, s d-1$ and $r=0,1, \ldots$, is type II multiple orthogonal with respect to the regular system of linear functionals $\left\{u^{1}, \ldots, u^{d}\right\}$ and quasidiagonal multi-index \mathcal{J} if, and only if,

$$
\left\{\begin{array}{l}
v^{j}\left(\left(x^{s}\right)^{m} B_{s d r+i}\right)=0, m=0,1, \ldots, r-1, j=1, \ldots, s d \tag{4}\\
v^{\alpha}\left(\left(x^{s}\right)^{r} B_{s d r+i}\right)=0, \alpha=1, \ldots, i \\
v^{i+1}\left(\left(x^{s}\right)^{r} B_{s d r+i}\right) \neq 0,
\end{array}\right.
$$

where the linear functionals $v^{j}, j=1, \ldots$, sd are defined by the algorithm.
Proof: Let us consider the set of multi-indices

$$
\mathcal{J}_{0}=\left\{(0, \ldots, 0),(1,0, \ldots, 0), \ldots,\left(k_{i}^{1}, \ldots, k_{i}^{d}\right), \ldots,(s, \ldots, s, s-1)\right\} .
$$

The linear functionals $v^{1}, \ldots, v^{s d}$ are defined by the algorithm. We can verify that $v^{1}, \ldots, v^{i} \in\left\{x^{k} u^{j}, 0 \leq k \leq k_{i}^{j}-1, j=1, \ldots, d\right\}$, for $i=1, \ldots, s d$. Using the multi-orthogonality conditions of the polynomial B_{i} and multiindex $\left(k_{i}^{1}, \ldots, k_{i}^{d}\right)$ we have that $v^{j}\left(B_{i}\right)=0, j=1, \ldots, i$, for $i=1, \ldots, s d$.

We obtain the multi-orthogonality conditions for the polynomials $B_{s d+i}$, $i=1, \ldots, s d$. Let us consider the multi-index $\left(k_{i}^{1}, \ldots, k_{i}^{d}\right)+s(1, \ldots, 1)$ and let $j \in\{1, \ldots, d\}$ be uniquely defined by the condition $k_{i}^{j}=k_{i-1}^{j}+1$. We have

$$
u^{j}\left(x^{k_{i-1}^{j}+s} B_{s d+i}\right)=0 \Leftrightarrow x^{k_{i-1}^{j}} u^{j}\left(x^{s} B_{s d+i}\right)=0 \Leftrightarrow v^{i}\left(x^{s} B_{s d+i}\right)=0 .
$$

By the increasing structure of the multi-indices, $B_{s d+i}$ complies with the
multi-orthogonality conditions of $B_{1}, \ldots, B_{s d+i-1}$, in other words, this is sufficient to identify that,

$$
v^{j}\left(B_{s d+i}\right)=0, \quad j=1, \ldots, s d, \quad v^{\alpha}\left(x^{s} B_{s d+i}\right)=0, \quad \alpha=1, \ldots, i .
$$

Following the same reasoning we have that $B_{s d r+i}$ verify $v^{i}\left(x^{s r} B_{s d r+i}\right)=0$, and so,

$$
\left\{\begin{array}{l}
v^{j}\left(\left(x^{s}\right)^{m} B_{s d r+i}\right)=0, \quad m=0,1, \ldots, r-1, \quad j=1, \ldots, s d \\
v^{\alpha}\left(\left(x^{s}\right)^{r} B_{s d r+i}\right)=0, \quad \alpha=1, \ldots, i .
\end{array}\right.
$$

Finally, we show that $v^{i+1}\left(\left(x^{s}\right)^{r} B_{s d r+i}\right) \neq 0$. Let us suppose that,

$$
\left\{\begin{array}{l}
v^{j}\left(\left(x^{s}\right)^{m} B_{s d r+i}\right)=0, \quad m=0,1, \ldots, r-1, \quad j=1, \ldots, s d \\
v^{\alpha}\left(\left(x^{s}\right)^{r} B_{s d r+i}\right)=0, \quad \alpha=1, \ldots, i \\
v^{i+1}\left(\left(x^{s}\right)^{r} B_{s d r+i}\right)=0 .
\end{array}\right.
$$

Then the polynomial $B_{s d r+i}$ verify the multi-orthogonality conditions of the polynomial $B_{s d r+i+1}$ which contradicts the normality of the multi-indices. Hence, $v^{i+1}\left(\left(x^{s}\right)^{r} B_{s d r+i}\right) \neq 0$.
Reciprocally, for $n=s d r+i, i=1, \ldots, s d$

$$
\left\{\begin{array}{l}
v^{j}\left(\left(x^{s}\right)^{m} B_{s d r+i}\right)=0, \quad m=0,1, \ldots, r-1, \quad j=1, \ldots, s d \\
v^{\alpha}\left(\left(x^{s}\right)^{r} B_{s d r+i}\right)=0, \quad \alpha=1, \ldots, i,
\end{array}\right.
$$

and considering that the degree of B_{n} is equal to n by the normality of each of the multi-indices which implies the uniqueness of the monic type II multiple orthogonal polynomial sequence, B_{n}, with respect to the system of linear functionals $\left\{u^{1}, \ldots, u^{d}\right\}$ and quasi-diagonal multi-index n.

Let Γ be a linear functional acting on the the vector space of the polynomials \mathbb{P} over $\mathbb{C}^{s d}$, i.e., $\Gamma: \mathbb{P} \longrightarrow \mathbb{C}^{s d}$, by

$$
\Gamma(P(x)):=\left[\begin{array}{llll}
v^{1}(P(x)) & \ldots & v^{s d}(P(x))
\end{array}\right]^{T}, n \in \mathbb{N} .
$$

The multi-orthogonality conditions of type II (4), can be written in the equivalent way by

$$
\left\{\begin{array}{l}
\Gamma\left(\left(x^{s}\right)^{m} B_{s d r+i}\right)=0_{s d \times 1}, \quad m=0,1, \ldots, r-1 \tag{5}\\
v^{\alpha}\left(\left(x^{s}\right)^{r} B_{s d r+i}\right)=0, \alpha=1, \ldots, i \\
v^{i+1}\left(\left(x^{s}\right)^{r} B_{s d r+i}\right) \neq 0 .
\end{array}\right.
$$

2.3. The $(s(d+1)+1)$-term recurrence relation. Here we give the connection between a sequence of monic type II multiple orthogonal polynomials, $\left\{B_{n}\right\}$, with respect to the regular system of linear functionals $\left\{u^{1}, \ldots, u^{d}\right\}$ and quasi-diagonal multi-index \mathcal{J}, and the $(s(d+1)+1)$-term recurrence relation.

Theorem 2. Let $\left\{B_{n}\right\}$ be a monic type II multiple orthogonal polynomials sequence, with respect to a regular system of linear functionals $\left\{u^{1}, \ldots, u^{d}\right\}$ and quasi-diagonal multi-index \mathcal{J}. Then, there are sequences $\left(a_{n+s-1-k}^{n+s-1}\right) \subset \mathbb{C}$, $k=0,1, \ldots, s(d+1)-1$, such that,

$$
x^{s} B_{n}(x)=B_{n+s}(x)+\sum_{k=0}^{s(d+1)-1} a_{n+s-1-k}^{n+s-1} B_{n+s-1-k}(x), n=s d, s d+1, \ldots
$$

where $a_{n-s d}^{n+s-1} \neq 0$ and $B_{0}, B_{1}, \ldots, B_{s d-1}$ are given.
Proof: As the sequence of monic polynomials $\left\{B_{n}\right\}$ is a basis of the vector space \mathbb{P}, for each $n \in \mathbb{N}$, there is an unique sequence $\left(a_{j}^{n+s-1}\right) \subset \mathbb{C}$, such that:

$$
x^{s} B_{n}=B_{n+s}+\sum_{j=0}^{n+s-1} a_{j}^{n+s-1} B_{j} .
$$

Substituting n by $s d r+k$ where $k=0,1, \ldots, s d-1$ and $r=0,1, \ldots$, in the above identity, we have

$$
\begin{equation*}
x^{s} B_{s d r+k}-B_{s d r+k+s}=\sum_{j=0}^{s d r+k+s-1} a_{j}^{s d r+k+s-1} B_{j} . \tag{6}
\end{equation*}
$$

Let, $i=0,1, \ldots$. Multiplying both members of the above identity by $\left(x^{s}\right)^{i}$ and applying the linear functional Γ, we have

$$
\Gamma\left[\left(x^{s}\right)^{i+1} B_{s d r+k}\right]-\Gamma\left[\left(x^{s}\right)^{i} B_{s d r+k+s}\right]=\sum_{j=0}^{s d r+k+s-1} a_{j}^{s d r+k+s-1} \Gamma\left[\left(x^{s}\right)^{i} B_{j}\right]
$$

By the multi-orthogonality conditions (5), we have

$$
0_{s d \times 1}=\sum_{j=0}^{s d(i+1)-1} a_{j}^{s d r+k+s-1} \Gamma\left[\left(x^{s}\right)^{i} B_{j}\right] \text { for } i=0, \ldots, r-2 .
$$

Let $i=0$, we have $0_{s d \times 1}=\sum_{j=0}^{s d-1} a_{j}^{s d r+k+s-1} \Gamma\left(B_{j}\right)$, which leads us to the system of linear equations in matrix form:

$$
\left[\begin{array}{lll}
a_{0}^{s d r+k+s-1} & \cdots & a_{s d-1}^{s d r+k+s-1}
\end{array}\right]\left[\begin{array}{ccc}
v^{1}\left(B_{0}\right) & \cdots & v^{s d}\left(B_{0}\right) \\
& \ddots & \vdots \\
& & v^{s d}\left(B_{s d-1}\right)
\end{array}\right]=0_{s d \times 1} .
$$

Using, $\quad v^{1}\left(B_{0}\right) \neq 0, \ldots, v^{s d}\left(B_{s d-1}\right) \neq 0, \quad$ we have $a_{0}^{s d r+k+s-1}=0, \ldots$, $a_{s d-1}^{s d r+k+s-1}=0$.

Let $i=1$, we have $0_{s d \times 1}=\sum_{j=s d}^{2 s d-1} a_{j}^{s d r+k+s-1} \Gamma\left(x^{s} B_{j}\right)$, which leads us to the system of linear equations in matrix form:

$$
\left[\begin{array}{lll}
a_{s d}^{s d r+k+s-1} & \cdots & a_{2 s d-1}^{s d r+k+s-1}
\end{array}\right]\left[\begin{array}{ccc}
v^{1}\left(x^{s} B_{s d}\right) & \cdots & v^{s d}\left(x^{s} B_{s d}\right) \\
& \ddots & \vdots \\
& & v^{s d}\left(x^{s} B_{2 s d-1}\right)
\end{array}\right]=0_{s d \times 1}
$$

Using, $\quad v^{1}\left(x^{s} B_{s d}\right) \neq 0, \ldots, v^{s d}\left(x^{s} B_{2 s d-1}\right) \neq 0, \quad$ we have $a_{s d}^{s d r+k+s-1}=$ $0, \ldots, a_{2 s d-1}^{s d r+k+s-1}=0$.
Continuing in the same way, we obtain $a_{j s d}^{s d r+k+s-1}=0, \ldots, a_{(j+1) s d-1}^{s d r+k+s-1}=$ $0, j=2, \ldots, r-2$.
Now, considering the multi-orthogonality conditions written in (5), given by

$$
v^{\alpha}\left(\left(x^{s}\right)^{r} B_{s d r+k}\right)=0, \quad \alpha=1, \ldots, k
$$

and taking into account (6), we verify that

$$
v^{\alpha}\left[\left(x^{s}\right)^{i+1} B_{s d r+k}\right]-v^{\alpha}\left[\left(x^{s}\right)^{i} B_{s d r+k+s}\right]=0
$$

for $i=r-1$ and $\alpha=1, \ldots, k$ which leads us to the system of linear equations in matrix form:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a_{(r-1) s d}^{s d r+k+s-1} & \ldots & a_{(r-1) s d+k-1}^{s d r+k+s-1}
\end{array}\right]} \\
& \\
& \times\left[\begin{array}{ccc}
v^{1}\left(\left(x^{s}\right)^{r-1} B_{(r-1) s d}\right) & \cdots & v^{k}\left(\left(x^{s}\right)^{r-1} B_{(r-1) s d}\right) \\
& \ddots & \vdots \\
& & v^{k}\left(\left(x^{s}\right)^{r-1} B_{(r-1) s d+k-1}\right)
\end{array}\right]=0_{s d \times 1}
\end{aligned}
$$

Using, $\quad v^{1}\left(\left(x^{s}\right)^{r-1} B_{(r-1) s d}\right) \neq 0, \ldots, v^{k}\left(\left(x^{s}\right)^{r-1} B_{(r-1) s d+k-1}\right) \neq 0$, we have $a_{(r-1) s d}^{s d r+k+s-1}=0, \ldots, a_{(r-1) s d+k-1}^{s d r+k+s-1}=0$. Hence, we have $a_{0}^{s d r+k+s-1}=\cdots=$ $a_{(r-1) s d+k-1}^{s d r+k+s-1}=0$. Then,

$$
x^{s} B_{s d r+k}=B_{s d r+k+s}+\sum_{j=(r-1) s d+k}^{s d r+k+s-1} a_{j}^{s d r+k+s-1} B_{j}
$$

and the theorem is proved.
Definition 3. Let $\left\{B_{n}\right\}$ be a sequence of monic polynomials. The sequence $\left\{\mathcal{B}_{n}\right\}$ given by

$$
\mathcal{B}_{n}=\left[\begin{array}{lll}
B_{n s d} & \cdots & B_{(n+1) s d-1} \tag{7}
\end{array}\right]^{T}, n \in \mathbb{N}
$$

is said to be the vector sequence of polynomials associated to $\left\{B_{n}\right\}$.
Theorem 3. Let $\left\{B_{n}\right\}$ be a monic sequence of polynomials. Then, the following conditions are equivalent:
a) The sequence of polynomials $\left\{B_{n}\right\}$ verify the $(s(d+1)+1)$-term relation given by

$$
x^{s} B_{n}(x)=B_{n+s}(x)+\sum_{k=0}^{s(d+1)-1} a_{n+s-1-k}^{n+s-1} B_{n+s-1-k}(x), \quad n=s d, s d+1, \ldots,
$$

where $a_{n-s d}^{n+s-1} \neq 0$ and $B_{0}, B_{1}, \ldots, B_{s d-1}$ are given.
b) The vector sequence of polynomials $\left\{\mathcal{B}_{m}\right\}$ associated to the sequence of polynomials $\left\{B_{m}\right\}$ verify a three-term recurrence relation with $s d \times$ sd matrix coefficients, $x^{s} \mathcal{B}_{m}(x)=\alpha_{m}^{s, d} \mathcal{B}_{m+1}(x)+\beta_{m}^{s, d} \mathcal{B}_{m}(x)+\gamma_{m}^{s, d} \mathcal{B}_{m-1}(x), \quad m=$ $0,1, \ldots$, with $\mathcal{B}_{-1}=0_{s d \times 1}$ and \mathcal{B}_{0} given, where the matrix coefficients $\alpha_{m}^{s, d}$, $\beta_{m}^{s, d}$ and $\gamma_{m}^{s, d}$ are respectively given by

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & & & \\
a_{(m+s) d}^{(m+s) d} & \ddots & & \\
\vdots & \ddots & 1 & \\
a_{(m+s) d}^{m d+s(d+1)-2} & \ldots & a_{m d+s(d+1)-2}^{m d+s(d)-2} & 1
\end{array}\right] ;} \\
& {\left[\begin{array}{ccccccc}
a_{m d}^{m d+s-1} & \cdots & a_{m d+s-1}^{m d+s-1} & 1 & & \\
\vdots & & & \ddots & \ddots & & \\
& & \vdots & & & \\
a_{m d}^{(m+s) d-1} & \cdots & a_{m d+s-1}^{(m+s) d-1} & & \cdots & a_{(m+s) d-2}^{(m+s) d-1} & a_{(m+s) d-1}^{(m+s) d-1} \\
\vdots & & \vdots & & & \vdots & \vdots \\
a_{m d}^{m d+s(d+1)-2} & \cdots & a_{(m+s) d-1}^{m d+s(d+1)-2} & & \cdots & a_{(m+s) d-2}^{m d+s(d+1)-2} & a_{(m+s) d-1}^{m d+s(d+1)-2}
\end{array}\right] ;} \\
& {\left[\begin{array}{ccc}
a_{(m-s) d}^{m d+s-1} & \cdots & a_{m d-1}^{m d+s-1} \\
& \ddots & \vdots \\
& & a_{m d-1}^{m d+s(1+d)-2}
\end{array}\right] .}
\end{aligned}
$$

Proof: Taking into account the $(s(d+1)+1)$-term recurrence relation we obtain the matrix identity given by

$$
x^{s}\left[\begin{array}{c}
B_{n} \\
\vdots \\
B_{n+s d-1}
\end{array}\right]=\underline{\alpha}_{n}^{s, d}\left[\begin{array}{c}
B_{n+s d} \\
\vdots \\
B_{n+2 s d-1}
\end{array}\right]+\underline{\beta}_{n}^{s, d}\left[\begin{array}{c}
B_{n} \\
\vdots \\
B_{n+s d-1}
\end{array}\right]+\underline{q}_{n}^{s, d}\left[\begin{array}{c}
B_{n-s d} \\
\vdots \\
B_{n-1}
\end{array}\right],
$$

where the matrix coefficients $\underline{\alpha}_{n}^{s, d}, \underline{\beta}_{n}^{s, d}$ and $\underline{\mathcal{\gamma}}_{n}^{s, d}$ are respectively given by:

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & & & \\
a_{n+s d}^{n+s d} & \ddots & & \\
\vdots & \ddots & 1 & \\
a_{n+s d}^{n+s(d+1)-2} & \cdots & a_{n+s(d+1)-2}^{n+s(d+1)-2} & 1
\end{array}\right] ;} \\
& {\left[\begin{array}{ccccccc}
a_{n}^{n+s-1} & \cdots & a_{n+s-1}^{n+s-1} & 1 & & & \\
& & & \ddots & \ddots & & \\
\vdots & & \vdots & & & & \\
a_{n}^{n+s d-2} & \cdots & a_{n+s d-1}^{n+s-1} & & \cdots & a_{n}^{n+s d-2} & 1 \\
a_{n}^{n+s d-1} & \cdots & a_{n+s d-1}^{n+s-1} & & \cdots & a_{n+s d-1}^{n+s d-2} & a_{n+s d-1}^{n+s d-1} \\
\vdots & & \vdots & & & \vdots & \vdots \\
a_{n}^{n+s(d+1)-2} & \cdots & a_{n+s-1}^{n+s(d+1)-2} & & \cdots & a_{n+s d-2}^{n+s(d+1)-2} & a_{n+s d-1}^{n+s(d+1)-2}
\end{array}\right] ;} \\
& {\left[\begin{array}{ccc}
a_{n-s d}^{n+s-1} & \cdots & a_{n-1}^{n+s-1} \\
& \ddots & \vdots \\
& & a_{n-1}^{n+s(1+d)-2}
\end{array}\right] .}
\end{aligned}
$$

Taking $n=m d$ we obtain a three-term recurrence relation for vectors of polynomials $\left\{\mathcal{B}_{m}\right\}$ where $\mathcal{B}_{m}=\left[\begin{array}{lll}B_{m s d} & \cdots & B_{(m+1) s d-1}\end{array}\right]^{T}, m \in \mathbb{N}$, given by

$$
x^{s} \mathcal{B}_{m}=\alpha_{m}^{s, d} \mathcal{B}_{m+1}+\beta_{m}^{s, d} \mathcal{B}_{m}+\gamma_{m}^{s, d} \mathcal{B}_{m-1}, m=0,1, \ldots
$$

with initial conditions $\mathcal{B}_{-1}=0_{s d \times 1}$ and \mathcal{B}_{0}, and matrix coefficients $\alpha_{m}^{s, d}=$ $\underline{\alpha}_{m d}^{s, d}, \beta_{m}^{s, d}=\underline{\beta}_{m d}^{s, d}$ and $\gamma_{m}^{s, d}=\underline{\gamma}_{n}^{s, d}$. The converse is immediate.

3. Matrix interpretation of type II multi-orthogonality

In this section we present a matrix interpretation of the type II ortogonality conditions of a sequence of monic polynomials $\left\{B_{n}\right\}$, given in the Theorem 1, with respect to the regular system of linear functionals $\left\{u^{1}, \ldots, u^{d}\right\}$ and family of quasi-diagonal multi-indices, \mathcal{J}.

Let us consider the sequence of vectors of polynomials that we denote by

$$
\mathbb{P}^{s d}=\left\{\left[\begin{array}{lll}
P_{1} & \cdots & P_{s d}
\end{array}\right]^{T}: P_{j} \in \mathbb{P}\right\}
$$

We denote by $\mathcal{M}_{s d \times s d}$ the set of $s d \times s d$ matrices with entries in \mathbb{C}.
Let $\left\{\mathcal{P}_{j}\right\}$ be a sequence of vectors of polynomials given by

$$
\mathcal{P}_{j}=\left[\begin{array}{lll}
x^{j s d} & \cdots & x^{(j+1) s d-1} \tag{8}
\end{array}\right]^{T}, \quad j \in \mathbb{N} .
$$

Let $\left\{B_{n}\right\}$ be a sequence of polynomials, $\operatorname{deg} B_{n}=n, n \in \mathbb{N}$ and $\left\{\mathcal{B}_{n}\right\}$ where

$$
\mathcal{B}_{n}=\left[\begin{array}{lll}
B_{n s d} & \cdots & B_{(n+1) s d-1}
\end{array}\right]^{T}, \quad n \in \mathbb{N} .
$$

It is easy to see that

$$
\mathcal{B}_{n}=\sum_{j=0}^{n} B_{j}^{n} \mathcal{P}_{j}, \quad B_{j}^{n} \in \mathcal{M}_{s d \times s d}
$$

where the matrix coefficients $B_{j}^{n}, j=0,1, \ldots, n$ are uniquely determined.
Taking into account (8) we have that $\mathcal{P}_{j}=\left(x^{s d}\right)^{j} \mathcal{P}_{0}, j \in \mathbb{N}$. Therefore, $\mathcal{B}_{n}=V_{n}\left(x^{s d}\right) \mathcal{P}_{0}$, where V_{n} is a matrix polynomial of degree n and dimension $s d$, given by $V_{n}(x)=\sum_{j=0}^{n} B_{j}^{n} x^{j}, \quad B_{j}^{n} \in \mathcal{M}_{s d \times s d}$.
Definition 4. Let $v^{j}: \mathbb{P} \rightarrow \mathbb{C}$ with $j=1, \ldots, s d$ be linear functionals. We define the vector of functionals $\mathcal{U}=\left[\begin{array}{lll}v^{1} & \cdots & v^{s d}\end{array}\right]^{T}$ acting in $\mathbb{P}^{s d}$ over $\mathcal{M}_{s d \times s d}$, by

$$
\mathcal{U}(\mathcal{P}):=\left(\mathcal{U} \cdot \mathcal{P}^{T}\right)^{T}=\left[\begin{array}{ccc}
v^{1}\left(P_{1}\right) & \cdots & v^{s d}\left(P_{1}\right) \\
\vdots & \ddots & \vdots \\
v^{1}\left(P_{s d}\right) & \cdots & v^{s d}\left(P_{s d}\right)
\end{array}\right]
$$

where "." means the symbolic product of the vectors \mathcal{U} and \mathcal{P}^{T}.
Now we define an operation called left multiplication of a vector of functionals by a polynomial.
Definition 5. Let $\widehat{A}=\sum_{k=0}^{l} A_{k} x^{k}$ be a matrix polynomial of degree l where $A_{k} \in \mathcal{M}_{s d \times s d}$ and \mathcal{U} a vector of linear functionals. We define the vector of linear functionals, left multiplication of \mathcal{U} by a polynomial \widehat{A}, and denote it by $\widehat{A} \mathcal{U}$, to the map of $\mathbb{P}^{s d}$ to $\mathcal{M}_{s d \times s d}$, defined by:

$$
(\widehat{A} \mathcal{U})(\mathcal{P}):=\left(\widehat{A} \mathcal{U} \cdot \mathcal{P}^{T}\right)^{T}=\sum_{k=0}^{l}\left(x^{k} \mathcal{U}\right)(\mathcal{P})\left(A_{k}\right)^{T}
$$

Theorem 4. A sequence of monic polynomials $\left\{B_{m}\right\}$, is type II multiple orthogonal with respect to the regular system of linear functionals $\left\{u^{1}, \ldots, u^{d}\right\}$ and family of quasi-diagonal multi-indices \mathcal{J} if, and only if, the vector sequence of polynomials associated to $\left\{\mathcal{B}_{m}\right\}$ given by (7) verifies:

$$
\begin{align*}
& \text { i) }\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\mathcal{B}_{m}\right)=0_{s d \times s d}, \quad k=0,1, \ldots, m-1 \tag{9}\\
& \text { ii) }\left(\left(x^{s}\right)^{m} \mathcal{U}\right)\left(\mathcal{B}_{m}\right)=\Delta_{m},
\end{align*}
$$

where $\mathcal{U}=\left[\begin{array}{lll}v^{1} & \cdots & v^{s d}\end{array}\right]^{T}, v^{j}, j=1, \ldots, s d$ are defined by the algorithm, and Δ_{m} is a regular upper triangular sd \times sd matrix.

Proof: By Definition 4, we have

$$
\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\mathcal{B}_{m}\right)=\left[\begin{array}{ccc}
v^{1}\left(\left(x^{s}\right)^{k} B_{m s d}\right) & \cdots & v^{s d}\left(\left(x^{s}\right)^{k} B_{m s d}\right) \\
\vdots & \ddots & \vdots \\
v^{1}\left(\left(x^{s}\right)^{k} B_{(m+1) s d-1}\right) & \cdots & v^{s d}\left(\left(x^{s}\right)^{k} B_{(m+1) s d-1}\right)
\end{array}\right] .
$$

Using the ortogonality conditions of type II in Theorem 1 we have the conditions (9), and reciprocally.

Definition 6. Let $\left\{\mathcal{B}_{m}\right\}$ be a vector sequence of polynomials where each $\mathcal{B}_{m}=\left[B_{m, 1} \ldots B_{m, s d}\right]^{T}, m \in \mathbb{N}$, such that $\mathcal{B}_{m}=\sum_{j=0}^{m} B_{j}^{m} \mathcal{P}_{j}$ where $B_{j}^{m} \in$ $\mathcal{M}_{s d \times s d}$ and let $\mathcal{U}=\left[\begin{array}{lll}v^{1} & \cdots & v^{s d}\end{array}\right]^{T}$ be the vector of linear functionals. We say that $\left\{\mathcal{B}_{m}\right\}$ is type II multiple orthogonal with respect to the vector of linear functionals \mathcal{U} if

$$
\begin{align*}
& \text { i) }\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\mathcal{B}_{m}\right)=0_{s d \times s d}, \quad k=0,1, \ldots, m-1 \tag{10}\\
& \text { ii) }\left(\left(x^{s}\right)^{m} \mathcal{U}\right)\left(\mathcal{B}_{m}\right)=\Delta_{m},
\end{align*}
$$

where Δ_{m} is a regular $s d \times s d$ matrix.
Lemma 1. Let $\left\{\mathcal{B}_{m}\right\}$ be a vector sequence of polynomials where each $\mathcal{B}_{m}=$ $\left[\begin{array}{lll}B_{m, 1} & \cdots & B_{m, s d}\end{array}\right]^{T}, m \in \mathbb{N}$, such that $\mathcal{B}_{m}=\sum_{j=0}^{m} B_{j}^{m} \mathcal{P}_{j}$ where $B_{j}^{m} \in \mathcal{M}_{s d \times s d}$. If B_{m}^{m} is a regular matrix, for a $m \in \mathbb{N}$, then the set of polynomials $\left\{B_{m, 1}, \ldots\right.$, $\left.B_{m, s d}\right\}$ is linearly independent.

Proof: Let $\alpha_{i} \in \mathbb{R}, i=1,2, \ldots, s d$, such that

$$
\alpha_{1} B_{m, 1}+\cdots+\alpha_{s d} B_{m, s d}=0 \text {, i.e., } \quad\left[\begin{array}{lll}
\alpha_{1} & \cdots & \alpha_{s d}
\end{array}\right]\left[\begin{array}{c}
B_{m, 1} \\
\vdots \\
B_{m, s d}
\end{array}\right]=0
$$

And so, $\alpha \mathcal{B}_{m}=0$, with $\alpha=\left[\alpha_{1} \ldots \alpha_{s d}\right]$. Hence,

$$
\alpha \sum_{j=0}^{m} B_{j}^{m} \mathcal{P}_{j}=0, \text { i.e., } \quad \sum_{j=0}^{m} \alpha B_{j}^{m} \mathcal{P}_{j}=0
$$

As $\left\{1, \ldots, x^{(m+1) s d-1}\right\}$ is a linearly independent set of functions, we have

$$
\alpha B_{j}^{m}=0, \quad j=0,1, \ldots, m
$$

If B_{m}^{m} is a regular matrix then $\alpha=0_{1 \times s d}$, as was our purpose to show.

Lemma 2. Let $\left\{\mathcal{B}_{m}\right\}$ be a vector sequence of polynomials where each $\mathcal{B}_{m}=$ $\left[\begin{array}{lll}B_{m, 1} & \cdots & B_{m, s d}\end{array}\right]^{T}, m \in \mathbb{N}$, such that $\mathcal{B}_{m}=\sum_{j=0}^{m} B_{j}^{m} \mathcal{P}_{j}$ where $B_{j}^{m} \in \mathcal{M}_{s d \times s d}$. If B_{m}^{m} is a regular matrix, for all $m \in \mathbb{N}$, then the set of polynomials $\left\{B_{m, j}, j=1, \ldots, s d, m \in \mathbb{N}\right\}$, is linearly independent.
Proof: It is sufficient to prove for each $m \in \mathbb{N}$ that the set of polynomials $\left\{B_{k, j}, j=1, \ldots, s d, k=0,1, \ldots, m\right\}$ is linearly independent. Let

$$
\begin{array}{lll}
\alpha= & {\left[\begin{array}{lll}
\alpha_{1} & \cdots & \alpha_{s d}
\end{array}\right],} & \alpha_{i} \in \mathbb{R} \\
\vdots \\
\beta=\left[\begin{array}{lll}
\beta_{1} & \cdots & \beta_{s d}
\end{array}\right], & \beta_{i} \in \mathbb{R} \\
\gamma=\left[\begin{array}{lll}
\gamma_{1} & \cdots & \gamma_{s d}
\end{array}\right], & \gamma_{i} \in \mathbb{R} .
\end{array}
$$

We have

$$
\begin{aligned}
& \sum_{i=1}^{s d} \alpha_{i} B_{0, i}+\cdots+\sum_{i=1}^{s d} \beta_{i} B_{m-1, i}+\sum_{i=1}^{s d} \gamma_{i} B_{m, i}=0 \\
& \begin{aligned}
\alpha \mathcal{B}_{0}+\cdots+\beta \mathcal{B}_{m-1}+\gamma & \mathcal{B}_{m}=0
\end{aligned} \\
& \left.\begin{array}{r}
\alpha\left(B_{0}^{0} \mathcal{P}_{0}\right)+\cdots+\beta\left(B_{0}^{m-1} \mathcal{P}_{0}+\cdots\right.
\end{array} \quad+B_{m-1}^{m-1} \mathcal{P}_{m-1}\right) \\
& \quad+\gamma\left(B_{0}^{m} \mathcal{P}_{0}+\cdots+B_{m}^{m} \mathcal{P}_{m}\right)=0 \\
& \left(\alpha B_{0}^{0}+\cdots+\beta B_{0}^{m-1}+\gamma B_{0}^{m}\right) \mathcal{P}_{0}+\cdots \\
& \quad+\left(\beta B_{m-1}^{m-1}+\gamma B_{m-1}^{m}\right) \mathcal{P}_{m-1}+\gamma B_{m}^{m} \mathcal{P}_{m}=0
\end{aligned}
$$

As $\left\{1, x, \ldots, x^{(m+1) s d-1}\right\}$ is a linearly independent set of functions, we have

$$
\left\{\begin{array}{l}
\alpha B_{0}^{0}+\cdots+\beta B_{0}^{m-1}+\gamma B_{0}^{m}=0 \\
\quad \vdots \\
\beta B_{m-1}^{m-1}+\gamma B_{m-1}^{m}=0 \\
\gamma B_{m}^{m}=0
\end{array}\right.
$$

Using the regularity of the matrices $B_{0}^{0}, \ldots, B_{m}^{m}$ we obtain that $\gamma=0_{1 \times s d}, \beta=$ $0_{1 \times s d}, \ldots, \alpha=0_{1 \times s d}$ and so the set of polynomials $\left\{B_{k, j}, j=1, \ldots, s d, k=\right.$ $0,1, \ldots, m\}$ is linearly independent.
Definition 7. Let $\left\{\mathcal{B}_{m}\right\}$ be a vector sequence of polynomials where $\mathcal{B}_{m}=$ $\left[\begin{array}{lll}B_{m, 1} & \cdots & B_{m, s d}\end{array}\right]^{T}, m \in \mathbb{N}$, such that $\mathcal{B}_{m}=\sum_{j=0}^{m} B_{j}^{m} \mathcal{P}_{j}$ where $B_{j}^{m} \in \mathcal{M}_{s d \times s d}$. We say that $\left\{\mathcal{B}_{m}\right\}$ is a free vector sequence if B_{m}^{m} is a regular matrix for $m \in \mathbb{N}$.
Lemma 3. Let $\left\{\mathcal{B}_{m}\right\}$ be a vector type II multiple orthogonal polynomials sequence, with respect to the vector of linear functionals \mathcal{U}. Let us consider
$\mathcal{Q}_{m}=\mathcal{C}_{m} \mathcal{B}_{m}, m \in \mathbb{N}$ where \mathcal{C}_{m} are sd $\times s d$ regular matrices. Then $\left\{\mathcal{Q}_{m}\right\}$ is also type II multiple orthogonal polynomial sequence, with respect to the vector of linear functionals \mathcal{U}.
Proof: Let $\left\{\mathcal{B}_{m}\right\}$ be a vector type II multiple orthogonal polynomials sequence, with respect to the vector of linear functionals \mathcal{U}, i.e.,

$$
\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\mathcal{B}_{m}\right)=\Delta_{m} \delta_{k, m}, \quad k=0,1, \ldots, m, \quad m \in \mathbb{N}
$$

where Δ_{m} is a regular $s d \times s d$ matrix. From

$$
\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\mathcal{B}_{m}\right)=\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\left(\mathcal{C}_{m}\right)^{-1} \mathcal{C}_{m} \mathcal{B}_{m}\right)=\left(\mathcal{C}_{m}\right)^{-1}\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\mathcal{Q}_{m}\right)
$$

we have

$$
\left(\mathcal{C}_{m}\right)^{-1}\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\mathcal{Q}_{m}\right)=\Delta_{m} \delta_{k, m}, \quad k=0,1, \ldots, m, \quad m \in \mathbb{N}
$$

hence

$$
\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\mathcal{Q}_{m}\right)=\mathcal{C}_{m} \Delta_{m} \delta_{k, m}, \quad k=0,1, \ldots, m, \quad m \in \mathbb{N}
$$

where $\mathcal{C}_{m} \Delta_{m}$ is a regular $s d \times s d$ matrix. Hence, the vector sequence of polynomials, $\left\{\mathcal{Q}_{m}\right\}$, is type II multiple orthogonal with respect to the vector of linear functionals \mathcal{U}.

Example 3. Let $\left\{\mathcal{B}_{m}\right\}$ be a vector type II multiple orthogonal polynomials sequence, with respect to the vector of linear functionals \mathcal{U} and $\left\{\widehat{\mathcal{B}}_{m}\right\}$ a vector sequence of polynomials with $\widehat{\mathcal{B}}_{m}=\left(B_{0}^{0}\right)^{-1} \mathcal{B}_{m}, m \in \mathbb{N}$, where the matrix B_{0}^{0} is such that $\mathcal{B}_{0}=B_{0}^{0} \mathcal{P}_{0}$. The vector sequence of polynomials $\left\{\widehat{\mathcal{B}}_{m}\right\}$ is also type II multiple orthogonal with respect to the vector of linear functionals \mathcal{U}. In fact, being $\left\{\mathcal{B}_{m}\right\}$ a vector sequence type II multiple orthogonal polynomials, with respect to the vector of linear functionals \mathcal{U}, we have

$$
\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\mathcal{B}_{m}\right)=\Delta_{m} \delta_{k, m}, \quad k=0,1, \ldots, m, \quad m \in \mathbb{N}
$$

where Δ_{m} is a regular $s d \times s d$ matrix, i.e.,

$$
\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\widehat{\mathcal{B}}_{m}\right)=\left(B_{0}^{0}\right)^{-1} \Delta_{m} \delta_{k, m}, \quad k=0,1, \ldots, m, \quad m \in \mathbb{N}
$$

where $\left(B_{0}^{0}\right)^{-1} \Delta_{m}$ is a regular $s d \times s d$ matrix. Hence, the vector sequence of polynomials $\left\{\widehat{\mathcal{B}}_{m}\right\}$ is type II multiple orthogonal with respect to the vector of linear functionals \mathcal{U}.

Example 4. Let $\left\{\mathcal{B}_{m}\right\}$ be a vector sequence type II multiple orthogonal polynomials, with respect to the vector of linear functionals \mathcal{U} and $\left\{\breve{\mathcal{B}}_{m}\right\}$ a vector sequence of polynomials with $\breve{\mathcal{B}}_{m}=\Delta_{m}^{-1} \mathcal{B}_{m}, m \in \mathbb{N}$. The vector sequence of polynomials $\left\{\breve{\mathcal{B}}_{m}\right\}$ is also type II multiple orthogonal, with respect to the vector of linear functionals \mathcal{U}. In fact, being $\left\{\mathcal{B}_{m}\right\}$ a vector sequence type II multiple orthogonal polynomials, with respect to the vector of linear functionals \mathcal{U}, we have

$$
\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\mathcal{B}_{m}\right)=\Delta_{m} \delta_{k, m}, \quad k=0,1, \ldots, m, \quad m \in \mathbb{N}
$$

where Δ_{m} is a regular $s d \times s d$ matrix, i.e.,

$$
\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\breve{\mathcal{B}}_{m}\right)=I_{s d \times s d} \delta_{k, m}, \quad k=0,1, \ldots, m, \quad m \in \mathbb{N}
$$

and so the vector sequence of polynomials, $\left\{\breve{\mathcal{B}}_{m}\right\}$, is type II multiple orthogonal with respect to the vector of linear functionals \mathcal{U}.

Now we introduce the notions of moments and Hankel matrices by blocks associated to the vector of linear functionals \mathcal{U}.

Definition 8. We define the the moments of order $j \in \mathbb{N}$ associated to the vector of linear functionals $\left(x^{s}\right)^{k} \mathcal{U}$, by

$$
\mathcal{U}_{j}^{k}:=\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\mathcal{P}_{j}\right)=\left[\begin{array}{ccc}
v^{1}\left(x^{j s d+k s}\right) & \cdots & v^{s d}\left(x^{j s d+k s}\right) \tag{11}\\
\vdots & \ddots & \vdots \\
v^{1}\left(x^{(j+1) s d+k s-1}\right) & \cdots & v^{s d}\left(x^{(j+1) s d+k s-1}\right)
\end{array}\right]
$$

Definition 9. We define Hankel matrices by

$$
\mathcal{H}_{m}=\left[\begin{array}{ccc}
\mathcal{U}_{0}^{0} & \cdots & \mathcal{U}_{0}^{m} \tag{12}\\
\vdots & \ddots & \vdots \\
\mathcal{U}_{m}^{0} & \cdots & \mathcal{U}_{m}^{m}
\end{array}\right], m \in \mathbb{N}
$$

where \mathcal{U}_{j}^{k} are the moments of order j associated to the vector of linear functionals $\left(x^{s}\right)^{k} \mathcal{U}$ given by (11).

Definition 10. The vector of linear functionals \mathcal{U} is said to be regular if $\operatorname{det} \mathcal{H}_{m} \neq 0, m \in \mathbb{N}$, where \mathcal{H}_{m} is given by (12).

Theorem 5. Let \mathcal{U} be a vector of linear functionals. Then \mathcal{U} is regular if, and only if, given a sequence of regular $s d \times$ sd matrices, $\left(\Delta_{m}\right)$, there is a unique free vector sequence $\left\{\mathcal{B}_{m}\right\}$ where $\mathcal{B}_{m}=\left[\begin{array}{ccc}B_{m, 1} & \cdots & B_{m, s d}\end{array}\right]^{T}, m \in \mathbb{N}$, such that
i) $\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\mathcal{B}_{m}\right)=0_{s d \times s d}, \quad k=0,1, \ldots, m-1$
ii) $\left(\left(x^{s}\right)^{m} \mathcal{U}\right)\left(\mathcal{B}_{m}\right)=\Delta_{m}$,
i.e, $\left\{\mathcal{B}_{m}\right\}$ is type II multiple orthogonal polynomial sequence, with respect to the vector of linear functionals \mathcal{U}.

Proof: Let $\left\{\mathcal{B}_{m}\right\}, \mathcal{B}_{m}=\left[\begin{array}{lll}B_{m, 1} & \cdots & B_{m, s d}\end{array}\right]^{T}, m \in \mathbb{N}$, be a vector sequence of polynomials, such that $\mathcal{B}_{m}=\sum_{j=0}^{m} B_{j}^{m} \mathcal{P}_{j}$ where $B_{j}^{m} \in \mathcal{M}_{s d \times s d}$. By the multi-orthogonality conditions (10) the vector sequence of polynomials $\left\{\mathcal{B}_{m}\right\}$
is type II multiple orthogonal with respect to the vector of linear functionals \mathcal{U} if for $k=0, \ldots, m-1$

$$
\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\mathcal{B}_{m}\right)=\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\sum_{j=0}^{m} B_{j}^{m} \mathcal{P}_{j}\right)=\sum_{j=0}^{m} B_{j}^{m}\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\mathcal{P}_{j}\right)=0_{s d \times s d}
$$

and for all $m \in \mathbb{N}$,

$$
\begin{equation*}
\left(\left(x^{s}\right)^{m} \mathcal{U}\right)\left(\mathcal{B}_{m}\right)=\left(\left(x^{s}\right)^{m} \mathcal{U}\right)\left(\sum_{j=0}^{m} B_{j}^{m} \mathcal{P}_{j}\right)=\sum_{j=0}^{m} B_{j}^{m}\left(\left(x^{s}\right)^{m} \mathcal{U}\right)\left(\mathcal{P}_{j}\right)=\Delta_{m} \tag{13}
\end{equation*}
$$

In matrix form we have,

$$
\left[\begin{array}{lll}
B_{0}^{m} & \cdots & B_{m}^{m}
\end{array}\right]\left[\begin{array}{ccc}
\mathcal{U}_{0}^{0} & \cdots & \mathcal{U}_{0}^{m} \\
\vdots & \ddots & \vdots \\
\mathcal{U}_{m}^{0} & \cdots & \mathcal{U}_{m}^{m}
\end{array}\right]=\left[\begin{array}{llll}
0_{s d \times s d} & \cdots & 0_{s d \times s d} & \Delta_{m}
\end{array}\right] .
$$

Supposing the regularity of the vector of linear functionals \mathcal{U}, we have

$$
\left[\begin{array}{lll}
B_{0}^{m} & \cdots & B_{m}^{m}
\end{array}\right]=\left[\begin{array}{llll}
0_{s d \times s d} & \cdots & 0_{s d \times s d} & \Delta_{m}
\end{array}\right]\left[\begin{array}{ccc}
\mathcal{U}_{0}^{0} & \cdots & \mathcal{U}_{0}^{m} \\
\vdots & \ddots & \vdots \\
\mathcal{U}_{m}^{0} & \cdots & \mathcal{U}_{m}^{m}
\end{array}\right]^{-1}
$$

Therefore,

$$
\mathcal{B}_{m}=\left[\begin{array}{llll}
0_{s d \times s d} & \cdots & 0_{s d \times s d} & \Delta_{m}
\end{array}\right]\left[\begin{array}{ccc}
\mathcal{U}_{0}^{0} & \cdots & \mathcal{U}_{0}^{m} \\
\vdots & \ddots & \vdots \\
\mathcal{U}_{m}^{0} & \cdots & \mathcal{U}_{m}^{m}
\end{array}\right]^{-1}\left[\begin{array}{c}
\mathcal{P}_{0} \\
\vdots \\
\mathcal{P}_{m}
\end{array}\right] .
$$

Taking $m=0$ in (13), we have $B_{0}^{0} \mathcal{U}_{0}^{0}=\Delta_{0}$.
Using the regularity of the matrices \mathcal{U}_{0}^{0} and Δ_{0} we have that B_{0}^{0} is a regular matrix. Similarly, taking $m=1$ in (13), we have

$$
\left\{\begin{array}{l}
B_{0}^{1} \mathcal{U}_{0}^{0}+B_{1}^{1} \mathcal{U}_{1}^{0}=0_{s d \times s d} \\
B_{0}^{1} \mathcal{U}_{0}^{1}+B_{1}^{1} \mathcal{U}_{1}^{1}=\Delta_{1},
\end{array}, \text { i.e., } B_{1}^{1}\left(\mathcal{U}_{1}^{1}-\mathcal{U}_{1}^{0}\left(\mathcal{U}_{0}^{0}\right)^{-1} \mathcal{U}_{0}^{1}\right)=\Delta_{1} .\right.
$$

Using the regularity of the \mathcal{U} and by the triangular structure by blocks, we have $\operatorname{det}\left(\mathcal{U}_{1}^{1}-\mathcal{U}_{1}^{0}\left(\mathcal{U}_{0}^{0}\right)^{-1} \mathcal{U}_{0}^{1}\right) \neq 0$, and so B_{1}^{1} is a regular matrix.

Using the same argument we can conclude that B_{m}^{m} is a regular matrix and so $\left\{\mathcal{B}_{m}\right\}$ is a free vector sequence.

Reciprocally and in a similar way if $B_{m}^{m}, m \in \mathbb{N}$, is regular we obtain a regularity of the \mathcal{U}.

In section 2 we have proved that a sequence of monic type II multiple orthogonal polynomials, $\left\{B_{n}\right\}$, with respect to the regular system of linear functionals $\left\{u^{1}, \ldots, u^{d}\right\}$ and quasi-diagonal multi-index \mathcal{J} verify a $(s(d+1)+$ $1)$-term recurrence relation and we rewrote this recurrence relation in matrix
form, obtaining a three-term recurrence relation for vector polynomials with matrix coefficients. Now we prove the converse of this result which is called the Favard type theorem.

Theorem 6. Let $\left\{B_{n}\right\}$ be a sequence of monic type II multiple orthogonal polynomials, with respect to a regular system of linear functionals $\left\{u^{1}, \ldots, u^{d}\right\}$ and quasi-diagonal multi-index \mathcal{J} and let $\mathcal{U}=\left[v^{1} \ldots v^{s d}\right]^{T}$ be the vector of linear functionals where $v^{j}, j=1, \ldots$ sd are defined by the algorithm. Then, the following conditions are equivalent:
a) The vector sequence of polynomials $\left\{\mathcal{B}_{m}\right\}$ is type II multiple orthogonal with respect to the vector of linear functionals \mathcal{U}, i.e.,

$$
\begin{equation*}
\left(\left(x^{s}\right)^{k} \mathcal{U}\right)\left(\mathcal{B}_{m}\right)=\Delta_{m} \delta_{k, m}, \quad k=0,1, \ldots, m, \quad m \in \mathbb{N} \tag{14}
\end{equation*}
$$

where Δ_{m} is a regular upper triangular $s d \times s d$ matrix given by

$$
\Delta_{m}=\gamma_{m}^{s, d} \cdots \gamma_{1}^{s, d} \Delta_{0}, \quad m=1,2, \ldots,
$$

and Δ_{0} is an upper triangular sd \times sd matrix.
b) There exist sequences of $s d \times$ sd matrices $\left(\alpha_{m}^{s, d}\right),\left(\beta_{m}^{s, d}\right)$ and $\left(\gamma_{m}^{s, d}\right), m \in \mathbb{N}$, with $\gamma_{m}^{s, d}$ regular upper triangular matrix such that \mathcal{B}_{m} is defined by the threeterm recurrence relation with $s d \times$ sd matrix coefficients given by

$$
\begin{equation*}
x^{s} \mathcal{B}_{m}(x)=\alpha_{m}^{s, d} \mathcal{B}_{m+1}(x)+\beta_{m}^{s, d} \mathcal{B}_{m}(x)+\gamma_{m}^{s, d} \mathcal{B}_{m-1}(x), \quad m=0,1, \ldots \tag{15}
\end{equation*}
$$

with $\mathcal{B}_{-1}=0_{d \times 1}$ and \mathcal{B}_{0} given.
Proof: $a) \Rightarrow b$). It proven in the Theorem 3.
$b) \Rightarrow a)$. We build a vector of linear functionals \mathcal{U} that verifies (14) defined uniquely taking into account its moments \mathcal{U}_{m}^{k} from the conditions:

$$
\begin{equation*}
\mathcal{U}\left(\mathcal{B}_{0}\right)=\Delta_{0}, \quad \mathcal{U}\left(\mathcal{B}_{j}\right)=0_{s d \times s d}, \quad j=1,2, \ldots \tag{16}
\end{equation*}
$$

As $\left\{\mathcal{P}_{m}\right\}$ is a basis of $\mathbb{P}^{s d}$, for each $m \in \mathbb{N}$, there is an unique sequence $\left(B_{j}^{m}\right) \subset \mathcal{M}_{s d \times s d}$, such that, $\mathcal{B}_{m}=\sum_{j=0}^{m} B_{j}^{m} \mathcal{P}_{j}$.

- Let $k=0$. We have

$$
\begin{aligned}
& \mathcal{U}\left(\mathcal{B}_{0}\right)=B_{0}^{0} \mathcal{U}\left(\mathcal{P}_{0}\right) \text { and so } \mathcal{U}_{0}^{0}=\left(B_{0}^{0}\right)^{-1} \mathcal{U}\left(\mathcal{B}_{0}\right), \\
& \mathcal{U}\left(\mathcal{B}_{m}\right)=\sum_{j=0}^{m} B_{j}^{m} \mathcal{U}\left(\mathcal{P}_{j}\right), \text { i.e., } \mathcal{U}_{m}^{0}=-\sum_{j=0}^{m-1}\left(B_{m}^{m}\right)^{-1} B_{j}^{m} \mathcal{U}_{j}^{0}, m=1,2, \ldots .
\end{aligned}
$$

- Let $k=1,2, \ldots$ Using (15) we have

$$
\left(x^{s}\right)^{k} \mathcal{B}_{m}=\alpha_{m}^{s, d} x^{s(k-1)} \mathcal{B}_{m+1}+\beta_{m}^{s, d} x^{s(k-1)} \mathcal{B}_{m}+\gamma_{m}^{s, d} x^{s(k-1)} \mathcal{B}_{m-1}
$$

For $m=0$ we have

$$
\mathcal{U}\left(\left(x^{s}\right)^{k} \mathcal{B}_{0}\right)=\alpha_{0}^{s, d} \mathcal{U}\left(x^{s(k-1)} \mathcal{B}_{1}\right)+\beta_{0}^{s, d} \mathcal{U}\left(x^{s(k-1)} \mathcal{B}_{0}\right)
$$

i.e.,

$$
\mathcal{U}_{0}^{k}=\left(B_{0}^{0}\right)^{-1} \times\left[\alpha_{0}^{s, d} B_{1}^{1} \mathcal{U}_{1}^{s(k-1)}+\left(\alpha_{0}^{s, d} B_{0}^{1}+\beta_{0}^{s, d} B_{0}^{0}\right)\right] \mathcal{U}_{0}^{s(k-1)}
$$

For $m=1$ we have
i.e.,

$$
\begin{aligned}
& \mathcal{U}\left(\left(x^{s}\right)^{k} \mathcal{B}_{1}\right)=\alpha_{1}^{s, d} \mathcal{U}\left(x^{s(k-1)} \mathcal{B}_{2}\right)+\beta_{1}^{s, d} \mathcal{U}\left(x^{s(k-1)} \mathcal{B}_{1}\right)+\gamma_{1}^{s, d} \mathcal{U}\left(x^{s(k-1)} \mathcal{B}_{0}\right) \\
& \begin{aligned}
& \mathcal{U}_{1}^{k}=\left(B_{1}^{1}\right)^{-1}\left[\alpha_{1}^{s, d} B_{2}^{2} \mathcal{U}_{2}^{s(k-1)}+\left(\alpha_{1}^{s, d} B_{1}^{2}+\beta_{1}^{s, d} B_{1}^{1}\right) \mathcal{U}_{1}^{s(k-1)}\right] \\
& \quad+\left(B_{1}^{1}\right)^{-1}\left[\left(\alpha_{1}^{s, d} B_{0}^{2}+\beta_{1}^{s, d} B_{0}^{1}+\gamma_{1}^{s, d} B_{0}^{0}\right) \mathcal{U}_{0}^{s(k-1)}-B_{0}^{1} \mathcal{U}_{0}^{k}\right]
\end{aligned}
\end{aligned}
$$

For $m \leq k$, we have

$$
\begin{aligned}
& \mathcal{U}\left(\left(x^{s}\right)^{k} \mathcal{B}_{m}\right)= \alpha_{m}^{s, d} \mathcal{U}\left(x^{s(k-1)} \mathcal{B}_{m+1}\right)+\beta_{m}^{s, d} \mathcal{U}\left(x^{s(k-1)} \mathcal{B}_{m}\right)+\gamma_{m}^{s, d} \mathcal{U}\left(x^{s(k-1)} \mathcal{B}_{m-1}\right), \\
& \mathcal{U}\left(\left(x^{s}\right)^{k} \mathcal{B}_{m}\right)=\alpha_{m}^{s, d} \sum_{j=0}^{m+1} B_{j}^{m+1} \mathcal{U}_{j}^{k-1}+\beta_{m}^{s, d} \sum_{j=0}^{m-1} B_{j}^{m} \mathcal{U}_{j}^{k-1}+\gamma_{m}^{s, d} \sum_{j=0} B_{j}^{m-1} \mathcal{U}_{j}^{k-1} \\
& \mathcal{U}\left(\left(x^{s}\right)^{k} \mathcal{B}_{m}\right)=\sum_{j=0}^{m-1}\left(\alpha_{m}^{s, d} B_{j}^{m+1}+\beta_{m}^{s, d} B_{j}^{m}+\gamma_{m}^{s, d} B_{j}^{m-1}\right) \mathcal{U}_{j}^{k-1} \\
& \quad \quad \quad\left(\alpha_{m}^{s, d} B_{m}^{m+1}+\beta_{m}^{s, d} B_{m}^{m}\right) \mathcal{U}_{m}^{k-1}+\alpha_{m}^{s, d} B_{m+1}^{m+1} \mathcal{U}_{m+1}^{k-1} .
\end{aligned}
$$

Taking into account that,

$$
\mathcal{U}\left(\left(x^{s}\right)^{k} \mathcal{B}_{m}\right)=\mathcal{U}\left(\left(x^{s}\right)^{k} \sum_{j=0}^{m} B_{j}^{m} \mathcal{P}_{j}\right)=B_{m}^{m} \mathcal{U}_{m}^{k}+\sum_{j=0}^{m-1} B_{j}^{m} \mathcal{U}_{j}^{k},
$$

we have

$$
\begin{aligned}
\mathcal{U}_{m}^{k}= & \left(B_{m}^{m}\right)^{-1} \sum_{j=0}^{m-1}\left(\alpha_{m}^{s, d} B_{j}^{m+1}+\beta_{m}^{s, d} B_{j}^{m}+\gamma_{m}^{s, d} B_{j}^{m-1}\right) \mathcal{U}_{j}^{k-1} \\
& +\left(B_{m}^{m}\right)^{-1}\left(\left(\alpha_{m}^{s, d} B_{m}^{m+1}+\beta_{m}^{s, d} B_{m}^{m}\right) \mathcal{U}_{m}^{k-1}+\alpha_{m}^{s, d} B_{m+1}^{m+1} \mathcal{U}_{m+1}^{k-1}-\sum_{j=0}^{m-1} B_{j}^{m} \mathcal{U}_{j}^{k}\right)
\end{aligned}
$$

For $m=k$ we have

$$
\mathcal{U}\left(\left(x^{s}\right)^{k} \mathcal{B}_{k}\right)=\gamma_{k}^{s, d} \gamma_{k-1}^{s, d} \cdots \gamma_{1}^{s, d} B_{0}^{0} \mathcal{U}_{0}^{0}
$$

and so,

$$
\mathcal{U}_{k}^{k}=\left(B_{k}^{k}\right)^{-1}\left(\gamma_{k}^{s, d} \gamma_{k-1}^{s, d} \cdots \gamma_{1}^{s, d} B_{0}^{0} \mathcal{U}_{0}^{0}-\sum_{j=0}^{k-1} B_{j}^{k} \mathcal{U}_{j}^{k}\right)
$$

For $m>k$ we have $\mathcal{U}\left(\left(x^{s}\right)^{k} \mathcal{B}_{m}\right)=0_{s d \times s d}$, i.e.,

$$
\mathcal{U}_{m}^{k}=\sum_{j=0}^{m-1}-\left(B_{m}^{m}\right)^{-1} B_{j}^{m} \mathcal{U}_{j}^{k}
$$

Therefore, the moments associated to the vector of linear functionals \mathcal{U} are
uniquely determined from (16) and considering the fact that B_{m}^{m} is regular we obtain the regularity of the vector of linear functionals \mathcal{U}. Hence, this result is proved.
Note that, in matrix notation the three-term recurrence relation of the previous Theorem, (15), is written by

$$
J\left[\begin{array}{c}
\mathcal{B}_{0} \tag{17}\\
\vdots \\
\mathcal{B}_{m} \\
\vdots
\end{array}\right]=x^{s}\left[\begin{array}{c}
\mathcal{B}_{0} \\
\vdots \\
\mathcal{B}_{m} \\
\vdots
\end{array}\right]
$$

where the tridiagonal matrix by blocks

$$
J=\left[\begin{array}{cccccc}
\beta_{0}^{s, d} & \alpha_{0}^{s, d} & 0_{s d \times s d} & & & \tag{18}\\
\gamma_{1}^{s, d} & \beta_{1}^{s, d} & \alpha_{1}^{s, d} & 0_{s d \times s d} & & \\
0_{s d \times s d} & \gamma_{2}^{s, d} & \beta_{2}^{s, d} & \alpha_{2}^{s, d} & 0_{s d \times s d} & \\
& \ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right],
$$

is designated by block Jacobi matrix.

4. Type II Hermite-Padé approximation

Definition 11. Let \mathcal{U} be a vector of linear functionals. We define the matrix generating function associated to \mathcal{U}, \mathcal{F}, by

$$
\mathcal{F}(z):=\mathcal{U}_{x}\left(\frac{\mathcal{P}_{0}(x)}{z-x^{s}}\right)=\left[\begin{array}{ccc}
v_{x}^{1}\left(\frac{1}{z-x^{s}}\right) & \cdots & v_{x}^{s d}\left(\frac{1}{z-x^{s}}\right) \tag{19}\\
\vdots & \ddots & \vdots \\
v_{x}^{1}\left(\frac{x^{s d-1}}{z-x^{s}}\right) & \cdots & v_{x}^{s d}\left(\frac{x^{s d-1}}{z-x^{s}}\right)
\end{array}\right] .
$$

Being,

$$
\begin{equation*}
\frac{1}{z-x^{s}}=\frac{1}{z} \sum_{k=0}^{\infty}\left(\frac{x^{s}}{z}\right)^{k} \text { for }\left|x^{s}\right|<|z| \tag{20}
\end{equation*}
$$

we have $\mathcal{F}(z)=\sum_{k=0}^{\infty} \frac{\left(\left(x^{s}\right)^{k} \mathcal{U}_{x}\right)\left(\mathcal{P}_{0}(x)\right)}{z^{k+1}}$.
Theorem 7. Let \mathcal{U} be a regular vector of linear functionals, $\left\{\mathcal{B}_{m}\right\}$ a vector type II multiple orthogonal polynomials sequence, with respect to \mathcal{U}, and \mathcal{R} the resolvent function associated to the linear operator defined by the block

Jacobi matrix, J, given in (18), i.e.,

$$
\mathcal{R}(z)=\sum_{n=0}^{\infty} \frac{e_{0}^{t} J^{n} e_{0}}{z^{n+1}} \text {, where } e_{0}=\left[I_{s d \times s d} 0_{s d \times s d} \cdots\right]^{T}
$$

Then, $\mathcal{R}(z)=B_{0}^{0} \mathcal{F}(z)\left(\mathcal{U}\left(\mathcal{P}_{0}\right)\right)^{-1}\left(B_{0}^{0}\right)^{-1}$, where B_{0}^{0} is the matrix coefficient in $\mathcal{B}_{0}=B_{0}^{0} \mathcal{P}_{0}$.

Proof: In order to determine the value of $e_{0}^{t} J^{n} e_{0}, n \in \mathbb{N}$, we consider the matrix identity (17), from which we can obtain,

$$
J^{n}\left[\begin{array}{c}
\mathcal{B}_{0}(x) \tag{21}\\
\vdots \\
\mathcal{B}_{m}(x) \\
\vdots
\end{array}\right]=\left(x^{s}\right)^{n}\left[\begin{array}{c}
\mathcal{B}_{0}(x) \\
\vdots \\
\mathcal{B}_{m}(x) \\
\vdots
\end{array}\right], n \in \mathbb{N}
$$

Let $\left(x^{s}\right)^{n} \mathcal{B}_{m}(x)=\sum_{j=m-n}^{m+n} \eta_{j, n}^{m} \mathcal{B}_{j}(x), \eta_{j, n}^{m} \in \mathcal{M}_{s d \times s d}$. In particular, for $m=0$ we have, $\left(x^{s}\right)^{n} \mathcal{B}_{0}(x)=\sum_{j=0}^{n} \eta_{j, n}^{0} \mathcal{B}_{j}(x)$.

By (21), $e_{0}^{t} J^{n} e_{0}, n \in \mathbb{N}$, it is given by $\eta_{0, n}^{0}$. Applying the vector of linear functionals \mathcal{U} to both members of the previous matrix indentity, we have

$$
\eta_{0, n}^{0}=\left(\left(x^{s}\right)^{n} \mathcal{U}\right)\left(\mathcal{B}_{0}\right)\left(\mathcal{U}\left(\mathcal{B}_{0}\right)\right)^{-1}
$$

Using $\mathcal{B}_{0}=B_{0}^{0} \mathcal{P}_{0}$, we have $\eta_{0, n}^{0}=B_{0}^{0}\left(\left(x^{s}\right)^{n} \mathcal{U}\right)\left(\mathcal{P}_{0}\right)\left(\mathcal{U}\left(\mathcal{P}_{0}\right)\right)^{-1}\left(B_{0}^{0}\right)^{-1}$. Hence,

$$
\mathcal{R}(z)=B_{0}^{0}\left\{\sum_{n=0}^{\infty} \frac{\left(\left(x^{s}\right)^{n} \mathcal{U}\right)\left(\mathcal{P}_{0}\right)\left(\mathcal{U}\left(\mathcal{P}_{0}\right)\right)^{-1}}{z^{n+1}}\right\}\left(B_{0}^{0}\right)^{-1}
$$

as we want to show.
Now, we present a reinterpretation of type II Hermite-Padé approximation in terms of the matrix functions.

Definition 12. Let $\left\{\mathcal{B}_{m}\right\}$ be a vector sequence of polynomials and \mathcal{U} a regular vector of linear functionals. To the sequence of polynomials $\left\{\mathcal{B}_{m-1}^{(1)}\right\}$ given by

$$
\mathcal{B}_{m-1}^{(1)}(z):=\mathcal{U}_{x}\left(\frac{V_{m}\left(z^{d}\right)-V_{m}\left(x^{s d}\right)}{z-x^{s}} \mathcal{P}_{0}(x)\right),
$$

where \mathcal{U}_{x} represents the action of \mathcal{U} over the variable x, we designate sequence of polynomials associated to $\left\{\mathcal{B}_{m}\right\}$ and to \mathcal{U}.

Theorem 8. Let \mathcal{U} be a regular vector of linear functionals, $\left\{\mathcal{B}_{m}\right\}$ a vector sequence of polynomials, $\left\{\mathcal{B}_{m-1}^{(1)}\right\}$ the sequence of associated polynomials and \mathcal{F} the matrix generating function defined in (19). Then, $\left\{\mathcal{B}_{m}\right\}$ is the type II multiple orthogonal with respect to the vector of linear functionals \mathcal{U} if, and only if,

$$
V_{m}\left(z^{d}\right) \mathcal{F}(z)-\mathcal{B}_{m-1}^{(1)}(z)=\sum_{k=m}^{\infty} \frac{\left(\left(x^{s}\right)^{k} \mathcal{U}_{x}\right)\left(\mathcal{B}_{m}(x)\right)}{z^{k+1}}
$$

Proof: Taking into account the Definition 12, we have
$\mathcal{B}_{m-1}^{(1)}(z)=\mathcal{U}_{x}\left(\frac{V_{m}\left(z^{d}\right)-V_{m}\left(x^{s d}\right)}{z-x^{s}} \mathcal{P}_{0}(x)\right)=V_{m}\left(z^{d}\right) \mathcal{F}(z)-\mathcal{U}_{x}\left(\frac{V_{m}\left(x^{s d}\right)}{z-x^{s}} \mathcal{P}_{0}(x)\right)$, i.e., $V_{m}\left(z^{d}\right) \mathcal{F}(z)-\mathcal{B}_{m-1}^{(1)}(z)=\mathcal{U}_{x}\left(\frac{V_{m}\left(x^{s d}\right)}{z-x^{s}} \mathcal{P}_{0}(x)\right)$.

Taking into account (20) we have

$$
V_{m}\left(z^{d}\right) \mathcal{F}(z)-\mathcal{B}_{m-1}^{(1)}(z)=\sum_{k=0}^{\infty} \frac{\left(\left(x^{s}\right)^{k} \mathcal{U}_{x}\right)\left(\mathcal{B}_{m}(x)\right)}{z^{k+1}}
$$

Hence, we get the desired result.

References

[1] A.I. Aptekarev, Multiple orthogonal polynomials, J. Comput. Appl. Math. 99 (1998) 423-447.
[2] A.I. Aptekarev, A. Branquinho and W. Van Assche, Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc. 335 (2003) 3887-3914.
[3] Arvesú, J. Coussement and W. Van Assche, Some discrete multiple orthogonal polynomials, J. Comput. Appl. Math. 153 (2003) no. 1-2, 19-45.
[4] J. Coussement and W. Van Assche, Differential equations for multiple orthogonal polynomials with respect to classical weights: raising and lowering operators, J. Phys. A 39 (2006) no. 13, 3311-3318.
[5] K. Douak and P. Maroni, Une caractérisation des polynômes d-orthogonaux classiques, J. Approx. Th. 82 (1995) 177-204.
[6] A.J. Durán, A generalization of Favard's theorem for polynomials satisfying a recurrence relation, J. Approx. Th. 74 (1993) 83-109.
[7] W.D. Evans, L.L. Littlejohn and F. Marcellán, On recurrence relations for Sobolev orthogonal polynomials, SIAM J. Math. Anal. 26 (1995) 446-467.
[8] M.E.H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications 98, Cambridge University Press, 2005.
[9] V. Kaliaguine, The operator moment problem, vector continued fractions and an explicit form of the Favard theorem for vector orthogonal polynomials, J. Comput. Appl. Math. 65 (1995) no. 1-3, 181-193.
[10] D.W. Lee, Difference equations for discrete classical multiple orthogonal polynomials, J. Approx. Th. 150 (2008) no. 2, 132-152.
[11] P. Maroni, Two-dimensional orthogonal polynomials, their associated sets and the co-recursive sets, Numer. Algorithms 3 (1992) 299-312.
[12] E.M. Nikishin and V.N. Sorokin, Rational Approximations and Orthogonality, Transl. Math. Monographs, 92, Amer. Math. Soc. Providence RI, 1991.
[13] V.N. Sorokin and J. Van Iseghem, Algebraic aspects of matrix orthogonality for vector polynomials, J. Approx. Theory 90 (1997), 97-116.
[14] W. Van Assche, Analytic number theory and approximation, Coimbra Lecture Notes on Orthogonal Polynomials (A. Branquinho and A.P. Foulquié Moreno, eds.), Nova Science Publishers, 2007, 197-229.
[15] W. Van Assche and E. Coussement, Some classical multiple orthogonal polynomials, J. Comput. Appl. Math. 127 (2001), 317-347.
[16] J. Van Iseghem, Vector orthogonal relations. Vector QD-algorithm, J. Comput. Appl. Math. 19 (1987), 141-150.
A. Branquinho

CMUC, Department of Mathematics, University of Coimbra, Largo D. Dinis, 3001-454
Coimbra, Portugal.
E-mail address: ajplb@mat.uc.pt
L. Cotrim

School of Technology and Management, Polytechnic Institute of Leiria, Campus 2 Morro do Lena - Alto do Vieiro, 2411-901 LEIRIA - PORTUGAL.
E-mail address: lmsc@estg.ipleiria.pt
A. Foulquié Moreno

Departamento de Matemática, Universidade de Aveiro, Campus de Santiago 3810, Aveiro, Portugal.
E-mail address: foulquie@ua.pt

[^0]: Received December 2, 2008.
 The work of the first author was supported by CMUC/FCT. The work of the second author was partially supported by "Acção do Prodep" reference 5.3/C/00187.010/03. The third author would like to thank UI Matemática e Aplicações from University of Aveiro.

