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Abstract: In this paper we deal with local estimates for parabolic problems in
R

N with absorption first order terms, whose model is
{

ut − ∆u + u|∇u|q = f(t, x) in (0, T ) × R
N ,

u(0, x) = u0(x) in R
N ,

where T > 0, N ≥ 3, 1 < q ≤ 2, f(t, x) ∈ L1(0, T ;L1

loc
(RN )) and u0 ∈ L1

loc
(RN ) .
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tions.

1. Introduction

In this paper we deal with local estimates for parabolic problems in R
N

with absorption first order lower order terms. In particular, our main goal
concerns the proof the existence of a solution for a Cauchy problem whose
model is {

ut − ∆pu+ u|∇u|q = f(t, x) in (0, T ) × R
N

u(0, x) = u0(x) in R
N ,

(1)

where p− 1 < q ≤ p, f(t, x) ∈ L1(0, T ;L1
loc(R

N)) and u0 ∈ L1
loc(R

N), without
any prescribed condition at infinity.

Such a problem is obviously strictly related to the possibility of proving
estimates for the solutions that are independent from the behavior at infinity.
This is a peculiarity of nonlinear equations with strong absorption lower order
terms. If such term does not depend on the gradient, i.e. for problems of the
type {

ut − ∆pu+ b(u) = f(t, x) in (0, T )× R
N

u(0, x) = u0(x) in R
N ,

(2)

with f(t, x) ∈ L1(0, T ;L1
loc(R

N)) and u0 ∈ L1
loc(R

N), the existence (and reg-
ularity) of distributional solutions has been recently studied in [18] (see also
[6]).
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Since a strong regularizing effect is needed in order prove local estimates, a
sign condition on the lower order term is assumed, namely b(s)s ≥ 0, ∀s ∈ R.

Moreover, in order to prove the existence of a solution, a condition on the
growth of the function b(·) is also necessary, namely

∫ ∞ ds

(b(s)s)
1
p

<∞ . (3)

In order to prove such kind of estimates the presence of the regularizing ef-
fect of the absorption lower order term is crucial. For instance, if we consider
the heat equation in R

N it is well known that the solution is represented by
the convolution of the data with the heat kernel. Thus roughly speaking,
∀(t, x) ∈ (0, T ) × R

N the solution depends even on what happens far away
from (t, x).

For p = 2 and if b is increasing (at least at infinity), (3) is equivalent to the
well-known Keller-Osserman condition. This condition has been introduced
in the papers [15] and [21] in order to prove a local (uniform) bound for any
subsolution of the nonlinear elliptic equation

−∆u+ b(u) = f(x) in Ω , (4)

where Ω is a bounded open set and f is bounded. This tool is strictly related
to the posibility of constructing solutions that blow-up at the boundary (such
solutions are known in literature as large solutions). A huge number of
papers has been devoted to the study of such topic: we mention, among
the others, [2], [27] in which the existence of such kind of solutions has been
proved. We want to stress that (3), (as well as Keller-Osserman condition) is
the necessary and sufficient condition for having a solution for the ordinary
differential equation associated to the equation.
As already noticed, the key tools in order to face problem (4) are local es-
timates. Because of this fact, the study of such problems turns out to be
strictly related to the study of the same problem in the whole R

N without
conditions at infinity (we refer to the papers [8], [5] and [17]).

On the other hand, equations with nonlinear gradient terms have been
studied since a lot of years. Recently the problem of both existence of so-
lutions in the whole space (entire solutions) and existence of large solutions
related to such kind of equations has been considered (see [24] and [19]).
More precisely, in [19] the existence of both a large solution and an entire
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solution without any condition at infinity (or at ∂D if D is bounded open
subset of R

N) is proved for equations of the type

−∆pu+ u + u|∇u|q = f(x) inD ,

where D ⊆ R
N , N ≥ 3, p > 1, p− 1 < q ≤ p and f(x) is a possibly singular

datum, say L1
loc(D).

The purpose of this paper is twofold: from one side we want to extend
the results of [18] to problems with lower order terms that depend on the
gradient. On the other hand, since we deal with local estimates, our aim
is show that we can construct solutions that assume, in a suitable way, the
value “+∞”at (0, T )× ∂Ω.

First of all we have to define what we mean by a solution for such a prob-
lem. In this framework a lot of notions of solutions have been introduced.
Following the outlines of [12] (see also the more recent papers [11] and [22])
we use a renormalized formulation. In fact, the notion of renormalized so-
lution turns out to be stronger than the distributional one, and it is very
useful in order to face problems involving solution which have no local finite
energy. The main idea relies on the the fact that, roughly speaking, we look
at a family of problems solved by suitable truncations of the solution.

As a matter of fact, local estimates are the key tool to prove existence
of large solutions in bounded domains. We shall deal with this problem in
Section 4. In order to deal with the explosive condition u = +∞ at the
boundary, we have to define the meaning of how this value is attained in a
suitable way, since, due to the possible lack of continuity of these solutions,
this condition can not be satisfied (for instance) in a pointwise sense. For this
purpose we extend the definition given in [19] to the parabolic framework;
roughly, we say that a solution matches +∞ on the boundary if any of its
truncation at level k has constant trace k on the boundary.

The plan of the paper is the following: in Section 2 we give the main
hypothesis and we state our main results, while in Section 3 we collect some
useful technical tools. The existence results are proved in Section 4, while
Section 5 will be devoted to de description of some further regularity results.
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2. Assumptions and statement of the main results

Let D be an open subset of R
N , N ≥ 3, possibly R

N itself. Throughout
the paper we will denote, for any r > 0 and ∀s ∈ (0, T ], by Qs

r = (0, s)×Br,
and by Qs

D = (0, s) ×D.
We consider the following equation

ut − div a(t, x, u,∇u) + g(t, x, u,∇u) = f(t, x) in QT
D , (1)

where f(t, x) ∈ L1(0, T ;L1
loc(D)) while a(t, x, s, ς) : R ×D × R × R

N → R
N

is a Carathéodory function such that:

∃α > 0 : a(t, x, s, ς) · ς ≥ α|ς|p , (2)

∃β > 0 : |a(t, x, s, ς)| ≤ β|ς|p−1 , (3)

and

(a(t, x, s, ς)− a(t, x, s, η)) · (ς − η) > 0 , (4)

for a.e. x ∈ D ∀t > 0, ∀s ∈ R, and ∀ς , η ∈ R
N such that η 6= ς.

Under the above hypothesis div a(t, x, u,∇u) turns out to be a Leray-Lions
type operator, acting from Lp(0, T ;W 1,p

0 (D)) into its dual.

As far as the lower order term is concerned, we suppose that g(t, x, s, ς) :
R ×D × R × R

N → R is a Carathéodory function such that:

g(t, x, s, ς)s ≥ 0 , (5)

∀k > 0 sup
|s|≤k

|g(t, x, s, ς)| ≤ |gk(t, x)| + γk|ς|
p ,

γk > 0, gk(t, x) ∈ L1(0, T ;L1
loc(R

N)) ,
(6)

for a.e. (t, x) ∈ (0, T ) ×D, ∀s ∈ R and ∀ς ∈ R
N , and

∃L > 0 : |g(t, x, s, ς)| ≥ h(|ς|p−1) , ∀|s| ≥ L, ∀ς ∈ R
N , (7)

for a.e. (t, x) ∈ (0, T )×D, where h : R
+ → R

+ is a C2(R+) convex function
such that h(0) = 0 and satisfying the following growth condition,

∃c1 > 0 such that h(τ) ≤ c1(τ
p

p−1 + 1) , ∀τ ∈ R
+ , (8)

and the following conditions at infinity
∫ ∞ dτ

h(τ)
<∞ , (9)
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and

lim sup
τ→∞

τ 2h′′(τ)

h′(τ)τ − h(τ)
<∞ . (10)

Some comments on these assumptions are in order to be given. Note that
the absorption nature of the nonlinear lower order term depends on the sign
condition (5), while (6) (and (8)) is known, in literature, as natural growth
condition. We observe that condition (7) is a growth bound from below for
the lower order term with respect to ς at infinity. This assumption is crucial,
as it can be noticed in the proof of our main results, and in particular in the
possibility of constructing suitable cut-off functions, in order to prove the
local estimates we are interested in.

We remark that the hypotheses (9) referred to equation (1) corresponds
to the already mentioned Keller-Osserman assumption for equation (4). In
fact, in the same spirit of the stationary case, condition (9) it is what we
have to impose in order to prove the existence of a solution for the ordi-
nary differential equation associated to (1). For instance, a solution for the
problem





(
|v′(s)|p−2v′(s)

)′
= h

(
|v′(s)|p−1

)
in (0,+∞) ,

lim
s→0+

v(s) = +∞ ,

is well defined if and only if (9) holds true. Finally, assumption (10) is
technical and we suspect that it could be removed.

Let us introduce the truncations as Tk(s) = max{−kmin{k, s}}. We will, in
general, handle with measurable functions whose truncations (locally) belong
to the energy space. To get rid of this fact we will made use of the notion of
generalized gradient whose main feature is contained in the following lemma.

Lemma 2.1. Let D ⊆ R
N , N ≥ 3, and let w(t, x) be a measurable function

such that its truncation belongs to L1(0, T ;W 1,1
loc (D)). Then there exists a

measurable function v : (0, T )×D→ R
N such that ∀k > and for a.e. (t, x) ∈

(0, T )×D,

∇Tk(w) = vχ{|w|≤k} . (11)

Obviously, if w ∈ L1(0, T ;W 1,1
loc (D)), then the generalized gradient turns

out to coincide with the classical distributional one. We will made use several
times of this notion throughout the paper.
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Let us introduce the following definition of renormalized solution which is
the natural extension of the classical one (see for instance [12]).

Definition 2.2. Let D be an open subset of R
N , N ≥ 3. We say that

a measurable function u(t, x) ∈ L∞(0, T ;L1
loc(D)) such that ∀k > 0, Tk(u)

belongs to Lp(0, T ;W 1,p
loc (D)) is a renormalized solution for equation (1), if

a(t, x, u,∇u) ∈ (L1(0, T ;L1
loc(D)))N f(t, x), g(t, x, u,∇u) ∈ L1(0, T ;L1

loc(D)),
and the following identity holds true:

−

∫

D

S(u0)ψ(x, 0)−

∫ T

0

< S(u) , ψt >

+

∫

QT
D

a(t, x, u,∇u) · ∇uS ′′(u)ψ +

∫

QT
D

a(t, x, u,∇u) · ∇ψS ′(u)

+

∫

QT
D

g(t, x, u,∇u)S ′(u)ψ =

∫

QT
D

f(t, x)S ′(u)ψ ,

(12)

∀ψ ∈ C1
0([0, T ) × D), and for any S(τ) ∈ W 2,∞(R) such that S ′(τ) is com-

pactly supported on R. Moreover,

lim
l→+∞

∫

QT
D∩{l≤|u|≤l+1}

a(t, x, u,∇u) · ∇uψ = 0 , ∀ψ ∈ C∞
0 ([0, T )×D) . (13)

Note that the regularity required to the solution is such that any term in
the identity (12) makes sense. In fact the above definition is nothing that
equation (1) formally multiplied by S ′(u)ψ and integrated on the cylinder .
The fact that S ′ is compactly supported ensures that all but the first two
terms in (12) involve only a truncation of u. Condition (13) is due to recover
a uniform information on u on the set where it is large.

Let us also emphasize that, a priori, we are not in the position to apply The-
orem 1.1 in [23] in order to deduce that u ∈ C0([0, T ];L1

loc(D)), since we do
not imposed any regularity on ut. Anyway, this result can be applied to S(u),
for any S as above, since, by (12), the distributional time-derivative S(u)t

turns out to belongs to L1(0, T ;L1(ω))+Lp′(0, T ;W−1,p′(ω)), for any ω ⊂⊂ D.
Moreover, it is easy to deduce, using that g(t, x, u,∇u) ∈ L1(0, T ;L1

loc(D))
and (7)–(9), that |∇u|p−1 ∈ L1(0, T ;L1

loc(R
N)).

Here we state our existence result concerning entire solutions.

Theorem 2.3. Assume that a(t, x, s, ς) and g(t, x, s, ς) satisfy hypotheses
(2)–(4) and (5)–(10), respectively. Then for any f ∈ L1(0, T ;L1

loc(R
N)) and
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for any u0 ∈ L1
loc(R

N) there exists a renormalized solution of the Cauchy
problem
{
ut − div a(t, x, u,∇u) + g(t, x, u,∇u) = f(t, x) in (0, T )× R

N

u = u0(x) in R
N .

(14)

As a consequence of the local estimates proved in the previous result, we are
able to show the existence of a large solution for the boundary value problem
associated to equation (1). More precisely, let Ω ⊂ R

N be a bounded domain,
N ≥ 3. We consider the following problem:





ut − div a(t, x, u,∇u) + g(t, x, u,∇u) = f(t, x) in (0, T )× Ω

u(t, x) = +∞ on ∂PQ
T
Ω

u = u0(x) in Ω .

(15)

where ∂PQ
T
Ω indicates the parabolic lateral boundary (0, T )× ∂Ω

In the sequel we will need a localized version of (6), namely

∀k > 0 sup
|s|≤k

|g(t, x, s, ς)| ≤ |gk(t, x)| + γk|ς|
p ,

γk > 0, gk(t, x) ∈ L1(QT
Ω) .

(16)

Let us also specialize the definition of renormalized solution to this par-
ticular boundary value problem. We recall that large solutions for parabolic
equations have been introduced in [1], for a different class of equations. Actu-
ally in such a case, since the solutions are continuous, the blow-up condition
is assumed in a pointwise sense. For our purpose, we need to reformulate
this condition in a suitable weak sense adapted to our framework. More pre-
cisely, the value “u = +∞”at ∂Ω is assumed trough a condition on the trace
of Tk(u).

Definition 2.4. Let Ω be a bounded open subset of R
N , N ≥ 3. For any

f(t, x) ∈ L1(0, T ;L1
loc(Ω)), we define a renormalized large solution for problem

(15) to be a measurable function u(t, x) such that Tk(u) ∈ Lp(0, T ;W 1,p(Ω)),
a(t, x, u,∇u) ∈ (L1(0, T ;L1

loc(D)))N , g(t, x, un,∇un) ∈ L1(0, T ;L1
loc(Ω)) and

it satisfies both (12) and (13) in Ω. Moreover the boundary condition is
assumed in the following sense:

k − Tk(u) ∈ Lp(0, T ;W 1,p
0 (Ω)) ∀k > 0 . (17)
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Our result concerning the existence of a large solution is the following.

Theorem 2.5. Assume that a(t, x, s, ς) and g(t, x, s, ς) satisfy hypotheses
(2)–(4) and (5), (7)–(10) and (16). Thus for any f ∈ L1(0, T ;L1

loc(Ω)) such
that f− ∈ L1(QT

Ω) and for any u0 ∈ L1
loc(Ω) such that u−0 ∈ L1(Ω) there exists

a (renormalized) large solution of the problem (15).

Let us introduce, for any 0 < q <∞, the Marcinkiewicz space M q(QT
D) as

the space of all measurable functions f such that there exists c > 0, with

meas{(t, x) ∈ (0, T ) ×D : |f(t, x)| ≥ k} ≤
c

kq
,

for every positive k endowed with the seminorm

‖f‖M q(QT
D) = inf

{
c > 0 : meas{(t, x) : |f(t, x)| ≥ k} ≤

( c
k

)q}
.

Let us recall that, since QT
D is bounded, then for q > 1 we have the following

continuous embeddings

Lq(QT
D) →֒M q(QT

D) →֒ Lq−ε(QT
D),

for every ε ∈ (0, q − 1].
We stress that from the definition of renormalized solution we can not, a

priori, deduce neither any summability properties nor is u (and not S(u))
assumes the initial value in some sense. Next proposition gets rid of this
tools.

Proposition 2.6. Any renormalized solution of (14) satisfies the following
estimates:

‖u‖
Mp−1+

p
N (QT

D)
≤ c1 and ‖∇u‖

M
p− N

N+1 (QT
D)

≤ c2,

where c1 and c2 are positive constants only depending on N,R, T, f and p.
Moreover, u ∈ C0([0, T ];L1

loc(D)).

We finally want to investigate how the local summability of the datum
f(t, x) influences the local summability of the renormalized solutions. In
particular we will see that that the regularity of the solutions is, locally,
the same of the solution of the equation in (14) without the lower order term
and with homogeneous Dirichlet boundary conditions. For simplicity we deal
with bounded initial datum.

The technique we will use are nowadays classic and follow, for instance [14]
and [7]. However, since a localization is needed, the role of the lower order



LOCAL ESTIMATES FOR PARABOLIC PROBLEMS WITH GRADIENT TERMS 9

term (and in particular the growth condition (9)) is crucial. Actually we will
only sckech the proof of such result, underlying the main difference with the
cases treated both in [14] and in [7].

Theorem 2.7. Suppose 1 < p < N , q > 1, m > 1 and suppose that f(x)
belongs to Lm(0, T ;Lq

loc(D)). Thus for any renormalized solution of (14) there
exists C0 > 0 such that: ∀u0 ∈ L∞

loc(D)

(1) if

1 <
1

m
+
N

pq
≤ 1 +

N

pm
, (18)

then

‖u‖Ls(0,T ;Ls
loc(D)) ≤ C0 , where s =

mq(N + p) +N(p− 2)(q(m− 1) +m)

mN − pq(m− 1)
;

moreover

‖u‖Ls1(0,T ;L
s2
loc(D)) ≤ C0 , where s1 = m′s0 , s2 = q′s0

and s0 =
mq(q − 1) + q(m− 1)[p(N + 1) − 2N ]

mN − pq(m− 1)
.

(2) If
1

m
+
N

pq
> 1 +

N

pm
. (19)

then
‖u‖Ls(0,T ;Ls

loc(D)) ≤ C0 ,

where

s =
[N(p− 1)(q − 1) +N − pq](N + p)

N(N − pq)
+ p− 2;

moreover
‖u‖Ls1(0,T ;L

s2
loc(D)) ≤ C0

where

s1 = m′s0 , s2 = q′s0 and s0 =
N(q − 1)(p− 1)

N − pq
.

(3) If
1

m
+
N

pq
< 1 , (20)

then
‖u‖L∞(0,T ;L∞

loc(D)) ≤ C0.
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Notation. Let us define ϕλ(s) = seλs2

; we recall that ϕλ(s) enjoy the fol-
lowing useful property:

∀a > 0 , b > 0 , ∀λ >
b2

8a2
aϕ′

λ(s) − b|ϕλ(s)| ≥ 1 , ∀s ∈ R . (21)

We will also make use of the following functions related with the trucations:

S(τ) = Sj(τ) Sj(τ) =

∫ τ

0

[1 − T1(Gj(s))]ds , (22)

and Gk(s) = s− Tk(s).

By < ·, · > we mean the duality between suitable spaces in which function
are involved. In particular we will consider both the duality betweenW 1,p

0 (D)

and W−1,p′(D) and W−1,p′(D) + L1(D) and W 1,p
0 (D) ∩ L∞(D).

Finally, we use the following notation for sequences: ∀a, b > 0, by ε(a, b)
we denote a sequence such that

lim
b

lim
a
ε(a, b) = 0 .

3. Technical results

In this section we collect some technical results that will be useful in the
rest of the paper. The first one concerns the construction of suitable cut-off
functions.

Proposition 3.1. Let h : R
+ → R

+ be a C2, convex function, such that
h(0) = 0, and such that (9) and (10) hold. Then, for any δ there exists a
constant C0 = C0(δ) > 0 and a function σ : [0, 1] → [0, 1], σ ∈ C0[0, 1] ∩
C1(0, 1) with σ(0) = σ′(0) = 0, σ(1) = 1, such that

∀v > 0, vσ′(s) ≤ δh(v)σ(s) + Cδ , ∀s ∈ [0, 1] . (1)

To construct the function σ, we are lead to use suitable spatial cut-off
functions. We denote by ξ = ξ

ρ
R(|x|) a C1

0(R
N) function such that ∀ρ > 0





ξ ≡ 1 if |x| ≤ R

0 < ξ < 1 if |x| < R+ ρ

ξ ≡ 0 if |x| ≥ R+ ρ .

(2)

Another fundamental tool in our arguments relies on the so called gener-
alized Young’s inequality with the function h which appears in (7)-(9), so
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that we have to introduce the Legendre transform for h together with its
first properties that we will use in the sequel.

We recall that h is a C2 increasing and convex function such that h(0) = 0.
Moreover by the convexity and since hypothesis (9) is in force (i.e. roughly
speaking h “a bit more” than superlinear at infinity) it follows that

lim
s→∞

h′(s) = +∞ .

Let us consider the so called Legendre tranform of h defined through

h∗(q) = sup
r∈R

[qr − h(r)] .

Here we recall the so called generalized Young inequality namely: for any
positive z, w,

wz ≤ h(z) + h∗(w) . (3)

It is clear that h∗ is continuous, increasing and, since (3) holds, superlinear
at infinity. Consequently h∗−1 is well defined and moreover

lim
q→∞

h∗
−1(q) = +∞ .

Moreover, since h is smooth, ∀q > 0, we have

h∗(q) = q[(h′)−1(q)] − h((h′)−1(q)) ,

so that

h∗(h′(y)) = yh′(y) − h(y) , ∀ y > 0 .

Proposition 3.1 is based on the possibility of construct a solution of a
suitable Cauchy problem, as stated in the following Lemma.

Lemma 3.2. Let h : R
+ → R

+ be a C2, convex function, such that h(0) = 0,
and such that (9) and (10) hold. Then, for any δ > 0 there exists C0 = C0(δ)
and a function σ = σδ : [0, 1] → [0, 1], σ ∈ C0[0, 1] ∩ C1(0, 1) solution of the
problem 




σ′(s) = δσ(s)h∗−1

(
C0

δσ(s)

)
in (0, 1) ,

σ(0) = 0 , σ(s) > 0 .

(4)

Moreover

σ(1) = 1 , and lim
s→0+

σ′(s) = 0 . (5)
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Proof : Let us define σ(s) trough the implicit formula
∫ σ(s)

0

dt

(h∗)−1
(

C
t

)
t

= sδ . (6)

Step 1: Near 0. We first prove that ∀C0 > 0, σ(s) is well defined in a
neighborhood of s = 0. Indeed, through the change of variable defined by

the relationship h′(z) = (h∗)−1
(

C
σ(s)

)
, and by the properties of h and h∗ we

have stated at the end of the previous section, it follows that:
∫

0

dt

(h∗)−1
(

C
t

)
t

⇔

∫ +∞ zh′′(z)

h′(z)[h′(z)z − h(z)]
dz .

Recalling hypothesis (10) and since h′(z)z − h(z) > 0, for any z > 0, there
exists a constant c1 such that

∫ +∞ 1

zh′(z)

z2h′′(z)

h′(z)z − h(z)
dz ≤ c1

∫ +∞ dz

h′(z)z
dz ≤ c1

∫ +∞ dz

h(z)
,

where the last inequality holds since h is convex; by (9) last integral is finite
and so σ is well defined near 0.

Step 2: The choice of C0. It follows by Step 1, through the change ρ = τ
δt

,
∀δ > 0, that

lim
τ→+∞

1

δ

∫ ∞

τ
δ

dρ

ρ(h∗)−1(ρ)
= 0 ;

on the other hand, since (h∗)−1(0) = 0,

lim
τ→0

1

δ

∫ ∞

τ
δ

dρ

ρ(h∗)−1(ρ)
= +∞ .

Thus there exists C0 such that

1

δ

∫ ∞

C0
δ

dρ

ρ(h∗)−1(ρ)
=

∫ 1

0

dt

(h∗)−1
(

C
t

)
t

= 1 .

Step 3: The limit of σ′. Recalling the definition of σ′ from (4), we want
to prove

lim
s→0+

δσ(s)h∗−1

(
C0

δσ(s)

)
= 0 . (7)
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This is equivalent to prove that

lim
τ→+∞

h′(τ)

h∗(h′(τ))
= lim

τ→+∞

h′(τ)

h′(τ)τ − h(τ)
= 0

since τ is such that (h∗)−1( C0

δσ(s)) = h′(τ). Using that h∗(h′(τ)) → +∞ as

τ diverges and by De l’Hopital rule we deduce that (7) holds, and so the
Lemma is proved.

Proof of Proposition 3.1: Let σ(s) be the function defined in Lemma 3.2.
Thus it is clear that inequality (1) is verified at s = 0, and we can mul-
tiply and divide the left hand side by σ(s); using (3) we get

δσ(s)v
σ′(s)

δσ(s)
≤ δσ(s)h(v) + δσ(s)h∗

(
σ′(s)

δσ(s)

)
.

Recalling that σ is the solution of the Cauchy problem defined in (4), (1)
holds true.

In the sequel we will also handle with dualities involving the time deriva-
tives of suitable functions; to this aim we will use the following Landes-type
(see [16]) regularization result.

Lemma 3.3. Let Ω be an open bounded subset of R
N and let w be a function

in Lp(0, T ;W 1,p
0 (Ω)) and w0 ∈ L1(Ω). Then, for any ν > 0, there exists a

function ην = ην(w,w0) ∈ Lp(0, T ;W 1,p
0 (Ω)), such that

d

dt
ην = ν(w − ην),

and ην(w,w0)(0, x) = η0,ν ∈ L2(Ω), with

η0,ν
ν→∞
−→ w0 in L1(Ω).

If furthermore w ∈ L∞(QT
Ω), then

‖ην‖L∞(Q) ≤ ‖w‖L∞(QT
Ω) . (8)

Moreover, if wt = w(1) + w(2) ∈ L1(QT
Ω) + Lp′(0, T ;W−1,p′(Ω)), then it is

possible to choose ην such that d
dt
ην = ρ

(1)
ν + ρ

(2)
ν , with both

ρ(1)
ν

ν→∞
−→ w(1) in L1(QT

Ω)

and
ρ(2)

ν

ν→∞
−→ w(2) in Lp′(0, T ;W−1,p′(Ω)).
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Proof : See [13], Lemma 2.1.

Here we state a useful result which allows us to handle with functions such
that do not have the time derivative belonging to the dual of the energy
space. In fact it consists in a generalized integration by parts formula, whose
proof can be found in [11] (see also [9]).

Lemma 3.4. Let D be any domain in R
N , N ≥ 3, and let f : R → R be a

continuous piecewise C1 function such that f(0) = 0 and f ′ is zero away from
a compact set of R; let us denote F (s) =

∫ s

0 f(r)dr. If v ∈ Lp(0, T,W 1,p
0 (D))

is such that vt ∈ Lp′(0, T ;W−1,p′(D)) + L1(Q) and if ψ ∈ C∞([0, T ] × D),
then we have
∫ T

0

〈vt, f(v)ψ〉 =

∫

D

F (v(T ))ψ(T ) −

∫

D

F (v(0))ψ(0) −

∫

QT

ψt F (v) . (9)

We observe that vt ∈ Lp′(0, T ;W−1,p′(D)) + L1(QT
D) implies that there

exist η1 ∈ Lp′(0, T ;W−1,p′(D)) and η2 ∈ L1(QT
D) such that ut = η1 +η2. Even

if η1 and η2 are not uniquely determined, the integration by parts formula
turn out to be independent on the representation of vt; moreover, according
with the notation introduced before, 〈·, ·〉 will indicate the duality between
Lp′(0, T ;W−1,p′(D)) + L1(QT

D) and Lp(0, T ;W 1,p
0 (D)) ∩ L∞(QT

D).

We also recall the following classical result due to Gagliardo and Nirenberg.

Theorem 3.5 (Gagliardo-Nirenberg). Let Ω ⊂ R
N , opend and bounded, and

let v be a function in W 1,µ(Ω) ∩ Lλ(Ω) with µ ≥ 1, λ ≥ 1. Then there exists
a positive constant C, depending on N , q and λ, such that

‖v‖Lη(Ω) ≤ C‖∇v‖θ
(Lµ(Ω))N‖v‖1−θ

Lλ(Ω) ,

for every θ and η satisfying

0 ≤ θ ≤ 1, 1 ≤ η ≤ +∞,
1

η
= θ

(
1

µ
−

1

N

)
+

1 − θ

λ
.

Proof : See [20], Lecture II.

The following embedding results are consequences of the previous theorem.
We will use them in the last section but we give their statement here for
completeness.



LOCAL ESTIMATES FOR PARABOLIC PROBLEMS WITH GRADIENT TERMS 15

Corollary 3.6. Let v ∈ Lq(0, T ;W 1,q
0 (Ω)) ∩ L∞(0, T ;Lγ(Ω)), with q ≥ 1,

γ ≥ 1. Then v ∈ Lσ(QT
Ω) with σ = qN+γ

N
and

∫

QT
Ω

|v|σ dxdt ≤ C‖v‖
γq
N

L∞(0,T ;Lγ(Ω))

∫

QT
Ω

|∇v|q dxdt . (10)

Corollary 3.7. Let Ω ⊂ R
N , opend and bounded, τ > 0, 1 < p < N and let

further w ∈ L∞(0, τ ;Lp(Ω)) ∩ Lp(0, τ ;W 1,p
0 (Ω)). Then there exists a positive

constant K depending only on N and p such that
[∫ τ

0

(∫

Ω

|w|σ
)µ

σ

] p
µ

≤ K

(
sup

t∈[0,τ ]

∫

Ω

|w|p +

∫ τ

0

∫

Ω

|∇w|p

)

for all µ and σ satisfying

p ≤ σ ≤ p∗, p ≤ µ ≤ ∞,
N

pσ
+

1

µ
=
N

p2
. (11)

We want also recall the interpolation inequality, we will make use in the
proof of Theorem 2.7. Assume that z ∈ L∞(0, T ;Lq(D)) ∩ Lp(0, T ;Lr(D)),
p, q, r ≥ 1. Thus z in Lη(QT

D) and

‖z‖Lη(Q) ≤ C‖z‖1−θ
L∞(0,T ;Lq(D))‖z‖

θ
Lp(0,T ;Lr(D))

with 1
η

= θ
r
+ 1−θ

q
, p ≥ θη.

(12)

A useful application of Corollary 3.6 is the following.

Proposition 3.8. Let R > 0 and BR ∈ R
N a ball of radius R and let p > 1.

Let w ∈ L∞(0, T ;L1(BR)) such that Tk(w) ∈ Lp(0, T ;W 1,p
0 (BR)), for any

k > 0. If |∇w|p−1 ∈ L1(QT
R), then wp−1 ∈ L1(QT

R).

Proof : We deal only with the case p > 2, since for p ≤ 2 it is trivial.
Since both w ∈ L∞(0, T ;L1(BR)) and |∇w|p−1 ∈ L1(QT

R), we have that

w ∈ L1(0, T ;W 1,1
0 (BR)). Then, we can apply Corollary 3.6 with q = γ = 1 to

obtain that w ∈ L
N+1

N (QT
R). Now, if p ≤ 1 + N+1

N
we are finished, otherwise

w ∈ L1(0, T ;W
1,N+1

N

0 (BR)) and we apply again Corollary 3.6 with γ = 1 and

q = N+1
N

to conclude that w ∈ L(N+1
N )

2

(QT
R). It is clear that, iterating this

procedure, we get the result in a finite number of steps.

The estimates contained in the following lemma are standard and turn out
to coincide, for instance, with the one proved in [4] (see also Lemma 3.7 in
[18]).
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Lemma 3.9. Let w be a measurable function finite almost everywhere on
QT

R. If there exists C > 0 is such that
∫

QT
R

|∇Tk(w)|p ≤ C(k + 1),

for any k > 0, then, both

‖w‖
Mp−1+

p
N (QT

R)
≤ c1 and ‖∇w‖

M
p− N

N+1 (QT
R)

≤ c2,

where c1 and c2 are positive constants only depending on C,N,R, T and p.

Finally let us state the following classical result due to Stampacchia.

Lemma 3.10 ([26]). Let ζ(j, ρ) : [0,+∞) × [0, R) be a function such that

ζ(·, ρ) is nonincreasing and ζ(j, ·) nondecreasing. Moreover, suppose that

∃K0 > 0, µ ≥ 1, and C, ν, γ > 0 such that

ζ(j, ρ) ≤ C
σ(k, R)µ

(j − k)ν(R − ρ)γ
∀j > k > K0, ∀ρ ∈ (0, R].

Then for every δ ∈ (0, 1), there exists d > 0 such that:

ζ(K0 + d, (1 − δ)R) = 0,

where

dν = C ′2
µ(ν+γ)

µ−1
ζ(K0, 1)µ−1

(1 − δ)
, C ′ > 0.

Proof : See [26].

4. proofs of Theorem 2.3 and Theorem 2.5

Proof of Theorem 2.3: Let us consider un as the weak solutions of the follow-
ing problem





(un)t − div a(t, x, un,∇un) + g(t, x, un,∇un) = fn(t, x) inQn
T ,

un(t, x) = 0 on ∂PQ
T
n ,

un(0, x) = u0
n(x) inBn(0),

(1)

where fn(t, x) = Tn(f(t, x)) and u0
n(x) = Tn(u0(x)). Note that, thanks to the

result of [10] (see also [23]), there exists (at least) a weak solution for (1), i.e.
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a function un ∈ Lp(0, T ;W 1,p
0 (Bn)) such that (un)t ∈ Lp′(0, T ;W−1,p′(Bn)),

g(t, x, un,∇un) ∈ L1((0, T )× Bn), and the following identity holds true

∫ T

0

< (un)t , ψ > +

∫

QT
n

a(t, x, un,∇un) · ∇ψ

+

∫

QT
n

g(t, x, un,∇un)ψ =

∫

QT
n

fnψ ,

(2)

∀ψ ∈ Lp(0, T ;W 1,p
0 (Bn)) ∩ L

∞(QT
n ).

We will prove Theorem 2.3 by showing that the terms in (1) are compact
in suitable spaces. In order to do it, here and throughout the whole proof, we
fix a ball BR, centered at the origin, and we will prove suitable estimates for
un in (0, T )×BR. Moreover, a weak solution on QT

n turns out to be obviously
a weak solution in Qt

n for any 0 < t < T . So that, with an abuse of notation
we will often invoque (2) by tacitly understanding its counterpart on Qt

n.

Local estimate on truncations. For any n ≥ R+ ρ (for any fixed ρ > 0),
let us choose in (2) ψ = ϕλ(Tk(un))ξ, where ϕλ(s) = seλs2

enjoys property
(21), λ > 0 will be fixed later, k > L, and ξ(x) is a cut-off function such that
(2) holds true (we will often omit the dependence on x). Thus we have

∫ t

0

< (un)t, ϕλ(Tk(un))ξ >

+

∫

Qt
n

a(t, x, un,∇un) · ∇Tk(un)ϕ
′
λ(Tk(un))ξ

+

∫

Qt
n

a(t, x, un,∇un) · ∇ξϕλ(Tk(un))

+

∫

Qt
n

g(t, x, un,∇un)ϕλ(Tk(un))ξ =

∫

Qt
n

fn(t, x)ϕλ(Tk(un))ξ .

(3)

Since ξ does not depend on time, using the Lemma 3.4,

∫ t

0

< (un)t, ϕλ(Tk(un))ξ >=

∫

Bn

Φλ,k(un(t, x))ξ −

∫

Bn

Φλ,k(un(x, 0))ξ ,

where
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Φλ,k(s) =

∫ s

0

ϕλ(Tk(τ))dτ =






1
2λ

(eλs2

− 1) if |s| ≤ k ,

ϕλ(k)(|s| − k) + 1
2λ

(eλk2

− 1) if |s| > k .

Note that

ϕλ(k)|s| − eλk2

(
k2 −

1

2λ

)
−

1

2λ
≤ Φλ,k(s) ≤ ϕλ(k)|s| ,

so that we deduce

∫ t

0

< (un)t, ϕλ(Tk(un))ξ >

≥ ϕλ(k)

∫

Bn

|un(t, x)|ξ −

[
eλk2

(
k2 −

1

2λ

)
+

1

2λ

]
meas{BR+ρ}

−ϕλ(k)

∫

Bn

|u0(x)|ξ .

(4)

Moreover, since k > L, by (5)–(9), we have

∫

Qt
n

g(t, x, un,∇un)ϕλ(Tk(un))ξ ≥

∫

Qt
n

h(|∇un|
p−1)|ϕλ(Tk(un))|ξ

−

∫

Qt
n

(
γ̃k|∇Tk(un)|

p + |g̃k(t, x)|
)
|ϕλ(Tk(un))|ξ ,

where γ̃k = γk + c1 and g̃k = gk + c1. On the other hand by (3) and choosing
ξ = σ(η), where η satisfies (2) and sigma is is the function defined in Lemma
3.2, we can apply Proposition 3.1 with δ = 1

2β
. Thus there exists a constant

C = C(λ, k, β, T ) such that

∫

QT
n

a(t, x, un,∇un) · ∇ξϕλ(Tk(un))

≥ −β

∫

QT
n

|∇un|
p−1|∇ξ||ϕλ(Tk(un))|

≥ −

∫

Qt
n

1

2
h
(
|∇un|

p−1
)
|ϕλ(Tk(un))|ξ − Cmeas{BR+ρ} .
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By substituting the above inequalities into (3), we deduce

ϕλ(k)

∫

Bn

|un(t, x)|ξ +

∫

Qt
n

|∇Tk(un)|
p
[
αϕ′

λ(Tk(un)) − γ̃k|ϕλ(Tk(un))|
]
ξ

≤ Cmeas{BR+ρ} + ϕλ(k)

[∫

Bn

|u0(x)|ξ +

∫

Qt
n

(
|fn(t, x)| + |g̃k(t, x)|

)
ξ

]
.

(5)
Note that both fn(t, x)ξ and g̃k(t, x)ξ are bounded in L1(QT ), so that, by

(21) applied with a = α and b = γ̃k we deduce that there exists a constant
(depending on k) such that

sup
t∈(0,T )

∫

BR

|un(t, x)| +

∫

QT
R

|∇Tk(un)|
p ≤ C(k) , ∀k > 0 . (6)

This implies, since obviously ‖Tk(un)‖Lp((0,T )×BR) ≤ C(R, T )k, that Tk(un)
is bounded in Lp(0, T ;W 1,p(BR)), ∀R > 0. Thus, up to subsequences (not re-
labeled) Tk(un) weakly converges toward a function vk in Lp(0, T ;W 1,p(BR)).
Moreover the sequence {un} is bounded in L∞(0, T ;L1(BR)) .

Hence, from (6) we deduce (integrating between 0 and T ), ∀j > 0,

jmeas{(t, x) ∈ (0, T ) ×BR : |un| ≥ j}

≤

∫

{(0,T )×BR+ρ}∩{(t,x):|un|≥j}

|un(t, x)|ξ ≤

∫ T

0

∫

Bn

|un(t, x)|ξ ≤ CT ,

so that

meas{(t, x) ∈ (0, T ) ×BR : |un| ≥ j} ≤
CT

j
. (7)

Moreover, choosing S ′
k(un)ξ as test function in (2), we deduce that

(
Sk(un)ξ

)
t

is bounded in L1(QT )+Lp′(0, T ;W−1,p′(BR+ρ)) and so, using the compactness
result of [25], we have that Sk(un)ξ is strongly compact in L1((0, T )×BR+ρ).
Hence, up to subsequences (not relabeled), it converges a.e. as n diverges.
Using a diagonal argument, it follows that un → u for a.e. (t, x) ∈ (0, T )×BR,
∀R > 0, and consequently there exists a measurable function u(t, x) such
that un → u a.e. in (0, T )× R

N . Finally, we note that (7) implies that un is
compact in L1(0, T ;L1

loc(R
N)) and consequently that

Tk(un) ⇀ Tk(u) in Lp(0, T ;W 1,p
loc (RN)) . (8)
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Estimate on the lower order term. Let us choose ψ = Tε(un)
ε
ξ as test

function in (2), so that we have:
∫

QT
n

d

dt

(
Θε(un)

ε

)
ξ +

1

ε

∫

QT
n

a(t, x, un,∇un) · ∇Tε(un)ξ

+

∫

QT
n

a(t, x, un,∇un) · ∇ξ
Tε(un)

ε

+

∫

QT
n

g(t, x, un,∇un)
Tε(un)

ε
ξ ≤

∫

QT
n

|fn(t, x)|ξ ,

where Θk(s) =
∫ s

0 Tk(τ)dτ , ∀k > 0. We first note that

0 ≤
Θε(s)

ε
≤ |s|, ∀s ∈ R,

and by (2), we deduce

α

ε

∫

QT
n

|∇Tε(un)|
pξ +

∫

QT
n

a(t, x, un,∇un) · ∇ξ
Tε

ε
(un)

+

∫

QT
n

g(t, x, un,∇un)
Tε(un)

ε
ξ ≤ ‖fn(t, x)‖L1(QT

R+ρ)
+

∫

Bn

|u0
n(x)|ξ .

Moreover, using (5)–(9), we have (as above γ̃L = γL + c1 and g̃L = gL + c1)∫

QT
n

g(t, x, un,∇un)
Tε

ε
(un)ξ

≥
1

2

∫

QT
n

h(|∇un|
p−1)ξ +

1

2

∫

QT
n

|g(t, x, un,∇un)|

∣∣∣∣
Tε

ε
(un)

∣∣∣∣ ξ

−γ̃L

∫

Qn
T∩{|un|≤L}

|∇TL(un)|
pξ −

∫

Qn
T∩{|un|≤L}

|g̃L(t, x)|ξ ,

Now we choose ξ = σ(η) where η is chosen as in (2); thus by using Proposition
3.1 with δ = 1

4β
, we have

∣∣∣∣
∫

QT
n

a(t, x, un,∇un) · ∇ξ
Tε

ε
(un)

∣∣∣∣

≤
1

4

∫

QT
n

h
(
|∇un|

p−1
)
ξ + C meas(BR+ρ) .
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Thus, dropping positive terms, we have

1

4

∫

QT
n

h(|∇un|
p−1)ξ +

1

2

∫

QT
n

|g(t, x, un,∇un)|

∣∣∣∣
Tε

ε
(un)

∣∣∣∣ ξ

≤ γL

∫

Bn∩{|un|≤L}

|∇TL(un)|
pξ +

∫

Bn∩{|un|≤L}

|gL(t, x)|ξ

+

∫

Bn

|u0
n(x)|ξ + Cmeas(BR+ρ) ,

and, by (6) and (6), the right hand side of the previous inequality is uniformly
bounded (with respect to n). Thus, letting ε→ 0, Fatou’s Lemma yields,

∫

QT
R

h(|∇un|
p−1) +

∫

QT
R

|g(t, x, un,∇un)| ≤ CR . (9)

Equiintegrability of the lower order term and uniform estimate

on the “stripes”. Let us choose ψ = γj(un)ξ, ∀j > L, in (2) where
γj(s) = T1(Gj(s)), and moreover we denote by Γj(s) =

∫ s

0 γj(t)dt; we note
that

|Gj+1(s)| ≤ Γj(s) ≤ |Gj(s)| . (10)

Thus we have:
∫ T

0

< (un)t , γj(un)ξ > +

∫

Qt
n

a(t, x, un,∇un) · ∇ξγj(un)

+

∫

Qt
n

a(t, x, un,∇un) · ∇unγ
′
j(un)ξ

+

∫

Qt
n

g(t, x, un,∇un)γj(un)ξ =

∫

Qt
n

fn(t, x)γj(un)ξ .

Thus, since j > L, using that |γ(s)| ≤ 1 and (2) we get
∫

Bn

Γj(|un(t, x)|)ξ +

∫

Qt
n

a(t, x, un,∇un) · ∇ξγj(un)

+

∫

Qt
n∩{j≤|un|≤j+1}

a(t, x, un,∇un) · ∇unξ

+
1

2

∫

Qt
n∩{|un|≥j}

h(|∇un|
p−1)|γj(un)|ξ+

1

2

∫

Qt
n∩{|un|≥j}

|g(t, x, un,∇un)||γj(un)|ξ

≤

∫

Qt
n∩{|un|≥j}

|fn(t, x)|ξ +

∫

Bn

Γj(|u
0
n(x)|)ξ .
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On the other hand by (3), and choosing ξ as above, we deduce by Proposition
3.1 applied with δ = 1

2β
,

∫

Qt
n∩{|un|≥j}

|a(t, x, un,∇un) · ∇ξ||γj(un)|

≤
1

2

∫

Qt
n∩{|un|≥j}

h
(
|∇un|

p−1
)
|γj(un)|ξ

+Cmeas{(t, x) ∈ (0, T ) ×BR+ρ : |un| ≥ j} ,

and the last term tends to 0 (uniformly with respect to n) as j diverges by
(7). Moreover, by using (10) we deduce, dropping the positive term,

∫

Bn

Gj+1(|un(t, x)|)ξ +

∫

Qt
n∩{j≤|un|≤j+1}

a(t, x, un,∇un) · ∇unξ

+
1

2

∫

Qt
n∩{|un|≥j}

|g(t, x, un,∇un)||γj(un)|ξ

≤

∫

Qt
n∩{|un|≥j}

|fn(t, x)|ξ +

∫

Bn

Gj(|u
0
n(x)|)ξ + ε(j)

Since both un
0(x)ξ and fn(t, x)ξ are strongly compact in L1(BR+ρ) and in

L1(QT
R+ρ) respectively, we obtain, dropping positive terms,

lim inf
j→∞

sup
n∈N

[∫

QT
n∩{j≤|un|≤j+1}

a(t, x, un,∇un) · ∇unξ

+

∫

QT
n∩{|un|≥j+1}

|g(t, x, un,∇un)|ξ

]
= 0 .

(11)

Note that the above estimate, in fact, allows us to say, using (7) and since
h(s) is superlinear at infinity, that

sup
n∈N

∫

QT
R∩{|un|≥j}

|∇un|
p−1 = ε(j) . (12)

Strong convergence of truncations. Let ϕλ(s) be the function intro-
duced in (21), where λ > 0 will be fixed in the sequel. We set Tk(u)ν =
ην(Tk(u), Tk(u0)), where ην(·) has been defined in Lemma 3.3.
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Now we choose ψ = ϕλ(zn,ν)S
′
j(un)ξ as test function in (2), where zn,ν =

Tk(un) − Tk(u)ν, k ≥ L, and Sj(s) is defined in (22). Thus we have
∫ T

0

< Sj(un)t , ϕλ(Tk(un) − Tk(u)ν)ξ >

+

∫

QT
n

a(t, x, un,∇un) · ∇ξ ϕλ(zn,ν)S
′
j(un)

+

∫

QT
n

a(t, x, un,∇un) · ∇
(
Tk(un) − Tk(u)ν

)
ϕ′

λ(zn,ν)S
′
j(un)ξ

+

∫

QT
n

a(t, x, un,∇un) · ∇un ϕλ(zn,ν)S
′′
j (un)ξ

+

∫

QT
n

g(t, x, un,∇un)ϕλ(zn,ν)S
′
j(un)ξ

=

∫

QT
n

fn(t, x)ϕλ(zn,ν)S
′
j(un)ξ .

(13)

We first note that∫

QT
n

a(t, x, un,∇un) · ∇
(
Tk(un) − Tk(u)ν

)
ϕ′

λ(zn,ν)S
′
j(un)ξ

=

∫

QT
n∩{|un|≤k}

a(t, x, un,∇un) · ∇
(
Tk(un) − Tk(u)ν

)
ϕ′

λ(zn,ν)S
′
j(un)ξ

−

∫

QT
n∩{|un|≥k}

a(t, x, un,∇un) · ∇Tk(u)ν ϕ
′
λ(zn,ν)S

′
j(un)ξ .

Using (6) and recalling that Supp(S ′
j) ⊂ [−j − 1, j + 1], there exists ςk,j ∈

(Lp′(QT
R))N+1 such that, using Egorov Theorem,

lim
n→∞

∫

QT
n∩{|un|≥k}

a(t, x, un,∇un) · ∇Tk(u)ν ϕ
′
λ(zn,ν)S

′
j(un)ξ

=

∫

QT
R+ρ∩{|u|≥k}

ςk,j · ∇Tk(u)ν ϕ
′
λ(zν)S

′
j(u)ξ ,

and last integral tends to 0 as ν diverges, since Tk(u)ν → Tk(u) strongly in
Lp(0, T ;W 1,p

loc (RN)), and consequently |∇Tk(u)ν|χ{|u|≥k} tends to zero strongly

in Lp(0, T ; Lp
loc(R

N)). Thus
∫

QT
n

a(t, x, un,∇un) · ∇
(
Tk(un) − Tk(u)ν

)
ϕ′

λ(zn,ν)S
′
j(un)ξ



24 T. LEONORI AND F. PETITTA

=

∫

QT
n

a(t, x, un,∇Tk(un)) · ∇
(
Tk(un) − Tk(u)ν

)
ϕ′

λ(zn,ν)S
′
j(un)ξ + ε(n, ν) .

On the other hand, since k ≥ L,
∫

QT
n

g(t, x, un,∇un)ϕλ(zn,ν)S
′
j(un)ξ

≥

∫

QT
n

h(|∇un|
p−1)|ϕλ(zn,ν)|S

′
j(un)ξ −

∫

QT
n∩{|un|≤k}

|g̃k(t, x)||ϕλ(zn,ν)|ξ

−
γ̃k

α

∫

QT
n∩{|un|≤k}

a(t, x, un,∇Tk(un)) · ∇(Tk(un) − Tk(u)ν)S
′
j(un)|ϕλ(zn,ν)|ξ

+
γk

α

∫

QT
n

a(t, x, un,∇Tk(un)) · ∇Tk(u)νS
′
j(un)ϕλ(zn,ν)ξ ,

where γ̃k = γk + c1 and g̃k = gk + c1. Reasoning as before,

γk

α

∫

QT
n

a(t, x, un,∇Tk(un)) · ∇Tk(u)νϕλ(zn,ν)S
′
j(un)ξ = ε(n, ν) ,

and ∫

QT
n

[
|fn(t, x)| + |g̃k(t, x)|

]
ϕλ(zn,ν)S

′
j(un)ξ = ε(n, ν) .

Gathering the above informations together, we deduce:
∫ T

0

< Sj(un)t , ϕλ(Tk(un) − Tk(u)ν)ξ >

+

∫

QT
n

a(t, x, un,∇un) · ∇ξ ϕλ(zn,ν)S
′
j(un)

+

∫

QT
n

a(t, x, un,∇Tk(un)) · ∇
(
Tk(un) − Tk(u)ν

)
ϕ′

λ(zn,ν)S
′
j(un)ξ

+

∫

QT
n

a(t, x, un,∇un) · ∇un ϕλ(zn,ν)S
′′
j (un)ξ

− γ̃k

α

∫

QT
n

a(t, x, un,∇Tk(un)) · ∇
(
Tk(un) − Tk(u)ν

)
ϕλ(zn,ν)S

′
j(un)ξ

+

∫

QT
n

h(|∇un|
p−1)|ϕλ(zn,ν)|S

′
j(un)ξ ≤ ε(n, ν) .

(14)
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Moreover the second integral in (14) is estimated, using that ξ = σ(η), η
chosen as in (2), and by Proposition 3.1,

∣∣∣∣
∫

QT
n

a(t, x, un,∇un) · ∇ξ ϕλ(Tk(un) − Tk(u)ν)

∣∣∣∣

≤
1

2

∫

QT
n

h
(
|∇un|

p−1
)
|ϕλ(Tk(un) − Tk(u)ν)|S

′
j(un)ξ + ε(n, ν)

Thus by (14) we have, dropping positive terms,

∫ T

0

< Sj(un)t , ϕλ(Tk(un) − Tk(u)ν)ξ >

+

∫

QT
n

a(t, x, un,∇Tk(un)) · ∇zn,ν

[
ϕ′

λ(zn,ν) −
γ̃k

α
ϕλ(zn,ν)

]
S ′

j(un)ξ

+

∫

QT
n

a(t, x, un,∇un) · ∇un ϕλ(zn,ν)S
′′
j (un)ξ ≤ ε(n, ν) .

(15)

Noticing that, by definition of Tk(u)ν,

−

∫

QT
n

a(t, x, un,∇Tk(u)ν) · ∇zn,ν

[
ϕ′

λ(zn,ν) −
γ̃k

α
|ϕλ(zn,ν)|

]
S ′

j(un)ξ = ε(n, ν) ,

we can add this quantity in both sides of (15). Moreover using (11) we also
have: ∣∣∣∣

∫

QT
n

a(t, x, un,∇un) · ∇un ϕλ(zn,ν)S
′′
j (un)ξ

∣∣∣∣ ≤ ε(j) .

Finally, in order to get rid of the integral involving the time derivative of
Sj(un), we apply the following inequality, whose proof is postponed at the
end of this Section.

Claim. ∀j ≥ j0:

∫ t

0

< Sj(un)t , ϕλ(Tk(un) − Tk(u)ν)ξ >≥ ε(n, ν) . (16)
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Using (16) in (15) we deduce that, for j large enough,
∫

QT
n

(a(t, x, un,∇Tk(un)) − a(t, x, un,∇Tk(u)ν)) · ∇zn,ν

×
[
ϕ′

λ(zn,ν) −
γ̃k

α
ϕ′

λ(zn,ν)
]
S ′

j(un)ξ ≤ ε(n, ν) + ε(j) .

By a suitable choice of λ (according with (21) applied with a = 1 and b = γ̃k

α
)

we deduce that∫

QT
n

(a(t, x, un,∇Tk(un)) − a(t, x, un,∇Tk(u)ν)) · ∇zn,ν

×S ′
j(un)ξ ≤ ε(n, ν) + ε(j) .

Lemma 5 in [BMP] yields

Tk(un) → Tk(u) strongly in Lp(0, T ;W 1,p(BR)) . (17)

Note that the above convergence implies that, up to subsequences, ∇Tk(un)
a.e. converges to ∇Tk(u), and by a diagonal argument we conclude that,
again up to subsequences not relabeled,

∇un → ∇u a.e. . (18)

Moreover combining (17) with (12) and (18) we deduce, by using Vitali’s
Theorem, that

|∇un|
p−1 → |∇u|p−1 strongly in L1(0, T ;L1

loc(R
N)) , (19)

and by (11), (17) and (18) we have

g(x, un,∇un)ξ → g(x, u,∇u)ξ strongly in L1((0, T )× R
N) . (20)

Passing to the limit. Let us choose ψ = φ(t, x)S ′(un) in (2) where φ is a
C1

0([0, T )× R
N) and S(s) chosen as in the Definition 2.2. We have:

∫ T

0

< (un)t , φS
′(un) > +

∫

QT
n

a(t, x, un,∇un) · ∇φS
′(un)

+

∫

QT
n

a(t, x, un,∇un) · ∇unS
′′(un)φ

+

∫

QT
n

g(t, x, un,∇un)φ =

∫

QT
n

fn(t, x)φ .

(21)
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We first note that there exists R > 0 such that supp φ(x, t) ⊂ (0, T )×BR,
so that, integrating by parts, and recalling that φ(T, x) = 0 we get:

lim
n→+∞

∫ T

0

< (un)t , φS
′(un) >

= lim
n→+∞

∫

RN

S(un)φ(T, x)−

∫

RN

S(u0
n)φ(0, x)−

∫

QT

S(un)φt(t, x)

= −

∫

RN

S(u0)φ(0, x)−

∫

QT

S(u)φt(t, x) ,

where QT = (0, T ) × R
N . Moreover, by (3) and (19), we have

lim
n→+∞

∫

QT
n

a(t, x, un,∇un) · ∇φS
′(un) =

∫

QT
n

a(t, x, u,∇u) · ∇φS ′(u) ,

while by (17) and (20), (11) we deduce that both

lim
n→+∞

∫

QT
n

a(t, x, un,∇un) · ∇un S
′′(un)φ =

∫

QT
n

a(t, x, u,∇u) · ∇uS ′′(u)φ ,

and

lim
n→+∞

∫

QT
n

g(t, x, un,∇un)S
′(un)φ =

∫

QT
n

g(t, x, u,∇u)S ′(u)φ .

Finally, since fnξ → fξ in L1(QT ) it allows us to pass to the limit in the last
integral in (21). Consequently u(t, x) is a solution for (14) in the sense of
Definition 2.2.

To complete the proof of Theorem 2.3 we need to prove that inequality
(16) holds.

Proof of (16): We recall that, by previous estimates, Tk(un) converges to
Tk(u) weakly in Lp(0, T ;W 1,p

loc (RN)). Here we use an approximation argu-
ment by using Lemma 3.3. We set, for every σ > 0, un,σ = ησ(un, u

0
n);

we know that un,σ ∈ Lp(0, T ;W 1,p
0 (Bn)), (un,σ)t ∈ Lp(0, T ;W 1,p

0 (Bn)), and
moreover, both

un,σ −→ un in Lp(0, T ;W 1,p
0 (Bn)) ,

and

(un,σ)t −→ (un)t in Lp′(0, T ;W−1,p′(Bn)) + L1(QT
n ) ,

with un,σ(0, x) = u0
n.
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This approximation argument will allow us to consider derivatives with
respect to t of the composition between Lipschitz functions and un,σ. Thanks
to these properties we have that

∫ T

0

< Sj(un)t , ϕλ(Tk(un) − Tk(u)ν)ξ >

= lim
σ→0

∫ T

0

< Sj(un,σ)t , ϕλ(Tk(un,σ) − Tk(u)ν)ξ >

(22)

Our aim is to prove that
∫ T

0

< Sj(un,σ)t , ϕλ(Tk(un,σ) − Tk(u)ν)ξ >≥ ε(n, ν) .

So, note that, for any j > k, we can write

Sj(un,σ) = Tk(un,σ) +Gk(Sj(un,σ))

thus, if we define φλ(s) =
∫ s

0 ϕλ, we have
∫ T

0

< Sj(un,σ)t , ϕλ(Tk(un,σ) − Tk(u)ν)ξ >

=

∫

BR

φλ(Tk(un,σ) − Tk(u)ν)(T )ξ −

∫

BR

φλ(Tk(un,σ) − Tk(u)ν)(0)ξ

+

∫ T

0

< Gk(Sj(un,σ))t , ϕλ(Tk(un,σ) − Tk(u)ν)ξ >

+

∫

QT
n

ν(Tk(u) − Tk(u)ν)ϕλ(Tk(un,σ) − Tk(u)ν)ξ ,

where we used that (Tk(u)ν)t = ν(Tk(u) − Tk(u)ν). Using that φλ(s) > 0,
∀s ∈ R and that Tk(u

0
n)ξ → Tk(u0)ξ weakly-∗ in L∞(BR), we deduce that

∫

BR

φλ(Tk(un,σ) − Tk(u)ν)(T )ξ −

∫

BR

φλ(Tk(un,σ) − Tk(u)ν)(0)ξ ≥ ε(n, ν) .

Moreover ∫

QT
n

ν(Tk(u) − Tk(u)ν)ϕλ(Tk(un,σ) − Tk(u)ν)ξ

=

∫

QT
n

ν(Tk(u) − Tk(u)ν)ϕλ(Tk(u) − Tk(u)ν)ξ + ε(σ, n) ≥ ε(σ, n) ,
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since s · seλs2

≥ 0. Finally, we deal with the term
∫ T

0

< Gk(Sj(un,σ))t , ϕλ(Tk(un,σ) − Tk(u)ν)ξ > .

Integrating by parts we deduce that
∫ T

0

< Gk(Sj(un,σ))t , ϕλ(Tk(un,σ) − Tk(u)ν)ξ >

=

∫

BR

Gk(Sj(un,σ))(T )ϕλ(Tk(un,σ) − Tk(u)ν)(T )ξ

−

∫

BR

Gk(Sj(un,σ))(0)ϕλ(Tk(un,σ) − Tk(u)ν)(0)ξ

−

∫ T

0

< Gk(Sj(un,σ))ϕ
′
λ(Tk(un,σ) − Tk(u)ν)ξ , (Tk(un,σ) − Tk(u)ν)t > .

Thus, the first term is positive since
∫

BR

Gk(Sj(un,σ))(T )ϕλ(Tk(un,σ) − Tk(u)ν)(T )ξ

=

∫

BR∩{un,σ>k}

Gk(Sj(un,σ))(T )ϕλ(k − Tk(u)ν)(T )ξ

+

∫

BR∩{un,σ<−k}

Gk(Sj(un,σ))(T )ϕλ(−k − Tk(u)ν)(T )ξ ≥ ε(σ),

while in the second term vanishes passing to the limit with respect to σ

and then ν Concerning the last one, we note that since Gk(Sj(un,σ)) is 0 if
|un,σ| ≤ k, thus

−

∫ T

0

< Gk(Sj(un,σ))ϕ
′
λ(Tk(un,σ) − Tk(u)ν)ξ , (Tk(un,σ) − Tk(u)ν)t >

= ν

∫

QT
n

Gk(Sj(un,σ))ϕ
′
λ(Tk(un,σ) − Tk(u)ν)(Tk(u) − Tk(u)ν)ξ .

Finally, taking the limit respectively in σ and n, we have

−

∫ T

0

< Gk(Sj(un,σ))ϕ
′
λ(Tk(un,σ) − Tk(u)ν)ξ , (Tk(un,σ) − Tk(u)ν)t >

= ν

∫

QT
n

Gk(Sj(u))ϕ
′
λ(Tk(u) − Tk(u)ν)(Tk(u) − Tk(u)ν)ξ + ε(σ)
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= ν

∫

Q∩{u>k}

Gk(Sj(u))ϕ
′
λ(k − Tk(u)ν)(k − Tk(u)ν)ξ

+ν

∫

Q∩{u<−k}

Gk(Sj(u))ϕ
′
λ(−k − Tk(u)ν)(−k − Tk(u)ν)ξ + ε(σ, n) ≥ ε(σ, n)

since ϕ′
λ(s) > 0, ∀s ∈ R and the lemma is proved because of (22).

This conclude the proof of Theorem 2.3.

Proof of Theorem 2.5. Let us consider un as the weak solutions of the follow-
ing problem




(un)t − div a(t, x, un,∇un) + g(t, x, un,∇un) = fn(t, x) inQT
Ω,

un(t, x) = n on ∂PQ
T
Ω ,

un(x, 0) = u0
n(x) inΩ,

(23)
where fn(t, x) = Tn(f(t, x)) and u0

n(x) = Tn(u0(x)). The existence of a
weak solution for (1) is still a consequence of the result of [10]. It means
that there exists a function un such that un − n ∈ Lp(0, T ;W 1,p

0 (Ω)), (un)t ∈
Lp′(0, T ;W−1,p′(Ω)), g(t, x, un,∇un) ∈ L1((0, T )×Ω), and the following iden-
tity holds true

∫ T

0

< (un)t , ψ > +

∫

QT
Ω

a(t, x, un,∇un) · ∇ψ

+

∫

QT
Ω

g(t, x, un,∇un)ψ =

∫

QT
Ω

fnψ ,

∀ψ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(QT

Ω) .

(24)

The idea of the proof is similar to the one of Theorem 2.3. The main
difference relies on the fact that now we need to have an information about
un (and consequently u) at the boundary, and so we need first to prove a
“global ”(i.e. on the whole Ω) estimate on the truncations in the energy
space. On the other hand, for the second part of the proof, we follow exactly
the same outline of the one of Theorem 2.3. Indeed, the estimates proved
there are localized in (0, T )×BR, ∀R > 0. Since, in order to pass to the limit
in the equation, we need to use such estimates on any compact subset ̟ ⊂⊂
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(0, T )×Ω, we observe that there exists ω ⊂⊂ Ω such that ̟ ⊂⊂ (0, T )× ω.
Thus

∃M ∈ N such that xi ∈ Ω, ri > 0, i = 1, ...,M, and ω ⊂
M⋃

i=1

Bri
(xi).

It is clear that is enough to prove all the estimates on a ball and without loss
of generality we can suppose it centered at the origin.

Global estimate on truncations. We choose ∀n ≥ k, ψ = ϕλ(Tk(un)−k),
where λ > 0 to be fixed, as test function in (24). Thus we have

∫

Ω

Υλ,k(un(t, x))−

∫

Ω

Υλ,k(u
0
n(x))

+

∫

QT
Ω

a(t, x, un,∇un) · ∇Tk(un)ϕ
′
λ(Tk(un) − k)

+

∫

QT
Ω

g(t, x, un,∇un)ϕλ(Tk(un) − k)

=

∫

QT
Ω

f+
n ϕλ(Tk(un) − k) −

∫

QT
Ω

f−
n ϕλ(Tk(un) − k) ,

where

Υλ,k(s) =






−2ke4λk2

(s+ k) + 1
2λ

[
e4λk2

− eλk2
]

if s < −k ,

1
2λ

[
eλ(s−k)2 − eλk2

]
if − k ≤ s < k ,

1
2λ

[
1 − eλk2

]
if s ≥ k ,

is a primitive of ϕλ(Tk(s) − k). Note that, since Υλ,k(s) is decreasing and
Υ(0) = 0, thus ∫

Ω

Υλ,k(un(t, x))−

∫

Ω

Υλ,k(u
0
n(x))

≥

∫

Ω∩{0≤un≤k}

Υλ,k(un(t, x)) +

∫

Ω∩{un>k}

Υλ,k(un(t, x))

−

∫

Ω∩{u0
n≤−k}

Υλ,k(u
0
n(x))−

∫

Ω∩{−k≤u0
n≤0}

Υλ,k(u
0
n(x))

≥ −
(1

λ

[
eλk2

− 1
]

+
1

λ

[
e4λk2

− eλk2
] )

|Ω| − 2ke4λk2

‖(u0
n)

−‖L1(Ω) .
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Thus, by (2), (16) and the assumptions on f we deduce, since the function
ϕλ(Tk(s) − k) ≤ 0, ∀s ∈ R,

α

∫

QT
Ω

|∇Tk(un)|
pϕ′

λ(Tk(un) − k) −

∫

QT
Ω

γk|∇Tk(un)|
p|ϕλ(Tk(un) − k)|

≤ ϕλ(2k)

∫

QT
Ω

[
|f−

n | + |gk(t, x)|
]

+ 2ke4λk2

‖(u0
n)

−‖L1(Ω)

+
(

1
2λ

[
eλk2

− 1
]

+ 1
λ

[
e4λk2

− eλk2
]

+ 2k2e4λk2
)
|Ω| .

By fixing a suitable λ > 0, according with property (21) of the function
ϕλ(s), we deduce that k− Tk(un) is bounded in Lp(0, T ;W 1,p

0 (Ω)) and so, up

to subsequences (not relabeled), it converges weakly in Lp(0, T ;W 1,p
0 (Ω)).

As already pointed out, the conclusion of the Theorem follows exactly using
the same steps of Theorem 2.3.

5. Further Regularity

In this section we are going to describe some local regularity properties for
a renormalized solution of problem
{
ut − div a(t, x, u,∇u) + g(t, x, u,∇u) = f(t, x) in (0, T )×D

u(0, x) = u0(x) inD .
(1)

Let us first emphasize that, in this section we would like to be able to
choose test functions of the type S ′(u)ψ with S ′ not compactly supported on
R and such that ψ(T, x) 6= 0. In principle, according to Definition 2.2, we
are not allowed to do that. Anyway, up to suitably modify our definition,
this fact can be made rigourous by an easy density argument. In fact, we
can choose S ′(u) = S ′

j(u)M(u) where M is a Lipschitz function and Sj is
defined in (22), in the renormalized formulation. Then, we take the limit as
j diverges and we observe that S ′

j(u) converges to 1 both a.e. and ∗−weak

in L∞(QT
D), and the term involving S ′′ vanishes tanks to (13). On the other

hand, to deal with cut-off functions such that ψ(T, x) 6= 0 (we will actually
handle with functions which do not depend on time) we can choose a family
ψδ(t, x) of functions in C1

0([0, T )×D) such that they converge in C1([0, T ]×D)
to a function ψ(x). Thus, according with Lemma 3.4, Proposition 2.6, and
considering that ψt(x) = 0, the formulation change into the following one,
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that is the useful one in order to get rid of our regularity estimates.
∫

D

M(u(t, x))ψ(x) +

∫

Qt
D

a(t, x, u,∇u) · ∇uM ′(u)ψ

+

∫

Qt
D

a(t, x, u,∇u) · ∇ψM(u)

+

∫

Qt
D

g(t, x, u,∇u)M(u)ψ =

∫

Qt
D

f(t, x)M(u)ψ +

∫

D

M(u0)ψ(x) ,

(2)

for any 0 < t ≤ T and where M′(s) = M(s), M(0) = 0.

Finally, we observe that, since the estimates we are going to prove in this
section are localized, we will proceed as follows. We fix a ball (without loss
of generality, centered at 0) of radius R contained in D. Thus there exists
ρ > 0 such that BR+ρ ⊂⊂ D and we will prove the estimate in (0, T ) × BR,
in dependence of quantities computed on (0, T ) × BR+ρ. By covering any
compact ω ⊂⊂ D with balls we get the results.

We start proving Proposition 2.6.

Proof of Proposition 2.6. According to the formulation above we are allowed
to choose ψ(t, x) = ξ(x), where ξ is chosen as in (2) and such that Proposition
3.1 holds true, and M(s) = Tk(s), ∀k ≥ L. Thus we have:
∫

BR+ρ

Θk(u(x, t))ξ
p +

α

2p−1

∫

QT
R+ρ

|∇(Tk(u)ξ)|
p +

1

2

∫

QT
R+ρ

h(|∇u|p−1)Tk(u)ξ
p

≤ k‖f‖L1(QT
R+ρ)

+ C0 + α

∫

QT
R+ρ

|Tk(u)|
p|∇ξ|p + k‖u0‖L1(BR+ρ) .

Note that, since Proposition 3.8 holds true, then up−1 belongs to L1(QT
R) and

so the last integral can be estimated with Ck, for suitable C > 0. Thus we
deduce, by dropping positive terms,

∫

QT
R

|∇Tk(u)|
p ≤ C(k + 1) ,

and so we conclude applying Lemma 3.9. As we have already noticed, the
continuity with values in L1

loc is an easy consequence of Theorem 1.1 of [23].

Sketch of the Proof of Theorem 2.7: We first give an idea of the proof of
parts (1) and (2). Let us fix any 0 < R < R + ρ and consider BR ⊂
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BR+ρ ⊂⊂ D. Let us choose M(s) = vε,j(s), and ψ = ξλ in (2), where

λ = max{p, q′p
q′p−1,

q′p′

q′p′−1}, ξ(x) is as in (2) and

vε,j(s) = [(|Tj(s)| + ε)γ − εγ] sign s,

for any 0 < γ ≤ γ, with

γ =





Nm(q−1)+q(m−1)[p(N+1)−2N ]
Nm−pq(m−1) if (18) holds

N(p−1)
(N−p)q′−N

if (19) holds .
(3)

We follow the same ideas of previous estimates, we use the ellipticity con-
dition, assumption (7) and Proposition 3.1, and we finally let ε vanishing.
Thus, we deduce that there exists a constant C = C(α, β,N,R, ρ, u0, L) > 0,
but independent on j, such that,

‖ξ
λ(γ+p−1)

p(γ+1) Tj(u)‖
γ+1
L∞(0,T ;Lγ+1(BR+ρ))

+

∫ T

0

‖ξ
λ
p |Tj(u)|

γ+p−1
p ‖p

Lp∗(BR+ρ)

≤ C


‖f‖Lm(0,T ;Lq(BR+ρ))



∫ T

0

(∫

BR+ρ

ξ
λ
p |Tj(u)|

γq′

)m′

q′




1
m′

+

∫

QT
R+ρ

ξλ−p|Tj(u)|
p+γ−1 + 1

]
,

where we have applied a space-time Hölder inequality on the term involving
the datum f(t, x). Using an interpolation inequality, we deduce both that

‖Tj(u)‖L∞(0,T ;Lγ+1(BR)) ≤ C1

[
1 + ‖Tj(u)‖

p+γ−1

Lp+γ−1(QT
R+ρ)

] 1
γ+1

, (4)

and

‖Tj(u)‖
Lγ+p−1(0,T ;L

γ+p−1
p p∗(BR))

≤ C1

[
1 + ‖Tj(u)‖

p+γ−1
Lp+γ−1(QT

R+ρ)

] 1
γ+p−1

, (5)

where C1, now, depends on f , too. By (4), (5) and by applying the interpo-

lation inequality (to the function |Tj(u)|
γ+p−1

p ), we have:

‖Tj(u)‖
p+γ−1

p

L
p+γ−1

p η(QT
R)

≤ C‖Tj(u)‖
1−θ
L∞(0,T ;Lγ+1(BR))‖Tj(u)‖

θ

Lγ+p−1(0,T ;L
γ+p−1

p p∗(BR))
,

(6)
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where η and θ satisfy

1

η
=

θ

p∗
+

(1 − θ)(γ + p− 1)

p(γ + 1)
,

p

θ
≥ η.

Consequently,

η = p

[
1 +

p(γ + 1)

N(γ + p− 1)

]

turns out to optimize the above constraints. Thus gathering together (6),
(4) and (5) we deduce that there exists C > 0 such that

‖Tj(u)‖
L

η(γ+p−1)
p (QT

R)
≤ C

[
1 + ‖Tj(u)‖

γ+p−1

Lγ+p−1(QT
R+ρ)

] p
γ+p−1 max{ 1

γ+p−1 , 1
γ+1}

. (7)

Actually, roughly speaking, we control the norm of Tj(u) in L
η(γ+p−1)

p in a
cylinder with the norm in Lγ+p−1 in a slightly larger cylinder. Moreover
the such estimate is uniform with respect to j. Noticing that that η > p,
in order to conclude it is enough to perform an iteration method. We can
construct both k+1 radii 0 = ρ0 < ρ1, ..., ρk−1 < ρk = ρ and k+1 exponents
γ0 < s1, ..., γk−1 < γk = γ, such that

s0 + p− 1 < p− 1 +
p

N
,

and
η(sk+p−1)

p
is our desired summability. Thus the application of (7) k + 1

times and by Proposition 2.6, we get the result. To get rid of the different
summability in space and time stated in Theorem 2.7 we can argue in a
similar way by applying Hölder inequality.

Now we deal with part 3) of the Theorem. Let us denote by

Ak,r = {x ∈ Bρ(x0) : |u(t, x)| > k}, ∀r > 0, (8)

and let us set for any fixed δ ∈ (0, 1),

t1 =

[
1 − δ

|BR+ρ|λ1

]λ2

λ1 =

(
1 −

σ

q(σ − p)

)(
1 −

p

σ

)
and λ2 =

mµ

m(µ− p) − µ
,

(9)

and moreover

σ = p
Nm′ + pq′

Nm′
, µ = p

Nm′ + pq′

Nq′
. (10)
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Let us choose M(u) = Tj(Gk(u)) in (2), j > k > L and ψ = ξp (ξ chosen
as in (2)) in the cylinder of height t1, where we will fix δ (and so t1) later.

We also recall that for ξ chosen as in (2), we have |∇ξ| ≤ c
ρ
. Thus, by

nowadays standard computations, we have
∫ t1

0

∫

Ak,R+ρ

|∇Tj(Gk(u))|
pξp ≤

c1

ρ

∫

Q
t1
R

|Tj(Gk(u))|ξ
p−1

+

∫ t1

0

∫

Ak,R+ρ

|f ||Tj(Gk(u))|
pξp +

∫ t1

0

∫

Ak,R+ρ

|f |ξp .

(11)

Moreover, we choose Mε(u) = [(|Tj(Gk(u))|+ε)
p−1−εp−1]signu, j > k > L

and ψ = ξp in (2). Thus, dropping positive terms, as ε goes to zero, we get

sup
t∈(0,t1)

∫

Ak,R+ρ

Θj(|Gk(u)|
p)(t)ξp ≤

c2

ρ

∫ t1

0

∫

Ak,R+ρ

|Tj(Gk(u))|
p−1ξp−1

+c3

∫ t1

0

∫

Ak,R+ρ

|f |ξp + c4

∫ t1

0

∫

Ak,R+ρ

|f ||Tj(Gk(u))|
pξp ,

(12)

where Θj(s) denotes the primitive of Tj(s), such that Θj(0) = 0. Now we
apply Corollary 3.7 with w = Tj(|Gk(u)|)ξ, Ω = BR+ρ and T = t1. Thus,
for all µ and σ satisfying (11), we deduce, by adding (11) and (12), and by
applying Corollary 3.7



∫ t1

0

(∫

Ak,R+ρ

(|Tj(Gk(u))|ξ)
σ

)µ
σ





p
µ

≤
c5

ρp

∫ t1

0

∫

Ak,R+ρ

|Tj(Gk(u))|
p0

+c6

∫ t1

0

∫

Ak,R+ρ

|f ||Tj(Gk(u))|
pξp + c7

∫ t1

0

∫

Ak,R+ρ

|f |ξp ,

(13)

with p0 = max{1, p− 1}. Recalling the definitions of µ and σ (see (10)) and
noticing that both of them are greater than p, we apply Hölder inequality to
estimate the right hand side of (13), so that

∫ t1

0

∫

Ak,R+ρ

|f ||Tj(Gk(u))|
pξp

≤ |BR+ρ|
λ1t

1
λ2

1 ‖ξTj(u)‖
p

Lσ(0,t1;Lµ(Ak,R+ρ))‖f‖Lm(0,t1;Lq(BR+ρ)) ,

where λ1 and λ2 have been defined in (9). We fix now δ (and consequently
we fix t1) such that c6‖f‖(1− δ) < 1

2 ; note that this quantity depends on the
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data of the problem but not on u. Thus from (13) we deduce


∫ t1

0

(∫

Ak,R+ρ

|Tj(Gk(u))|
σξσ

)µ
σ




p
µ

≤

∫ t1

0

∫

Ak,R+ρ

|f |ξp +
c

ρp

∫ t1

0

∫

Ak,R+ρ

|Tj(Gk(u))|
p0 .

(14)

Moreover, by Hölder inequality it follows that, for every h > k,


∫ t1

0

(∫

Ak,R+ρ

|Tj(Gk(u))|
σξσ

)µ
σ




p
µ

≥ (h− k)p

(∫ t1

0

|Ah,R|
m′

q′

) p
µ

.

On the other hand we have to estimate the right hand side of (14): we first
note that

∫ t1

0

∫

Ak,R+ρ

|f |ξp ≤ ‖f‖Lm(0,t1;Lq(BR+ρ))

(∫ t1

0

|Ak,R+ρ|
m′

q′

) 1
m′

,

and moreover
∫ t1

0

∫

Ak,R

|Tj(Gk(u))|
p0 ≤ c‖Tj(Gk(u))‖

p0

Lrp0(Q
t1
R+ρ)

(∫ t1

0

|Ak,R+ρ|
m′

q′

) 1
m′

,

where d = max{q,m}. Now, we observe that f(t, x) ∈ Lm0(0, t1;L
q0(BR+ρ)),

∀m0, q0 such that 1 < m0 ≤ m, 1 < q0 ≤ q. In particular we can choose
m0, q0 such that

m0q = mq0 and 1
m0

+ N
pq0

= 1 + ε ,

∀ε < min

{
m0q0(N + p) +N(p− 2)(q0(m0 − 1) +m0)

p0d
,
N

pm0

}
.

Using the first part of the Theorem we deduce that u ∈ Lŝ(Qt1
R+ρ), where

ŝ = m0q0(N+p)+N(p−2)(q0(m0−1)+m0)
ε

. Since ŝ ≥ p0d we deduce

c

ρ

∫ t1

0

∫

Ak,R

|Tj(Gk(u))|
p0 ≤

c1‖u‖Lŝ(Q
t1
R+ρ)

ρ

(∫ t1

0

|Ak,R+ρ|
m′

q′

) 1
m′

.

Gathering together the above informations, we finally deduce, using also that
µ
σ

= m′

pq′
and passing to the limit with respect to j, that there exists C > 0
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such that ∫ t1

0

|Ah,R|
m′

q′ ≤
c

(h− k)µρ
µ
p

(∫ t1

0

|Ak,R+ρ|
m′

q′

) 1
m′

.

Since (20) is in force, we have

µ

m′p
=

1

q′
+

p

m′N
= 1 +

p

N
−

p

N

(
1

m
+
N

pq

)
> 1 ,

and so we can apply Lemma 3.10 to the function

ζ(h, d) =

∫ t1

0

|Ak,d|
m′

q′ (t) dt .

Thus the proof is complete for 0 ≤ t1 < T . As already remarked, it is clear

that the the choice of t1 only depends on the data of the problem and thus
we can iterate and conclude the same estimate in the whole cylinder in a
finite number of steps.
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