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Abstract

In this paper, we devise a forward-looking methodology to determine efficient credit portfolios under the
IFRS 9 framework. We define and implement a credit loss model based on prospective point-in-time prob-
abilities of default. We determine these probabilities of default and the credits’ stage allocation through a
credit stochastic simulation. This simulation is based on the estimation of transition matrices. Using data
from 1981 to 2019, in a non-homogeneous Markov chain setting, we estimate transition matrices conditional
on the global real gross domestic product growth. This allows considering the effects of the economic cycle,
which are of great importance in bank management. Finally, we develop a robust optimization model that
allows the bank manager to analyze the trade-off between the annual average portfolio income and the cor-
responding portfolio volatility. According to the proposed bi-objective model, we compute the efficient credit
portfolios constructed based on 10-year maturity credits. We compare their structure to those generated by
the IAS 39 and CECL accounting frameworks. The results indicate that the IFRS 9 and CECL frameworks
generate efficient credit portfolios whose structure penalizes riskier-rated credits. In turn, the riskier efficient
credit portfolios under the IAS 39 framework concentrate entirely on speculative-grade credits. This pattern
is also encountered in efficient credit portfolios constructed based on credits with different maturities, namely
5 and 15 years. Moreover, the longer the maturity of the credits that enter into the composition of the efficient
portfolios, the more the speculative-grade credits tend to be penalized.

Keywords: IFRS 9; IAS 39; CECL; credit risk; transition matrices; stochastic simulation

1. Introduction

Before the Global Financial Crisis of 2007–08, the credit losses of a banks’ portfolio credit were as-
sessed based on the incurrent loss (IL) approach settled by the International Accounting Standard

∗Corresponding author.

This research is independent from the activity at Montepio and does not reflect any views of this institution.

© 2022 The Authors.
International Transactions in Operational Research © 2022 International Federation of Operational Research Societies
Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA02148,
USA.

https://orcid.org/0000-0002-7871-7058
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fitor.13137&domain=pdf&date_stamp=2022-03-27


2454 R.P. Brito and P. Júdice / Intl. Trans. in Op. Res. 30 (2023) 2453–2484

No 39—IAS 39 (International Accounting Standards Board, 2004). Under the IL approach, insti-
tutions should not account for expected credit losses arising from future events. Several authors see
this procedure as one of the causes of the depth of the Global Financial Crisis (Financial Stability
Forum, 2009) and nicknamed it as “too little, too late” (Basel Comittee on Banking Supervision,
2015).

In response to the criticism of the IL approach, the International Accounting Standards Board
issued the International Financial Reporting Standard No 9 (IFRS 9) (International Financial Re-
porting Standards, 2017) on 24 July 2014, which become mandatory on 1 January 2018. One of the
key aspects of IFRS 9 lies in the shift from the IL approach to an expected credit loss (ECL) ap-
proach. Nevertheless, this ECL approach brings a lot of subjectivity about measuring future losses
and requires a greater amount of information. This contrasts with the IAS 39 framework, where
the losses were measured based on objective facts.

According to IFRS 9, each bank can define its own internal credit loss model. Typically, the ECL
computation (KPMG, 2017; Gross et al., 2020) is based on the product of the loss given default
by the corresponding point-in-time probability of default (Chawla et al., 2016; Andrija, 2019).
Moreover, this computation must contemplate three stages (Taylor, 2017). Stage 1 corresponds
to the case where the financial asset has no deterioration in credit quality since acquisition. For a
financial asset classified in stage 1, financial institutions should use the one-year ECL and recognize
interest income on a gross basis. The occurrence of a significant increase in credit risk (SICR) since
acquisition leads to the transfer of the financial asset to stage 2. In stage 2, the lifetime ECL should
be recognized and the interest income is computed as in stage 1 (i.e., on a gross basis). Allocation to
stage 3 occurs when a financial asset is credit-impaired. In this stage, institutions should compute
interest income on a net basis (i.e., gross carrying amount less the ECL).

IFRS 9 generally applies to most countries. However, the United States is a relevant excep-
tion since it uses the Generally Accepted Accounting Principles (US GAAP). Under the US
GAAP update, issued in June 2016 by the Financial Accounting Standards Board (Financial Ac-
counting Standards Board, 2016), similarly to IFRS 9, businesses should implement the credit
loss model based on the prospective credit loss (ECL instead of an IL approach). However, this
computation deploys the current expected credit loss (CECL) framework, that is, always ap-
plies the lifetime ECL based on point-in-time probabilities of default. Avoiding defining SICR
and stage allocation constitutes the main point of divergence from IFRS 9. The CECL model
will be mandatory to all institutions in January 2023 (Financial Accounting Standards Board,
2019).

The introduction of the Basel I accord in 1988 (Bank of International Settlements, 1998) had
triggered the discussion around the potential procyclical effects of banks’ decisions. In periods of
economic downturn, there tends to be a depletion of bank capital through the deterioration of
credit portfolios. In these periods, banks need more capital to meet the minimum regulatory re-
quirements when access to capital is scarce. Therefore, in economic downturns, banks tend to avoid
the investment in high-risk credits precisely when the economy yearns for this kind of investment.
More recently, the literature has analyzed the procyclical effects of the different impairment ac-
counting frameworks, namely IFRS 9, IAS 39, and CECL.

Aligned with the opinion of policymakers, Laeven and Majnoni (2003) have found empirical evi-
dence that most banks delay provisioning for deteriorated credits until too late, when cyclical down-
turns have already occurred, therefore amplifying the impact of the economic cycle on the banks’
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income and capital. Laeven and Majnoni (2003) agree that provisioning based on a forward-looking
approach, as introduced by the IFRS 9 and CECL frameworks, reduces the procyclical effects.

Balla and McKenna (2009) argue that an accounting setting based on the IL model, as the IAS 39
framework, can be suboptimal to avoid bank failures and in the efficiency of credit bank invest-
ment/lending. On the one hand, the authors defend that the risk of bank insolvency increases
when provisioning occurs after the economic downturn. On the other hand, they defend that the
increase of the credit loss reserves, when the economy is in contraction, leads to procyclical effects.

The most recent work suggesting that IFRS 9 has fewer procyclical effects than IAS 39 is the
study performed by Buesa et al. (2019). In an empirical exercise based on Italian mortgages from
2006 to 2018, Buesa et al. (2019) have modeled the impact of credit impairments on the Profit and
Loss (P&L) statement under the three impairment accounting frameworks: IAS 39, IFRS 9, and
CECL. The results suggest that IFRS 9 is less procyclical than IAS 39 and more procyclical than
the CECL framework. Nevertheless, the lower procyclicality of the CECL framework comes with
a significant increase in provisions.

In the same direction, there are other studies in the literature suggesting that IFRS 9 has fewer
procyclical effects than IAS 39 (see, e.g., Basel Comittee on Banking Supervision, 2009; Finan-
cial Stability Forum, 2009; Wezel et al., 2012). However, this issue is far from being consensual in
the literature.

Recently, Abad and Suarez (2020) have been defending that the estimation of future credit losses
under the IFRS 9 and CECL frameworks is challenging. These standards would be countercyclical
only if the modelers were able to predict turning points in the cycle or the occurrence of crises (as
the case of the recent COVID 19 pandemic) two or three years in advance (Abad and Suarez, 2020).
These authors have shown empirical evidence that the IFRS 9 and CECL frameworks will raise the
credit loss provisions more suddenly than the IAS 39 approach when the economy switches from
expansion to contraction. As a consequence, the P&L and the Common Equity Tier 1 (CET1) ratio
will decline more severely (Abad and Suarez, 2018) at the beginning of downturns under IFRS 9
and CECL.

These results are similar to the study performed in Barclays (2017), which concludes that forward-
looking approaches, such as IFRS 9 and CECL, may amplify and not reduce the effect of an un-
expected increase in risk. Seitz et al. (2018) go further by exposing the high sensitivity of the ECL
to the probability of default model used to estimate the corresponding probabilities of default.
The point-in-time estimation of the probabilities of default could imply a severe deterioration of
the banks’ capital when the economy starts to contract, since the banks could not anticipate this
adverse shift (European Systematic Risk Board, 2017).

IFRS 9 is, at the time of writing (June 2021), a subject of great debate in light of the current coro-
navirus crisis. Anticipating the inability of debtors to pay back and the moratoriums given by banks
worldwide, government officials have created relief measures to delay the full impact of IFRS 9 so
that these moratoriums, for instance, are not immediately recognized as losses. The authorities have
thus given flexibility to banks on adopting the assessment of the likeliness to pay (European Central
Bank, 2020; European Comission, 2020). These findings highlight the great importance of IFRS 9.
However, to our knowledge, there is no current literature that establishes optimal credit portfolios
under the IFRS 9 framework. Many specialists and strategists have anticipated stylized impacts in
the business model of banks and consequently in the credit portfolios (McKinsey & Co., 2017).
For instance, there will be incentives to shorten the maturity of credits and steer away from lower
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ratings. However, there exists no quantitative methodology to guide a bank manager in selecting a
credit portfolio.

Knowing that accounting standards impact banking asset allocation (Argimon et al., 2015) and
motivated by the lack of a methodology for credit portfolio allocation under IFRS 9, we design a
quantitative method to compute efficient credit portfolios under IFRS 9. The contribution of this
paper is twofold: (1) we devise a methodology to determine the efficient credit portfolios under
IFRS 9 and compare their structure to those generated by the IAS 39 and CECL frameworks; (2)
we identify the accounting frameworks that imply a lower allocation to riskier credit portfolios,
which have higher refinancing needs during economic recessions; thus, we add this element to the
discussion of the procyclical effects of the different impairment accounting frameworks. Note that
if efficient credit portfolios under a particular accounting framework allocate less to riskier credits,
this behavior can lead to procyclical effects. In fact, in periods of economic downturn, cash-hungry
corporations will find it more difficult to obtain bank financing precisely when they most need it.

Under IFRS 9, we assume that the bank manager aims to select a credit portfolio, constructed
with global credits with different ratings (from AAA to B, according to Standard & Poor’s Ratings-
Direct®, 2014) at the acquisition date. As a standard practice in banking, the credits are classified
at amortized cost according to the IFRS 9 framework. Hence, the investment horizon is coincident
with the credit maturity. As a baseline case, we assume that each credit has a maturity of 10 years.
Furthermore, we posit that the bank manager has a certain amount to invest in the credits, and
selects the credit portfolio at the end of 2019, that is, data until the end of 2019 are assumed to
be known.

Following the IFRS 9 framework, we begin by defining the credit impairment model by which
the bank manager can compute the annual credit income. The definition that we adopt in this paper
relies on estimating the credit probability of default to calculate ECL, in line with practice (KPMG,
2017).

Then, to simulate the credit dynamics, we make use of the one-year transition matrices reported
annually by Standard & Poor’s (S&P) (see, e.g., Standard & Poor’s Global Ratings, 2019). We col-
lect annual data from 1981 to 2019. These matrices refer to global corporate bonds that we use
as a proxy of global credit data. Since cyclical macroeconomic effects are crucial to bank manage-
ment, we estimate the transition matrices conditional on the real global gross domestic product
(GDP) growth.

The most common approaches to estimate conditional transition matrices are based on the one-
factor model suggested in the CreditMetricsTM (J. P. Morgan & Co., 1997) or on numerical adjust-
ments (see, e.g., Jarrow et al., 1997). A comparison between these two approaches can be found in
Trück (2008). In this paper, we closely follow the one-factor model approach, constructing a credit
cycle measure determined by the real global GDP growth. The construction of the credit cycle
measure is based on the historical inverse relationship between the speculative-grade ratings (BB,
B, and C/CCC) probabilities of default and the global real GDP growth.

Assuming a non-homogeneous Markov chain model (Brémaud, 2020) for the conditional tran-
sition matrices, we simulate the dynamics of 6000 credits (1000 for each rating grade from AAA to
B) from acquisition date until maturity. As a result of this stochastic simulation, we determine the
stage allocation, according to IFRS 9, for each simulated credit.

To implement the defined credit loss model, we need to compute the probabilities of default
for each credit rating grade. IFRS 9 states that these probabilities should be estimated taking into
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account the economic credit cycle, that is, should be point-in-time (Chawla et al., 2016; Andrija,
2019). Therefore, we evaluate these point-in-time probabilities of default conditional on several
different projections for the global real GDP growth. More specifically, for each different predic-
tion of the global real GDP growth, we estimate the corresponding conditional transition ma-
trix, whose last column gives us the point-in-time probabilities of default for each credit rating
grade.

Once specified the credit dynamics and estimated the point-in-time probabilities of default, we
compute the credit income for each simulated credit. Then, we identify a representative credit,
for each rating grade, that corresponds to a weighted average of the 1000 simulated credits. Fi-
nally, based on the annual income of each representative credit, we suggest a forward-looking
bi-objective optimization model whose solution allows the bank manager to directly analyze
the trade-off between the portfolio income and the corresponding portfolio volatility. We show
how to tackle such a bi-objective problem by solving different convex optimization quadratic
problems.

Typically, asset allocation models are very sensitive to input parameters, often leading to corner
solutions and unsmooth allocations as a function of the risk parameter. To circumvent this diffi-
culty, Michaud and Michaud (2007, 2008) proposed a resampling methodology. This methodology
resamples returns, takes the efficient frontier and portfolios for each sample, and averages efficient
frontiers and portfolios across samples. When compared to the optimization without resampling,
the resampling methodology is documented to produce smoother allocations as a function of risk,
and also avoids corner solutions. Hence, Michaud and Michaud (2007, 2008) qualified the method-
ology as robust.

In the spirit of Michaud and Michaud (2007, 2008), we apply resampling to our problem, yielding
much smoother allocations than one would have obtained if no resampling was used, and refer to
it as a robust model. We use the suggested forward-looking bi-objective optimization model over
100 generated scenarios where each scenario corresponds to a global real GDP growth path. With
the resulting solutions and following the robust resampling methodology proposed in Michaud
and Michaud (2007, 2008), we compute the robust average efficient Pareto frontier not only for
the IFRS 9 framework but also for the IAS 39 and CECL frameworks. We finish our analysis by
evaluating the composition of the efficient portfolios for varying maturities.

Globally, the results indicate that the efficient credit portfolios constructed under IFRS 9 and
CECL have a structure that penalizes riskier-grade rated credits, namely speculative-grade credits.
Under IAS 39, we no longer observe such a pattern. On the contrary, we note that the more volatile
efficient portfolios under IAS 39 tend to have a structure entirely concentrated in speculative-grade
credits. We encounter this pattern in the efficient portfolios with the different maturities considered:
5 years, 10 years, and 15 years. Moreover, based on these three maturities, the results indicate that
the longer the maturity, the more the riskier-grade rated credits tend to be penalized. This finding
holds under the three accounting frameworks.

The remainder of the paper is organized as follows. Section 2 presents the entire methodology
to estimate the credit income under the IFRS 9, IAS 39, and CECL frameworks. In Section 3, we
develop the forward-looking robust bi-objective model that allows us to identify, under the different
accounting frameworks, efficient portfolios in the correspondent income-risk bi-dimensional space.
In Section 4, we present and analyze the results on the robust efficient Pareto frontiers computed
under the IFRS 9, IAS 39, and CECL frameworks. Finally, Section 5 concludes the paper.

© 2022 The Authors.
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2. Modeling the bank manager problem

Let us assume that a bank manager wants to construct a credit portfolio from a set of global credits
under IFRS 9. According to the S&P Global Rating Classification System (Standard & Poor’s
RatingsDirect®, 2014), we consider that each global credit can be classified with one of eight rating
grades: AAA, AA, AA, A, BBB, BB, B, C/CCC, and D. The rating grades from AAA to BBB
correspond to investment-grade ratings, from BB to C/CCC to speculative-grade ratings, and the
D corresponds to the default state.

We assume that the bank manager disposes of a funding amount, F , to invest in the set of global
credits. Each global credit has a rating grade not inferior to B1.

Following the IFRS 9 classification system (International Financial Reporting Standards, 2017),
we assume that the global credits are classified at amortized cost. We use this particular assumption
for two reasons: (1) it is the standard accounting classification for loans, and (2) the vast majority
of assets in the bank’s balance sheet are classified under this category.

Finally, we assume that all the data until the end of 2019 are known and that the global credits
have a 10-year maturity. Motivated by data availability, we use data for global corporate bonds.
This allows the reader to reproduce all the results presented in this paper easily. Nevertheless, note
that the entire methodology that we develop in the next sections can be applied to any type of credit.

2.1. Credit loss model definition

When the bank manager invests in a global credit, she/he earns a fixed interest, C (annual coupon),
until maturity T . The credit income of a global credit acquired with rating grade equal to G ∈
{AAA, AA, A, BBB, BB, B} and belonging to stage 1 or stage 2 at year t = 1, . . . , T , is given by

ιGt = C × x − (ISt − ISt−1) × x = [C − (ISt − ISt−1)] × x, (1)

where x is the amount invested in the global credit and ISτ is the impairment stock in the corre-
sponding year τ . In turn, if at year t the global credit enters in default (belongs to stage 3), the
credit income is given by

ιGt = C × RR × x − (ISt − ISt−1) × x = [C × (1 − LGD) − (ISt − ISt−1)] × x, (2)

where RR is the recovery rate and LGD the loss given default2. Note that, as the global credit enters
in default in year t, then ιGτ = 0, ∀τ = t + 1, . . . , T .

The fixed interest, C, present in Equations (1) and (2) corresponds to the coupon value of each
global corporate bond classified with a rating grade from AAA to B. Accordingly, for a 10-year

1The C/CCC rating grade corresponds to substantial risk and therefore we do not consider it as belonging to the invest-
ment set.

2In this work, we consider a constant LGD = 62%. This value is based on the historical average of the RR for unsecured
global corporate bonds reported in Moody’s Investors Service (2019).

© 2022 The Authors.
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maturity, these values are3: 2.302%, 2.483%, 2.670%, 3.173%, 4.684%, 5.391%, for a AAA, AA, A,
BBB, BB, and B rating grade, respectively.

The computation of the impairment stock, ISτ (i.e., the expected credit loss - ECL), in Equa-
tions (1) and (2), is conditional on the stage allocation. Therefore, the impairment stock is given
by

ISτ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ECL(one-year)
τ = 1

1 + D
× LGD × PDτ , if stage 1 at τ,

ECL(lifetime)
τ = LGD ×

T∑
n=τ

SVn−1 × PDn

(1 + D)n
, if stage 2 at τ,

LGD × PDτ = LGD, if stage 3 at τ,

(3)

where D is the discount rate, PDτ is the one-year probability of default in year τ = 1, . . . , T , and
SVi is the survival rate until year i. Note that the initial impairment stock is equal to 0, that is,
IS0 = 0. The discount rate, D, is set equal to 1.828%, that is, equals the coupon rate of a AAA
corporate bond with a five-year maturity4. In turn, SVi is computed as

SVi =
i∏

j=0

(1 − PDj ), ∀i ∈ {0, 1, . . . , T − 1}, (4)

with PD0 = 0.
The income under IAS 39 of a non-default global credit at year t = 1, . . . , T will be simply equal

to C × x. In turn, if the credit enters in default at year t, then the credit income will be given by C ×
RR × x − LGD × x = [C × (1 − LGD) − LGD] × x, and in the subsequent years, until maturity
T , will be equal to 0.

If, instead, we considered the CECL accounting framework, the credit income will be computed
similarly as in the IFRS 9 case. Nevertheless, there is an important difference. In the CECL frame-
work, there is no stage allocation. Accordingly, the credit impairment stock will be computed based
on the credit lifetime (i.e., it will be equal to the second case of Equation 3).

Within the IFRS 9 framework, the ECL is computed according to three stages (see Equation 3).
As IFRS 9 does not explicitly define an SICR, we follow parsimonious criteria: a credit belongs
to stage 1 if it shows no downgrade greater than or equal to two grades since acquisition; a credit
belongs to stage 2 otherwise.

For the credit loss model implementation, we need to model the credit rating dynamics (to deter-
mine the stage allocation) and to estimate the probabilities of default5 for each global credit rating.
We make use of probability transition matrices for both purposes.

3The values were obtained in the Bloomberg Terminal (Bloomberg, 2021).

4We obtained this value through the Bloomberg Terminal (Bloomberg, 2021).

5Note that this estimation should be point-in-time. For further details see, for example, Carruthers et al. (2019).
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2.2. Estimation of transition matrices

Every year, S&P publicly discloses the global corporate one-year transition matrices. For example,
the reported annual raw transition matrix for 2019 (Standard & Poor’s Global Ratings, 2019) is
equal to

from/to AAA AA A BBB BB B CCC/C D NR

AAA 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AA 0.00 93.25 2.15 0.00 0.00 0.00 0.00 0.00 4.60

A 0.00 0.71 93.71 1.93 0.00 0.00 0.00 0.00 3.64

BBB 0.00 0.00 2.67 91.44 1.23 0.05 0.00 0.11 4.49

BB 0.00 0.00 0.07 2.61 83.02 4.99 0.30 0.00 9.01

B 0.00 0.00 0.00 0.00 2.21 78.57 5.09 1.49 12.64

CCC/C 0.00 0.00 0.00 0.00 0.49 8.37 45.81 30.05 15.27

, (5)

where the probability values are expressed in percentages. Similarly to the transition matrix reported
for 2019, we have access to all the transition matrices since 1981 (i.e., all the reports from 1981 to
2019 are available).

The raw transition matrices disclosed by S&P contain a column titled “N.R.” (Not Rated).
Following the standard procedure in the literature (see, e.g., Wei, 2003), we redistribute the
“N.R.” portion to the other ratings (leaving the default column unchanged) on a pro-rata
basis.

As recommended by CreditMetricsTM (J. P. Morgan & Co., 1997) for modeling purposes, we
ensure that all transition matrices satisfy some desirable properties: there should not exist nonzero
probability events, that is, all the transitions and defaults should have a nonzero probability; all
rows should sum exactly one; all the transition matrices should satisfy the so-called monotonicity
constraints, that is, within each row and column, the values on each side of the diagonal should
monotonically decline (for further details, see J. P. Morgan & Co., 1997).

To ensure that there are nonzero probability events, we consider the existence of a minimum
threshold set equal to 1 bp (basis point). Thus, whenever a zero probability arises, we con-
sider that it is equal to the defined threshold, and we subtract this value to the diagonal entry.
Moreover, all the rows are modified to sum exactly one by adjusting the corresponding diagonal
element.

Regarding the monotonicity constraints, to minimize excessive adjustments, we strictly follow the
parsimonious rules described in Wei (2003): (1) whenever the column monotonicity is not satisfied,
we swap the element in question with the previous element, and we ensure that the sum of each row
is equal to 1 by adjusting the corresponding diagonal elements; (2) whenever the row monotonicity
is not satisfied, we set the element in question equal to the previous rating’s element and add the
difference to the elements between the diagonal and the element in question. We point out that
we may need to apply the monotonicity rules more than once to accomplish a smooth transition
matrix.

© 2022 The Authors.
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For example, after applying the adjustments described in the previous paragraphs, the smooth
version of the 2019 raw transition matrix (see Equation 5) is equal to

from/to AAA AA A BBB BB B CCC/C D

AAA 99.93 0.01 0.01 0.01 0.01 0.01 0.01 0.01

AA 0.01 97.69 2.25 0.01 0.01 0.01 0.01 0.01

A 0.01 0.74 97.21 2.00 0.01 0.01 0.01 0.01

BBB 0.01 0.01 2.80 95.82 1.29 0.05 0.01 0.01

BB 0.01 0.01 0.08 2.87 91.11 5.48 0.33 0.11

B 0.01 0.01 0.01 0.01 2.54 90.09 5.84 1.49

CCC/C 0.01 0.01 0.01 0.01 0.63 10.71 58.57 30.05

D 0 0 0 0 0 0 0 1

. (6)

In Equation (6), we added the last row corresponding to the absorbing state (default state). Re-
peating this procedure to all the historical transition matrices, from 1981 to 2019, we have a time
series of one-year smooth transition matrices, Pt, with t = 1, . . . , 39, that can be represented by

Pt =

⎡
⎢⎢⎢⎢⎢⎣

pt (1, 1) pt (1, 2) · · · pt (1, 8)

pt (2, 1) pt (2, 2) · · · pt (2, 8)

· · · · · · · · · · · ·
pt (7, 1) pt (7, 2) · · · pt (7, 8)

0 0 · · · 1,

⎤
⎥⎥⎥⎥⎥⎦, (7)

where each number from 1 to 8 corresponds to each possible rating grade: AAA, AA, A, BBB, BB,
B, C/CCC, and D, respectively.

We could model the transition matrices as a homogeneous Markov chain model as in Jarrow et al.
(1997) or in Ludwig (2019). Nevertheless, this will lead to estimation error by not including cyclical
effects, which are of great importance in bank management. Instead, in this work, we adopt a non-
homogeneous Markov chain model approach (Brémaud, 2020). Inspired by the CreditMetricsTM

(J. P. Morgan & Co., 1997) methodology and closely following the one-factor model presented in
Belkin et al. (1998) and discussed in Gross et al. (2020), we assume that the rating transitions reflect
an underlying continuous credit-change indicator, ut, such that

ut = (
√

1 − ρxt + √
ρht ) ∼ N(0, 1), (8)

where xt represents a standard normal distributed idiosyncratic component, ht represents a stan-
dard normal distributed systematic component (shared by all issuers), and ρ corresponds to the
correlation between ht and ut. It is assumed that these standard normal random variables are inde-
pendent.

In Equation (8), ht can be interpreted as a measure of the credit cyclical effects. A positive ht
shifts the distribution of ut to the right-hand side. In turn, a negative ht shifts the distribution of ut
to the left-hand side.

© 2022 The Authors.
International Transactions in Operational Research © 2022 International Federation of Operational Research Societies

 14753995, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13137 by U

niversidade D
e C

oim
bra, W

iley O
nline L

ibrary on [19/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2462 R.P. Brito and P. Júdice / Intl. Trans. in Op. Res. 30 (2023) 2453–2484

0

5

10

15

20

1980 1990 2000 2010 2020
Year

P
ro

ba
bi

lit
ie

s 
of

 d
ef

au
lt 

(in
 %

)

Rating Grade

Investment

Overall

Speculative

Fig. 1. Historical values of the probabilities of default.

Figure 1 reports, for the period 1981–2019, the aggregate probabilities of default corresponding
to investment-grade6, speculative-grade7, and overall8 ratings. As expected, we observe much more
volatility of the speculative-grade probabilities of default in contrast with the more steady behavior
of the investment-grade defaults.

An interesting fact, that we explore, lies in contrasting the behavior of the speculative-grade
probabilities of default (see Fig. 1) with the evolution of the real GDP growth9 (see Fig. 2).

By contrasting Figs. 1 and 2, we observe a synchronous inverse relationship between the
speculative-grade default probabilities and the global real GDP growth. Thus, whenever global
real GDP growth goes up, default probabilities go down and vice versa. Moreover, it is well known
that nonspeculative probabilities of default are insensitive to the economic cycle (see, e.g., Wilson,
1997; Belkin et al., 1998).

Motivated by these facts, we suggest constructing a credit cycle measure (based on the global real
GDP growth) calibrated through BB, B, and CCC/C default probabilities.

Let PD(S)
t be the speculative-grade default probability (i.e., a weighted average of the BB, B and

CCC/C probabilities of default) at time t. Inspired in previous works, such as Krüger et al. (2018),

6Weighted average of AAA, AA, A, and BBB ratings.

7Weighted average of BB, B, and C/CCC ratings.

8Weighted average of investment-grade and speculative-grade ratings.

9Data for the global real GDP growth are publicly available at: https://data.worldbank.org/ (accessed June 2021).

© 2022 The Authors.
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Fig. 2. Historical global real GDP growth.

this probability can be modeled by a probit model

PD(S)
t = �(α + βGDPGt + εt ), (9)

where GDPGt represents the change in the global real GDP from t − 1 to t, �(·) is the cumulative
distribution function (CDF) of a normal distribution, and εt represents an error term. Hence, the
relationship

�−1(PD(S)
t ) = α + βGDPGt + εt, (10)

allow us to estimate the inverse CDF of the speculative-grade default probability. Estimating Equa-
tion (10) by ordinary least squares (OLS), for the period 1981–2019, leads to the following esti-
mates: α̂ = −1.152 (std. error = 0.131) and β̂ = −8.691 (std. error = 4.175). Both estimates are
statistically significant at the level of 5%.

We can define the credit cycle measure, ht, as

ht = −
(

�−1(PD(S)
t ) − μPD(S)

σPD(S)

)
, (11)

where μPD(S) and σPD(S) denote, respectively, the average and the standard deviation of the inverse
normal distribution of PD(S)

t . The minus sign in Equation (11) turns the credit cycle measure

© 2022 The Authors.
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Fig. 3. Historical values of the credit cycle measure.

positive whenever the GDP growth is greater than its historical average and negative whenever
the GDP growth is less than its historical average.

Using the estimates of �−1(PD(S)
t ), computed according to Equation (10), in Fig. 3 we report the

evolution of ĥt during the historical period from 1981 to 2019.
With the time series of the one-year smooth transition matrices (see Equation 7), we can compute

an average historical transition matrix, P̄, where each entry is given by

p̄i, j = 1
#T M

#T M∑
t=1

pt (i, j), ∀i, j = 1, . . . , 8, (12)

and #T M corresponds to the number of historical transition matrices (for the period from 1981 to
2019, #T M = 39). Now, we can map the average transition probabilities into credit scores (Belkin
et al., 1998). This correspondence amounts to inverting the cumulative normal distribution func-
tion, beginning from the average transition probability matrix column for the default state. Accord-
ingly, the average transition matrix can be transformed to a z-score matrix

Z =

⎡
⎢⎢⎢⎣

+∞ z1,2 z1,3 · · · z1,8 −∞
+∞ z2,2 z2,3 · · · z2,8 −∞
· · · · · · · · · · · · · · · · · ·
+∞ z7,2 z7,3 · · · z7,8 −∞

⎤
⎥⎥⎥⎦, (13)

© 2022 The Authors.
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where each entry is given by zi, j = �−1(
∑8

k= j p̄i,k), ∀i = 1, . . . , 7, ∀ j = 1, . . . , 8 ∧ zi,9 =
−∞ ∀i = 1, . . . , 7.

For the period from 1981 to 2019, the z-score matrix is equal to

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+∞ −1.28 −2.56 −3.20 −3.35 −3.43 −3.54 −3.72 −∞
+∞ 2.54 −1.40 −2.46 −3.00 −3.27 −3.42 −3.52 −∞
+∞ 3.22 2.07 −1.56 −2.48 −2.84 −3.21 −3.31 −∞
+∞ 3.51 2.78 1.68 −1.61 −2.28 −2.69 −2.88 −∞
+∞ 3.72 3.22 2.49 1.51 −1.32 −2.15 −2.40 −∞
+∞ 3.72 3.54 2.85 2.36 1.49 −1.38 −1.76 −∞
+∞ 3.72 3.54 3.37 3.09 2.27 1.00 −0.76 −∞

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

This matrix can be visualized in terms of bins, as

from/to AAA AA A BBB BB B CCC/C D

AAA (+∞, −1.28) [−1.28, −2.56) [−2.56, −3.20) [−3.20, −3.35) [−3.35, −3.43) [−3.43, −3.54) [−3.54, −3.72) [−3.72, −∞)

AA (+∞, 2.54) [+2.54, −1.40) [−1.40, −2.46) [−2.46, −3.00) [−3.00, −3.27) [−3.27, −3.42) [−3.42, −3.52) [−3.52, −∞)

A (+∞, 3.22) [+3.22, +2.07) [+2.07, −1.56) [−1.56, −2.48) [−2.48, −2.84) [−2.84, −3.21) [−3.21, −3.31) [−3.31, −∞)

BBB (+∞, 3.51) [+3.51, +2.78) [+2.78, +1.68) [+1.68, −1.61) [−1.61, −2.28) [−2.28, −2.69) [−2.69, −2.88) [−2.88, −∞)

BB (+∞, 3.72) [+3.72, +3.22) [+3.22, +2.49) [+2.49, +1.51) [+1.51, −1.32) [−1.32, −2.15) [−2.15, −2.40) [−2.40, −∞)

B (+∞, 3.72) [+3.72, +3.54) [+3.54, +2.85) [+2.85, +2.36) [+2.36, +1.49) [+1.49, −1.38) [−1.38, −1.76) [−1.76, −∞)

CCC/C (+∞, 3.72) [+3.72, +3.54) [+3.54. + 3.37) [+3.37, +3.09) [+3.09, +2.27) [+2.27, +1.00) [+1.00, −0.76) [−0.76, −∞)

.

(15)

Now, we can define the conditional (on ĥt) transition probability from the rating grade i to rating
j, as

pt (i, j|ĥt ) = Pr
(
zi, j ≤ ut ≤ zi, j+1

)
= Pr

(
zi, j ≤

√
1 − ρxt + √

ρĥt ≤ zi, j+1

)
= Pr

(
zi, j − √

ρĥt√
1 − ρ

≤ xt ≤ zi, j+1 − √
ρĥt√

1 − ρ

)

= �

(
zi, j − √

ρĥt√
1 − ρ

)
− �

(
zi, j+1 − √

ρĥt√
1 − ρ

)
.

(16)

Accordingly, the conditional transition probability matrix is given by

Pt|ĥt
=

⎡
⎢⎢⎢⎢⎢⎢⎣

pt (1, 1|ĥt ) pt (1, 2|ĥt ) · · · pt (1, 8|ĥt )

pt (2, 1|ĥt ) pt (2, 2|ĥt ) · · · pt (2, 8|ĥt )

· · · · · · · · · · · ·
pt (7, 1|ĥt ) pt (7, 2|ĥt ) · · · pt (7, 8|ĥt )

0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (17)

© 2022 The Authors.
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Based on Belkin et al. (1998), we estimate ρ as the solution of the following least-squares problem

min
ρ∈R

D(Pt (i, j), Pt (i, j|ĥt )) =
8∑

j=1

7∑
i=1

(pt (i, j) − pt (i, j|ĥt ))2

pt (i, j|ĥt )(1 − pt (i, j|ĥt ))
. (18)

In Problem (18), the squared deviation is normalized by a factor10 that represents the sample
variance for a transition from rating i to rating j under a binomial sampling approximation11.

Using the 1981–2019 data, the estimated ρ̂ is equal to 4.84%.
We have devised a methodology to model transition probabilities matrices conditional on the

global real GDP growth (note that ĥt is estimated based on Equation 10). Therefore, we can estimate
future transition matrices based on future possible global real GDP growth paths.

Now, we assume that the bank manager is interested in modeling the global real GDP growth as a
linear process, that is, as an Auto Regressive Integrated Moving Average—ARIMA(p, d, q) model.
This choice is in line with several studies in the literature, where GDP growth is modeled as a
linear process (see, e.g., Dritsaki, 2015; Arneja et al., 2020). Despite this choice, by no means are we
suggesting that this is the model with the best predictive power. To construct a more accurate model
in terms of predictive power, possibly one needs to take into account other sources of information
(other than the historical time series). Nevertheless, this investigation is out of the scope of the
present study. Here, we assume that the bank manager wants to construct the “best” linear model
based only on the available historical global real GDP growth time series. Surely, the proposed
methodology is ready to accommodate any other global real GDP growth model that the reader
finds more suitable.

Based on the Box–Jenkins methodology (Box and Jenkins, 1976), we begin by analyzing the
stationarity of the global real GDP growth time series, GDPGt , for the period from 1981 to 2019
(see Fig. 2).

From the augmented Dickey–Fuller test (Dickey and Fuller, 1979), we observe that the time series
is nonstationarity at a 5% significant level (Dickey–Fuller = −3.48; p-value = 0.061). However, the
first difference of the time series, 
GDPGt , is stationary at a 5% level (Dickey–Fuller = −4.03;
p-value = 0.019).

The next step consists of finding the optimal lags, p and q, of the stationary process

(
1 −

p∑
i=1

αiLi

)

GDPGt =

(
1 +

q∑
i=1

θiLi

)
εi, (19)

where L is the lag operator, αi represent the parameters of the autoregressive part of the model, θi
are the parameters of the moving average part, and εt are the innovations.

10This factor does not take into account the number of observations (i.e., credits) for each row because it is not relevant,
since it remains constant across columns (Wei, 2003).

11Where “success” corresponds to a transition from rating i to rating j and “failure” corresponds to any other transition.

© 2022 The Authors.
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Fig. 4. Partial autocorrelogram and autocorrelogram for the 
GDPGt time series.

Based on the partial autocorrelogram and autocorrelogram (see Fig. 4), we identify an
ARIMA(2,1,0) as a possible model12. This model can be estimated through the maximum likeli-
hood (computed via a state-space representation) where the model’s innovations and correspondent
variances are found by a Kalman filter (a detailed implementation of this procedure can be found
in Gardner et al. (1980)). From the model’s estimation, we get that both autoregressive coefficients
are statistically significant at a 5% level (α1 = −0.3289, std. error = 0.1508; α2 = −0.3664, std. er-
ror = 0.1504). The Ljung–Box test (Ljung and Box, 1978) applied to the innovations gives the test
statistic Q = 3.997 (p-value = 0.677), which allows us to accept the assumption that the model’s
innovations are independent and identically distributed.

With the estimated ARIMA(2,1,0) model, we can simulate different global real GDP growth
paths. Figure 5 displays 100 simulated paths for the next 10 years. In the simulation, we take into ac-
count the nonnormal behavior of the model’s innovations. The Jarque–Bera test (Jarque and Bera,
1980) applied to the ARIMA(2,1,0) innovations gives a test statistic JB = 11.45 (p-value= 0.003),
which leads to the rejection of the normal distribution assumption of the innovations. Hence, we
have done this simulation using the bootstrap innovations (i.e., according to the empirical distribu-
tion of the innovations) instead of unrealistically assuming that they follow a normal distribution.
This simulation was performed using the R language (R Core Team, 2017).

We observe that the simulated paths (see Fig. 5) exhibit plenty of heterogeneity to be assumed as
a good approximation for a set of possible economic scenarios.

12We have tested all possible combinations of ARIMA(p, 1, 0) with p ∈ {1, . . . , 10} and the model with the minimum
Akaike’s entropy-based Information Criterion—AIC (Akaike, 1974)—is the ARIMA(2,1,0) (AIC= −212.26).
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Fig. 5. Simulated paths for the global real GDP growth.

2.3. The credit rating dynamics and the estimation of the point-in-time probabilities of default

This section applies the conditional transition matrix methodology to simulate the credit rating
dynamics and estimate the point-in-time probabilities of default.

We saw in the previous section how to generate s-scenarios based on the simulation of 100 paths,
with length 10 (i.e., 10 years), of the global real GDP growth (see Fig. 5). Fixing a simulated path
s (s = 1, . . . , 100), for each year t = 1, . . . , T (with T = 10), we can compute the respective condi-
tional transition matrix, P̂t|ĥt

, according to the methodology described in Section 2.2. Thus, for each

s-scenario, we have a set, M(s), of conditional transition matrices such that M(s) = {P̂(s)
1|ĥ1

, . . . , P̂(s)
T |ĥT

}.
To simulate the credit rating dynamics, we consider a universe of 1000 credits within each credit

rating grade AAA to B, where the bank manager intends to invest. Therefore, at t = 0 we can define,
∀k = 1, . . . , 1000, each initial credit rating grade as

AAA(k)
0 = AAA,

AA(k)
0 = AA,

A(k)
0 = A,

BBB(k)
0 = BBB,

BB(k)
0 = BB,

B(k)
0 = B.

(20)
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Algorithm 1. Simulation of the credit rating dynamics

Let us define I = {AAA(k)
0 , AA(k)

0 , A(k)
0 , BBB(k)

0 , BB(k)
0 , B(k)

0 : k = 1, . . . , 1000} as the set of the
initial credit rating grades where the bank manager wants to invest. I has a total of 6000 elements
(i.e., |I | = 6000).

In Algorithm 1, we describe the simulation of the credit rating dynamics. Considering the credits’
maturity T = 10, from the implementation of Algorithm 1 we obtain the set J (|J| = 6000 × 10 =
60,000), where each generic element X (K )

t represents the rating grade at time t (t = 1, . . . , 10) of a
credit k (k = 1, . . . , 1000) initially rated with rating X (X = AAA, AA, A, BBB, BB, B). Applying
Algorithm 1 to each simulated path of the global real GDP growth leads to the identification of
100 J’s sets that completely establish the credit rating dynamics for each credit from t = 0 to t =
T . Therefore, the bank investment manager can now define the stage allocation inherent in the
implementation of the credit loss model defined under IFRS 9 (see Section 2.1, for further details).

We also use the conditional transition matrices (see Section 2.2) for the estimation of the point-in-
time probabilities of default. These marginal point-in-time probabilities of default can be obtained
by following the steps presented in Algorithm 2.

Algorithm 2 can be applied to each simulated path s = 1, . . . , 100 for the global real GDP growth
(see Fig. 5). This leads to the identification of 100 Y ’s sets. Considering the global credits’ maturity
T = 10, each Y set (see Algorithm 2) contains (6 × ∑T

i=1 i) one-year point-in-time probabilities of
default. With these probabilities, we can compute the impairment stock (see Equation 3) for any
simulated global credit.

We now possess all the data needed to compute, for each s-scenario (s = 1, . . . , 100), the an-
nual credit’s income, from year t = 1 to year t = T (with T = 10), for each simulated credit
k = 1, . . . , 6, 000. Let us designate the credit’s income from a credit k in the s-scenario and at year
t, as Ik

s,t.
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Algorithm 2. Estimation of the point-in-time probabilities of default

We are interested in a holistic analysis by looking at each rating grade as a whole instead of
looking at each one of the 6000 simulated credits. Thereby, we define the average income of a
representative credit, for each rating grade, as

ιGs,t = 1
1,000

1,000∑
k=1

Ik
s,t, ∀G = AAA, AA, A, BBB, BB, B. (21)

Based on the annual estimated credits’ incomes, from year t = 1 to year t = T , in the next section,
we will implement a robust optimization approach that will allow the bank manager to identify
efficient credit portfolios according to a determined income-risk measure.

© 2022 The Authors.
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3. Forward-looking robust optimization

In Section 2, we have presented a methodology to estimate the annual income, from year t = 1
to year t = T (where T represents the credit’s maturity and equals the investment horizon), for
each one out of six representative credits: G ∈ {AAA, AA, A, BBB, BB, B}. We have estimated these
data for 100 different s-scenarios corresponding to s = 1, . . . , 100 projections of the global real
GDP growth.

In each s-scenario, let us define the annual average income of a credit with rating grade equal to
G, μG

s , as

μG
s = 1

T

T∑
y=1

ιGs,y. (22)

According to the bank manager problem, we assume that a portfolio consists of credits with rat-
ing grades from AAA to B. Moreover, it is assumed that the bank manager has a certain funding
amount, F , to allocate to credits in different ratings. Let wG

s represent the proportion of F allo-
cated to each credit rating grade in a specific s-scenario. The portfolio income is assumed linear in
wAAA

s , . . . , wB
s and thus for each s-scenario, the portfolio average income, ms, can be written as

ms(ws) = 1
T

T∑
y=1

(
wAAA

s ιAAA
s,y + · · · + wB

s ιBs,y

)
= wAAA

s μAAA
s + · · · + wB

s μB
s = w


s μs, (23)

with

μs = (μAAA
s , . . . , μB

s )
 and ws = (wAAA
s , . . . , wB

s )
. (24)

In turn, for each s-scenario the portfolio income variance, vs, can be computed as

vs(ws) = 1
T

T∑
y=1

⎡
⎣ ∑

G∈{AAA,...,B}
wG

s ιGs,y − 1
T

T∑
y=1

⎛
⎝ ∑

G∈{AAA,...,B}
wG

s ιGs,y

⎞
⎠

⎤
⎦

2

. (25)

Therefore,

vs(ws) =
∑

i∈{AAA,...,B}

∑
j∈{AAA,...,B}

1
T

T∑
y=1

(
ιis,y − μi

s

)(
ι j
s,y − μ j

s

)
wk

s wl
s. (26)

Defining each entry i, j of the covariance matrix Qs by

σi j = 1
T

T∑
y=1

(
ιis,y − μi

s

)(
ι j
s,y − μ j

s

)
, (27)
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we have

vs(ws) = w

s Qsws. (28)

According to Equation (28), the corresponding portfolio income standard deviation, ds(ws), is
simply given by

ds(ws) =
√

w

s Qsws. (29)

Let us consider, for each s-scenario, the following bi-objective problem

min
ws∈R6

F (ws) = (−ms(ws), vs(ws))


subject to ws ∈ �s,
(30)

where �s = {ws ∈ R6 : wAAA
s + · · · + wB

s = 1 ∧ wG
s ≥ 0, ∀G ∈ {AAA, . . . , B}} denotes the feasible

region. The formulation of this problem is motivated by the classical mean-variance optimization
problem (Markowitz, 1952), which constitutes the base of the Modern Portfolio Theory.

Definition 1 (Pareto minimizer). ws ∈ �s is a Pareto minimizer of F (·) if

�xs ∈ �s : −ms(xs) < −ms(ws) ∧ vs(xs) < vs(ws). (31)

A Pareto minimizer, ws ∈ �s, is also known as a nondominated point.

Definition 2 (Set of Pareto minimizers, Ws). The set of Pareto minimizers, Ws, of F (·), is defined as

Ws = {
ws ∈ �S : �xs ∈ �s : −ms(xs) < −ms(ws) ∧ vs(xs) < vs(ws)

}
. (32)

The set of Pareto minimizers, Ws, defines the set of nondominated points of Problem (30). The
efficient Pareto frontier, solution of Problem (30), corresponds to the mapping of F (·) on the set of
nondominated points, Ws.

Now, consider the following linear scalarization problem

min
ws∈R6

αw

s Qsws − (1 − α)w


s μs

subject to ws ∈ �s,
(33)

where α ∈ [0, 1] represents a tuning parameter. Note that Problem (33) corresponds to a convex
quadratic programming (QP) problem.

It is easy to prove that a solution of Problem (33) is a Pareto minimizer for Problem (30). In
fact, let w∗

s ∈ �s be a solution of Problem (33). Now, suppose that w∗
s is not a Pareto minimizer of

Problem (30). Then, according to Definition 1, we have

∃zs ∈ �s : −z

s μs < −w∗

s


μs ∧ z


s Qszs < w∗
s

Qsw∗

s . (34)

By the fact that α ∈ (0, 1), we have

−(1 − α)z

s μs < −(1 − α)w∗

s


μs ∧ αz


s Qszs < αw∗
s

Qsw∗

s , ∀α ∈ (0, 1) (35)
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Finally, summing these two inequalities, we have

αz

s Qszs − (1 − α)z


s μs < αw∗
s

Qsw∗

s − (1 − α)w∗
s


μs, ∀α ∈ [0, 1], (36)

from which follows that w∗
s is not an optimal solution of Problem (33). This concludes the proof by

reductio ad absurdum.
Accordingly, for each s-scenario, we can find the corresponding set of Pareto minimizers, Ws,

by solving Problem (33) for different values of α. Setting α = 0, we obtain the maximum income
portfolio and setting α = 1 give us the global minimum variance portfolio. We solve Problem (33),
varying α between 0 and 1, in order to achieve |Ws| = 10, 002 (besides the efficient allocations
corresponding to α = 0 and α = 1, we find 10,000 more different efficient allocations).

The value of α defines an efficient allocation for the corresponding s-scenario. Motivated by
the robust resampling methodology proposed in Michaud and Michaud (2007, 2008), we define
the optimal efficient allocations by averaging over all s-scenarios. As a result, we obtain 10,002
optimal efficient portfolios, where each portfolio is determined by the α value and corresponds to
the average (over the 100 considered scenarios) efficient allocations.

4. Computational results

We have implemented the forward-looking robust optimization approach, described in the previous
section, using MATLAB® (MathworksTM, 2021). Considering the baseline case, where each credit
has a 10-year maturity, we obtain the robust efficient frontiers under the IFRS 9 framework (see
Fig. 6a). This frontier allows the bank manager to directly analyze the tradeoff between the portfo-
lio income and the portfolio income volatility. Therefore, the bank manager can select an efficient
portfolio according to a desirable income-risk rule.

Instead of focusing on the selection of a specific income-risk rule or efficient portfolio, we report
the weight variation with the risk level for all the computed efficient portfolios (see Fig. 7a). We can
observe that a less risky portfolio has a larger AAA-grade allocation. In turn, a more risky portfolio
has a larger BB-grade allocation. Under the IFRS 9 accounting framework, the efficient riskiest
credit portfolio has the following structure: 12%-AAA, 22%-AA, 15%-AA, 5%-BBB, 46%-BB, and
0%-B. This portfolio has an average annual income equal to 2.80% with a standard deviation equal
to 1.77%, which, for example, dominates the equally weighted portfolio that achieves an average
annual income equal to 1.78% with a standard deviation of 2.49%.

In Fig. 6, we also report the robust efficient frontiers under the IAS 9 and CECL accounting
frameworks. We observe that under the IAS 39 framework, in opposition to the IFRS 9 and CECL
frameworks, the efficient credit portfolios are less risky and achieve a higher average annual income.
Moreover, looking at how the allocations vary by risk level (see Fig. 7), we observe that the structure
of the efficient credit portfolios under IFRS 9 and CECL is very different from the one under
IAS 39. The riskier credit portfolio under IAS 39 (0%-AAA, 0%-AA, 0%-A, 0%-BBB, 74%-BB, and
26%-B) has a portfolio income standard deviation equal to 0.38% and an average annual income
equal to 4.26%. These numbers correspond to approximately 4.66 times less risk and 1.93 times
more average annual income than the riskier efficient portfolio under IFRS 9. The riskier efficient
portfolio under CECL (8%-AAA, 19%-AA, 2%-A, 3%-BBB, 68%-BB, and 0%-B) achieves a higher

© 2022 The Authors.
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Fig. 6. Robust efficient frontiers for a 10-year maturity time frame.
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Fig. 7. Risk maps for a 10-year maturity time frame.
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income in comparison with the riskier efficient portfolio under IFRS 9 (3.01% > 2.80%) but is
riskier (2.57% > 1.77%).

In Fig. 7, we observe that, under the IFRS 9 and CECL frameworks, riskier rating allocations
are penalized. Under the IAS 39 framework, the allocation of the riskier portfolios (see Fig. 7b)
concentrates 100% around speculative-grade rated credits (BB and B). In turn, under IFRS 9 more
than 50% of the allocation (see Fig. 7a) of the riskier portfolios is concentrated in investment-
grade ratings (AAA, AA, A, and BBB). Under the CECL framework (see Fig. 7b), this percentage
is slightly less. Even so, riskier credit ratings are also very penalized. These results suggest that
the IFRS 9 and CECL frameworks can lead to procyclical effects when compared to the IAS 39
framework. This is in line with the results presented in previous studies (Barclays, 2017; Abad and
Suarez, 2018; Seitz et al., 2018).

To give some insight into the sensitivity of these results to the maturity of the credits, we apply the
methodology described in Section 2 and the forward-looking robust optimization model developed
in Section 3 to credits with a 5-year and a 15-year maturity. We assume that the investment horizon
coincides with the credit maturities.

The credit income computation uses as fixed interest, C, the coupon value of global corporate
bonds. In the case of five-year maturity credits, these values are equal to: 1.828%, 1.999%, 2.146%,
2.531%, 3.536%, and 4.156% for a AAA, AA, A, BBB, BB, and B ratings, respectively. In turn,
for the case of 15-year maturity credits, these values are equal to 2.631%, 2.777%, 3.075%, 3.684%,
5.412%, and 6.065% or a AAA, AA, A, BBB, BB, and B ratings, respectively.

For the five-year horizon, the discount rate D for the credit impairment stock, under the IFRS 9
and CECL frameworks, is set to 1.659%, equaling the two-year AAA global corporate bond rate13.
In the 15-year horizon, D is set equal to the seven-year AAA corporate bond rate, 2.030%. All
these values were obtained through the Bloomberg Terminal (Bloomberg, 2021). Using these data,
the procedure presented in Sections 2 and 3, which was applied initially to 10-year maturities, is
replicated to 5-year and 15-year horizons.

For a five-year horizon, Figs. 8 and 9, report, under the three different accounting frameworks,
the robust efficient frontiers and the portfolio weights for different risk levels, respectively. In Fig. 8,
we observe that the efficient portfolios have low income and low risk, regardless of the accounting
framework, when compared to 10-year efficient portfolios (Fig. 6).

For example, we observe that the riskiest efficient portfolio under the IFRS 9 accounting frame-
work, with the structure 1%-AAA, 17.98%-AA, 13.02%-A, 28%-BBB, 40%-BB, and 0%-B, achieves
an annual average income equal to 2.24% with an income standard deviation of 1.27%. This al-
location earns a lower average yearly income than the riskiest 10-year efficient portfolio (2.24%
< 2.80%), but also entails less risk (1.27% < 1.77%). Besides the difference between the ma-
turities of the credits, this pattern is expected due to the positive slope of the bond coupon
curves.

Under the IFRS 9 and CECL frameworks, the structure of the five-year efficient portfo-
lios (Fig. 9) and 10-year portfolios (Fig. 7) is similar. Despite the similarities, we highlight
that, for both frameworks, shorter maturities lead to lower concentration on the AAA-rated
credits.

13Similarly to the baseline case of credits with a 10-year maturity, for credits with 5-year and 15-year maturity, we use as
a discount rate, D, the coupon rate of an AAA global corporate bond with roughly half the maturity of the credits.
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Fig. 8. Robust efficient frontiers for a five-year maturity time frame.
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Fig. 9. Risk maps for a five-year maturity time frame.
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As in the case of 10-year maturity credits, we also observe that the five-year efficient portfolios
under the IFRS 9 and CECL tend to penalize riskier ratings, namely speculative-grade classes
(BB and B). In turn, under the IAS 39 framework, the short-dated riskiest efficient portfolios tend
to have a higher concentration in speculative-grade credit ratings (Figs. 9b). For example, under
IAS-39, the riskiest efficient credit portfolio has the following structure: 0%-AAA, 0%-AA, 0%-A,
0%-BBB, 4%-BB, 96%-B.

Finally, we test efficient frontiers and allocations for a 15-year horizon under the IFRS 9, IAS 39,
and CECL frameworks, in Figs. 10 and 11, respectively. These efficient credit portfolios exhibit a
higher annual average income and volatility (Fig. 10) when compared to the 10-year efficient credit
portfolios (Fig. 6). The higher risk stems from the higher investment horizon, while the higher
income is explained again by the positive slope of the coupon curve.

The structure of the 15-year efficient portfolios shows identical features to 10-year and 5-year
portfolios (see Figs. 11, 7, and 9). Nevertheless, under the IFRS 9 and CECL frameworks, we
observe that the 15-year efficient portfolios tend to allocate a larger proportion to AAA ratings,
avoiding the volatility caused by lower credit ratings.

We continue to observe that, under IAS 39, riskier ratings are less penalized. For example, the
riskiest 15-year efficient portfolio shows the following allocations: 0%-AAA, 0%-AA, 0%-A, 0%-
BBB, 95%-BB, and 5%-B. However, for the same level of risk, 15-year portfolios display a higher
concentration in investment-grade ratings, and thus a lower concentration in speculative-grade as-
sets, when compared to the 10-year horizons (see Figs. 11b and 7b).

5. Conclusion

In this paper, we have developed a methodology to construct credit portfolios under the IFRS 9
framework. Based on a point-in-time probability model, we have defined the credit loss model to
compute the credit income under IFRS 9. We have also explained the differences between the credit
loss model under the IFRS 9 framework and the credit loss models under the IAS 39 and CECL
accounting frameworks.

We have devised a nonhomogeneous Markov chain setting, based on CreditMetricsTM, to esti-
mate transition matrices conditional on global real GDP growth. We have used these conditional
transition matrices to simulate the credit dynamics and estimate the point-in-time probabilities of
default, both needed to compute credit income under the IFRS 9 framework. The credit income
is thus estimated taking into account the cyclical economic effects that are of great importance to
bank management.

For each rating class, we estimated the forward-looking credit income based on a portfolio of
representative credits. We subsequently implemented a robust optimization model to analyze the
trade-off between expected revenue and volatility, measured as the annual standard deviation of
portfolio income. As future work, this model can be easily adapted to use other risk measures such
as VaR or CVaR.

According to the proposed model, we have obtained the efficient Pareto frontiers under the
IFRS 9, IAS 39, and CECL accounting frameworks. We began our tests by evaluating 10-year
efficient allocations and subsequently examined the 5-year and 15-year Pareto frontiers, the impact
of investment horizons on income, risk, and efficient allocations.
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Fig. 10. Robust efficient frontiers for a 15-year maturity time frame.
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Fig. 11. Risk maps for a 15-year maturity time frame.
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The results indicate that efficient credit portfolios constructed under IFRS 9 and CECL severely
penalize riskier ratings more than IAS 39. Moreover, when changing the investment horizon, we
observed that the longer the maturity, the lower the allocation to riskier ratings.

These results highlight the potential procyclical effects of the IFRS 9 and CECL frameworks.
If the bank manager anticipates an economic downturn, under the IFRS 9 and CECL, she/he
will tend to penalize riskier credits. The problem is that it is precisely in downturn periods that
several credits suffer downgrades as the result of the economic conditions. Therefore, the investment
decisions made by the bank manager could lead to procyclical effects by contributing to intensifying
the economic downturn.

Furthermore, the several subjective decisions associated with implementing IFRS 9 and CECL
may cause a lack of comparability and transparency among institutions, compared to the more
objective procedure to account for losses under IAS 39. This feature of more recent accounting
regimes demonstrates the importance of conduction more research on their practical implications.
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