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1. Introduction

Multiple orthogonal polynomials are a generalization of orthogonal poly-
nomials in the sense that they satisfy orthogonality conditions with respect
to a number of measures. Such polynomials arise, in a natural way, in the
study of simultaneous rational approximation, and in particular for the study
of Hermite-Padé approximation for a system of d ∈ Z+ Markov functions
(see [12]). In this way, multiple orthogonal polynomials are intimately re-
lated to Hermite-Padé approximation. In the literature we can find a lot of
examples of multiple orthogonal polynomials (see [1, 2, 3, 4, 8, 10, 14, 15]).

Let ~n = (n1, . . . , nd) ∈ Z
d
+ which is called a multi-index with length |~n| :=

n1+ · · ·+nd and let
{
u1, . . . , ud

}
be a system of linear functionals uj : P → C

with j = 1, 2, . . . , d.

Definition 1. Let {P~n} be a sequence of polynomials where the degree of P~n

is at most |~n|. We say that {P~n} is a type II multiple orthogonal with respect
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to the system of linear functionals
{
u1, . . . , ud

}
and multi-index ~n, if

uj (xmP~n) = 0, m = 0, 1, . . . , nj − 1, j = 1, . . . , d. (1)

For the particular case in which the system of linear functionals is a system
of positive Borel measures, µj , on Ij ⊂ R, j = 1, . . . , d, we have

uj(xk) =

∫

Ij

xkdµj, k ∈ N , j = 1, . . . , d ,

and the conditions of multi-orthogonality, (1), can be rewritten as∫

Ij

P~n(x)xkdµj(x) = 0, k = 0, 1, . . . , nj − 1, j = 1, . . . , d .

Definition 2. A multi-index ~n = (n1, . . . , nd) ∈ Zd
+ is said to be normal for

the system of linear functionals
{
u1, . . . , ud

}
, if for any non trivial solution P~n

of (1), the degree of P~n is equal to |~n|. When all the multi-indices of a given
family are normal, we say that the system of linear functionals

{
u1, . . . , ud

}

is regular.

In the works of K. Douak and P. Maroni [5], P. Maroni [11], V. Kalia-
guine [9], J. Van Iseghem [16], and also in the work of V.N. Sorokin and
J. Van Iseghem [13], we find that a sequence of type II multiple orthogonal
polynomials with respect to the system of linear functionals

{
u1, . . . , ud

}
and

multi-index ~n = (n1, . . . , nd) ∈ I, where
I = {(0, 0, . . . , 0), (1, 0, . . . , 0), . . . , (1, 1, . . . , 1),

(2, 1, . . . , 1), . . . , (2, 2, . . . , 2), . . .},
verify a (d + 2)-term recurrence relation of type

xBn = Bn+1 +

d∑

k=0

an
n−kBn−k .

They call such polynomials d-orthogonal, where d corresponds to the number
of functionals.

In this work we consider sequences of type II multiple orthogonal polyno-
mials for more general families of multi-indices, J . We designate this multi-
indices by quasi-diagonal. In section 2 we build the sets of quasi-diagonal
multi-indices, J . Next we give the type II multi-orthogonality conditions for
a sequence of monic polynomials {Bn} with respect to the system of linear
functionals

{
u1, . . . , ud

}
and a family of quasi-diagonal multi-indices, J . We

also prove that this sequence verifies a (s(d+1)+1)-term recurrence relation
of type
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xsBn = Bn+s +

s(d+1)−1∑

k=0

an+s−1
n+s−1−kBn+s−1−k .

To finish this section, we rewrite the previous (s(d + 1) + 1)-term recurrence
relation in matrix form and we obtain a three-term recurrence relation for
vector polynomials with matrix coefficients. In section 3 we present an al-
gebraic theory which enables us to operate with the new presented objects.
Here, our main goal, is to present a matrix interpretation of the multi-ortogo-
nality conditions presented in the section 2. Next we give a result of existence
and uniqueness of a type II sequence of vector orthogonal polynomials with
respect to a vector of linear functionals U , and using a matrix three-term re-
currence relations we establish a Favard type theorem. We remark that other
characterization for sequences of orthogonal polynomials in terms of matrix
three-term recurrence relations can be found in [6, 7]. In section 4 we express
the resolvent function in terms of the matrix generating function associated
to the vector of linear functionals. Finally, we give a reinterpretation of the
type II multiple orthogonality, in terms of a Hermite-Padé approximation
problem for the matrix generating function associated to the vector of linear
functionals. We remark that Hermite-Padé approximation problems can be
found for example in [12, 14].

2. Quasi-diagonal multi-indices

2.1. Definition and some examples. Now we construct the set of multi-
indices, J , that will be used in this work. We begin by considering blocks
with sd elements of Zd

+ in the Table 1. The multi-indices
(
k1

i , · · · , kd
i

)
where

n = |~n| ~n = (n1, . . . , nd)

0 (0, . . . , 0)
1 (1, 0, . . . , 0)
...

...

i (k1
i , . . . , k

d
i )

...
...

sd − 1 (s, . . . , s, s − 1)
Table 1. Pattern blocks

i = 0, 1, · · · , sd − 1 are defined by the following conditions:
• k

j
i+1 ≥ k

j
i , i = 0, 1, . . . , sd − 2, j = 1, . . . , d;
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• k
j+1
i ≤ k

j
i , i = 0, 1, . . . , sd − 1, j = 1, . . . , d − 1;

•
d∑

j=1

k
j
i = i, i = 0, 1, . . . , sd − 1, j = 1, . . . , d;

• k
j
sd−1 =

{
s, j = 1, 2, . . . , d − 1
s − 1, j = d.

Now, we identify as the pattern block, J0, the set whose elements are the
ones of any of the blocks presented in the Table 1, i.e,

J0 = {(0, . . . , 0), (1, 0, . . . , 0), . . . , (s, . . . , s, s − 1)} .
From J0 we generate a sequence of sets which we denote by Jn, n ∈ N,
according to the formula:

Jn = J0 + n{(s, . . . , s)}, n ∈ N. (2)

In this way we obtain a set of multi-indices, J , given by
J = {J0,J1, . . . ,Jn, . . .} .

Remark that for s = 1 we have that J0 is given by,
J0 = {(0, . . . , 0), (1, 0, . . . , 0), (1, 1, . . . , 0), . . . , (1, . . . , 1, 0)} ,

whose multi-indices we designate by diagonal.
In each of the following examples, we build the possible pattern blocks, J0,

and the sets of quasi-diagonal multi-indices obtained from each one.

Example 1. s = 1, d = 2. We identify as J0, i.e. the pattern block J0 =
{(0, 0), (1, 0)} . Thus, by using the formula (2) the sequence of sets, Jn,

n ∈ N, are given by:
Jn = J0 + n{(1, 1)} = {(n, n), (n + 1, n)} .

Example 2. s = 3, d = 2. Following the same idea, we identify as J0, i.e. the
pattern block

J0 = {(0, 0), (1, 0), (1, 1), (2, 1), (2, 2), (3, 2)},
J0 = {(0, 0), (1, 0), (2, 0), (2, 1), (3, 1), (3, 2)},
J0 = {(0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (3, 2)},
J0 = {(0, 0), (1, 0), (1, 1), (2, 1), (3, 1), (3, 2)},
J0 = {(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (3, 2)} .

Continuing in this manner, the sequence of sets, Jn, n ∈ N, obtained from
the sets J0 provided above, are given using the formula Jn = J0+3n{(1, 1)} ,
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therefore, obtaining in each case:
Jn = {(3n, 3n), (3n + 1, 3n), (3n + 1, 3n + 1),

(3n + 2, 3n + 1), (3n + 2, 3n + 2), (3n + 3, 3n + 2)}
Jn = {(3n, 3n), (3n + 1, 3n), (3n + 2, 3n),

(3n + 2, 3n + 1), (3n + 3, 3n + 1), (3n + 3, 3n + 2)}
Jn = {(3n, 3n), (3n + 1, 3n), (3n + 2, 3n),

(3n + 2, 3n + 1), (3n + 2, 3n + 2), (3n + 3, 3n + 2)}
Jn = {(3n, 3n), (3n + 1, 3n), (3n + 1, 3n + 1),

(3n + 2, 3n + 1), (3n + 3, 3n + 1), (3n + 3, 3n + 2)},
Jn = {(3n, 3n), (3n + 1, 3n), (3n + 2, 3n),

(3n + 3, 3n), (3n + 3, 3n + 1), (3n + 3, 3n + 2)}.

2.2. Multi-orthogonality conditions of type II. We identify the vectors
~n = (n1, . . . , nd) ∈ Zd

+ with n ∈ Z
+
0 , as in our sets of quasi-diagonal multi-

indices, J , there is an one-to-one correspondence, iii, between the sets Z
d
+ and

Z
+
0 given by, iii(~n) = |~n| = n .
Let us consider, B~n, be a sequence of type II multiple orthogonal polyno-

mial with respect to the system of linear functionals {u1, . . . , ud} and multi-
index ~n. We identify B~n ≡ B|~n| = Bn.

Now we describe how to obtain the multi-orthogonality conditions of a
sequence of monic type II multiple orthogonal polynomials, {Bn}, with re-
spect to the system of linear functionals {u1, u2} and quasi-diagonal multi-
index J , where J0 = {(0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (3, 2)} . By using the
Definition 1, we have

u1(B1) = 0,
u1(B2) = 0, u1(xB2) = 0,
u1(B3) = 0, u1(xB3) = 0, u2(B3) = 0,
u1(B4) = 0, u1(xB4) = 0, u2(B4) = 0, u2(xB4) = 0,
u1(B5) = 0, u1(xB5) = 0, u2(B5) = 0, u2(xB5) = 0, u1(x2B5) = 0,
u1(B6) = 0, u1(xB6) = 0, u2(B6) = 0, u2(xB6) = 0, u1(x2B6) = 0,

u2(x2B6) = 0 .

The monic polynomials B1, . . . , B6 are defined by the multi-orthogonality
conditions in terms of {u1, xu1, x2u1, u2, xu2, x2u2} , this multi-orthogonality
conditions appear with the order suggested by the pattern block, J0,

{u1, xu1, u2, xu2, x2u1, x2u2} .
Defining the linear functionals
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v1 := u1, v2 := xu1, v3 := u2, v4 := xu2, v5 := x2u1, v6 := x2u2 ,
we have

v1(B1) = 0,
v1(B2) = 0, v2(B2) = 0,
v1(B3) = 0, v2(B3) = 0, v3(B3) = 0,
v1(B4) = 0, v2(B4) = 0, v3(B4) = 0, v4(B4) = 0,
v1(B5) = 0, v2(B5) = 0, v3(B5) = 0, v4(B5) = 0, v5(B5) = 0,
v1(B6) = 0, v2(B6) = 0, v3(B6) = 0, v4(B6) = 0, v5(B6) = 0, v6(B6) = 0 .

Similarly the monic polynomials B7, . . . , B12 are defined by the multi-
orthogonality conditions in terms of

{u1, xu1, x2u1, u2, xu2, x2u2, x3u1, x4u1, x5u1, x3u2, x4u2, x5u2} ,
this multi-orthogonality conditions appear with the order suggested by the
pattern block J0

{u1, xu1, u2, xu2, x2u1, x2u2, x3u1, x4u1, x3u2, x4u2, x5u1, x5u2} ,
that can be written in terms of the linear functionals v1, . . . , v6 as

{v1, v2, v3, v4, v5, v6, x3v1, x3v2, x3v3, x3v4, x3v5, x3v6} .
More precisely

v1(B6×1+1) = 0, . . . , v6(B6×1+1) = 0, v1(x3B6×1+1) = 0,
v1(B6×1+2) = 0, . . . , v6(B6×1+2) = 0, vα(x3B6×1+2) = 0, α = 1, 2,
v1(B6×1+3) = 0, . . . , v6(B6×1+3) = 0, vα(x3B6×1+3) = 0, α = 1, 2, 3,
v1(B6×1+4) = 0, . . . , v6(B6×1+4) = 0, vα(x3B6×1+4) = 0, α = 1, 2, 3, 4,
v1(B6×1+5) = 0, . . . , v6(B6×1+5) = 0, vα(x3B6×1+5) = 0, α = 1, 2, 3, 4, 5,
v1((x3)iB6×2+0) = 0, . . . , v6((x3)iB6×2+0) = 0, i = 0, 1.

In general we can consider n = 6r + k where k = 0, 1, 2, 3, 4, 5 and r =
0, 1, . . . , and we obtain the following type II multi-orthogonality conditions

{
vj((x3)iB6r+k) = 0, i = 0, 1, . . . , r − 1, j = 1, 2, 3, 4, 5, 6
vα((x3)rB6r+k) = 0, α = 1, . . . , k.

(3)

Let Γ be a linear functional acting on the the vector space of the polyno-
mials P over C

6, i.e., Γ : P −→ C
6, by

Γ(P (x)) :=
[
v1(P (x)), v2(P (x)), v3(P (x)), v4(P (x)), v5(P (x)), v6(P (x))

]T
.

The multi-orthogonality conditions (3), can be written in an equivalent
way by
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{
Γ((x3)iB6r+k) = 06×1, i = 0, 1, . . . , r − 1
vα((x3)rB6r+k) = 0, α = 1, . . . , k.

for any pattern block presented in Example 2, we can obtain a new set of
linear functionals, {v1, v2, v3, v4, v5, v6}, of type {xjuk : j = 0, 1, 2, k = 1, 2} .

All of these new sets of linear functionals are respectively:
{u1, u2, xu1, xu2, x2u1, x2u2}, {u1, xu1, u2, x2u1, xu2, x2u2},
{u1, u2, xu1, x2u1, xu2, x2u2}, {u1, xu1, x2u1, u2, xu2, x2u2}.

Algorithm (Construction of linear functionals). Let us consider the se-
quence of monic type II multiple orthogonal polynomials, {Bn}, with respect
to the system of linear functionals {u1, . . . , ud} and family of quasi-diagonal
multi-indices given in Table 1, J = {J0,J1, . . . ,Jn, . . .} .

Let v1 = u1, vi = xk
j

i−1uj, i = 2, . . . , sd − 1 where j , for each i, is uniquely
defined by the condition k

j
i = k

j
i−1 + 1 and vsd = xs−1ud. Hence, we have

vi ∈ {xkuj : k = 0, 1, . . . , s − 1, j = 1, 2, . . . , d}, i = 1, 2, . . . , sd .

Theorem 1. The sequence of monic polynomials, {Bn}, where n = sdr + k,

k = 0, 1, . . . , sd − 1 and r = 0, 1, . . . , is type II multiple orthogonal with
respect to the regular system of linear functionals {u1, . . . , ud} and quasi-
diagonal multi-index J if, and only if,






vj((xs)mBsdr+i) = 0, m = 0, 1, . . . , r − 1, j = 1, . . . , sd
vα((xs)rBsdr+i) = 0, α = 1, . . . , i
vi+1((xs)rBsdr+i) 6= 0,

(4)

where the linear functionals vj, j = 1, . . . , sd are defined by the algorithm.

Proof : Let us consider the set of multi-indices
J0 = {(0, . . . , 0), (1, 0, . . . , 0), . . . , (k1

i , . . . , k
d
i ), . . . , (s, . . . , s, s − 1)} .

The linear functionals v1, . . . , vsd are defined by the algorithm. We can verify
that v1, . . . , vi ∈ {xkuj, 0 ≤ k ≤ k

j
i − 1, j = 1, . . . , d}, for i = 1, . . . , sd.

Using the multi-orthogonality conditions of the polynomial Bi and multi-
index (k1

i , . . . , k
d
i ) we have that vj(Bi) = 0, j = 1, . . . , i, for i = 1, . . . , sd.

We obtain the multi-orthogonality conditions for the polynomials Bsd+i,

i = 1, . . . , sd. Let us consider the multi-index (k1
i , . . . , k

d
i ) + s(1, . . . , 1) and

let j ∈ {1, . . . , d} be uniquely defined by the condition k
j
i = k

j
i−1 + 1. We

have
uj(xk

j

i−1
+sBsd+i) = 0 ⇔ xk

j

i−1uj(xsBsd+i) = 0 ⇔ vi(xsBsd+i) = 0 .
By the increasing structure of the multi-indices, Bsd+i complies with the
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multi-orthogonality conditions of B1, . . . , Bsd+i−1, in other words, this is suf-
ficient to identify that,

vj(Bsd+i) = 0, j = 1, . . . , sd , vα(xsBsd+i) = 0, α = 1, . . . , i .
Following the same reasoning we have that Bsdr+i verify vi(xsrBsdr+i) = 0 ,
and so, {

vj((xs)mBsdr+i) = 0, m = 0, 1, . . . , r − 1, j = 1, . . . , sd
vα((xs)rBsdr+i) = 0, α = 1, . . . , i.

Finally, we show that vi+1((xs)rBsdr+i) 6= 0. Let us suppose that,




vj((xs)mBsdr+i) = 0, m = 0, 1, . . . , r − 1, j = 1, . . . , sd
vα((xs)rBsdr+i) = 0, α = 1, . . . , i
vi+1((xs)rBsdr+i) = 0.

Then the polynomial Bsdr+i verify the multi-orthogonality conditions of the
polynomial Bsdr+i+1 which contradicts the normality of the multi-indices.
Hence, vi+1((xs)rBsdr+i) 6= 0.
Reciprocally, for n = sdr + i, i = 1, . . . , sd{

vj((xs)mBsdr+i) = 0, m = 0, 1, . . . , r − 1, j = 1, . . . , sd
vα((xs)rBsdr+i) = 0, α = 1, . . . , i,

and considering that the degree of Bn is equal to n by the normality of each
of the multi-indices which implies the uniqueness of the monic type II multi-
ple orthogonal polynomial sequence, Bn, with respect to the system of linear
functionals {u1, . . . , ud} and quasi-diagonal multi-index n.

Let Γ be a linear functional acting on the the vector space of the polyno-
mials P over C

sd, i.e., Γ : P −→ C
sd, by

Γ(P (x)) := [ v1(P (x)) . . . vsd(P (x)) ]T , n ∈ N.

The multi-orthogonality conditions of type II (4), can be written in the equiv-
alent way by






Γ((xs)mBsdr+i) = 0sd×1, m = 0, 1, . . . , r − 1
vα((xs)rBsdr+i) = 0, α = 1, . . . , i
vi+1((xs)rBsdr+i) 6= 0.

(5)

2.3. The (s(d+1)+1)-term recurrence relation. Here we give the connec-
tion between a sequence of monic type II multiple orthogonal polynomials,
{Bn}, with respect to the regular system of linear functionals

{
u1, . . . , ud

}

and quasi-diagonal multi-index J , and the (s(d + 1) + 1)-term recurrence
relation.



MATRIX INTERPRETATION OF MULTIPLE ORTHOGONALITY 9

Theorem 2. Let {Bn} be a monic type II multiple orthogonal polynomials
sequence, with respect to a regular system of linear functionals {u1, . . . , ud}
and quasi-diagonal multi-index J . Then, there are sequences (an+s−1

n+s−1−k) ⊂ C,

k = 0, 1, . . . , s(d + 1) − 1, such that,

xsBn(x) = Bn+s(x) +

s(d+1)−1∑

k=0

an+s−1
n+s−1−kBn+s−1−k(x), n = sd, sd + 1, . . . ,

where an+s−1
n−sd 6= 0 and B0, B1, . . . , Bsd−1 are given.

Proof : As the sequence of monic polynomials {Bn} is a basis of the vector
space P, for each n ∈ N, there is an unique sequence (an+s−1

j ) ⊂ C, such that:

xsBn = Bn+s +
n+s−1∑

j=0

an+s−1
j Bj .

Substituting n by sdr + k where k = 0, 1, . . . , sd− 1 and r = 0, 1, . . . , in the
above identity, we have

xsBsdr+k − Bsdr+k+s =

sdr+k+s−1∑

j=0

asdr+k+s−1
j Bj. (6)

Let, i = 0, 1, . . . . Multiplying both members of the above identity by (xs)i

and applying the linear functional Γ, we have

Γ[(xs)i+1Bsdr+k] − Γ[(xs)iBsdr+k+s] =
sdr+k+s−1∑

j=0

asdr+k+s−1
j Γ[(xs)iBj] .

By the multi-orthogonality conditions (5), we have

0sd×1 =

sd(i+1)−1∑

j=0

asdr+k+s−1
j Γ[(xs)iBj] for i = 0, . . . , r − 2 .

Let i = 0, we have 0sd×1 =

sd−1∑

j=0

asdr+k+s−1
j Γ(Bj) , which leads us to the system

of linear equations in matrix form:

[asdr+k+s−1
0 · · · asdr+k+s−1

sd−1 ]




v1(B0) · · · vsd(B0)

. . . ...
vsd(Bsd−1)



 = 0sd×1.

Using, v1(B0) 6= 0, . . . , vsd(Bsd−1) 6= 0 , we have asdr+k+s−1
0 = 0, . . . ,

asdr+k+s−1
sd−1 = 0 .
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Let i = 1, we have 0sd×1 =
2sd−1∑

j=sd

asdr+k+s−1
j Γ(xsBj) , which leads us to the

system of linear equations in matrix form:

[ asdr+k+s−1
sd · · · asdr+k+s−1

2sd−1 ]




v1(xsBsd) · · · vsd(xsBsd)

. . . ...

vsd(xsB2sd−1)



 = 0sd×1.

Using, v1(xsBsd) 6= 0, . . . , vsd(xsB2sd−1) 6= 0 , we have asdr+k+s−1
sd =

0, . . . , asdr+k+s−1
2sd−1 = 0 .

Continuing in the same way, we obtain asdr+k+s−1
jsd = 0, . . . , asdr+k+s−1

(j+1)sd−1 =
0, j = 2, . . . , r − 2 .
Now, considering the multi-orthogonality conditions written in (5), given by

vα((xs)rBsdr+k) = 0, α = 1, . . . , k ,
and taking into account (6), we verify that

vα
[
(xs)i+1Bsdr+k

]
− vα

[
(xs)iBsdr+k+s

]
= 0 ,

for i = r−1 and α = 1, . . . , k which leads us to the system of linear equations
in matrix form:[

asdr+k+s−1
(r−1)sd . . . asdr+k+s−1

(r−1)sd+k−1

]

×




v1((xs)r−1B(r−1)sd) · · · vk((xs)r−1B(r−1)sd)

. . . ...
vk((xs)r−1B(r−1)sd+k−1)



 = 0sd×1 .

Using, v1((xs)r−1B(r−1)sd) 6= 0, . . . , vk((xs)r−1B(r−1)sd+k−1) 6= 0 , we have

asdr+k+s−1
(r−1)sd = 0, . . . , asdr+k+s−1

(r−1)sd+k−1 = 0 . Hence, we have asdr+k+s−1
0 = · · · =

asdr+k+s−1
(r−1)sd+k−1 = 0 . Then,

xsBsdr+k = Bsdr+k+s +

sdr+k+s−1∑

j=(r−1)sd+k

asdr+k+s−1
j Bj ,

and the theorem is proved.

Definition 3. Let {Bn} be a sequence of monic polynomials. The se-
quence {Bn} given by

Bn =
[

Bnsd · · · B(n+1)sd−1

]T
, n ∈ N , (7)

is said to be the vector sequence of polynomials associated to {Bn}.

Theorem 3. Let {Bn} be a monic sequence of polynomials. Then, the fol-
lowing conditions are equivalent:
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a) The sequence of polynomials {Bn} verify the (s(d + 1) + 1)-term relation
given by

xsBn(x) = Bn+s(x) +

s(d+1)−1∑

k=0

an+s−1
n+s−1−kBn+s−1−k(x), n = sd, sd + 1, . . . ,

where an+s−1
n−sd 6= 0 and B0, B1, . . . , Bsd−1 are given.

b) The vector sequence of polynomials {Bm} associated to the sequence of
polynomials {Bm} verify a three-term recurrence relation with sd × sd ma-
trix coefficients, xsBm(x) = αs,d

m Bm+1(x) + βs,d
m Bm(x) + γs,d

m Bm−1(x), m =
0, 1, . . . , with B−1 = 0sd×1 and B0 given, where the matrix coefficients αs,d

m ,
βs,d

m and γs,d
m are respectively given by



1

a
(m+s)d
(m+s)d

. . .
... . . . 1

a
md+s(d+1)−2
(m+s)d . . . a

md+s(d+1)−2
md+s(d+1)−2 1




;





amd+s−1
md · · · amd+s−1

md+s−1 1
. . . . . .

...
...

a
(m+s)d−2
(m+s)d−2 1

a
(m+s)d−1
md · · · a

(m+s)d−1
md+s−1 . . . a

(m+s)d−1
(m+s)d−2 a

(m+s)d−1
(m+s)d−1

...
...

...
...

a
md+s(d+1)−2
md · · · a

md+s(d+1)−2
(m+s)d−1 . . . a

md+s(d+1)−2
(m+s)d−2 a

md+s(d+1)−2
(m+s)d−1





;




amd+s−1

(m−s)d · · · amd+s−1
md−1

. . . ...

a
md+s(1+d)−2
md−1



.

Proof : Taking into account the (s(d + 1) + 1)-term recurrence relation we
obtain the matrix identity given by

xs




Bn
...

Bn+sd−1



 = αs,d
n




Bn+sd

...
Bn+2sd−1



 + βs,d

n




Bn
...

Bn+sd−1



 + γs,d

n




Bn−sd

...
Bn−1



 ,

where the matrix coefficients αs,d
n , βs,d

n
and γs,d

n
are respectively given by:



12 BRANQUINHO, COTRIM AND FOULQUIÉ MORENO





1

an+sd
n+sd

. . .
... . . . 1

a
n+s(d+1)−2
n+sd · · · a

n+s(d+1)−2
n+s(d+1)−2 1




;





an+s−1
n · · · an+s−1

n+s−1 1
. . . . . .

...
...

an+sd−2
n · · · an+sd−2

n+s−1 · · · an+sd−2
n+sd−2 1

an+sd−1
n · · · an+sd−1

n+s−1 · · · an+sd−1
n+sd−2 an+sd−1

n+sd−1
...

...
...

...

an+s(d+1)−2
n · · · a

n+s(d+1)−2
n+s−1 · · · a

n+s(d+1)−2
n+sd−2 a

n+s(d+1)−2
n+sd−1





;




an+s−1

n−sd · · · an+s−1
n−1

. . . ...

a
n+s(1+d)−2
n−1



.

Taking n = md we obtain a three-term recurrence relation for vectors of
polynomials {Bm} where Bm = [ Bmsd · · · B(m+1)sd−1 ]T , m ∈ N, given by

xsBm = αs,d
m Bm+1 + βs,d

m Bm + γs,d
m Bm−1, m = 0, 1, . . .

with initial conditions B−1 = 0sd×1 and B0, and matrix coefficients αs,d
m =

α
s,d
md, βs,d

m = βs,d

md
and γs,d

m = γs,d

n
. The converse is immediate.

3. Matrix interpretation of type II multi-orthogonality

In this section we present a matrix interpretation of the type II ortogonality
conditions of a sequence of monic polynomials {Bn}, given in the Theorem 1,
with respect to the regular system of linear functionals {u1, . . . , ud} and fam-
ily of quasi-diagonal multi-indices, J .

Let us consider the sequence of vectors of polynomials that we denote by
P

sd = {[ P1 · · · Psd ]T : Pj ∈ P} ,
We denote by Msd×sd the set of sd × sd matrices with entries in C.

Let {Pj} be a sequence of vectors of polynomials given by

Pj = [ xjsd · · · x(j+1)sd−1 ]T , j ∈ N. (8)

Let {Bn} be a sequence of polynomials, deg Bn = n, n ∈ N and {Bn} where
Bn = [ Bnsd · · · B(n+1)sd−1 ]T , n ∈ N .
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It is easy to see that

Bn =

n∑

j=0

Bn
j Pj, Bn

j ∈ Msd×sd ,

where the matrix coefficients Bn
j , j = 0, 1, . . . , n are uniquely determined.

Taking into account (8) we have that Pj = (xsd)jP0, j ∈ N. Therefore,
Bn = Vn(x

sd)P0 , where Vn is a matrix polynomial of degree n and dimension

sd, given by Vn(x) =
n∑

j=0

Bn
j xj, Bn

j ∈ Msd×sd .

Definition 4. Let vj : P → C with j = 1, . . . , sd be linear functionals.
We define the vector of functionals U = [ v1 · · · vsd ]T acting in P

sd over
Msd×sd, by

U(P) := (U .PT )T =




v1(P1) · · · vsd(P1)

... . . . ...
v1(Psd) · · · vsd(Psd)



 ,

where “.” means the symbolic product of the vectors U and PT .

Now we define an operation called left multiplication of a vector of func-
tionals by a polynomial.

Definition 5. Let Â =
l∑

k=0

Ak xk be a matrix polynomial of degree l where

Ak ∈ Msd×sd and U a vector of linear functionals. We define the vector of
linear functionals, left multiplication of U by a polynomial Â, and denote it
by ÂU , to the map of P

sd to Msd×sd, defined by:

(ÂU)(P) := (ÂU .PT )T =

l∑

k=0

(xk U)(P)(Ak)
T .

Theorem 4. A sequence of monic polynomials {Bm}, is type II multiple or-
thogonal with respect to the regular system of linear functionals {u1, . . . , ud}
and family of quasi-diagonal multi-indices J if, and only if, the vector se-
quence of polynomials associated to {Bm} given by (7) verifies:

i) ((xs)kU)(Bm) = 0sd×sd, k = 0, 1, . . . , m − 1
ii) ((xs)mU)(Bm) = ∆m,

(9)

where U = [ v1 · · · vsd ]T , vj, j = 1, . . . , sd are defined by the algorithm,
and ∆m is a regular upper triangular sd × sd matrix.
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Proof : By Definition 4, we have

((xs)kU)(Bm) =




v1((xs)kBmsd) · · · vsd((xs)kBmsd)

... . . . ...
v1((xs)kB(m+1)sd−1) · · · vsd((xs)kB(m+1)sd−1)



 .

Using the ortogonality conditions of type II in Theorem 1 we have the con-
ditions (9), and reciprocally.

Definition 6. Let {Bm} be a vector sequence of polynomials where each

Bm = [Bm,1 . . . Bm,sd]
T , m ∈ N, such that Bm =

m∑

j=0

Bm
j Pj where Bm

j ∈

Msd×sd and let U = [ v1 · · · vsd ]T be the vector of linear functionals. We
say that {Bm} is type II multiple orthogonal with respect to the vector of
linear functionals U if

i) ((xs)kU)(Bm) = 0sd×sd, k = 0, 1, . . . , m − 1
ii) ((xs)mU)(Bm) = ∆m,

(10)

where ∆m is a regular sd × sd matrix.

Lemma 1. Let {Bm} be a vector sequence of polynomials where each Bm =

[ Bm,1 · · · Bm,sd ]T , m ∈ N, such that Bm =

m∑

j=0

Bm
j Pj where Bm

j ∈ Msd×sd.

If Bm
m is a regular matrix, for a m ∈ N, then the set of polynomials {Bm,1, . . .,

Bm,sd} is linearly independent.

Proof : Let αi ∈ R, i = 1, 2, . . . , sd, such that

α1Bm,1 + · · · + αsdBm,sd = 0, i.e.,
[

α1 · · · αsd

]



Bm,1

...
Bm,sd



 = 0 .

And so, αBm = 0, with α = [α1 . . . αsd] . Hence,

α

m∑

j=0

Bm
j Pj = 0, i.e.,

m∑

j=0

αBm
j Pj = 0 .

As {1, . . . , x(m+1)sd−1} is a linearly independent set of functions, we have
αBm

j = 0, j = 0, 1, . . . , m .
If Bm

m is a regular matrix then α = 01×sd, as was our purpose to show.
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Lemma 2. Let {Bm} be a vector sequence of polynomials where each Bm =

[ Bm,1 · · · Bm,sd ]T , m ∈ N, such that Bm =

m∑

j=0

Bm
j Pj where Bm

j ∈ Msd×sd.

If Bm
m is a regular matrix, for all m ∈ N, then the set of polynomials

{Bm,j, j = 1, . . . , sd, m ∈ N} , is linearly independent.

Proof : It is sufficient to prove for each m ∈ N that the set of polynomials
{Bk,j, j = 1, . . . , sd, k = 0, 1, . . . , m} is linearly independent. Let

α =
[

α1 · · · αsd

]
, αi ∈ R

...
β =

[
β1 · · · βsd

]
, βi ∈ R

γ =
[

γ1 · · · γsd

]
, γi ∈ R .

We have
sd∑

i=1

αiB0,i + · · · +
sd∑

i=1

βiBm−1,i +
sd∑

i=1

γiBm,i = 0 ,

αB0 + · · · + βBm−1 + γBm = 0 ,

α(B0
0P0) + · · · + β(Bm−1

0 P0 + · · · + Bm−1
m−1Pm−1)

+ γ(Bm
0 P0 + · · · + Bm

mPm) = 0 ,
(αB0

0 + · · · + βBm−1
0 + γBm

0 )P0 + · · ·
+ (βBm−1

m−1 + γBm
m−1)Pm−1 + γBm

mPm = 0 .

As {1, x, . . . , x(m+1)sd−1} is a linearly independent set of functions, we have




αB0
0 + · · · + βBm−1

0 + γBm
0 = 0

...
βBm−1

m−1 + γBm
m−1 = 0

γBm
m = 0.

.

Using the regularity of the matrices B0
0 , . . . , B

m
m we obtain that γ = 01×sd, β =

01×sd, . . . , α = 01×sd and so the set of polynomials {Bk,j, j = 1, . . . , sd, k =
0, 1, . . . , m} is linearly independent.

Definition 7. Let {Bm} be a vector sequence of polynomials where Bm =

[Bm,1 · · · Bm,sd]
T , m ∈ N, such that Bm =

m∑

j=0

Bm
j Pj where Bm

j ∈ Msd×sd.

We say that {Bm} is a free vector sequence if Bm
m is a regular matrix for

m ∈ N.

Lemma 3. Let {Bm} be a vector type II multiple orthogonal polynomials
sequence, with respect to the vector of linear functionals U . Let us consider
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Qm = CmBm, m ∈ N where Cm are sd × sd regular matrices. Then {Qm}
is also type II multiple orthogonal polynomial sequence, with respect to the
vector of linear functionals U .

Proof : Let {Bm} be a vector type II multiple orthogonal polynomials se-
quence, with respect to the vector of linear functionals U , i.e.,

((xs)kU)(Bm) = ∆mδk,m, k = 0, 1, . . . , m, m ∈ N ,
where ∆m is a regular sd × sd matrix. From

((xs)kU)(Bm) = ((xs)kU)((Cm)−1CmBm) = (Cm)−1((xs)kU)(Qm) ,
we have

(Cm)−1((xs)kU)(Qm) = ∆mδk,m, k = 0, 1, . . . , m, m ∈ N ,
hence

((xs)kU)(Qm) = Cm∆mδk,m, k = 0, 1, . . . , m, m ∈ N ,
where Cm∆m is a regular sd× sd matrix. Hence, the vector sequence of poly-
nomials, {Qm}, is type II multiple orthogonal with respect to the vector of
linear functionals U .

Example 3. Let {Bm} be a vector type II multiple orthogonal polynomials

sequence, with respect to the vector of linear functionals U and {B̂m} a vector

sequence of polynomials with B̂m = (B0
0)

−1Bm, m ∈ N, where the matrix B0
0 is

such that B0 = B0
0 P0. The vector sequence of polynomials {B̂m} is also type II

multiple orthogonal with respect to the vector of linear functionals U . In fact,
being {Bm} a vector sequence type II multiple orthogonal polynomials, with
respect to the vector of linear functionals U , we have

((xs)kU)(Bm) = ∆mδk,m, k = 0, 1, . . . , m, m ∈ N ,
where ∆m is a regular sd × sd matrix , i.e.,

((xs)kU)(B̂m) = (B0
0)

−1∆mδk,m, k = 0, 1, . . . , m, m ∈ N ,
where (B0

0)
−1∆m is a regular sd × sd matrix. Hence, the vector sequence of

polynomials {B̂m} is type II multiple orthogonal with respect to the vector
of linear functionals U .

Example 4. Let {Bm} be a vector sequence type II multiple orthogonal poly-

nomials, with respect to the vector of linear functionals U and {B̆m} a vector

sequence of polynomials with B̆m = ∆−1
m Bm, m ∈ N. The vector sequence

of polynomials {B̆m} is also type II multiple orthogonal, with respect to the
vector of linear functionals U . In fact, being {Bm} a vector sequence type II
multiple orthogonal polynomials, with respect to the vector of linear func-
tionals U , we have
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((xs)kU)(Bm) = ∆mδk,m, k = 0, 1, . . . , m, m ∈ N ,
where ∆m is a regular sd × sd matrix, i.e.,

((xs)kU)(B̆m) = Isd×sd δk,m, k = 0, 1, . . . , m, m ∈ N ,

and so the vector sequence of polynomials, {B̆m}, is type II multiple orthog-
onal with respect to the vector of linear functionals U .

Now we introduce the notions of moments and Hankel matrices by blocks
associated to the vector of linear functionals U .

Definition 8. We define the the moments of order j ∈ N associated to the
vector of linear functionals (xs)kU , by

Uk
j := ((xs)kU)(Pj) =




v1(xjsd+ks) · · · vsd(xjsd+ks)

... . . . ...
v1(x(j+1)sd+ks−1) · · · vsd(x(j+1)sd+ks−1)



 . (11)

Definition 9. We define Hankel matrices by

Hm =




U0

0 · · · Um
0

... . . . ...
U0

m · · · Um
m



 , m ∈ N, (12)

where Uk
j are the moments of order j associated to the vector of linear func-

tionals (xs)kU given by (11).

Definition 10. The vector of linear functionals U is said to be regular if
detHm 6= 0, m ∈ N, where Hm is given by (12).

Theorem 5. Let U be a vector of linear functionals. Then U is regular if,
and only if, given a sequence of regular sd × sd matrices, (∆m) , there is a
unique free vector sequence {Bm} where Bm = [ Bm,1 · · · Bm,sd ]T , m ∈ N,

such that
i) ((xs)kU)(Bm) = 0sd×sd, k = 0, 1, . . . , m − 1
ii) ((xs)mU)(Bm) = ∆m,

i.e, {Bm} is type II multiple orthogonal polynomial sequence, with respect to
the vector of linear functionals U .

Proof : Let {Bm}, Bm = [ Bm,1 · · · Bm,sd ]T , m ∈ N, be a vector sequence

of polynomials, such that Bm =
m∑

j=0

Bm
j Pj where Bm

j ∈ Msd×sd. By the

multi-orthogonality conditions (10) the vector sequence of polynomials {Bm}
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is type II multiple orthogonal with respect to the vector of linear functionals
U if for k = 0, . . . , m − 1

((xs)kU)(Bm) = ((xs)kU)(

m∑

j=0

Bm
j Pj) =

m∑

j=0

Bm
j ((xs)kU)(Pj) = 0sd×sd ,

and for all m ∈ N,

((xs)mU)(Bm) = ((xs)mU)(

m∑

j=0

Bm
j Pj) =

m∑

j=0

Bm
j ((xs)mU)(Pj) = ∆m. (13)

In matrix form we have,

[
Bm

0 · · · Bm
m

]



U0

0 · · · Um
0

... . . . ...
U0

m · · · Um
m



 =
[

0sd×sd · · · 0sd×sd ∆m

]
.

Supposing the regularity of the vector of linear functionals U , we have

[
Bm

0 · · · Bm
m

]
=

[
0sd×sd · · · 0sd×sd ∆m

]



U0

0 · · · Um
0

... . . . ...
U0

m · · · Um
m




−1

.

Therefore,

Bm =
[

0sd×sd · · · 0sd×sd ∆m

]



U0

0 · · · Um
0

... . . . ...
U0

m · · · Um
m




−1 


P0
...

Pm



 .

Taking m = 0 in (13), we have B0
0 U

0
0 = ∆0 .

Using the regularity of the matrices U0
0 and ∆0 we have that B0

0 is a regular
matrix. Similarly, taking m = 1 in (13), we have{

B1
0 U

0
0 + B1

1 U
0
1 = 0sd×sd

B1
0 U

1
0 + B1

1 U
1
1 = ∆1,

, i.e., B1
1(U

1
1 − U0

1 (U0
0 )−1U1

0 ) = ∆1 .

Using the regularity of the U and by the triangular structure by blocks, we
have det(U1

1 − U0
1 (U0

0 )−1U1
0 ) 6= 0 , and so B1

1 is a regular matrix.
Using the same argument we can conclude that Bm

m is a regular matrix and
so {Bm} is a free vector sequence.

Reciprocally and in a similar way if Bm
m , m ∈ N, is regular we obtain a

regularity of the U .

In section 2 we have proved that a sequence of monic type II multiple
orthogonal polynomials, {Bn}, with respect to the regular system of linear
functionals

{
u1, . . . , ud

}
and quasi-diagonal multi-index J verify a (s(d+1)+

1)-term recurrence relation and we rewrote this recurrence relation in matrix
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form, obtaining a three-term recurrence relation for vector polynomials with
matrix coefficients. Now we prove the converse of this result which is called
the Favard type theorem.

Theorem 6. Let {Bn} be a sequence of monic type II multiple orthogonal
polynomials, with respect to a regular system of linear functionals {u1, . . . , ud}
and quasi-diagonal multi-index J and let U = [v1 . . . vsd]T be the vector of
linear functionals where vj, j = 1, . . . , sd are defined by the algorithm. Then,
the following conditions are equivalent:
a) The vector sequence of polynomials {Bm} is type II multiple orthogonal
with respect to the vector of linear functionals U , i.e.,

((xs)kU)(Bm) = ∆m δk,m, k = 0, 1, . . . , m, m ∈ N, (14)

where ∆m is a regular upper triangular sd × sd matrix given by
∆m = γs,d

m · · · γs,d
1 ∆0, m = 1, 2, . . . ,

and ∆0 is an upper triangular sd × sd matrix.
b) There exist sequences of sd× sd matrices (αs,d

m ), (βs,d
m ) and (γs,d

m ), m ∈ N,

with γs,d
m regular upper triangular matrix such that Bm is defined by the three-

term recurrence relation with sd × sd matrix coefficients given by

xsBm(x) = αs,d
m Bm+1(x) + βs,d

m Bm(x) + γs,d
m Bm−1(x), m = 0, 1, . . . (15)

with B−1 = 0d×1 and B0 given.

Proof : a) ⇒ b). It proven in the Theorem 3.
b) ⇒ a). We build a vector of linear functionals U that verifies (14) defined
uniquely taking into account its moments Uk

m from the conditions:

U(B0) = ∆0 , U(Bj) = 0sd×sd, j = 1, 2, . . . . (16)

As {Pm} is a basis of P
sd, for each m ∈ N, there is an unique sequence

(Bm
j ) ⊂ Msd×sd, such that, Bm =

m∑

j=0

Bm
j Pj.

• Let k = 0. We have
U(B0) = B0

0U(P0) and so U0
0 = (B0

0)
−1U(B0) ,

U(Bm) =
∑m

j=0 Bm
j U(Pj), i.e., U0

m = −
∑m−1

j=0 (Bm
m)−1Bm

j U0
j , m = 1, 2, . . . .

• Let k = 1, 2, . . . . Using (15) we have

(xs)kBm = αs,d
m xs(k−1)Bm+1 + βs,d

m xs(k−1)Bm + γs,d
m xs(k−1)Bm−1 .

For m = 0 we have
U((xs)kB0) = α

s,d
0 U(xs(k−1)B1) + β

s,d
0 U(xs(k−1)B0),
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i.e.,

Uk
0 = (B0

0)
−1 ×

[
α

s,d
0 B1

1U
s(k−1)
1 + (αs,d

0 B1
0 + β

s,d
0 B0

0)
]
U

s(k−1)
0 .

For m = 1 we have
U((xs)kB1) = α

s,d
1 U(xs(k−1)B2) + β

s,d
1 U(xs(k−1)B1) + γ

s,d
1 U(xs(k−1)B0) ,

i.e.,

Uk
1 = (B1

1)
−1

[
α

s,d
1 B2

2U
s(k−1)
2 + (αs,d

1 B2
1 + β

s,d
1 B1

1)U
s(k−1)
1

]

+ (B1
1)

−1
[
(αs,d

1 B2
0 + β

s,d
1 B1

0 + γ
s,d
1 B0

0)U
s(k−1)
0 − B1

0U
k
0

]
.

For m ≤ k, we have
U((xs)kBm) = αs,d

m U(xs(k−1)Bm+1) + βs,d
m U(xs(k−1)Bm) + γs,d

m U(xs(k−1)Bm−1),

U((xs)kBm) = αs,d
m

m+1∑

j=0

Bm+1
j Uk−1

j + βs,d
m

m∑

j=0

Bm
j Uk−1

j + γs,d
m

m−1∑

j=0

Bm−1
j Uk−1

j ,

U((xs)kBm) =

m−1∑

j=0

(αs,d
m Bm+1

j + βs,d
m Bm

j + γs,d
m Bm−1

j )Uk−1
j

+ (αs,d
m Bm+1

m + βs,d
m Bm

m)Uk−1
m + αs,d

m Bm+1
m+1U

k−1
m+1.

Taking into account that,

U((xs)kBm) = U((xs)k

m∑

j=0

Bm
j Pj) = Bm

mUk
m +

m−1∑

j=0

Bm
j Uk

j ,

we have

Uk
m = (Bm

m)−1
m−1∑

j=0

(αs,d
m Bm+1

j + βs,d
m Bm

j + γs,d
m Bm−1

j )Uk−1
j

+(Bm
m)−1((αs,d

m Bm+1
m +βs,d

m Bm
m)Uk−1

m +αs,d
m Bm+1

m+1U
k−1
m+1−

m−1∑

j=0

Bm
j Uk

j ).

For m = k we have
U((xs)kBk) = γ

s,d
k γ

s,d
k−1 · · · γ

s,d
1 B0

0U
0
0 ,

and so,

Uk
k = (Bk

k)−1(γs,d
k γ

s,d
k−1 · · · γ

s,d
1 B0

0U
0
0 −

k−1∑

j=0

Bk
jU

k
j ) .

For m > k we have U((xs)kBm) = 0sd×sd, i.e.,

Uk
m =

m−1∑

j=0

−(Bm
m)−1Bm

j Uk
j .

Therefore, the moments associated to the vector of linear functionals U are
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uniquely determined from (16) and considering the fact that Bm
m is regular

we obtain the regularity of the vector of linear functionals U . Hence, this
result is proved.

Note that, in matrix notation the three-term recurrence relation of the
previous Theorem, (15), is written by

J





B0
...

Bm
...




= xs





B0
...

Bm
...




, (17)

where the tridiagonal matrix by blocks

J =





β
s,d
0 α

s,d
0 0sd×sd

γ
s,d
1 β

s,d
1 α

s,d
1 0sd×sd

0sd×sd γ
s,d
2 β

s,d
2 α

s,d
2 0sd×sd

. . . . . . . . . . . . . . .




, (18)

is designated by block Jacobi matrix.

4. Type II Hermite-Padé approximation

Definition 11. Let U be a vector of linear functionals. We define the matrix
generating function associated to U , F , by

F(z) := Ux(
P0(x)

z − xs
) =





v1
x(

1

z − xs
) · · · vsd

x (
1

z − xs
)

... . . . ...

v1
x(

xsd−1

z − xs
) · · · vsd

x (
xsd−1

z − xs
)




. (19)

Being,

1

z − xs
=

1

z

∞∑

k=0

(
xs

z

)k

for |xs| < |z|, (20)

we have F(z) =

∞∑

k=0

((xs)kUx)(P0(x))

zk+1
.

Theorem 7. Let U be a regular vector of linear functionals, {Bm} a vector
type II multiple orthogonal polynomials sequence, with respect to U , and R
the resolvent function associated to the linear operator defined by the block
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Jacobi matrix, J , given in (18), i.e.,

R(z) =

∞∑

n=0

et
0J

ne0

zn+1
, where e0 = [Isd×sd 0sd×sd · · · ]T .

Then, R(z) = B0
0 F(z)(U(P0))

−1(B0
0)

−1 , where B0
0 is the matrix coefficient

in B0 = B0
0 P0.

Proof : In order to determine the value of et
0J

ne0, n ∈ N, we consider the
matrix identity (17), from which we can obtain,

Jn





B0(x)
...

Bm(x)
...




= (xs)n





B0(x)
...

Bm(x)
...




, n ∈ N. (21)

Let (xs)nBm(x) =
m+n∑

j=m−n

ηm
j,nBj(x), ηm

j,n ∈ Msd×sd . In particular, for m = 0

we have, (xs)nB0(x) =
n∑

j=0

η0
j,nBj(x) .

By (21), et
0J

ne0, n ∈ N, it is given by η0
0,n. Applying the vector of linear

functionals U to both members of the previous matrix indentity, we have
η0

0,n = ((xs)nU)(B0)(U(B0))
−1 .

Using B0 = B0
0 P0, we have η0

0,n = B0
0((x

s)nU)(P0)(U(P0))
−1(B0

0)
−1 . Hence,

R(z) = B0
0

{
∞∑

n=0

((xs)nU)(P0)(U(P0))
−1

zn+1

}
(B0

0)
−1 ,

as we want to show.

Now, we present a reinterpretation of type II Hermite-Padé approximation
in terms of the matrix functions.

Definition 12. Let {Bm} be a vector sequence of polynomials and U a

regular vector of linear functionals. To the sequence of polynomials {B
(1)
m−1}

given by

B
(1)
m−1(z) := Ux(

Vm(zd) − Vm(xsd)

z − xs
P0(x)) ,

where Ux represents the action of U over the variable x, we designate sequence
of polynomials associated to {Bm} and to U .
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Theorem 8. Let U be a regular vector of linear functionals, {Bm} a vec-

tor sequence of polynomials, {B
(1)
m−1} the sequence of associated polynomials

and F the matrix generating function defined in (19). Then, {Bm} is the
type II multiple orthogonal with respect to the vector of linear functionals U
if, and only if,

Vm(zd)F(z) − B
(1)
m−1(z) =

∞∑

k=m

((xs)kUx)(Bm(x))

zk+1
.

Proof : Taking into account the Definition 12, we have

B
(1)
m−1(z) = Ux(

Vm(zd) − Vm(xsd)

z − xs
P0(x)) = Vm(zd)F(z) − Ux(

Vm(xsd)

z − xs
P0(x)) ,

i.e., Vm(zd)F(z) − B
(1)
m−1(z) = Ux(

Vm(xsd)

z − xs
P0(x)) .

Taking into account (20) we have

Vm(zd)F(z) − B
(1)
m−1(z) =

∞∑

k=0

((xs)kUx)(Bm(x))

zk+1
.

Hence, we get the desired result.
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[12] E.M. Nikishin and V.N. Sorokin, Rational Approximations and Orthogonality, Transl. Math.
Monographs, 92, Amer. Math. Soc. Providence RI, 1991.

[13] V.N. Sorokin and J. Van Iseghem, Algebraic aspects of matrix orthogonality for vector polyno-

mials, J. Approx. Theory 90 (1997), 97–116.
[14] W. Van Assche, Analytic number theory and approximation, Coimbra Lecture Notes on Or-

thogonal Polynomials (A. Branquinho and A.P. Foulquié Moreno, eds.), Nova Science Publish-
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