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Abstract: The notion of k-harmonic curves is associated with the kth-order variational problem de-
fined by the k-energy functional. The present paper gives a geometric formulation of this higher-order
variational problem on a Riemannian manifold M and describes a generalized Legendre transforma-
tion defined from the kth-order tangent bundle Tk M to the cotangent bundle T∗Tk−1 M. The intrinsic
version of the Euler–Lagrange equation and the corresponding Hamiltonian equation obtained via
the Legendre transformation are achieved. Geodesic and cubic polynomial interpolation is covered by
this study, being explored here as harmonic and biharmonic curves. The relationship of the variational
problem with the optimal control problem is also presented for the case of biharmonic curves.
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1. Introduction

Polyharmonic curves of order k in Riemannian manifolds are the critical points of the
k-energy functional

Jk(γ) =
1
2

∫ T

0

〈
Dkγ

dtk ,
Dkγ

dtk

〉
dt (1)

and are described by the Euler–Lagrange equation

D2kγ

dt2k +
k

∑
j=2

(−1)jR

(
D2k−jγ

dt2k−j ,
Dj−1γ

dtj−1

)
dγ

dt
= 0. (2)

Notice that the functional (1) is considered a higher-order version of the energy
functional

J1(γ) =
1
2

∫ T

0

〈
dγ

dt
,

dγ

dt

〉
dt (3)

and, in this sense, k-harmonic curves, also referred to as polyharmonic curves, higher-order
geodesics, or Riemannian polynomials, are seen as a natural generalization of geodesic
curves, the extremal curves of the functional (3).

The study of polyharmonic curves fits into the more general theory of polyharmonic
maps between Riemannian manifolds, just as the theory of geodesics falls under that
of harmonic applications. Polyharmonic maps have only recently became a subject of
interest (see [1] and references therein), but biharmonic maps and, in particular, bihar-
monic submanifolds and curves have been extensively studied in the last decades (see, for
instance, [2–6]).
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There is a strong relationship between optimal control problems and variational
problems, particularly concerning the variational problem associated with the k-energy
functional (1). The main topic of this subject is the study of the dynamic interpolation
problem, where the goal is to find the curves that minimize the 2-energy functional and
satisfy some interpolation conditions. Applications to motion planning and tracking
problems for nonlinear systems were the special motivation for the analysis of this second-
order problem. The first steps in this direction were given by L. Noakes, G. Heinzinger,
and B. Paden in [7] and by P. Crouch and F. Silva Leite in [8], where the authors obtained
the necessary optimality conditions for the problem and called Riemannian cubic splines
to the curves under these conditions. In the context of robotic motion planning, a natural
extension of the dynamic interpolation problem to higher orders has also been developed,
giving rise to the notion of higher-order splines in Riemannian manifolds [9,10].

Applications of polyharmonic curves to trajectory planning problems in robotics
and computational anatomy, especially when the configuration space is a Lie group, also
brought the subject to the field of geometric mechanics. The Hamiltonian structure and
symmetry reductions of the polyharmonic equation have deserved special attention and
have also been extended to the study of optimal control problems for mechanical control
systems [11–17].

Polyharmonic curves depend on the choice of the parametrization, as happens with
geodesics. From the point of view of differential geometry, these curves are studied by
considering arclength parametrization. When they are seen as motion trajectories, arclength
parametrization is not always possible (when motion reaches zero velocity) and is thought
of as a constraint.

In this work, we present an intrinsic version of the k-harmonic equation based on the
symplectic formalism for higher-order regular Lagrangians given in [18]. More specifically,
we consider a geometric formulation of the kth-order variational problem on a Riemannian
manifold using the framework of symplectic geomety and define a generalized Legendre
transformation involving higher-order tangent and cotangent bundles. The corresponding
Hamiltonian equation obtained via this Legendre transformation is also explained. This
study covers some research topics of interest, such as the interpolation theories involving
geodesics and cubic splines. In fact, these cases are explored in the present work as
being free harmonic and biharmonic curves (without any constraints on the parameter).
The relationship of the variational problem with the optimal control problem is also an
interesting field of research and is presented for the case of biharmonic curves, always with
emphasis on the intrinsic approach.

The structure of the paper is as follows. In Section 2, we recall some important notions
from the geometry of higher-order tangent bundles. The variational problem associated
with the k-harmonic curves is studied in Section 3. We begin by showing that the kth-order
Lagrangian is regular and then adapt the Lagrangian formalism of higher order to the
problem being studied. A higher-order Legendre transformation that allows relating the
Lagrangian and the Hamiltonian formalisms is described. Section 4 is devoted to the
first-order case, which corresponds to the classical geodesic problem. In Section 5, the
formalism for biharmonic curves is explored in more depth and, in this case, the associated
optimal control problem is also exposed.

2. Higher-Order Tangent Bundles

Let M be a differentiable manifold of finite dimension n. Consider a local coordinate
system (U, x1, . . . , xn) on M, simply denoted by (xi). Throughout this paper, we use similar
abbreviations for the coordinate notations. Let k be an integer greater than or equal to 1.

In this work, we are interested in the formalism of higher-order tangent bundles. In
order to introduce the geometry of those bundles (see [18] for further details), we consider
the well-defined equivalence relationship on the set of smooth curves in M, as follows:

We say that two smooth curves in M, γ1 and γ2, defined on an interval (−a, a)
with a ∈ R, have a contact of order k at 0 if γ1(0) = γ2(0) = x, and for a local
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coordinate system (U, ϕ) on M around x, the derivatives of ϕ ◦ γ1 and ϕ ◦ γ2 up
to order k, included, coincide at 0.

The equivalence class determined by a curve γ is represented by [γ]k0 and is called
k-jet or k-velocity.

Definition 1. The tangent bundle of order k of M is the set of all equivalence classes of curves in
M that have contact of order k and is denoted by Tk M.

The following characteristics of the tangent bundle Tk M should be emphasized:

• Tk M is a (k+ 1)n-dimensional manifold and a fibered manifold over M with projection
πk : Tk M→ M, [γ]k0 7→ γ(0) = x.

• Tk M has natural local coordinates
(

π−1
k (U), xi

0; xi
1; xi

2; . . . ; xi
k

)
induced by (xi), where

xi
l : π−1

k (U) ⊂ Tk M→ R, [γ]k0 7→
dl

dtl

(
xi ◦ γ

)
(t)

∣∣∣∣∣
t=0

,

for l = 0, . . . , k and i = 1, . . . , n.
• If k = 0, T0M is identified with the manifold M and for k = 1, T1M is just the tangent

bundle of M, TM.
• There are canonical projections τl

k : Tk M → Tl M, [γ]k0 7→ [γ]l0, l = 0, . . . , k, which
define several different fibered structures on Tk M. Locally,

τl
k(xi

0; xi
1; xi

2; . . . ; xi
k) = (xi

0; xi
1; xi

2; . . . ; xi
l). (4)

Note that τ0
k = πk. The tangent applications Tτl

k : T(Tk M)→ T(Tl M) are defined by

(
Tτl

k

)
(X) =

n

∑
i=1

l

∑
j=0

X j
i

∂

∂xi
j
, (5)

for each X = ∑n
i=1 ∑k

j=0 X j
i (∂/∂xi

j) ∈ T[γ]k0
Tk M, with [γ]k0 ∈ Tk M.

Definition 2. Let γ be a smooth curve in M. The lift to Tk M of γ is a smooth curve in Tk M
denoted by γk and defined by γk(t) = [γt]k0, where γt(s) = γ(t + s).

If γ is locally given by (xi), then (xi; dxi/dt; . . . ; dkxi/dtk) locally represents γk.

2.1. The Liouville Vector Field of Higher Order

In order to introduce the notion of a Liouville vector field of higher order, we begin
by defining k vertical bundles of Tk M determined by foliations of type (4) of Tk M. Let
r = 1, . . . , k.

Definition 3. The vertical bundle of Tk M over Tr−1M, denoted by Vτr−1
k (Tk M), is the set of all

tangent vectors to Tk M that are projected onto zero by Tτr−1
k .

According to (4) and (5), if [γ]k0 ∈ Tk M and X is an element of Vτr−1
k (Tk M) at [γ]k0,

then X is locally written as

X =
n

∑
i=1

k

∑
j=r

X j
i (∂/∂xi

j).

Remark 1. In the particular case when k = 1 and r = 1, the projection τr−1
k is just the canonical

projection of the tangent bundle TM, τ0
1 = πM : TM→ M. The only vertical bundle is TM over
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M, usually denoted by VTM, whose elements are tangent vectors of TM and which are projected
onto zero for TπM.

Now consider:

• The canonical applications

jr : Tk M −→ T(Tr−1M)
[γ]k0 7−→ [γr−1]

1
0

. (6)

• The vector bundle isomorphisms over Tk M

hr : Tk M×Tr−1 M T(Tr−1M) −→ Vτk−r
k (Tk M)

locally defined by

hr

(
xi

0; . . . ; xi
k, xi

0; . . . ; xi
r−1, X0

i , . . . , Xr−1
i

)
=

n

∑
i=1

r

∑
j=1

(k− r + j)!
(j− 1)!

X j−1
i

∂

∂xi
k−r+j

,
(7)

where Tk M×Tr−1 M T(Tr−1M) is the induced bundle of T(Tr−1M) via τr−1
k .

Remark 2. If k = 1, we have just one vectorial bundle isomorphism over TM,

h1 : TM×M TM −→ V(TM),

which is locally given by h1
(
x0, x1, x0, X0) = (x0, x1, 0, X0).

If k = 2, we can define two vectorial bundle isomorphisms over T2M,

h1 : T2M×M TM −→ Vτ1
2 (T2M)

h2 : T2M×TM T(TM) −→ Vτ0
2 (T2M),

which is locally defined by

h1

(
x0, x1, x2, x0, X0

)
=
(

x0, x1, x2, 0, 0, 2X0
)

h2

(
x0, x1, x2, x0, x1, X0, X1

)
=
(

x0, x1, x2, 0, X0, 2X1
)

.

Definition 4. The canonical vector field of order r on Tk M is the vector field

Cr : Tk M −→ Vτr−1
k (Tk M) ⊂ T(Tk M)

defined by the composition Cr = hk−r+1 ◦ (Id× jk−r+1)

Tk M
Id×jk−r+1 // Tk M×Tk−r M T(Tk−r M)

hk−r+1 // Vτr−1
k (Tk M) ,

where Id is the identity map in Tk M. The Liouville vector field of order k is the canonical vector
field of order 1 on Tk M, C1.

Locally, we have

Cr =
n

∑
i=1

k−r+1

∑
j=1

(r + j− 1)!
(j− 1)!

xi
j

∂

∂xi
r+j−1

. (8)
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For r = 1, C1 = ∑n
i=1 ∑k

j=1 jxi
j(∂/∂xi

j).

Remark 3. If k = 1, then j1 : TM → TM is the identity map, and we have just the Liouville
vector field on TM, C1 : TM→ V(TM) ⊂ T(TM):

C1 =
n

∑
i=1

xi
1

∂

∂xi
1

.

If k = 2, we have two canonical vector fields on T2M, the Liouville vector fields C1 : T2M→
Vτ0

2 (T2M) ⊂ T(T2M) and C2 : T2M→ Vτ1
2 (T2M) ⊂ T(T2M), which are locally given by

C1 =
n

∑
i=1

(
xi

1
∂

∂xi
1
+ 2xi

2
∂

∂xi
2

)
and C2 =

n

∑
i=1

2xi
1

∂

∂xi
2

.

2.2. The Canonical Almost-Tangent Structure of Higher Order

We now generalize to higher order the notion of canonical almost-tangent structures.
For r = 1, . . . , k, consider the following:

• The vector bundle isomorphisms over Tk M defined by (7), hk−r+1.

• The canonical inclusions ik−r+1 : Vτr−1
k (Tk M)→ T(Tk M).

• The vectorial bundle homomorphisms over Tk M given by

sr : T(Tk M) −→ Tk M×Tk−r M T(Tk−r M)

X 7−→
(

πTk M(X), Tτk−r
k (X)

)
,

where πTk M : T(Tk M)→ Tk M is the canonical projection. Note that

Ker (sr) = Vτk−r
k (Tk M).

Definition 5. The endomorphism Jr : T(Tk M)→ T(Tk M) defined by

Jr = ik−r+1 ◦ hk−r+1 ◦ sr,

is called the vertical endomorphism of order r of T(Tk M),

T(Tk M)
sr // Tk M×Tk−r M T(Tk−r M)

hk−r+1 // Vτr−1
k (Tk M)

ik−r+1 // T(Tk M) .

The vertical endomorphism J1 is called a canonical almost-tangent structure of order k on Tk M.

Locally, we have

Jr =
n

∑
i=1

k−r+1

∑
j=1

(r + j− 1)!
(j− 1)!

∂

∂xi
r+j−1

⊗ dxi
j−1.

Proposition 1. The vertical endomorphism Jr of order r of T(Tk M) has a constant rank equal to
(k− r + 1)n and satisfies

(Jr)
s =

{
0 if rs ≥ k + 1
Jrs if rs < k + 1.

According to the above proposition, J1 is an almost-tangent structure on Tk M since
(J1)

k+1 = 0 and rank J1 = kn.
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Remark 4. If k = 2, we have two vertical endomorphisms of T(T2M), J1 and J2, whose matrix
representations are, respectively, given by

J1 =

 0 0 0
In 0 0
0 2In 0

 and J2 =

 0 0 0
0 0 0

2In 0 0

,

where In and 0 are the identity matrix and the null matrix of order n, respectively. In this case,
(J1)

3 = 0 and rank J1 = 2n, so J1 determines an almost-tangent structure of order 2 on T2M, the
so-called canonical almost-tangent structure of order 2 on T2M. Notice that (J1)

2 = J2.

Proposition 2. Let Ji be the vertical endomorphism of order i of T(Tk M) and let Ci be the canonical
vector field of order i on Tk M (i = r, s). The following relationships are satisfied:

JrCs =

{
0 if r + s ≥ k + 1
Cr+s if r + s < k + 1

[Cr, Js] =

{
0 if r + s > k + 1
−sJr+s−1 if r + s ≤ k + 1

[Jr, Js] = 0,

with r, s = 1, . . . , k.

Notice that, on T2M, we have C2 = J1C1.

Definition 6. The vertical differentiation of order r on the exterior algebra of Tk M, denoted by
dJr :

∧p(Tk M)→ ∧p+1(Tk M), is given by the commutator

dJr =
[
iJr , d

]
= iJr d− diJr ,

where d is the exterior differentiation and iJr is the inner product of Jr.

Proposition 3. The vertical differentiation dJr of order r on the exterior algebra on Tk M satisfies,
for each function f on Tk M, the following relationship:

dJr f = J∗r (d f ) and dJr d f = −d(J∗r d f ).

Locally,

dJr f =
n

∑
i=1

k

∑
l=r

l!
(l − r)!

∂ f
∂xi

l
dxi

l−r

dJr (dxi
l) = 0, for i = 1, . . . , n and l = 0, . . . , k.

(9)

Remark 5. Notice that on TM, we have

dJ1 f =
n

∑
i=1

∂ f
∂xi

1
dxi

0, where f is a function on TM.

Moreover, on T2M, we obtain

dJ1 f =
n

∑
i=1

(
∂ f
∂xi

1
dxi

0 + 2
∂ f
∂xi

2
dxi

1

)
and dJ2 f =

n

∑
i=1

2
∂ f
∂xi

2
dxi

0,

where f is a function on T2M.
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2.3. The Tulczyjew Differential Operator

Definition 7. The Tulczyjew differential operator or total time derivative operator on Tr M is the
operator dT that maps each function f on Tr−1M to a function dT f on Tr M such that

dT f ([γ]r0) = jr([γ]r0) f ,

for each [γ]r0 ∈ Tr M, with jr : Tr M→ T(Tr−1M) defined in (6).

In local coordinates, we obtain

dT =
n

∑
i=1

r−1

∑
j=0

xi
j+1

∂

∂xi
j
. (10)

We shall mention that the total time derivative dT may be naturally extended to an
operator that acts on differentiable forms. This operator maps p-forms on Tk M into p-forms
on Tk+1M. Moreover, we have dTd = ddT , where d is the exterior differentiation defined
on the exterior algebra on Tk M.

Definition 8. Let X be a vector field along a curve γ in M. The kth-order lift Xk of X is a vector
field along the lifted curve γk, Xk : Tk M→ T(Tk M), satisfying (d/dt) ◦ Xk−1 = Xk ◦ dT .

Note that Xk is obtained by applying repeated lifts to X. Its local coordinate expression
is given by

Xk(t) =
n

∑
i=1

k

∑
j=0

djXi

dtj
∂

∂xi
j

∣∣∣∣∣
γk(t)

,

where X(t) = ∑n
i=1 Xi (∂/∂xi)

∣∣
γ(t).

3. Higher-Order Variational Problem

From now on, we take M to be a Riemannian manifold with the Riemannian metric
〈·, ·〉. The Levi–Civita connection on M is denoted by∇. Let DX/dt represent the covariant
derivative ∇(dγ/dt)X along the curve γ in M, with X being a vector field along γ. Set
Djγ/dtj = D(Dj−1γ/dtj−1)/dt as the jth-order covariant derivative of γ, where j ≥ 2 and
Dγ/dt = dγ/dt. Consider the following sign convention for the curvature tensor field R:

R(X, Y) = [∇X ,∇Y]−∇[X,Y].

See [19] for more details about Riemannian geometry.
Remember that if a curve γ in M is locally represented by (xi), then γk is locally

represented by (xi; dxi/dt; . . . ; dkxi/dtk). Thus, the velocity vector field along the curve γ
is dγ/dt = ∑n

i=1(dxi/dt) (∂/∂xi)
∣∣
γ(t). Moreover, given a vector field X = ∑n

i=1 Xi(∂/∂xi),
the covariant derivative of X along γ is given by

DX
dt

=
n

∑
k=1

(
dXk

dt
+

n

∑
i,j=1

Γk
ij

dxi

dt
X j

)
∂

∂xk

∣∣∣∣
γ(t)

.

In particular, the covariant acceleration of γ can be written as

D2γ

dt2 =
n

∑
k=1

(
ẍk +

n

∑
i,j=1

Γk
ij ẋ

i ẋj

)
∂

∂xk

∣∣∣∣
γ(t)

,

where we simplify the notations of the derivatives, using ẋi for the first derivative dxi/dt
and similar notations for the higher-order derivatives. Here, Γk

ij are the Christoffel symbols
defining the Riemannian connection, which can be obtained using the identity
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Γk
ij =

1
2

n

∑
l=1

gkl
(

∂gjl

∂xi +
∂gli

∂xj −
∂gij

∂xl

)
,

where gij are the components of the Riemannian metric and [gij]1≤i,j≤n is the inverse matrix
of the matrix [gij]1≤i,j≤n.

Using the Riemannian structure of M, we can also define the bundle morphism Ak

from Tk M to TM given by Ak

(
[γ]k0

)
=
(

Dkγ/dtk
)
(0). The morphism Ak can be expressed

as follows.

Ak

(
[γ]k0

)
=

n

∑
r=1

Ar
k

∂

∂xr

∣∣∣∣
γ(0)

,

where
Ar

k(x0, . . . , xk) = xr
k + Br

k−1(x0, . . . , xk−1) (11)

and

Br
k(x0, . . . , xk) =

k−1

∑
l=0

n

∑
i=1

∂

∂xi
l
Br

k−1(x0, . . . , xk−1)xi
l+1 +

n

∑
i,j=1

Γk
ijx

i
1 Aj

k−1(x0, . . . , xk−1).

3.1. The k-Energy Functional

Let Ck be the class of smooth curves γ : [0, T]→ M satisfying the boundary conditions

γ(0) = x0, γ(T) = xT ,
Djγ

dtj (0) = y0j,
Djγ

dtj (T) = yTj, j = 1, . . . , k− 1,

where x0, xT ∈ M, yij are fixed n-vectors (i = 0, T; j = 1, . . . , k− 1) and T ∈ R+. Consider
the kth-order variational problem described by the action functional Jk defined by (1). From
the point of view of intrinsic variational calculus, Jk can be written as

Jk(γ) =
∫ T

0
γ∗k (L)dt =

∫ T

0
L(xi; dxi/dt; . . . ; dkxi/dtk)dt,

where L is the Lagrangian of order k associated with the problem. Therefore, the Lagrangian
of the problem, L : Tk M→ R, is defined, for each [γ]k0 ∈ Tk M, by

L
(
[γ]k0

)
=

1
2

〈
Ak

(
[γ]k0

)
, Ak

(
[γ]k0

)〉
, (12)

where Ak is given by (11). We may remark that (12) may be locally expressed by

L(xi
0; xi

1; xi
2; . . . ; xi

k) =
1
2

n

∑
i,j=1

gij Ai
k Aj

k.

Differentiating L, we obtain

∂L
∂xi

k
=

n

∑
j=1

gij A
j
k(x0, . . . , xk) =

〈
Ak(x0, . . . , xk),

∂

∂xi

〉
.

Furthermore,
[(

∂2L/∂xi
k∂xj

k

)]
1≤i,j≤n

= [gij]1≤i,j≤n and, since this is the matrix that

represents the Riemannian metric, we have the guarantee that the Lagrangian L is regular.

3.2. Intrinsic Version of the Euler–Lagrange Equation

Given a curve γ in Ck, the tangent space to Ck at γ, TγCk, is constituted by smooth
vector fields X along γ such that Xj(0) = Xj(T) = 0 for j = 1, . . . , k− 1, where Xj is the
jth-order lift of X. The variation of the curve γ is given by a smooth 1-parameter family
of curves γε ∈ Ck with γ0 = γ, and the corresponding variation vector field X ∈ TγC is
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defined by X(γ(t)) = (dγε/dε)(t)|t=0. The first-order variation of Jk associated with X
takes the form

dJk(γ)(X) =
d
dε

Jk(γε)

∣∣∣∣
ε=0

=
∫ T

0
Xk(L)dt.

Hamilton’s variational principle establishes that a curve γ ∈ Ck is a critical curve of
Jk : Ck → R if, for an arbitrary variation vector X ∈ TγCk, we have dJk(γ)(X) = 0. If the
Lagrangian L is regular (which is the case that we are considering), the arbitrariness of the
variation vector field X in the condition for the action integral to be stationary,

dJk(γ)(X) =
∫ T

0
Xk(L)dt = 0, ∀X ∈ TγCk,

gives the geometric version of the Euler–Lagrange equation

iXE ωL = dE, (13)

where ωL is the Poincaré–Cartan 2-form on T2k−1M and E : T2k−1M → R is the energy
function associated with L : Tk M→ R, defined, respectively, by

ωL =
k

∑
r=1

(−1)r 1
r!

dr−1
T ddJr L and E =

k

∑
r=1

(−1)r−1 1
r!

dr−1
T (CrL)− L.

Consider the one-form

αL =
k

∑
r=1

(−1)r−1 1
r!

dr−1
T dJr L. (14)

Proposition 4. The one-form αL on T2k−1M is semibasic of type k; that is, αL ∈ Im(J∗k ).

One calls αL the Jacobi–Ostrogradsky form associated with the Lagrangian L. We have
ωL = −dαL. Locally,

αL =
n

∑
i=1

k−1

∑
r=0

pi
rdxi

r, ωL =
n

∑
i=1

k−1

∑
r=0

dxi
r ∧ dpi

r and E =
n

∑
i=1

k−1

∑
r=0

pi
rxi

r+1 − L,

where pi
r = ∑k−r−1

l=0 (−1)ldl
T
(
∂L/∂xi

r+l+1

)
, i = 1, . . . , n.

The Euler–Lagrange Equation (13) uniquely defines the vector field XE on T2k−1M
since, due to the regularity of the Lagrangian L, ωL is sympletic (see [18]). Moreover,
since J1XE = C1, XE is a semispray on T2k−1M of type 1, which represents the kth-order
differential Equation (2). This means that the integral curves of XE are lifts to Tk M of the
curves in M satisfying the Euler–Lagrange Equation (2).

We also remark that Equation (2) can be rewritten in local coordinates as follows:

k

∑
j=0

(−1)j dj

dtj

(
∂L
∂xi

j

)
= 0, i = 1, . . . , n.

3.3. Generalized Legendre Transformation and the Hamiltonian Approach

Proposition 4 allows us to conclude that the Jacobi–Ostrogradsky form (14), αL, is
semibasic of type k and consequently determines, via the identity

αL =� Leg ◦ πT2k−1 M, Tτ1
2k−1 �,

the Legendre transformation Leg (see [18] for more details),
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T2k−1 M
Leg //

τk−1
2k−1 %%

T∗Tk−1 M

τTk−1 Myy
Tk−1 M

,

where � ., . � represents the pairing duality of vectors and covectors on Tk−1M, and
πT2k−1 M : TT2k−1M → T2k−1M, τk−1

2k−1 : T2k−1M → Tk−1M and τTk−1 M : T∗Tk−1M →
Tk−1M are the natural projections. Locally, we have

Leg(xi
0; xi

1; . . . ; xi
2k−2; xi

2k−1) = (xi
0; xi

1; . . . ; xi
k−1; α0

i ; α1
i ; . . . ; αk−1

i ),

where αr
i , r = 0, 1, . . . , k− 1, are the real functions defined by (14).

When Leg is a diffeomorphism, we say that the Lagrangian L is hyper-regular, and
we have a symplectomorphism from (T2k−1M, ωL) to (T∗Tk−1M, ω1), where ω1 is the
symplectic canonical form on T∗Tk−1M. Under the hyper-regularity condition, we can
consider the Hamiltonian energy function associated with L given by

HL = E ◦ Leg−1,

and the system (T2k−1M, ωL, E) is associated with the Hamiltonian system
(T∗Tk−1M, ω1, HL). The dynamics of the Hamiltonian system is described by

iXHL
ω1 = dHL, (15)

and the Hamiltonian vector field XHL defined by (15) verifies

XHL = (Leg)∗XE = T(Leg) ◦ XE ◦ Leg−1.

The Hamiltonian function HL : T∗Tk−1M→ R is locally given by

HL(xi
0; xi

1; . . . ; xi
k−1; p0

i ; p1
i ; . . . ; pk−1

i ) =
n

∑
i=1

k−1

∑
r=0

pr
i xi

r+1 − L(xi
0; xi

1; . . . ; xi
k−1).

4. First-Order Variational Problem
4.1. The Energy Functional

We consider the first-order variational problem defined by the energy functional (3).
The Euler–Lagrange equation is the geodesic equation

D2γ

dt2 = 0.

If we represent the curve γ locally by (xi), the geodesic equation can be rewritten in
local coordinates as

ẍk +
n

∑
i,j=1

Γk
ij ẋ

i ẋj = 0, k = 1, . . . , n.

The lift of a curve γ to TM, γ1, is locally represented by (xi, ẋi), and the value of the
energy functional (3) can be written as

J2(γ) =
∫ T

0
γ∗2(L)dt =

∫ T

0
L(xi; ẋi; ẍi)dt,

where L is the Lagrangian of order 2 associated with the problem. Therefore, the Lagrangian
L : TM→ R is defined, for each y ∈ TM, by

L(y) =
1
2
〈y, y〉. (16)
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Using the canonical local coordinates (xi; yi) of TM, the Lagrangian L may be locally
expressed by

L(xi; yi) =
1
2

n

∑
i,j=1

gijyiyj,

4.2. Intrinsic Version of the Geodesic Equation

We may remark that we can associate with a Lagrangian L : TM→ R the following
structures:

• The Poincaré–Cartan 2-form on TM given by

ωL = −ddJ1 L,

where d and dJ1 represent, on the exterior algebra of differentiable forms on TM, the
usual exterior differentiation and the vertical differentiation of order 1 defined by (9),
respectively. In other words, ωL = −dαL, where αL is the Jacobi–Ostrogradsky form
on TM associated with L by

αL = dJ1 L,

with dJ1 L = ∑n
i=1(∂L/∂yi)dxi.

• The energy function E : TM→ R is defined by

E = C1L− L,

with C1L =
n

∑
i=1

(∂L/∂yi)yi, where we have used (8).

The following result allows us to obtain an expression for the Poincaré–Cartan 2-form
ωL associated with the Lagrangian (16).

Proposition 5. The Jacobi–Ostrogradsky form αL associated with the Lagrangian (16) is given by

αL =
n

∑
i=1

α0
i dxi,

where α0
i are the real functions defined by

α0
i (y) =

〈
y,

∂

∂xi

〉
.

Corollary 1. The Poincaré–Cartan 2-form ωL associated with the Lagrangian (16) is given by

ωL =
n

∑
i=1

dxi ∧ dα0
i .

The expression for the energy function E associated with the Lagrangian (16) is given
in the following result.

Proposition 6. The energy function E : TM → R associated with the Lagrangian (16) is ex-
pressed by

E(y) =
1
2
〈y, y〉,

and coincides with the Lagrangian (16).

Remark 6. The energy function E associated with the Lagrangian (16) is written along the lift γ1
to TM of the curve γ as
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γ∗1(E) =
1
2

〈
dγ

dt
,

dγ

dt

〉
.

The Equation (13) uniquely defines the vector field XE on TM. XE is called the geodesic
vector field. In local coordinates, the geodesic vector field XE can be written as

XE(xi; yi) =
n

∑
k=1

(
yk ∂

∂xk −
n

∑
i,j=1

Γk
ijy

iyj ∂

∂yk

)
.

The integral curves of XE are the lifts of the geodesics in M to TM. The corresponding
flow is called the geodesic flow.

The classical geodesic equation can be deduced directly from Equation (13) as follows.
The equations iXE ωL(∂/∂xj) = dE(∂/∂xj), j = 1, . . . , n, are equivalent to

n

∑
i=1

yi ∂α0
i

∂xj − XE

(
α0

j

)
=

∂E
∂xj , j = 1, . . . , n.

Considering this equation along the lift γ1 to TM of the curve γ, we obtain the
equations

∂L
∂xj −

d
dt

(
α0

j

)
= 0, j = 1, . . . , n. (17)

Along γ1, we have
∂L
∂xj =

〈
dγ

dt
,∇ dγ

dt

∂

∂xj

〉
and

d
dt
(α0

j ) =

〈
dγ

dt
,∇ dγ

dt

∂

∂xj

〉
−
〈

D2γ

dt2 ,
∂

∂xj

〉
, j = 1, . . . , n.

Consequently, the Equation (17) takes the form〈
D2γ

dt2 ,
∂

∂xj

〉
= 0, j = 1, . . . , n.,

and the geodesic equation follows.
Observe that Equation (17) can also be rewritten as follows:

∂L
∂xi −

d
dt

(
∂L
∂yi

)
= 0, i = 1, . . . , n.

4.3. The Cogeodesic Flow

The Legendre transformation Leg,

TM
Leg //

τ1
1 !!

T∗M

τM||
M

,

coincides with the isomorphism [, with inverse ], which are the musical isomorphisms
with respect to the Riemannian metric. That is, Leg(y) = y[, with

y[(z) = 〈y, z〉 ⇔ p(z) =
〈

p], z
〉

, y, z ∈ Tx M, p ∈ T∗x M, x ∈ M.

Locally, we have

Leg(xi; yi) =

(
xi;

n

∑
j=1

gijyj

)
,



Mathematics 2023, 11, 3628 13 of 19

with inverse

Leg−1(xi; pi) =

(
xi;

n

∑
j=1

gij pj

)
.

We have a symplectomorphism

Leg : (TM, ωL)→ (T∗M, ω1),

where ω1 is the symplectic canonical form on T∗M. This means that

ωL = Leg∗ω1.

The Hamiltonian function HL : T∗M→ R is given by

HL(p) =
1
2

p
(

p]
)

.

Locally, HL can be written as follows.

HL(xi; pi) =
1
2

n

∑
i,j=1

gij pi pj.

The dynamics of the Hamiltonian system (T∗M, ω1, HL) is described by (15) and is
locally expressed by the following equations.

ẋi =
n

∑
j=1

gij pj

ṗi = −1
2

n

∑
j,k=1

∂

∂xi gjk pj pk,

for i = 1, . . . , n. The corresponding Hamiltonian flow is called the cogeodesic flow.

5. Second-Order Variational Problem

In this section, the attention goes to the tangent bundles T2M and T3M. The canon-
ical local coordinates on T2M and T3M will be denoted by (xi; yi; ui) and (xi; yi; ui; vi),
respectively.

5.1. The Bienergy Functional

We see now the second-order variational problem associated with the 2-energy func-
tional

J2(γ) =
1
2

∫ T

0

〈
D2γ

dt2 ,
D2γ

dt2

〉
dt.

The Euler–Lagrange equation for this problem is the fourth-order differential equation

D4γ

dt4 + R
(

D2γ

dt2 ,
dγ

dt

)
dγ

dt
= 0. (18)

The solutions of the above equation are biharmonic curves, better known as Rieman-
nian cubic polynomials on M.

The lift γ2 of a curve to T2M γ is locally represented by (xi; ẋi; ẍi). The value of the
2-energy functional J2 at γ can be written as

J2(γ) =
∫ T

0
γ∗2(L)dt =

∫ T

0
L(xi; ẋi; ẍi)dt,

with L being the Lagrangian of order 2 associated with the problem. Therefore, the La-
grangian L : T2M→ R is defined, for each [γ]20 ∈ T2M, by



Mathematics 2023, 11, 3628 14 of 19

L
(
[γ]20

)
=

1
2

〈
A2

(
[γ]20

)
, A2

(
[γ]20

)〉
, (19)

where A2 = K ◦ j2, with j2 : T2M→ TTM defined according to (6), locally given by

j2(xi; yi; ui) =
n

∑
i=1

(
yi ∂

∂xi + ui ∂

∂yi

)
,

and K : TTM→ TM is the connection application induced by the Levi–Civita connection,
locally given by

K

(
n

∑
i=1

Xi
∂

∂xi +
n

∑
i=1

Xi+n
∂

∂yi

)
=

n

∑
i=1

(
Xn+i +

n

∑
j,k=1

Γi
jkyjXk

)
∂

∂xi .

It is important to note that (19) may be locally expressed by

L(xi; yi; ui) =
1
2
〈u, u〉, (20)

where

u =
n

∑
k=1

(
uk +

n

∑
i,j=1

Γk
ijy

iyj

)
∂

∂xk

∣∣∣∣
x
. (21)

For the sake of simplicity, we should use uk to represent uk + ∑n
i,j=1 Γk

ijy
iyj.

5.2. Intrinsic Version of the Biharmonic Equation

Consider now the Lagrangian (20) of the second-order variational problem. Differenti-
ating L, we obtain

∂L
∂ui =

n

∑
k=1

gik

(
uk +

n

∑
j,l=1

Γk
jly

jyl

)
=

〈
u,

∂

∂xi

〉
(22)

where ū ∈ Tx M is defined by (21). As observed in Section 3,
[(

∂2L/∂ui∂uj)]
1≤i,j≤n =

[gij]1≤i,j≤n is non-singular, and so we have the guarantee that the Lagrangian L is regular.
We may remark that we can associate with a Lagrangian L : T2M→ R the following

structures:

• The Poincaré–Cartan 2-form on T3M given by

ωL = −ddJ1 L +
1
2

dTddJ2 L,

where d, dT , and dJi represent, on the exterior algebra of differentiable forms on T2M,
the usual exterior differentiation, the total derivation operator defined according to
(10), and the vertical differentiation of order i (i = 1, 2) defined by (9), respectively.
In other words, ωL = −dαL, where αL is the Jacobi–Ostrogradsky form on T3M
associated with L defined on T3M by

αL = dJ1 L− 1
2

dTdJ2 L, (23)

with

dJ1 L =
n

∑
i=1

(
∂L
∂yi dxi + 2

∂L
∂ui dyi

)
and dJ2 L = 2

n

∑
i=1

∂L
∂ui dxi.
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• The energy function E : T3M→ R defined by

E = C1L− 1
2

dT(C2L)− L, (24)

with

C1L =
n

∑
i=1

(
∂L
∂yi yi + 2

∂L
∂ui ui

)
and C2L = 2

n

∑
i=1

∂L
∂ui yi,

where we have used (8).

The following result allows us to obtain an expression for the Poincaré–Cartan 2-form
ωL associated with (20).

Proposition 7. The Jacobi–Ostrogradsky form αL associated with the Lagrangian (20) is given by

αL =
n

∑
i=1

(
α0

i dxi + α1
i dyi

)
,

where α0
i and α1

i are the real functions defined by

α0
i (xi; yi; ui; vi) =

〈
u,∇y

∂

∂xi

〉
−
〈

v,
∂

∂xi

〉

α1
i (xi; yi; ui; vi) =

〈
u,

∂

∂xi

〉
,

(25)

with the vectors u, y, and v ∈ Tx M being, respectively, (21),

y =
n

∑
k=1

yk ∂

∂xk

∣∣∣∣
x

and v =
n

∑
k=1

vk ∂

∂xk

∣∣∣∣∣
x

, (26)

where

vk = vk + 3
n

∑
i,j=1

Γk
ijy

iuj +
n

∑
i,j,l=1

Ak
ijly

iyjyl , with Ak
ijl =

∂Γk
ij

∂xl +
n

∑
r=1

Γk
jrΓr

il .

Proof. From

∂L
∂yi = 2

n

∑
k,m,s=1

gmkΓm
is ys

(
uk +

n

∑
j,l=1

Γk
jly

jyl

)
= 2

〈
u,∇y

∂

∂xi

〉
, (27)

and (22), we obtain

dJ1 L = 2
〈

u,∇y
∂

∂xi

〉
dxi + 2

〈
u,

∂

∂xi

〉
dyi

dJ2 L = 2
〈

u,
∂

∂xi

〉
dxi

dTdJ2 L = 2
(〈

v,
∂

∂xi

〉
+

〈
u,∇y

∂

∂xi

〉)
dxi + 2

〈
u,

∂

∂xi

〉
dyi.

Now substituting these in (23), the expression of αL appears immediately.

Corollary 2. The Poincaré–Cartan 2-form ωL associated with the Lagrangian (20) is given by

ωL =
n

∑
i=1

(
dxi ∧ dα0

i + dyi ∧ dα1
i

)
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where α0
i and α1

i are the real functions (25).

The expression for the energy function E associated with (20) is given in the following
result.

Proposition 8. The energy function E: T3M → R associated with the Lagrangian (20) is ex-
pressed by

E(xi; yi; ui; vi) =
1
2
〈u, u〉 − 〈v, y〉,

with the vectors u, y, and v ∈ Tx M defined, respectively, by (21) and (26).

Proof. Using (22) and (27), we obtain the expressions C1L = 2〈u, u〉, C2L = 2〈y, u〉 and
dT(C2L) = 2〈u, u〉+ 2〈v, y〉. Consequently, from (24), the results follow.

Remark 7. The energy function E associated with the Lagrangian (20) is written, along the lift of
γ3 to T3M for the curve γ, as

γ∗3(E) =
1
2

〈
D2γ

dt2 ,
D2γ

dt2

〉
−
〈

D3γ

dt3 ,
dγ

dt

〉
.

The Euler–Lagrange Equation (13) uniquely defines the vector field XE on T3M since,
due to the regularity of the Lagrangian L, ωL is sympletic (see [18]). Moreover, since
J1XE = C1, XE is a semispray on T3M of type 1 that represents the fourth-order differential
Equation (18). Indeed, as we shall see below, the fourth-order differential Equation (18)
is deduced straight from the vector field XE defined by (13). The vector field XE can be
written as

XE(xi; yi; ui; vi) =
n

∑
i=1

(
yi ∂

∂xi + ui ∂

∂yi + vi ∂

∂ui + Gi ∂

∂vi

)
,

for some functions Gi defined on domains of induced local charts. Thus, the equations
iXE ωL(∂/∂xj) = dE(∂/∂xj) are equivalent to

n

∑
i=1

(
yi ∂α0

i
∂xj + ui ∂α1

i
∂xj

)
− XE

(
α0

j

)
=

∂E
∂xj , j = 1, . . . , n,

where we use Corollary 2. Considering this equation along the lift of γ3 to T3M for the
curve γ, we obtain the equations

∂L
∂xj −

d
dt

(
α0

j

)
= 0, j = 1, . . . , n. (28)

Along the canonical prolongation γ3 of the curve γ, we have

∂L
∂xj =

〈
D2γ

dt2 ,∇2
dγ
dt

∂

∂xj

〉
+

〈
R
(

D2γ

dt2 ,
dγ

dt

)
dγ

dt
,

∂

∂xj

〉
and

d
dt
(α0

j ) =

〈
D2γ

dt2 ,∇2
dγ
dt

∂

∂xj

〉
−
〈

D4γ

dt4 ,
∂

∂xj

〉
, j = 1, . . . , n.

Consequently, Equation (28) takes the form〈
D4γ

dt4 + R
(

D2γ

dt2 ,
dγ

dt

)
dγ

dt
,

∂

∂xj

〉
= 0, j = 1, . . . , n.

and the Euler–Lagrange Equation (18) follows.
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Thus, the Euler–Lagrange Equation (18) can be interpreted as the semispray of order
3 on T3M, XE, whose integral curves project onto the solutions of (18). The flow of the
semispray XE is called the biharmonic flow.

5.3. The Cobiharmonic Flow

The Legendre transformation Leg can be represented as follows:

T3 M
Leg //

τ1
3 ""

T∗TM

τTM{{
TM

,

where� ., .� represents the pairing duality of vector and covectors on TM. and πT3 M :
TT3M → T3M, τ1

3 : T3M → TM and τTM : T∗TM → TM are the natural projections.
Locally, we have

Leg(xi; yi; ui; vi) = (xi; yi; α0
i ; α1

i ),

where α0
i and α1

i are the real functions defined by (25). In this context, Leg is a global
diffeomorphism, since its restriction to each fiber of τ1

3 : T3M → TM is an isomorphism.
We have a symplectomorphism

Leg : (T3M, ωL)→ (T∗TM, ω1),

where ω1 is the symplectic canonical form on T∗TM. The inverse of the Legendre map is
defined by

Leg−1(xi; yi; pi; qi) = (xi; yi; ui; vi),

where

ui =
n

∑
j=1

gijqj −
n

∑
j,k=1

τi
jkyjyk

vi =
n

∑
j=1

gij pj −
n

∑
j,l,r=1

gijΓr
jly

lqr − 3
n

∑
j,l,r=1

Γi
rl g

rjqjyl −
n

∑
j,l,m=1

Ai
jlmyjylym.

Consider the Hamiltonian function associated with L; that is,

HL = E ◦ Leg−1.

The function HL : T∗TM→ R is locally given by

HL(xi; yi; pi; qi) =
n

∑
i=1

piyi +
n

∑
i=1

qi

(
1
2

n

∑
j=1

gijqj −
n

∑
j,k=1

Γi
jk yj yk

)
.

The dynamics of the Hamiltonian system (T∗TM, ω1, HL) is described by (15) and
locally expressed by the following equations:

ẋi = yi

ẏi =
n

∑
j=1

gijqj −
n

∑
j,k=1

Γi
jkyjyk

ṗi =
n

∑
j=1

qj

(
n

∑
k,l=1

∂Γj
lk

∂xi ylyk − 1
2

n

∑
k=1

∂gjk

∂xi qk

)

q̇i = 2
n

∑
j,k=1

qjΓ
j
ikyk − pi,
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for i = 1, . . . , n. We call these Hamiltonian equations the cobiharmonic equations, and we call
the flow of the Hamiltonian vector field XHL the cobiharmonic flow.

Note that the Hamiltonian system (T∗TM, ω1, HL) coincides with the Hamiltonian
system resulting from the study of the following optimal control problem:

min
u

1
2

n

∑
i,j=1

gij uiuj subject to
ẋi = yi

ẏi = ui −
n

∑
j,k=1

Γi
jkyjyk,

where (xi; yi) are the state variables and ui represents the control variables, i = 1, . . . , n.
This optimal control problem was proposed in 2000 by M. Camarinha, P. Crouch, and F.
Silva Leite ([11]). The equivalence between the two formulations, the optimal and the
variational formulations, has also been explored by L. Abrunheiro, M. Camarinha, and J.
Clemente-Gallardo in [20], with special emphasis on the intrinsic approaches.
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