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The present work introduces the class of graded Lie-Rinehart algebras as a natural 
generalization of graded Lie algebras. It is demonstrated that a tight G-graded Lie-Rinehart 
algebra L over a commutative and associative G-graded algebra A, where G is an abelian 
group, can be decomposed into the orthogonal direct sums L = ⊕

i∈I I i and A = ⊕
j∈ J A j , 

where each Ii and A j is a non-zero ideal of L and A, respectively. Additionally, both 
decompositions satisfy that for any i ∈ I , there exists a unique j ∈ J such that A j Ii �= 0
and that any Ii is a graded Lie-Rinehart algebra over A j . In the case of maximal length, the 
aforementioned decompositions of L and A are through indecomposable (graded) ideals, 
and the (graded) simplicity of any Ii and any A j are also characterized.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction and first definitions

On one hand, Lie-Rinehart algebras were introduced by Herz in [17] and subsequently their theory was developed along 
the papers [29,30]. It is noteworthy that this concept can be regarded as a Lie F -algebra which is simultaneously an 
A-module, where A is an associative and commutative F -algebra, and both structures are well-related. Let us note that 
one can find also the notion of Lie-Rinehart algebra in Jacobson’s work when studying certain field extensions but also 
this notion can be found, under different names, in differential geometry and differential Galois theory, see for instance 
[18]. In particular, along Huebschmann’s work Lie-Rinehart algebras were considered to be the algebraic counterpart of Lie 
algebroids defined over smooth manifolds and this work has been developed through a series of articles (see [20–22]).

Along the last years, Lie-Rinehart algebras have been considered, in general, in many areas of Mathematics, from a geo-
metric viewpoint (see for instance [26]) and of course from an algebraic viewpoint [12,13,24]. In particular, many authors 

✩ The first author was supported by the Centre for Mathematics of the University of Coimbra - UIDB/00324/2020, funded by the Portuguese Government 
through FCT/MCTES. Second and fourth authors are supported by the PAI with project number FQM298. The second author also is supported by the 2014-
2020 ERDF Operational Programme and by the Department of Economy, Knowledge, Business and University of the Regional Government of Andalusia 
FEDER-UCA18-107643, by the Spanish project ‘Algebras no conmutativas y de caminos de Leavitt. Algebras de evolucion. Estructuras de Lie y variedades de 
Einstein’ and by the ProyExcel 00780 ‘Operator Theory: an interdisciplinary approach’ of the Consejeria de Economia y Conocimiento-Junta de Andalucia. 
The third author was supported by Agencia Estatal de Investigación (Spain), grant MTM2016-79661-P (European FEDER support included, UE).

* Corresponding author.
E-mail addresses: mefb@mat.uc.pt (E. Barreiro), ajesus.calderon@uca.es (A.J. Calderón), rnavarro@unex.es (R.M. Navarro), txema.sanchez@uca.es

(J.M. Sánchez).
https://doi.org/10.1016/j.geomphys.2023.104914
0393-0440/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.geomphys.2023.104914
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/geomphys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geomphys.2023.104914&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:mefb@mat.uc.pt
mailto:ajesus.calderon@uca.es
mailto:rnavarro@unex.es
mailto:txema.sanchez@uca.es
https://doi.org/10.1016/j.geomphys.2023.104914
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


E. Barreiro, A.J. Calderón, R.M. Navarro et al. Journal of Geometry and Physics 191 (2023) 104914
have studied thoroughly Lie-Rinehart structures in connection with symplectic geometry, Poisson structures, Lie groupoids 
and algebroids and other types of quantizations [17,25–27,32,33]. Throughout the last years have been studied also some 
generalizations of these algebras such as restricted Lie-Rinehart algebras [14] or 3-Lie-Rinehart superalgebras [7]. Conse-
quently, one can assert that Lie-Rinehart algebras constitutes a fundamental tool in many topics of research in mathematics.

On the other hand, gradings appear elsewhere in the theory of Lie algebras, for example in the Cartan decomposition 
of a finite-dimensional complex semisimple Lie algebra (see for instance [1,6,10,15,16,19,23]). Also, graded modules have 
attracted the attention of many researchers in the last years (see [2,4,5,8,28,31]). The concept of graded Lie-Rinehart algebra 
will allow us to study, under a unique structure, a graded Lie algebra which is also a module over a graded associative 
algebra.

In the current paper, for G an abelian grading group, we introduce the class of graded Lie-Rinehart algebras (L, A)

being A an associative G-graded algebra. We study the structure of the aforementioned algebras which can be considered 
to be a natural extension of graded Lie algebras. Let us note that our techniques consist mainly of introducing notions of 
connections over the elements of G . Additionally, for the maximal length case, we show that the decompositions of L and 
A obtained are by indecomposable (graded) ideals. Likewise, the (graded) simplicity of such ideals is also characterized.

Our paper is organized as follows. Firstly, in Section 2 we develop connection techniques within the context of Lie-
Rinehart algebras (L, A) and after, we apply all of these techniques to the study of the inner structure of L. Secondly, along 
Section 3 we get a decomposition of A as direct sum of adequate ideals. In Section 4, we relate the results obtained in 
Section 2 and 3 on L and A to prove our above mentioned main results. The final section is centered in the case in which 
all of the non-zero homogeneous spaces are one-dimensional, that is, we are dealing with graded Lie-Rinehart algebras of 
maximal length. For this class of algebras we prove that the given decompositions of L and A are by means of the family 
of their indecomposable (graded) ideals and the simplicity is characterizated.

We begin by recalling the definition of Lie-Rinehart algebra. First, look at the next observation.

Remark 1.1. Let F be an arbitrary base field and A a commutative and associative F -algebra. A derivation on A is a F -linear 
map D : A → A which satisfies

D(ab) = D(a)b + aD(b) (Leibniz’s law) (1)

for all a, b ∈ A. The set Der(A) of all derivations of A is a Lie F -algebra with Lie bracket [D, D ′] = D D ′ − D ′D and an 
A-module simultaneously. These two structures are related by the following identity

[D,aD ′] = a[D, D ′] + D(a)D ′, for all a ∈ A and D, D ′ ∈ Der(A).

Definition 1.2. A Lie-Rinehart algebra over an associative and commutative F -algebra A (whose product is denoted by juxta-
position) is a Lie F -algebra L (with product [·, ·]) endowed with an A-module structure and with a map (called anchor)

ρ : L → Der(A),

which is simultaneously an A-module and a Lie algebra homomorphism, and such that the following relation holds

[v,aw] = a[v, w] + ρ(v)(a)w, (2)

for any v, w ∈ L and a ∈ A. We denote it by (L, A) or just by L if there is no possible confusion.

Example 1.3. Any Lie algebra L is a Lie-Rinehart algebra over A := F as a consequence of Der(F) = 0.

Example 1.4. Any associative and commutative F -algebra A gives rise to a Lie-Rinehart algebra by taking L := Der(A) and 
ρ := IdDer(A) .

A subalgebra (S, A) of (L, A), S for short, is a Lie subalgebra of L such that A S ⊂ S and satisfying that S acts on A via 
the composition

S ↪→ L
ρ→ Der(A).

A subalgebra (I, A) of (L, A), I for short, is called an ideal if I is a Lie ideal of L and satisfies

ρ(I)(A)L ⊂ I. (3)

Next, we present the class of graded algebras within the context of Lie-Rinehart algebras starting by recalling the defini-
tion of a graded algebra.
2
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Definition 1.5. Let G be an abelian multiplicative group with neutral element 1. An algebra A over an arbitrary base field 
F is G-graded or just graded if A = ⊕g∈G Ag satisfying Ag Ag′ ⊂ Agg′ , for g, g′ ∈ G , where we are denoting by juxtaposition 
the respective products on A and G .

To introduce the concept of graded Lie-Rinehart algebra look at the Remark 1.1 and consider a graded associative algebra 
A = ⊕

g∈G Ag . Then the Lie algebra Der(A) is naturally graded as

Der(A) =
⊕
h∈G

(Der(A))h

where (Der(A))h := {D ∈ Der(A) : D(Ag) ⊂ Agh for all g ∈ G}. Then Remark 1.1 and Example 1.4 give us that L := Der(A) =
⊕g∈G(Der(A))g is a Lie-Rinehart algebra over A = ⊕g∈G Ag satisfying Ah Lg ⊂ Lhg and ρ(Lg)(Ah) ⊂ Agh .

Definition 1.6. Let G be an abelian grading group whose product is denoted by juxtaposition. We say that (L, A) is a 
G-graded Lie-Rinehart algebra, or just a graded Lie-Rinehart algebra, if L is a G-graded Lie F -algebra and A is a G-graded 
(associative and commutative) F -algebra satisfying

Ah Lg ⊂ Lhg, (4)

ρ(Lg)(Ah) ⊂ Agh, (5)

for any g, h ∈ G .

Note that split Lie algebras, graded Lie algebras and split Lie-Rinehart algebras are examples of graded Lie-Rinehart 
algebras. Therefore, the present paper generalizes the results obtained in [3,9,10].

Example 1.7. Consider the F -algebra of dual numbers

A := F[ξ ] = F/〈ξ2〉 = {k1 + k2ξ : k1,k2 ∈ F, ξ2 = 0}.
This is a Z2-graded commutative and associative algebra. Indeed, A = A0̄ ⊕ A1̄ with A0̄ = F1, A1̄ = Fξ . We can endow to 
A with the Lie algebra structure L given by the bracket

[k1 + k2ξ,k′
1 + k′

2ξ ] := (k1k′
2 − k2k′

1)ξ

for k1 + k2ξ, k′
1 + k′

2ξ ∈ A, which is also Z2-graded as L = L0̄ ⊕ L1̄ where L0̄ = F1, L1̄ = Fξ . Then L is a Lie-Rinehart 
algebra over A with anchor map ρ : L → Der(A) given by ρ(k1 + k2ξ) := adk1 being adk1 (k

′
1 + k′

2ξ) := [k1, k′
1 + k′

2ξ ] for 
k1 + k2ξ ∈ L, k′

1 + k′
2ξ ∈ A.

We denote by �G and �G the corresponding G-supports of the grading in L and A respectively, being

�G := {g ∈ G \ {1} : Lg �= 0} �G := {h ∈ G \ {1} : Ah �= 0}
Thus, they can be expressed as follows

L = L1 ⊕
( ⊕

g∈�G

Lg

)
A = A1 ⊕

( ⊕
h∈�G

Ah

)
.

Along this paper (L, A) is a G-graded Lie-Rinehart algebra with restrictions neither on the dimension of L, A nor the 
abelian group G , nor on the base field F.

2. Connections in �G . Decompositions

Let G be an abelian grading group and (L, A) a G-graded Lie-Rinehart algebra. We define �−1
G := {g−1 : g ∈ �G}. Likewise, 

we define �−1
G := {g−1 : g ∈ �G }. Furthermore, the above definitions allow us denote

�±
G := �G ∪ �−1

G and �±
G := �G ∪ �−1

G .

Definition 2.1. Let g, g′ ∈ �G . g is said to be �G -connected to g′ if there exists {g1, g2, . . . , gn} ⊂ �±
G ∪ �±

G such that

i. g1 = g .
ii. {g1, g1 g2, . . . , g1 g2 · · · gn−1} ⊂ �±

G .
iii. g1 g2 · · · gn ∈ {g′, (g′)−1}.
3
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It is said that {g1, . . . , gn} is a �G -connection from g to g′ .

The next result shows that the �G -connection relation is of equivalence. Although its proof is quite similar to that of 
[10, Proposition 2.1], we add an outline of it.

Proposition 2.2. The relation ∼ defined in �G by g ∼ g′ if and only if g is �G -connected to g, is of equivalence.

Proof. {g} is a �G -connection from g to itself and therefore g ∼ g .
If g ∼ g′ and {g1, . . . , gn} is a �G -connection from g to g′ , then

{g1 · · · gn, g−1
n , g−1

n−1, . . . , g−1
2 } ⊂ �±

G ∪ �±
G

is a �G -connection from g′ to g in the case of g1 · · · gn = g′ , and

{g−1
1 · · · g−1

n , gn, gn−1, . . . , g2} ⊂ �±
G ∪ �±

G

in the case of g1 · · · gn = (g′)−1. Therefore g′ ∼ g .
Finally, suppose g ∼ g′ and g′ ∼ g′′ , and set {g1, . . . , gn} for a �G -connection from g to g′ and {g′

1, . . . , g′
m} for a �G -

connection from g′ to g′′ . If m > 1, then {g1, . . . , gn, g′
2, . . . , g′

m} is a �G -connection from g to g′′ in the case of g1 · · · gn =
g′ , and {g1, . . . , gn, g′−1

2 , . . . , g′−1
m } in the case of g1 · · · gn = (g′)−1. If m = 1, then g′′ ∈ {g′, (g′)−1} and so {g1, . . . , gn} is a 

�G -connection from g to g′′ . Therefore g ∼ g′′ and ∼ is of equivalence. �
On account of Proposition 2.2 the �G -connection relation defined in �G is of equivalence, hence we can consider the 

quotient set

�G/ ∼:= {[g] : g ∈ �G},
becoming [g] the set of elements in �G which are �G -connected to g . Thus, our purpose now is to associate an (adequate) 
ideal I[g] of the Lie-Rinehart algebra (L, A) to each [g].

Lemma 2.3. If g′ ∈ [g] and g′′, g′ g′′ ∈ �G , then g′′, g′ g′′ ∈ [g].

Proof. Analogous to the proof of [10, Lemma 2.1]. �
For [g], with g ∈ �G , we define

L[g],1 :=
( ∑

g′∈[g]∩�G

A(g′)−1 Lg′ +
∑

g′∈[g]
[L(g′)−1 , Lg′ ]

)
⊂ L1

and

V [g] :=
⊕

g′∈[g]
Lg′ .

Thus, we can consider the following (graded) subspace of L,

I[g] := L[g],1 ⊕ V [g].

Proposition 2.4. For any [g] ∈ �G/ ∼, the following assertions hold.

i) [I[g], I[g]] ⊂ I[g] .
ii) AI[g] ⊂ I[g] .

Proof. i) We have

[I[g], I[g]] = [L[g],1 ⊕ V [g], L[g],1 ⊕ V [g]]
⊂ [L[g],1, L[g],1] + [L[g],1, V [g]] + [V [g], L[g],1] + [V [g], V [g]]. (6)

Let start by taking into account the second summand in (6). If there exist g′ ∈ [g] such that A(g′)−1 Lg′ is non-zero, 
Equation (4) leads to A(g′)−1 Lg′ ⊂ L(g′)−1 g′ ⊂ L1. If some g′ ∈ [g] satisfies [L(g′)−1 , Lg′ ] �= 0, we get as in the previous case 
[L(g′)−1 , Lg′ ] ⊂ L1. We have [L[g],1, Lg′ ] ⊂ Lg′ ⊂ V [g] . Analogously, we get [V [g], L[g],1] ⊂ V [g] and we conclude for the second 
and third summand in Equation (6) that
4
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[L[g],1, V [g]] + [V [g], L[g],1] ⊂ V [g].
Let consider now the fourth summand in (6). Given g′, g′′ ∈ [g] we get [Lg′ , Lg′′ ] ⊂ Lg′ g′′ . If g′ g′′ = 1 we have [Lg′ , Lg′′ ] ⊂
L[g],1. Suppose g′ g′′ ∈ �G , then by Lemma 2.3 we have [Lg′ , Lg′′ ] ⊂ Lg′ g′′ ⊂ V [g] .

Finally, for g′, g′′ ∈ [g] the first summand of (6) remains
[ ∑

g′∈[g]∩�G

A(g′)−1 Lg′ +
∑

g′∈[g]
[Lg′ , L(g′)−1 ],

∑
g′′∈[g]∩�G

A(g′′)−1 Lg′′ +
∑

g′′∈[g]
[Lg′′ , L(g′′)−1 ]

]
⊂

∑
g′,g′′∈[g]∩�G

[A(g′)−1 Lg′ , A(g′′)−1 Lg′′ ] +
∑

g′∈[g]∩�G ,g′′∈[g]

[
A(g′)−1 Lg′ , [Lg′′ , L(g′′)−1 ]

]

+
∑

g′∈[g],g′′∈[g]∩�G

[
[Lg′ , L(g′)−1 ], A(g′′)−1 Lg′′

]
+

∑
g′,g′′∈[g]

[
[Lg′ , L(g′)−1 ], [Lg′′ , L(g′′)−1 ]

]
(7)

For the first summand in (7), if there exist g′, g′′ ∈ [g] ∩�G such that [A(g′)−1 Lg′ , A(g′′)−1 Lg′′ ] �= 0, on account of Equation 
(2) and Equation (5) we get

[L(g′)−1 g′ , A(g′′)−1 Lg′′ ] ⊂ A(g′′)−1 [L(g′)−1 g′ , Lg′′ ] + ρ(L(g′)−1 g′)(A(g′′)−1)Lg′′

⊂ A(g′′)−1 Lg′′ ⊂ L[g],1
If there exist g′ ∈ [g] ∩ �G , g′′ ∈ [g] such that the second summand of (7) is non-zero, Equation (2) and Equation (5)

allow us to assert the following expression
[

A(g′)−1 Lg′ , [Lg′′ , L(g′′)−1 ]] = A(g′)−1
[[Lg′′ , L(g′′)−1 ], Lg′

] + ρ([Lg′′ , L(g′′)−1 ])(A(g′)−1)Lg′

⊂ A(g′)−1 Lg′ ⊂ L[g],1
Similarly, the proof of the third summand of (7) can be obtained.

Let consider now the fourth summand in (7), the bilinearity of the product and Jacobi identity lead to
∑

g′,g′′∈[g]

[[Lg′ , L(g′)−1 ], [Lg′′ , L(g′′)−1 ]] ⊂
∑

g′,g′′∈[g]

([
Lg′ ,

[
L(g′)−1 , [Lg′′ , L(g′′)−1 ]]

]
+

[
L(g′)−1 ,

[
Lg′ , [Lg′′ , L(g′′)−1 ]]

])
⊂

∑
g′∈[g]

([Lg′ , L(g′)−1 ] + [L(g′)−1 , Lg′ ]
)

⊂
∑

g′∈[g]
[Lg′ , L(g′)−1 ] = L[g],1.

Therefore all summands in (7) are contained in L[g],1, and therefore all summands in (6) are included in I[g] as desired.
ii) Note that

AI[g] =
(

A1 ⊕ ( ⊕
k∈�G

Ak
))(( ∑

g′∈[g]∩�G

A(g′)−1 Lg′ +
∑

g′∈[g]
[L(g′)−1 , Lg′ ]

)
⊕

⊕
g′∈[g]

Lg′
)
.

Next, we divide our study into six cases:
• For g′ ∈ [g] ∩ �G , since L is an A-module we get

A1(A(g′)−1 Lg′) = (A1 A(g′)−1)Lg′ ⊂ A(g′)−1 Lg′ ⊂ L[g],1. (8)

• Suppose g′ ∈ [g], by Equation (2) we get

A1[L(g′)−1 , Lg′ ] ⊂ [L(g′)−1 , A1Lg′ ] + ρ(L(g′)−1)(A1)Lg′ .

Since A1Lg′ ⊂ Lg′ we get [L(g′)−1 , A1Lg′ ] ⊂ [L(g′)−1 , Lg′ ]. Also, taking into account Equation (5) we obtain ρ(L(g′)−1 )(A1) ⊂
A(g′)−1 . If A(g′)−1 �= 0 (otherwise is trivial), (g′)−1 ∈ �G therefore ρ(L(g′)−1 )(A1)Lg′ ⊂ A(g′)−1 Lg′ with g′ ∈ [g] ∩ �G . Hence,

A1[L(g′)−1 , Lg′ ] ⊂ L[g],1. (9)

• Set g′ ∈ [g], from the action of A over L it follows

A1Lg′ ⊂ Lg′ ⊂ V [g]. (10)

• Consider k ∈ �G , g′ ∈ [g] ∩ �G , using that A is commutative and L is an A-module,

Ak(A(g′)−1 Lg′) = (Ak A(g′)−1)Lg′ = A(g′)−1(Ak Lg′) ⊂ A(g′)−1 Lkg′ ⊂ Lk
5
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If Lk �= 0 (otherwise is trivial), we have k ∈ �G and then with the �G -connection {g′, k, (g′)−1} we have k ∈ [g]. That is,

Lk ⊂ V [g]. (11)

• For k ∈ �G , g′ ∈ [g] using Equation (2) and Equation (5) we obtain

Ak[L(g′)−1 , Lg′ ] ⊂ [L(g′)−1 , Ak Lg′ ] + ρ(L(g′)−1)(Ak)Lg′

⊂ [L(g′)−1 , Lkg′ ] + Ak(g′)−1 Lg′ ⊂ Lk

As in the previous case, if Lk �= 0 we get k ∈ �G and k ∈ [g]. That is,

Ak[L(g′)−1 , Lg′ ] ⊂ V [g]. (12)

• For k ∈ �G , g′ ∈ [g] we obtain Ak Lg′ ⊂ Lkg′ . If kg′ ∈ �G , by using the �G -connection {g′, k} we get g′ ∼ kg′ , and by 
transitivity kg′ ∈ [g], which allows us to assert

Ak Lg′ ⊂ V [g]. (13)

From Equations (8)-(13), assertion ii) is proved. �
Proposition 2.5. Let [g], [h] ∈ �G/ ∼ with [g] �= [h]. Then [I[g], I[h]] = 0.

Proof. We have

[I[g], I[h]] = [L[g],1 ⊕ V [g], L[h],1 ⊕ V [h]]
⊂ [L[g],1, L[h],1] + [L[g],1 V [h]] + [V [g], L[h],1] + [V [g], V [h]]. (14)

Consider the above fourth summand [V [g], V [h]] and suppose there exist g′ ∈ [g] and h′ ∈ [h] such that [Lg′ , Lh′ ] �= 0. As 
g′ �= (h′)−1 necessarily, then g′h′ ∈ �G . Since g ∼ g′ and g′h′ ∈ �G , by Lemma 2.3 we obtain g ∼ g′h′ . In a similar way we 
can prove h ∼ g′h′ , which leads to g ∼ h, obtaining then a contradiction. Hence [Lg′ , Lh′ ] = 0 and so

[V [g], V [h]] = 0. (15)

Consider now second summand in (14) and suppose there exist g′ ∈ [g] ∩ �G and h′ ∈ [h] such that 
[

A(g′)−1 Lg′ +
[L(g′)−1 , Lg′ ], Lh′

] �= 0. Then, [A(g′)−1 Lg′ , Lh′ ] or 
[[L(g′)−1 , Lg′ ], Lh′

]
is non-zero. In the first case, by Equation (2) we have 

the following

[A(g′)−1 Lg′ , Lh′ ] = A(g′)−1 [Lh′ , Lg′ ] + ρ(Lh′)(A(g′)−1)Lg′

⊂ A(g′)−1 Lh′ g′ + Ah′(g′)−1 Lg′ .

If either Lh′ g′ �= 0 or Ah′(g′)−1 �= 0 with the �G -connections {g′, h′, (g′)−1} or {g′, h′(g′)−1}, respectively, we conclude g′ ∼ h′ , 
that is, [g] = [h], which constitutes a contradiction. In the latter case, by using Jacobi identity we can assert the following

[[L(g′)−1 , Lg′ ], Lh′
] = [[Lg′ , Lh′ ], L(g′)−1

] + [[Lh′ , L(g′)−1 ], Lg′
]

and by Equation (15) we get

[Lg′ , Lh′ ] = [Lh′ , L(g′)−1 ] = 0.

Hence 
[[L(g′)−1 , Lg′ ], Lh′

] = 0 and we show

[L[g],1, V [h]] = 0. (16)

Analogously can be proved for the third summand [V [g], L[h],1] = 0.
Finally, the first summand [L[g],1, L[h],1] in (14) is

[ ∑
g′∈[g]∩�G

A(g′)−1 Lg′ +
∑

g′∈[g]
[L(g′)−1 , Lg′ ],

∑
h′∈[h]∩�G

A(h′)−1 Lh′ +
∑

h′∈[h]
[L(h′)−1 , Lh′ ]

]
⊂

∑
g′∈[g]∩�G ,h′∈[h]∩�G

[A(g′)−1 Lg′ , A(h′)−1 Lh′ ] +
∑

g′∈[g]∩�G ,h′∈[h]

[
A(g′)−1 Lg′ , [L(h′)−1 , Lh′ ]

]

+
∑

′ ′

[
[L(g′)−1 , Lg′ ], A(h′)−1 Lh′

]
+

∑
′ ′

[
[L(g′)−1 , Lg′ ], [L(h′)−1 , Lh′ ]

]
(17)
g ∈[g],h ∈[h]∩�G g ∈[g],h ∈[h]

6
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For the first summand in (17), if there exist g′ ∈ [g] ∩�G , h′ ∈ [h] ∩�G such that [A(g′)−1 Lg′ , A(h′)−1 Lh′ ] �= 0, then Equation 
(2) and Equation (5) lead to

[A(g′)−1 Lg′ , A(h′)−1 Lh′ ] ⊂ A(h′)−1 [A(g′)−1 Lg′ , Lh′ ] + ρ(A(g′)−1 Lg′)(A(h′)−1)Lh′

⊂ A(h′)−1

(
A(g′)−1 [Lh′ , Lg′ ] + ρ(Lh′)(A(g′)−1)Lg′

)

+ ρ(A(g′)−1 Lg′)(A(h′)−1)Lh′

⊂ A(h′)−1

(
A(g′)−1 Lh′ g′ + Ah′(g′)−1 Lg′

)
+ A(g′)−1 Ag′(h′)−1 Lh′

⊂ A(h′)−1 A(g′)−1 Lh′ g′ + A(h′)−1 Ah′(g′)−1 Lg′ + A(g′)−1 Ag′(h′)−1 Lh′

If A(h′)−1 A(g′)−1 Lh′ g′ is non-zero, considering then the connection {g′, h′, (g′)−1} we conclude [g] = [h], which consti-
tutes a contradiction. Similarly, if A(h′)−1 Ah′(g′)−1 Lg′ or A(g′)−1 Ag′(h′)−1 Lh′ is non-zero, then by means of the �G -connection 
{g′, h′(g′)−1} or {h′, g′(h′)−1}, respectively, the same contradiction is obtained.

For g′ ∈ [g], h′ ∈ [h] ∩ �G in the third summand of (17) using Equation (2) we obtain two summands. For the first 
summand we use Jacobi identity and Equation (15), and for the latter we apply Equation (5) and that ρ is a Lie algebra 
homomorphism, having then

[
[L(g′)−1 , Lg′ ], A(h′)−1 Lh′

]
= A(h′)−1

[
[L(g′)−1 , Lg′ ], Lh′

]
+ ρ([L(g′)−1 , Lg′ ])(A(h′)−1)Lh′

⊂ A(h′)−1

([[L(g′)−1 , Lh′ ], Lg′
] + [[Lg′ , Lh′ ], L(g′)−1

])

+ ρ([L(g′)−1 , Lg′ ])(A(h′)−1)Lh′

⊂ [
ρ(L(g′)−1),ρ(Lg′ )

]
(A(h′)−1)Lh′

⊂
(
ρ(L(g′)−1)

(
ρ(Lg′)(A(h′)−1)

))
Lh′

+
(
ρ(Lg′)

(
ρ(L(g′)−1)(A(h′)−1)

))
Lh′

⊂
(
ρ(L(g′)−1)(Ag′(h′)−1)

)
Lh′ +

(
ρ(Lg′)(A(g′)−1(h′)−1)

)
Lh′

If 
(
ρ(L(g′)−1 )(Ag′(h′)−1 )

)
Lh′ or 

(
ρ(Lg′ )(A(g′)−1(h′)−1 )

)
Lh′ is non-zero considering the �G -connection {(g′)−1, g′(h′)−1} or 

{g′, (g′)−1(h′)−1}, respectively, we get [g] = [h].
The proof for the second summand in (17) is analogous.
Consider now the fourth summand in (17), on account of the bilinearity of the product and Jacobi identity we obtain

∑
g′∈[g],h′∈[h]

[[L(g′)−1 , Lg′ ], [L(h′)−1 , Lh′ ]] ⊂

∑
g′∈[g],h′∈[h]

([
L(g′)−1 ,

[
Lg′ , [L(h′)−1 , Lh′ ]]

]
+

[
Lg′ ,

[
L(g′)−1 , [L(h′)−1 , Lh′ ]]

])
⊂

∑
g′∈[g]

([
L(g′)−1 ,

[
Lg′ , L[h],1

]] +
[

Lg′ ,
[
L(g′)−1 , L[h],1

]])

and by Equation (16) we also conclude that this fourth summand is zero. Therefore, Equation (17) vanishes and then

[L[g],1, L[h],1] = 0. (18)

In conclusion, from Equations (14)-(18) we get [I[g], I[h]] = 0. �
Let us note that we consider the usual regularity concepts in the graded sense. Thus, given a generic G-graded algebra 

A = ⊕g∈GAg an ideal I of A is said to be a graded ideal if it splits as I = ⊕g∈G I g , where I g := I ∩ Ag , and satisfies 
[I g, I g′ ] ⊂ I gg′ , for g, g′ ∈ G . We also say that a Lie-Rinehart algebra (L, A) is gr-simple if [L, L] �= 0, A A �= 0, AL �= 0 and its 
only graded ideals are {0}, L and Kerρ .

Theorem 2.6. The following assertions are verified.

i) For all [g] ∈ �G/ ∼, the linear space I[g] = L[g],1 ⊕ V [g] is a graded ideal of L.
7
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ii) If L is gr-simple then all the elements of �G are �G -connected. Furthermore,

L1 =
( ∑

g∈�G ∩�G

Ag−1 Lg

)
+

( ∑
g∈�G

[Lg−1 , Lg]
)
.

Proof. i) We get [I[g], L1] ⊂ I[g] and Propositions 2.4-i) and 2.5 allow us to assert

[I[g], L] =
[

I[g], L1 ⊕ ( ⊕
g′∈[g]

Lg′
) ⊕ (⊕

h/∈[g]
Lh

)] ⊂ I[g],

so I[g] is a Lie ideal of L. It is easy to check that by Proposition 2.4-ii) we also have that I[g] is an A-module. Finally, 
Equation (2) leads to

ρ(I[g])(A)L ⊂ [I[g], AL] + A[I[g], L] ⊂ [I[g], L] + AI[g] ⊂ I[g],

and we conclude I[g] is an ideal of L. Since by construction I[g] is graded, we obtain the required result.

ii) The gr-simplicity of L implies I[g] ∈ {Kerρ, L} for any g ∈ �G . If some g ∈ �G is such that I[g] = L, then [g] = �G . 
Otherwise, if I[g] = Kerρ for all g ∈ �G is [g] = [h] for any g, h ∈ �G , and again [g] = �G . Therefore in any case �G has all 
its elements �G -connected and L1 = (∑

g∈�G ∩�G
Ag−1 Lg

) + (∑
g∈�G

[Lg−1 , Lg]
)

which concludes the proof. �
Theorem 2.7. Let (L, A) be a graded Lie-Rinehart algebra. Then

L = U +
∑

[g]∈�G /∼
I[g],

where U is a linear complement of 
(∑

g∈�G∩�G
Ag−1 Lg

) + (∑
g∈�G

[Lg−1 , Lg]
)

in L1 , and any I[g] ⊂ L is one of the graded ideals 
described in Theorem 2.6-i). Moreover, [I[g], I[h]] = 0 provided that [g] �= [h].

Proof. We have I[g] is well-defined and, by Theorem 2.6-i), an ideal of L, being clear that

L = L1 ⊕ ( ⊕
g∈�G

Lg
) = U +

∑
[g]∈�G/∼

I[g].

Finally, Proposition 2.5 gives [I[g], I[h]] = 0 if [g] �= [h]. �
For a Lie-Rinehart algebra L, we denote by Z(L) := {

v ∈ L : [v, L] = ρ(v) = 0
}

the center of L as in reference [34].

Corollary 2.8. If Z(L) = 0 and L1 = (∑
g∈�G∩�G

Ag−1 Lg
) + (∑

g∈�G
[Lg−1 , Lg]

)
then L is the direct sum of the graded ideals given 

in Theorem 2.6-i),

L =
⊕

[g]∈�G/∼
I[g].

(Observe that [I[g], I[h]] = 0 provided that [g] �= [h].)

Proof. Since L1 = (∑
g∈�G ∩�G

Ag−1 Lg
) + (∑

g∈�G
[Lg−1 , Lg]

)
we get

L =
∑

[g]∈�G/∼
I[g].

In order to verify the direct character of the sum, take some v ∈ I[g] ∩ (∑
[h]∈�G /∼,[h]�=[g] I[h]

)
. Since v ∈ I[g] , the fact that [

I[g], I[h]
] = 0 provided that [g] �= [h], gives us

[
v,

∑
[h]∈�G/∼,[h]�=[g]

I[h]
]

= 0.

Analogously, as v ∈ ∑
[h]∈�G /∼,[h]�=[g] I[h] we get [v, I[g]] = 0. Therefore [v, L] = 0. Now, Equation (2) allows us to conclude 

ρ(v) = 0. That is, v ∈Z(L) = 0. �

8
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3. Connections in the G-support of A. Decompositions of A

Along this section we introduce an adequate notion of connection among the elements of the G-support �G for a 
commutative and associative F -algebra A associated with a G-graded Lie-Rinehart F -algebra L (see Definition 1.6). Let us 
recall that A admits a group graduation as

A = A1 ⊕
( ⊕

g∈�G

Ag

)
,

being �G = {g ∈ G \ {1} : Ag �= 0}. Let us note also that we will continue considering the sets �±
G , �±

G as in the previous 
section.

Definition 3.1. Let g, g′ ∈ �G . g is said to be �G -connected to g′ if there exists {k1, k2, . . . , kn} ⊂ �±
G ∪ �±

G such that

i. k1 = g .
ii. {k1, k1k2, . . . , k1k2 · · ·kn−1} ⊂ �±

G ∪ �±
G .

iii. k1k2 · · ·kn ∈ {g′, (g′)−1}.

It is said that {k1, . . . , kn} is a �G -connection from g to g′ .

Similarly to Section 2 we can prove the next results.

Proposition 3.2. The relation ≈ in �G , defined by g ≈ g′ if and only if g is �G -connected to g′ , is an equivalence relation.

Remark 3.3. Let g, g′ ∈ �G such that g ≈ g′ . If g′h ∈ �G , for h ∈ �G , then g ≈ g′h.

By means of Proposition 3.2 we can consider the quotient set

�G/ ≈:= {[g] : g ∈ �G},
becoming [g] the set of elements of �G which are �G -connected to g . Thus, our purpose now in this section is to associate 
an (adequate) ideal A[g] of the algebra A to any [g] ∈ �G/ ≈. Once having fixed g ∈ �G , we start by defining the sets

A[g],1 :=
( ∑

g′∈[g]∩�G

ρ(L(g′)−1)(Ag′)
)

+
( ∑

g′∈[g]
A(g′)−1 Ag′

)
⊂ A1

and

A[g] :=
⊕

g′∈[g]
Ag′ .

Note that we denote by A[g] the direct sum of the two graded subspaces above, i.e.

A[g] := A[g],1 ⊕ A[g].

Proposition 3.4. For any [g] ∈ �G/ ≈ we have A[g]A[g] ⊂A[g] .

Proof. Since the algebra A is commutative we have

A[g]A[g] =
(

A[g],1 ⊕ A[g]
)(

A[g],1 ⊕ A[g]
)
⊂ A[g],1 A[g],1 + A[g],1 A[g] + A[g] A[g]. (19)

Let us consider the second summand in Equation (19). Thus, given g′ ∈ [g] we have A[g],1 Ag′ ⊂ A1 Ag′ ⊂ Ag′ , and there-
fore

A[g],1 Ag′ ⊂ A[g]. (20)

Taking into account now the third summand in (19), let be g′, g′′ ∈ [g] such that 0 �= Ag′ Ag′′ ⊂ Ag′ g′′ . If g′ g′′ = 1 we have 
A(g′)−1 Ag′ ⊂ A1, and so A(g′)−1 Ag′ ⊂ A[g],1. Suppose g′ g′′ ∈ �G , then by Remark 3.3 we have g′ g′′ ∈ [g] and so Ag′ Ag′′ ⊂
Ag′ g′′ ⊂ A[g] . Hence A[g] A[g] = (

⊕
g′∈[g] Ag′ )(

⊕
g′′∈[g] Ag′′ ) ⊂ A[g],1 ⊕ A[g] , i.e.

A[g] A[g] ⊂ A[g]. (21)
9
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Finally we consider the first summand A[g],1 A[g],1 in (19) and suppose there exist g′, g′′ ∈ [g] ∩ �G such that
(
ρ(L(g′)−1)(Ag′) + A(g′)−1 Ag′

)(
ρ(L(g′′)−1)(Ag′′) + A(g′′)−1 Ag′′

)
�= 0,

so

ρ(L(g′)−1)(Ag′)ρ(L(g′′)−1)(Ag′′) + ρ(L(g′)−1)(Ag′)(A(g′′)−1 Ag′′)

+(A(g′)−1 Ag′)ρ(L(g′′)−1)(Ag′′) + (A(g′)−1 Ag′)(A(g′′)−1 Ag′′) �= 0 (22)

For the latter summand in Equation (22), in the case of g′′ �= (g′)−1, the commutativity and associativity of A allow us to 
assert

(A(g′)−1 Ag′)(A(g′′)−1 Ag′′) = (A(g′)−1 A(g′′)−1)(Ag′ Ag′′) ⊂ A(g′ g′′)−1 Ag′ g′′ ⊂ A[g],1
because by Remark 3.3 we get g′ g′′ ∈ [g]. In the case of g′′ = (g′)−1, it follows

(A(g′)−1 Ag′)(Ag′ A(g′)−1) = A(g′)−1(Ag′ Ag′ A(g′)−1) ⊂ A(g′)−1 Ag′ ⊂ A[g],1.

For the second summand in Equation (22) using Equation (5) we get
(
ρ(L(g′)−1)(Ag′)

)(
A(g′′)−1 Ag′′

)
⊂ A1

(
A(g′′)−1 Ag′′

) ⊂ A(g′′)−1 Ag′′ ⊂ A[g],1.

Analogously, it can be checked the third summand in Equation (22).
Finally, for the first summand in (22), as with the second summand, by Equation (5) we have

(
ρ(L(g′)−1(Ag′)

)(
ρ(L(g′′)−1)(Ag′′)

) ⊂ A1
(
ρ(L(g′′)−1)(Ag′′)

) ⊂ A[g],1.

That is, by considering Equation (22) we have shown

A[g],1 A[g],1 ⊂ A[g],1. (23)

From Equations (19)-(21) and (23) we get A[g]A[g] ⊂A[g] . �
Proposition 3.5. For any [g], [h] ∈ �G/ ≈ such that [g] �= [h] we have A[g]A[h] = 0.

Proof. We have
(

A[g],1 ⊕ A[g]
)(

A[h],1 ⊕ A[h]
)

⊂ A[g],1 A[h],1 + A[g],1 A[h] + A[g] A[h],1 + A[g] A[h]. (24)

Consider the fourth summand A[g] A[h] and suppose there exist g′ ∈ [g], h′ ∈ [h] such that Ag′ Ah′ �= 0, so Ag′h′ �= 0. 
Observe that necessarily h′ �= (g′)−1, then g′h′ ∈ �G . By Remark 3.3 we obtain g′ ≈ g′h′ , meaning that g′h′ ∈ [g]. Similarly, 
g′h′ ∈ [h], so [g] = [h], a contradiction. Hence Ag′ Ah′ = 0 and so

A[g] A[h] = 0. (25)

Consider now the second summand A[g],1 A[h] in Equation (24). We take g′ ∈ [g] ∩ �G and h′ ∈ [h] such that
(
ρ(L(g′)−1)(Ag′) + A(g′)−1 Ag′

)
Ah′ �= 0.

Suppose (A(g′)−1 Ag′ )Ah′ �= 0. By using associativity of A we get A(g′)−1 (Ag′ Ah′) �= 0, so Ag′h′ �= 0 and then g′h′ ∈ �G . 
Arguing as above g ≈ h, a contradiction. If the another summand ρ(L(g′)−1 )(Ag′ )Ah′ �= 0, since ρ(L(g′)−1 ) is a derivation then 
ρ(L(g′)−1 )(Ag′ Ah′) or Ag′ρ(L(g′)−1 )(Ah′ ) is non-zero, but in any case we argue similarly as above to get g ≈ h, a contradiction. 
From here

A[g],1 A[h] = 0. (26)

By commutativity, for the third summand also A[g] A[h],1 = 0.
Finally, let us prove A[g],1 A[h],1 = 0. Suppose there exist g′ ∈ [g] ∩ �G , h′ ∈ [h] ∩ �G such that

ρ(L(g′)−1)(Ag′)ρ(L(h′)−1)(Ah′) + ρ(L(g′)−1)(Ag′)(A(h′)−1 Ah′)

+(A(g′)−1 Ag′)ρ(L(h′)−1)(Ah′) + (A(g′)−1 Ag′)(A(h′)−1 Ah′) �= 0. (27)

If the last summand in Equation (27) is non-zero, by the commutativity and associativity of A, since h′ �= (g′)−1, we have

(A(g′)−1 Ag′)(A(h′)−1 Ah′) = (A(g′)−1 A(h′)−1)(Ag′ Ah′) ⊂ A(g′h′)−1 Ag′h′
10
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and by Remark 3.3 we get g′h′ ∈ [g] as well g′h′ ∈ [h], a contradiction.
If for the second summand in Equation (27) there exist g′ ∈ [g] ∩ �G , h′ ∈ [h], since ρ(L(g′)−1 ) is a derivation we get

(
ρ(L(g′)−1)(Ag′)

)(
A(h′)−1 Ah′

)
⊂

(
ρ(L(g′)−1)(Ag′)A(h′)−1

)
Ah′

⊂ ρ(L(g′)−1)
(

Ag′ A(h′)−1

)
Ah′ +

(
Ag′ρ(L(g′)−1)(A(h′)−1)

)
Ah′

If the first summand or the second one is nonzero we get as in the previous cases that [g] = [h], a contradiction. Similarly, 
can be proven the third summand in Equation (27).

Finally, if for the first summand in (27) there exist g′ ∈ [g] ∩ �G , h′ ∈ [h] ∩ �G we have
(
ρ(L(g′)−1)(Ag′)

)(
ρ(L(h′)−1)(Ah′)

)
⊂ ρ(L(g′)−1)

(
(Ag′)ρ(L(h′)−1)(Ah′)

)

+ Ag′ρ(L(g′)−1)
(
ρ(L(h′)−1)(Ah′)

)

⊂ ρ(L(g′)−1)
(
ρ(L(h′)−1)(Ag′ Ah′) + ρ(L(h′)−1)(Ag′)(Ah′)

)

+ Ag′ρ(L(h′)−1)
(
ρ(L(g′)−1)(Ah′)

)
+ Ag′ρ

(
[L(h′)−1 , L(g′)−1 ]

)
Ah′

and if some summand is non-zero arguing as above we obtain again the contradiction [g] = [h].
Since Equation (27) vanishes we assert

A[g],1 A[h],1 = 0, (28)

and from (24)-(26) and (28) we conclude A[g]A[h] = 0. �
We recall that a subspace I of a commutative and associative algebra A is an ideal of A if AI ⊂ I . In the case of A

being a G-graded algebra, we say that an ideal I ⊂ A is graded if it splits as I = ⊕g∈G I g , where I g := I ∩ Ag , and satisfies 
I g I g′ ⊂ I gg′ , for g, g′ ∈ G . We say that A is gr-simple if A A �= 0 and it contains no proper graded ideals.

Theorem 3.6. Let A be a commutative and associative F -algebra associated with a G-graded Lie-Rinehart F -algebra L. Then the 
following assertions hold.

i) For any [g] ∈ �G/ ≈, the linear space

A[g] = A[g],1 ⊕ A[g]
is a graded ideal of A.

ii) If A is gr-simple then all elements of �G are �G -connected. Furthermore,

A1 =
∑

g∈�G ∩�G

ρ(Lg−1)(Ag) +
∑

g∈�G

Ag−1 Ag

Proof. i) Since A[g] A1 ⊂A[g] , Propositions 3.4 and 3.5 allow us to assert

A[g] A = A[g]
(

A1 ⊕ (
⊕

g′∈[g]
Ag′) ⊕ (

⊕
h/∈[g]

Ah)
)

⊂ A[g].

We conclude A[g] is an ideal of A and, since by construction is G-graded, is a graded ideal.

ii) The gr-simplicity of A implies A[g] = A, for g ∈ �G . From here, it is clear that [g] = �G and A1 = ∑
g∈�G ∩�G

ρ(Lg−1 )(Ag)

+ ∑
g∈�G

Ag−1 Ag . �

Theorem 3.7. Let A be a commutative and associative F -algebra associated with a G-graded Lie-Rinehart F -algebra L. Then

A = V +
∑

[g]∈�G /≈
A[g],

where V is a linear complement in A1 of 
∑

g∈�G ∩�G
ρ(Lg−1 )(Ag) + ∑

g∈�G
Ag−1 Ag and any A[g] is one of the graded ideals of A

described in Theorem 3.6-i). Furthermore, A[g]A[h] = 0 when [g] �= [h].
11
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Proof. We know that A[g] is well-defined and, by Theorem 3.6-i), a graded ideal of A, being clear that

A = A1 ⊕ (
⊕

g∈�G

Ag) = V +
∑

[g]∈�G /≈
A[g].

Finally, Proposition 3.5 gives A[g]A[h] = 0 if [g] �= [h]. �
Let us denote by Ann(A) := {a ∈ A : aA = 0} the annihilator of the commutative and associative algebra A.

Corollary 3.8. Let A be a commutative and associative F -algebra associated with a G-graded Lie-Rinehart F -algebra L. If Ann(A) = 0
and

A1 =
∑

g∈�G ∩�G

ρ(Lg−1)(Ag) +
∑

g∈�G

Ag−1 Ag,

then A is the direct sum of the graded ideals given in Theorem 3.6-i),

A =
⊕

[g]∈�A/≈
A[g].

Furthermore, A[g]A[h] = 0 provided that [g] �= [h].

Proof. Since A1 = ∑
g∈�G ∩�G

ρ(Lg−1 )(Ag) + ∑
g∈�G

Ag−1 Ag we obtain A = ∑
[g]∈�G /≈ A[g] . In order to verify the direct character 

of the sum, take some

a ∈ A[g] ∩
( ∑

[h]∈�G /≈,[h]�=[g]
A[h]

)
.

Since a ∈A[g] , the fact that A[g]A[h] = 0 provided that [g] �= [h] gives us

a
( ∑

[h]∈�G /≈,[h]�=[g]
A[h]

)
= 0.

In a similar way, since a ∈ ∑
[h]∈�A/≈,[h]�=[g] A[h] we get aA[g] = 0. That is, a ∈Ann(A) = 0. �

4. Relating the decompositions of L and A

The aim of this section is to show that the decompositions of L and A as direct sum of ideals, given in Sections 2 and 3
respectively, are closely related.

Thus, given a graded Lie-Rinehart algebra (L, A) we call the annihilator of A in L (that is, using the structure of L as 
A-module) the set

AnnL(A) := {v ∈ L : Av = 0}.
Obviously, AnnL(A) is an ideal of L. In fact, AAnnL(A) = 0, also [L, AnnL(A)] ⊂AnnL(A) since

A[L,AnnL(A)] = [L, AAnnL(A)] + ρ(L)(A)AnnL(A) = 0.

Also, it verifies Equation (3)

A
(
ρ(AnnL(A))(A)L

) = (
Aρ(AnnL(A))(A)

)
L = ρ(AAnnL(A))(A)L = ρ(0)(A)L = 0.

Definition 4.1. A G-graded Lie-Rinehart algebra (L, A) is tight if Z(L) =AnnL(A) =Ann(A) = {0}, A A = A, AL = L and

L1 =
( ∑

g∈�G∩�G

Ag−1 Lg

)
+

( ∑
g∈�G

[Lg−1 , Lg]
)
,

A1 =
( ∑

ρ(Lg−1)(Ag)
)

+
( ∑

Ag−1 Ag

)
.

g∈�G ∩�G g∈�G

12
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If (L, A) is tight then Corollary 2.8 and Corollary 3.8 say that

L = ⊕
[g]∈�G/∼

I[g] and A = ⊕
[g]∈�G /≈

A[g],

with any I[g] a graded ideal of L verifying [I[g], I[h]] = 0 if [g] �= [h], and any A[g] a graded ideal of A satisfying A[g]A[h] = 0
if [g] �= [h].

Proposition 4.2. Let (L, A) be a tight G-graded Lie-Rinehart algebra. Then for [g] ∈ �G/ ∼ there exists a unique [h] ∈ �G/ ≈ such 
that A[h] I[g] �= 0.

Proof. First we prove the existence. Given [g] ∈ �G/ ∼, let us suppose that AI[g] = 0. Since I[g] is a graded ideal it follows

[I[g], AL] =
[

I[g],
⊕

h∈�G /∼
AI[h]

]
= [I[g], AI[g]] = 0.

By hypothesis AL = L, then I[g] ⊂ Z(L) = {0}, which constitutes a contradiction. Since A = ⊕
[g]∈�G /≈ A[g] , there exists 

[h] ∈ �G/ ≈ such that A[h] I[g] �= 0.
Now we prove that [h] is unique. Suppose that m is another element of G which satisfies A[m] I[g] �= 0. From A[h] I[g] �= 0

and A[m] I[g] �= 0 we can take h′ ∈ [h], m′ ∈ [m] and g′, g′′ ∈ [g] such that Ah′ Lg′ �= 0 and Am′ Lg′′ �= 0. Since g′, g′′ ∈ [g], we 
can fix a �G -connection

{g′, g2, . . . , gn} ⊂ �±
G ∪ �±

G

from g′ to g′′ .
We have to distinguish four cases:

• If h′ g′ �= 1 and m′ g′′ �= 1, then h′ g′ , m′g′′ ∈ �G , and so h′ ≈ m′ . Indeed, in the case g′ g2 · · · gn = g′′ , the �G -connection 
from h′ to m′ is

{h′, g′, (h′)−1, g2, . . . , gn,m′, (g′′)−1},
and in the case g′ g2 · · · gn = (g′′)−1 is

{h′, g′, (h′)−1, g2, . . . , gn, (m
′)−1, g′′}.

From here [h] = [m].
• If h′ g′ = 1 and m′ g′′ �= 1, we get h′ = (g′)−1, m′g′′ ∈ �G and then

{(g′)−1, g−1
2 , . . . , g−1

n , (m′)−1, g′′}
is a �G -connection from h′ to m′ in the case g′ g1 · · · gn = g′′ , while

{(g′)−1, g−1
2 , . . . , g−1

n ,m′, (g′′)−1}
is a �G -connection in the case g′ g1 · · · gn = (g′′)−1. From here, [h] = [m].

• Suppose h′g′ �= 1 and m′ g′′ = 1. We can argue as in the previous item to get [h] = [m].
• Finally, we consider h′ g′ = m′ g′′ = 1. Hence h′ = (g′)−1, m′ = (g′′)−1. Then

{(g′)−1, g−1
2 , . . . , g−1

n }
is a �G -connection between h′ and m′ which implies [h] = [m].

We conclude [h] is the unique element in �G/ ≈ such that A[h] I[g] �= 0 for the given [g] ∈ �G/ ∼. �
Observe that the above proposition shows that I[g] is an A[h]-module. Hence we can assert the following result.

Theorem 4.3. Let (L, A) be a tight graded Lie-Rinehart F -algebra over an associative and commutative F -algebra A. Then

L = ⊕
i∈I

I i and A = ⊕
j∈ J

A j

where any Ii is a non-zero graded ideal of L satisfying [Ii, Ih] = 0 when i �= h, and any A j is a non-zero graded ideal of A such that 
A j Ak = 0 when j �= k. Moreover, both decompositions satisfy that for any r ∈ I there exists a unique r̃ ∈ J such that

Ar̃ Ir �= 0.

Furthermore, any Ir is a graded Lie-Rinehart algebra over Ar̃ .
13
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5. Graded Lie-Rinehart algebras of maximal length

In this last section we are going to show that for Lie-Rinehart algebras of maximal length the decomposition of a graded 
Lie-Rinehart algebra (L, A) given in Theorem 4.3 can be obtained by means of the families of the indecomposable (graded) 
ideals of L and of indecomposable (graded) ideals of A. Also, we will characterize the (graded) simplicity of the ideals in the 
decompositions of L and A given in Theorem 4.3. At following we suppose that �G is symmetrical, meaning that, if g ∈ �G

then g−1 ∈ �G , and also that �G is symmetrical in the same sense.
Next we introduce the concepts of indecomposable and maximal length in the framework of graded Lie-Rinehart algebras 

in a similar way to the ones for other classes of graded Lie algebras and graded Leibniz algebras (see [10,11] for these 
notions and examples).

Definition 5.1. Let A = ⊕g∈G Ag be a G-graded algebra. It is said that A is (graded)-decomposable if A = J ⊕ K with J , K two 
(G-graded)-ideals of A. Otherwise, A is called (graded)-indecomposable or just indecomposable for short.

Definition 5.2. A graded Lie-Rinehart algebra (L, A) is of maximal length if dim Lg = 1 for g ∈ �G , as well, dim Ak = 1 for 
k ∈ �G .

Theorem 5.3. Let (L, A) be a tight graded Lie-Rinehart F -algebra of maximal length over an associative and commutative F -algebra 
A. If �G , �G are symmetrical then

L = ⊕
i∈I

I i and A = ⊕
j∈ J

A j

where any Ii is a non-zero (graded)-indecomposible ideal of L satisfying [Ii, Ih] = 0 when i �= h, and any A j is a non-zero (graded)-
indecomposible ideal of A such that A j Ak = 0 when j �= k. Moreover, both decompositions satisfy that for any r ∈ I there exists a 
unique r̃ ∈ J such that

Ar̃ Ir �= 0.

Furthermore, any Ir is a graded Lie-Rinehart algebra over Ar̃ .

Proof. We just have to prove the indecomposability of any Ii and any A j in Theorem 4.3. Consider some Ii = I[g] for [g] ∈
�G/ ∼. Suppose I[g] = J ⊕ K with J , K ⊂ L ideals of L satisfying J = ⊕ j∈[g]∩J L j , K = ⊕k∈[g]∩KLk being J ∪K = [g]. Given 
j ∈ [g] ∩J and k ∈ [g] ∩K, since j ∼ k, and using maximal length of L there exists a �G -connection {g1, . . . , gn} ⊂ �+

G ∪�+
G

being g1 = j such that

{{· · · {{L j, K g2}, K g3}, · · · }, K gn } = Lk,

where K g is either Lg or Ag , depending if either g ∈ �+
G or g ∈ �+

G , respectively, and {·, ·} may represent either the 
product [·, ·] in L or the A-module structure, depending the considered factors. Then Lk ∈ J , a contradiction. Therefore L is 
indecomposable.

In a similar way we conclude A is indecomposable. Consider some A j = I[g] for [g] ∈ �G/ ∼. Suppose I[g] = J ⊕ K with 
J , K ⊂ A ideals of A satisfying J = ⊕ j∈[g]∩J A j , K = ⊕k∈[g]∩K Ak being J ∪K = [g]. Given j ∈ [g] ∩J and k ∈ [g] ∩K, since 
j ∼ k, and using maximal length of A there exists a �G -connection {g1, . . . , gn} ⊂ �+

G ∪ �+
G being g1 = j such that

{{· · · {{A j, K g2}, K g3}, · · · }, K gn } = Ak,

where K g is either Lg or Ag , depending if either g ∈ �+
G or g ∈ �+

G , respectively, and {·, ·} may represent either the product 
[·, ·] in L or the juxtaposition product in A or the A-module structure or the anchor ρ , depending the considered factors. 
Then Ak ∈ J , a contradiction. Therefore, A is indecomposable. �

We recall that an element x of an arbitrary algebra A is said an element of division if for any y ∈ A such that 0 �= xy = s
(resp. 0 �= yx = t) there exist v, w ∈ A satisfying y = sv and x = ws (resp. y = v w and x = sw). The algebra A is called of 
division if all non-zero element of A is an element of division.

Given a graded algebra A = ⊕g∈GAg , for each homogenous component Ag we denote by I(Ag) to the minimal graded 
ideal that contains Ag .

Following the previous ideas we introduce the next definition.

Definition 5.4. Let A = ⊕g∈�GAg be a graded algebra. We say �G is of weak division if for any g, h ∈ �G such that AgAh �= 0
we get AgAh ⊂ I(Agh).
14
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Theorem 5.5. Let (L, A) be a tight graded Lie-Rinehart F -algebra of maximal length over an associative and commutative F -algebra 
A. If �G , �G are symmetrical then

L = ⊕
i∈I

I i and A = ⊕
j∈ J

A j

where any Ii (resp. A j) is a non-zero gr-simple ideal if and only if �G (resp. �G ) is of weak division.

Proof. Suppose any Ii is gr-simple. Given g, h ∈ �G such that [Lg, Lh] �= 0, by maximal length is [Lg, Lh] = Lgh . If we 
consider I(Lgh) = I[g] then Lg, Lh ⊂ I(Lgh). Analogously, suppose A j is gr-simple. Given g, h ∈ �G such that Ag Ah �= 0, by 
maximal length is Ag Ah = Agh . If we consider I(Agh) = A[g] then Ag, Ah ⊂ I(Agh).

To prove the another implication, if �G is of weak division, let us consider a non-zero graded ideal I of I[g] . By maximal 
length I = ⊕h∈I Lh with I ⊂ �G . Given any h ∈ [g] we get h ∼ g , so there exists a �G -connection {g1, . . . , gn} with g1 = h
satisfying by maximal length that

[[[Lh, Lg2 ], Lg3 ], · · · , Lgn ] = Lg .

Then Lg ⊂ I , so we conclude I = I[g] . That is, I[g] is a gr-simple.
Similarly, we can prove that any A[g] is gr-simple. If �G is of weak division, let us consider a non-zero graded ideal 

I of A[g] . By maximal length I = ⊕h∈I Ah with I ⊂ �G . Given any h ∈ [g] we get h ∼ g , so there exists a �G -connection 
{g1, . . . , gn} with g1 = h satisfying by maximal length that

(((Ah Ag2)Ag3) · · · Agn ) = Ag .

Then Ag ⊂ I , so we conclude I = A[g] . That is, A[g] is a gr-simple. �
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