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Abstract: The integration of renewable energy and flexible energy sources in buildings brings
numerous benefits. However, the integration of new technologies has increased the complexity and
despite the progress of optimization algorithms and technologies, new research challenges emerge.
With the increasing availability of data and advanced modeling tools, stakeholders in the building
sector are actively seeking a more comprehensive understanding of the implementation and potential
benefits of energy optimization and an extensive up-to-date survey of optimization in the context of
buildings and communities is missing in the literature. This study comprehensively reviews over
180 relevant publications on the management and optimization of energy flexibility resources in
buildings. The primary objective was to examine and analyze prior research, with emphasis on
the used methods, objectives, and scope. The method of content analysis was used to ensure a
thorough examination of the existing literature on the subject. It was concluded that multi-objective
optimization is crucial to enhance the utilization of flexible resources within individual buildings
and communities. Moreover, the study successfully pinpointed key challenges and opportunities for
future research, such as the need for accurate data, the complexity of the optimization process, and
the potential trade-offs between different objectives.

Keywords: energy optimization; buildings; energy communities; building energy management
systems; intelligent energy optimization

1. Introduction

It is expected that the building sector will contribute to 30% of global CO2 emissions
and consume 40% of the total energy by 2030 [1], leading to a significant global impact. The
“Clean Energy for All Europeans” package [2] sets energy policies for 2030, with buildings
playing a crucial role in Europe’s transition to clean energy. Cutting energy demand and
boosting efficiency in buildings [3] and industries [4] through energy-saving programs is an
effective way to mitigate the impact of fossil-based resources. The “energy efficiency first”
principle [5] calls for taking the utmost account of cost-efficient energy efficiency measures
in shaping energy policy and making relevant investment decisions. The Renewable Energy
Directive [6] and Energy Performance of Buildings Directive (EPBD) [7] promote, among
other aspects, on-site renewable energy generation and self-consumption in EU countries.

The motivation behind the advancement of green technologies is the desire to diminish
the environmental consequences and alleviate the increasing costs associated with electricity.
In this context, photovoltaic (PV) systems are the most popular solutions among the
most favored technologies due to their ability to generate small-scale electricity and easy
integration into buildings [8]. End-users equipped with PV systems connected to the
grid can generate electricity for self-consumption and sell the generation surplus to other
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buildings or the grid [9]. Energy distribution losses are reduced by generating electricity at
the point of use [10] and the advances in technology have decreased the cost of PV panels,
making them more attractive for building use [11]. However, integrating solar energy into
buildings is challenging due to its variability [12]. Solar energy is only available during the
daytime and is affected by climate, location, season, and time [13]. Therefore, the increasing
integration of variable and intermittent renewables can cause a mismatch between supply
and demand, disrupting power system stability, efficiency, quality, and reliability [14–16].

1.1. The Evolution of Energy in Buildings

To better understand the efforts to reduce energy consumption in buildings, a brief
overview of the evolution of energy in buildings is presented in Figure 1. The building
sector has undergone a significant transformation, starting with a passive approach to
reducing energy consumption using passive solutions [17]. Then, nearly zero-energy
buildings (nZEBs) were developed to balance energy demand and renewable generation
through on-site RES production [18]. Later, the concept of energy-flexible buildings was
introduced by the IEA EBC Annex 67 [19], enabling buildings to manage energy generation
and demand based on factors such as weather conditions, user needs, and grid requirements.
The latest phase of this evolution is smart buildings, which participate in the energy
infrastructure, acting as both energy sellers and buyers [20].
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Integrating buildings into communities through the exchange of renewable generation
surplus is a suitable solution to tackle the technical and economic challenges of energy
management. The concept of a renewable energy community is defined in both the “Direc-
tive on the Promotion of the Use of Energy from Renewable Sources” [6] and the “Directive
on Common Rules for the Internal Electricity Market” [21]. It must be emphasized that
a building’s energy demand is variable, and the worst case is when several customers’
peak consumption occurs simultaneously, especially if this occurs during a period of low
renewable energy generation availability. This issue is a serious challenge to the balance of
renewable supply and demand. Energy systems require flexibility to align with the varying
energy demand over time, a necessity particularly emphasized in electric energy systems,
where demand and supply must be matched at every moment [22]. Therefore, energy
storage systems (ESS) and demand response (DR) play crucial roles in providing the needed
flexibility to ensure the matching between renewable generation and demand [23,24]. The
integration of PV and ESS systems into a community of buildings helps to ensure that
end-users can use energy locally produced according to their needs while minimizing the
negative impacts on the reliability of the grid [25]. The cost of static batteries has been
high in the past decades, which is one of the reasons for batteries not being already widely
used in the building sector. Fortunately, the cost of batteries has been decreasing due to
technological advancements and is expected to trend downwards [26].

Moreover, electric vehicles (EVs) complement static batteries with their flexibility.
With vehicle-to-building (V2B) systems, EV batteries’ excess capacity can supply energy to
buildings [27]. EV batteries traditionally charge off-peak, or when energy is being produced
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locally, and provide energy during peak periods or later in the day when no local generation
is available [28–30]. As relevant demand-side consumers, building communities can apply
DR to optimize local generation integration and utilize energy storage systems [31]. In
this context, shiftable loads also play a critical role in DR programs by allowing them to
reduce peak demand [32]. Shiftable loads refer to electrical devices or appliances that can
be scheduled to operate during periods of lower energy demand or when energy is more
abundant and less expensive. Several loads in buildings are flexible, and their usage periods
or cycles can be changed without affecting the comfort required by the occupants [33]. DR
can be implemented via time-based and incentive-based programs [34].

In addition, building energy management systems (BEMS) play a critical role concern-
ing energy management in the building sector and can be used to monitor and control
energy demand [35]. Advanced energy management technologies, like BEMS, improve
reliability and lower energy costs in buildings. BEMS can be used to optimize the matching
between local energy generation and consumption and to reduce costs without sacrificing
residents’ comfort in smart buildings [36,37]. In a literature review, Shareef et al. [38]
analyzed the use of artificial intelligence (AI)-based controllers, such as artificial neural
networks (ANN), fuzzy logic control, and adaptive neural fuzzy inference systems, in home
energy management systems (HEMS) based on DR and intelligent controllers, discussing
the strengths and weaknesses of each. Addressing the complexity of data is a common
challenge for BEMS to ensure effective functionality. However, using the Internet of Energy
(IoE) for the transfer of energy data at the required time and place, with applications in
electricity distribution, network monitoring, communication, and ESS, can significantly
reduce these issues [39,40].

Additionally, the Internet of Things (IoT), which connects new sensing and communi-
cation technologies to anything from anywhere at any time, is widely used in intelligent
buildings [41–43] and can have a significant impact on reducing energy consumption when
adequately integrated into BEMS systems [44]. In addition, the smart readiness indicator
(SRI), proposed to rate buildings based on their ability to adapt operations to residents’
requirements, optimize energy efficiency, ensure overall performance, and respond appro-
priately to grid signals [45] plays a vital role in this context [46,47]. According to the Energy
Performance of Buildings Directive (EPBD), buildings with a high SRI actively contribute
to an intelligent energy system [48].

1.2. Energy Optimization in Buildings

Energy optimization plays a critical role in the building sector, being the main goal
to minimize the energy consumption and energy costs of buildings while still providing
comfort for the occupants [49]. Nowadays, energy optimization can have complex objec-
tives, and the use of decision-making models and tools plays a crucial role. Operational
research (OR) models and methods, such as multicriteria analysis (MCA), used to analyze
possible alternatives and preferences and evaluate them under different criteria, and multi-
objective optimization (MOO), which deals with optimizing solutions that satisfy multiple
objectives, are effective in the energy sector for decision-making [50,51]. A system that
considers technical, environmental, and economic factors is necessary for energy manage-
ment, and the decisions should encompass sometimes conflicting objectives [52,53]. The
importance of considering energy management is highlighted by A. Kumar et al. [54], and
decision-making is critical when decisions have to be made based on several contradictory
indicators [55].

In such a context, MCA involves evaluating multiple objectives and criteria to de-
termine preferences among options in decision-making [56]. Despite MCA’s strengths
in structuring and framing complex issues, it has some weaknesses in achieving optimal
decisions and solutions [57]. For instance, in numerous applications of MCA, the selec-
tion of objectives and criteria often neglects proper consideration of the geographical and
temporal aspects of the analysis [58]. Furthermore, MCA-based methods do not provide
the designer with information on how sensitive each criterion is to changes in the other
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criteria. The literature shows a gap between theory and practice in MCA’s application [57].
MOO is important because it can model real-world problems with multiple conflicting
objectives [59,60]. To address the various challenges in the building energy sector, energy
optimization applying MOO is essential to meet users’ needs while also reducing technical
issues and energy usage in the building energy sector.

Currently, there is a lack of extensive and up-to-date survey investigation regarding
MOO in the context of buildings and communities. This gap in extensive and up-to-date
survey investigation can imply some points. First, it suggests that there might not be enough
information available to fully understand the potential of MOO in optimizing communities
of buildings. Without comprehensive surveys, it becomes difficult to identify the current
state of implementation, challenges faced, and potential benefits of applying MOO in
communities of buildings. Secondly, the lack of up-to-date investigations could indicate
that advancements in technology, computational methods, or sustainability practices might
not have been adequately incorporated into the studies. This hinders the development of
innovative approaches and hampers progress in optimizing building communities. This
study aims to partially fill this gap by conducting a more comprehensive review of MOO
issues and their analysis within the building sector. The primary focus of this research is to
examine the diverse objectives and constraints associated with optimization and explore
the utilization of various methods and techniques employed in buildings. The ultimate
objective is to present a broader understanding of the current state of MOO in the building
sector and provide valuable insights that can guide future research endeavors.

The remainder of this paper is structured as follows. Section 2 provides an overview
of the methodology used in the literature review. The methodology section outlines the
specific keywords of the literature review, the databases used to gather information and the
limitations that were encountered during the process. Section 3 presents a comprehensive
examination of MOO problem analysis in the building sector. The section provides a review
of MOO studies in the building sector since 2011, with a specific emphasis on the use of
flexible energy sources and different optimization approaches, especially in the context of
communities of buildings. Section 4 discusses the outcomes of the present work providing
an overview and analysis of the key findings and insights on this topic. Moreover, the
actual limitations of the literature are discussed, and a framework to guide forthcoming
investigations is suggested. Finally, the conclusions of this study are presented in Section 5.

2. Materials and Methods

The method of content analysis [61] was employed in conducting this literature review.
In this case, the method was used to examine a set of existing related articles and studies
which are published in databases, such as Google Scholar, Scopus, and Mendeley. The
search used keywords such as “multi-objective optimization”, “energy optimization in
buildings”, “energy optimization in a community of buildings”, “energy optimization
in building societies”, “building energy management systems”, and “intelligent energy
optimization methods in buildings”. The article titles, abstracts, and contents were then
skimmed to find the relevant articles. The selected articles were analyzed to find research
gaps, solutions, and suggestions to address the mentioned gaps.

2.1. Research Objectives

To the best of our knowledge, a comprehensive review of recent research on optimiza-
tion for buildings and communities, with a focus on MOO, is lacking. This study aims
to partially fulfill this gap by providing a more in-depth review of MOO problems and
their analysis in the building sector. This paper is focused on examining various objectives
and constraints involved in MOO and exploring the application of several methods and
techniques used in the energy optimization of the building(s). The main goal is to present
a broader perspective on the state of the art of MOO in the building sector and provide
insights to guide potential future research.
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2.2. Limitations of Literature Review

To maintain a focus on more recent studies, the selection of articles for this study
was limited to those published between 2011 and June 2023. This time frame was chosen
because it represents the most recent works in the field and allows for an up-to-date
and comprehensive review of the current state of the arts and best practices. The used
keywords are another limitation, and in the future other keywords associated with new
topics can be added. This article presents a narrative review of relevant articles, which
means that a systematic perspective was not adopted. Moreover, the authors focused
on exploring articles concerning multi-objective optimization and paid limited attention
to single-objective optimization studies. Lastly, studies about another methodology in
operations research, namely MCA, were excluded from consideration.

3. Results

Nowadays, it is essential to prioritize actions aimed at reducing energy costs and con-
sumption, increasing efficiency, promoting sustainability, and preserving the environment.
As a result, effective management and optimization of the energy sector play a crucial role
in society. With the advancement of technology in the energy sector, the optimization scale
has become more extensive and even more complex. In MOO, the need to satisfy multiple
goals, sometimes conflicting, makes these problems more challenging to solve.

As previously mentioned, buildings are big energy consumers and one of the main
reasons for greenhouse gas (GHG) emissions. For years, efforts have been made to reduce
energy consumption in buildings to minimize the impacts of excessive energy consumption
on the environment. In addition, energy cost reduction in buildings is an important
issue that must be addressed. Therefore, various stakeholders, including researchers,
policymakers, and industry professionals, are trying to reduce energy consumption by
modeling, controlling, managing, and optimizing energy for non-RES and RES in buildings
without compromising the comfort perceived by the users. In general, the articles in the
field of energy optimization can be divided according to the method used, objectives,
and/or scope (Figure 2).
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3.1. Method-Based Analysis

Optimization involves finding solutions for problems where the goal is to minimize
or/and maximize one or more objectives [62]. The problem must be defined and modeled
with mathematical logic and expressions, then solved using the appropriate technique to
obtain the optimal solution(s) [63,64]. However, finding the optimal solution may not be
easily possible in some cases, requiring a high computational time which might not be
acceptable in some contexts [65]. Approximate methods like ANN and heuristics can be
employed in these situations, instead of using conventional methods, chosen according to
the characteristics of the problems, such as linear programming (LP), Lagrangian relaxation,
Nelder–Mead simplex, quadratic programming (QP), and gradient-based methods, among
others [65].

Concerning MOO, the Pareto method generates dominated and non-dominated so-
lutions via a continually updated algorithm, resulting in a compromise solution shown
on a Pareto optimality chart [66]. The Pareto frontier represents a set of optimal points
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that can be used as solutions [67]. As all points are valid, the optimal solution is chosen
based on the decision-maker’s preferences [68]. Energy consumption optimization through
the Pareto front was discussed in [69–71]. Another approach to deal with multiple and
sometimes conflicting objectives is the scalarization method, which aggregates the mul-
tiple objectives into a single function using equal weights, rank order centroid weights,
or rank sum weights being the solution of a scalar function [72]. In [73] a multi-objective
mixed-binary linear programming is presented to minimize the electricity consumption
cost, the electricity consumption from the power grid, and the peak load, considering the
scheduling of the charging/discharging process for electric vehicles and battery energy
storage system. As a result, the peak load and the total consumption cost of the residential
building were reduced by 45.52% and 35.56%, respectively.

3.1.1. Exact Optimization

Exact algorithms can provide the best solution (or group of solutions) for optimization
problems [74]. They can prove that the identified solution is the absolute best if the problem
size is finite. These algorithms can provide a solution within a finite amount of time that
may vary depending on the specific problem and can also show if there is no feasible
solution for the given optimization problem [74].

Georgiou et al. [75] presented a review of convex optimization (CO) methods in
real time to reduce the energy demand in buildings. LP, mixed-integer linear optimiza-
tion or programming (MILP), QP, non-linear optimization or programming (NLP), and
mixed-integer non-linear optimization or programming (MINLP) are the most popular CO
methods to solve real-time energy management obstacles [75]. Concerning MINLP and
MILP, one of the main differences is the use of nonlinear functions and constraints. Also, the
processing time in the MINLP method is higher than MILP, and more processing power is
required. A QP optimization technique is suitable for specific applications where quadratic
functions are used. Among the mentioned techniques, MILP is the most popular because
of its simplicity, convexity, and ability to control different variables (electrical appliances,
ventilation and air conditioning (HVAC), thermal energy, and RES with ESS). It should be
noted that in most cases, the accuracy of convex methods is higher than other optimization
methods.

Georgiou et al. [76] aimed to minimize the power flow between one building and
the grid using LP optimization, considering the use of a PV system and ESS along with a
weighted sum approach. The results showed that the import and export of energy and the
stored energy could be adjusted. Using the same optimization method and considering
the PV system and ESS in a building, the optimal use of the produced PV energy was the
objective [77]. In addition, maximizing the benefit by maximizing the self-consumption
of generation, and using the energy stored in the ESS to feed the rest of the demand were
important results of the study.

Applying MILP, Henggeler et al. [78] developed an automated energy decision model
for buildings by considering the operation of shiftable, thermostatic, and interruptible loads
under dynamic tariffs. The results show that consumers achieved high savings on energy
costs. Similarly, Wang et al. [79] introduced an MILP for optimizing the dispatch of the ESS.
The stochastic MILP model reduced the operational cost but needed more computational
time compared to a deterministic DSM.

Using QP, Ref. [80] intended to optimally manage the microgrid’s (MG) energy, which
was equipped with ESSs, while ensuring the power reserve rate, peak power shaving, and
improving optimization speed. Based on a similar method, a model was developed to
minimize the operational costs of a system with PV and ESS and the impact of the voltage
increment due to high PV exports on the distributed network, being applied in residential
buildings [81]. The most important outcome was operational savings for most customers
based on incentives for electricity generation and the minimization of the peak demand.

A collaborative DR approach for nZEB that utilizes NLP and building clustering was
introduced [82]. The approach considers renewable energy generation, energy demand,
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and energy storage and aims to improve dynamic pricing. The developed method was com-
pared with a game-theory-based non-collaborative DR control. The results illustrated that
electricity bills and peak energy exchanges were reduced by 45.2% and 18%, respectively,
with remarkable computational demand reduction.

Based on MINLP, an optimized battery dispatch (charged only from the grid) was
presented to manage the energy demand of several heat pump water heaters, considering
local PV in a hotel [83], increasing the matching between local generation and demand.
Similarly, MINLP, under several operating scenarios with real data, was used to develop a
HEMS for improving the energy efficiency of conventional smart MG [84]. In addition to
reducing costs, the model ensured the required comfort levels.

3.1.2. Heuristic and Meta-Heuristic Methods

Heuristic methods do not necessarily provide optimal solutions but can quickly pro-
vide satisfactory solutions to complex problems. Generalized heuristic algorithms are called
meta-heuristics, employed for a wide range of problems, and require few rectifications to be
adjusted to a particular case [85]. In general, some widely used meta-heuristic algorithms
are Scatter Search [86], Genetic Algorithm (GA) [87], Evolutionary Algorithms (EA) [88],
Memetic Algorithms [89,90], Path Relinking [91], Differential Evolution (DE) [92], Particle
Swarm Optimization (PSO) [93], Ant Colony Optimization [94,95], Artificial Bee Colony
Optimization [96] and Estimation of Distribution Algorithm.

GA is one of the most well-known used algorithms for optimization in the building
sector. GA, proposed by Holland in 1992 [97], is classified in the meta-heuristic algorithms
class based on the biological evolution process of the Darwinian theory [98]. Among the
various building optimization methods, GA accounts for approximately 35% of the men-
tioned approaches [99]. In a comparative study, the MILP model and GA were compared to
be embedded in a HEMS, considering dynamic tariffs to minimize the electricity cost [100].
Based on the obtained results, GA had a better performance for implementation in HEMS.

The thermodynamic behavior in buildings was also optimized by applying GA [101].
This optimization aimed at controlling the heating/cooling systems operation to minimize
costs, considering renewable resources and hourly costs in the small MG. In another study,
an algorithm was developed to maximize energy self-sufficiency [102]. Furthermore, the
immediate environment factors, energy generation, and demand were predicted based on
weather information and consumers’ behaviors measured daily.

An integrated GA approach was presented in [103] to optimize all energy sources
using real-time data and based on the optimization of three objectives (the consumption of
external energy resources, the environmental impact, and the costs). Jean-Luc et al. [104]
proposed a method based on GA to manage the interaction between local renewable energy
production, power grid, and local ESS by considering users’ habits and weather forecast
data. The objective function includes costs, energy independence, and environmental
criteria, simultaneously.

In [105], a building was optimized with Non-Dominated Sorting Genetic Algorithm II
(NSGA-II) to detect optimal solutions to renewable energy integration based on PV and
battery storage. The overall goal was the minimization of life cycle costs (LCC) and carbon
emissions by using MOO. Lu et al. developed a model [106] to optimally design renewable
energy systems in buildings by integrating simplified air conditioning models to reduce
GHG emissions, total costs, and the impact on the grid. In addition, a single-objective
optimization approach based on GA and a MOO method based on NSGA-II was developed.
The results show that the performance of the model has been evaluated as acceptable in
order to reduce all three mentioned objectives.

Izadi et al. [107], investigated a hybrid renewable energy system (HRES) for zero-
energy buildings (ZEB), in four different regions by applying neural network GA optimiza-
tion, achieving a higher share of RES when combining renewable resources with hydrogen
storage. Huang et al. [108] developed a model to analyze the effects of demand flexibility
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on solar-based distributed energy systems by applying NSGA-II to optimize the capacities
of the mentioned energy system. Reducing annual costs was the achievement of research.

By considering life-cycle environmental effects, a multi-objective model was intro-
duced to optimize HRES on a small scale [109], to reduce the environmental impact and
minimize the costs. X. Wu et al. [110] developed a grid-connected integrated energy system
by considering solar energy, geothermal energy, and heat storage. The MOO problem
was applied for the coupling mode of heat energy, cold energy, and electric energy. The
accomplishment of the research was the reduction of operational costs. Sala et al. [111]
presented a multi-variable and multi-objective energy optimization model by considering
the effects of local conditions based on EnergyPlus and NSGA-II. The objectives were the
reduction of annual energy demand, the minimization of annual energy operating costs,
and GHG emissions.

Applying Taguchi’s method and GA, a model was proposed to optimize thermal and
electrical efficiencies in a PV thermal water-based collector (PVT) [112,113]. In another
study, a model was introduced to optimize the energy demand of buildings by employing
GA and EnergyPlus to assess energy consumption, while using an ANN with a multi-layer
perceptron model [114].

In addition to the optimization methods already mentioned, researchers have also
been interested in exploring other algorithms and methods. Some of these will be discussed
below.

Based on a multi-objective DE optimization methodology, electrical energy manage-
ment was introduced in a residential building to implement an appliance scheduling routine
to decrease electrical energy costs [115]. Applying a similar algorithm, a single-objective
optimization aimed at keeping a net zero balance of energy for one year in a grid-connected
PV system in a Net-ZEB was presented in [116].

Fayaz et al. [117], proposed a method aimed at supplying electricity to the home,
based on PV generation and the priority of the loads, and ensuring the comfort level of
the residents. The energy consumption was minimized, and the customers’ welfare was
managed based on a bat algorithm (an exploratory algorithm operated by simulation of a
bat’s echolocation behavior to optimize problems) and fuzzy logic in residential buildings.
Similarly, using fuzzy logic [118], an energy management technique was presented to
supply a home equipped with a PV system and connected to the grid. Applying the
evolutionary neural fuzzy approach [119], an intelligent energy management system was
also developed based on a hybrid soft-computing-based frame to minimize the energy
demand.

Moreover, a real-time dynamic model was presented to integrate RES and an ESS to
supply the electrical and thermal energy needed for the building [120]. The model predic-
tive control (MPC) was used in a green building to satisfy environmental and economic
objectives. MPC updated the system state and predicted the demand variations and power
flows considering the impact of renewable sources. MPC was also used by [121] to reduce
the consumption of cooling and heating loads in a building. A cost function was needed to
set the benchmark output near the goal. With two various weight sets, the MPC efficiency
was analyzed by tuning the controller and changing the cost function, achieving a 2%
energy bill reduction.

Alzahrani et al. [122] formulated an online energy management system within the
Lyapunov optimization technique (LOT) framework using convex optimization. The
model possesses the advantages of both non-mandatory a priori knowledge of system
inputs and low computational complexity. The developed model reduces energy costs
and thermal discomfort. In [123], a hybrid algorithm based on Multi-Objective Particle
Swarm Optimization (MOPSO) and NSGA-II to satisfy MOO was developed. Moreover,
the technique for order preference by similarity to an ideal solution (TOPSIS) was utilized to
identify a solution that strikes a balance between conflicting objectives in the optimization
problem. Applying Harmony Search (HS) optimization, Ref. [124] focused on optimally
designing standalone PVBES and PV/BES/diesel generator systems. The objective of
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it was twofold: to minimize the total annual cost while simultaneously maximizing the
reliability of the system. As well, Khan et al. [125] also proposed a solution to the scheduling
problem in a smart building using a hybrid algorithm called Bacterial Foraging Ant Colony
Optimization (HB-ACO) which incorporated two pricing schemes, namely time of use and
critical peak pricing. It is worth mentioning that HB-ACO combines the properties of both
the Ant Colony Optimization (ACO) algorithm and the bacterial foraging optimization
(BFO) algorithm.

3.2. Objective-Based Analysis

In recent years, the building sector has shown increasing interest in MOO due to its
ability to help in the decision-making processes compared with approaches that achieve a
single solution, while still offering the flexibility to select from a set of solutions [126]. In
this sub-section, the studies carried out focusing on technical, environmental, and economic
goals are reviewed.

3.2.1. Technical Objectives

Achieving technical objectives is a crucial MOO goal in the building sector. Due to the
proven benefits of renewable energy, its use in buildings has recently received much more
attention. Given that the generation of RES is affected by weather conditions, there can be
an imbalance between renewable generation and demand. Therefore, the full integration
of renewables into the system brings technical challenges [127]. One of the most crucial
technical objectives is to maximize the balance between renewable energy generation and
energy demand in buildings.

Applying static batteries and EVs improves balance and increases flexibility [128].
Therefore, optimal battery charging and discharging plans should be determined according
to the conditions, which could be a technical aspect leading to electricity cost optimization.
In addition, demand-side management (DSM) is another crucial technical aspect that has the
potential to drive optimization [129]. In this case, the optimization includes rescheduling
and reducing some of the loads to achieve the desired objective. In addition, energy
use [130] and increasing residents’ comfort, such as thermal comfort [131,132], are technical
potential objectives.

Due to the importance of maximizing the balance between renewable energy production
and demand, researchers have paid particular attention to this issue. Luthander et al. [133]
reviewed articles about improving PV self-consumption focused on ES and DSM. Figure 3
illustrates the solar energy self-generation and load consumption in the building, which
shows the high potential of ES, DSM, and cooperation in a community of buildings. If
the generation is higher than the demand in the building, the surplus could be sold to the
grid or in a community of buildings. Additionally, with the use of ES and DSM, adequate
management strategies can be defined so that self-consumption is increased.

Vieira et al. [134] aimed to increase the matching between electrical generation and
consumption profiles and reduce bill costs by using lithium-ion batteries in residential
buildings with PV systems. It was found that, in most households, PV electricity generation
during sunnier months can exceed household consumption, and there is a low matching
between the peak demand and PV production.

Additionally, several studies, such as [135,136] examined various approaches to opti-
mize energy management in buildings through PV systems, building energy storage sys-
tems (BESS), vehicle-to-home (V2H) cooperation, and load matching algorithms. In [135],
stochastic programming optimized the cooperation between V2H and renewables aim-
ing at minimizing costs through optimal regulation of all resources and an optimized EV
charging–discharging pattern. Based on MILP and CPLEX solvers, the problem of matching
local load with on-site PV generation, using a storage system and DR solutions to maximize
PV utilization, was solved [136].

Kikusato et al. [137] presented a line drop compensator (LDC) method for managing
EV charging and discharging based on a simulation model of the Japanese distribution
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system, intending to maximize the use of energy produced by the PV system. An EV
charge–discharge management framework was introduced, to effectively utilize PV output
by coordinating information exchange between the home energy management system
(HEMS) and grid energy management system (GEMS). Finally, various energy-saving
methods that use home-distributed photovoltaics (HDPV) and/or vehicle-to-grid (V2G)
were studied in smart homes [138]. The study considered atmospheric conditions and
the distance traveled by EVs, along with PV sub-systems. By utilizing corresponding
power dispatching algorithms and cost–benefit models, the results demonstrated that
transferring PV and valley electricity through V2H enhances the utilization rate of both
valley electricity and PV, leading to significant economic advantages. Figure 4 shows a
schematic representation of HDPV-V2H.
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Table 1 showcases various methods for matching renewable generation and demand
in buildings, along with the results obtained from simulation studies, and future works
proposed by the authors. It presents a comprehensive overview of diverse approaches
employed for effectively matching renewable generation with the demand in buildings as
one of the most important technical objectives to ensure optimal utilization and efficient
utilization of available energy sources. These methodologies were evaluated through
rigorous simulation studies, enabling the authors to gain valuable insights into their
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respective outcomes. The authors also provide future research directions and extensions to
enhance the current methods.

Table 1. Renewable generation and demand matching in buildings at a glance.

Method(s) Aim Results Ref.

• Dynamic models of the
real systems
• Maximum power point tracking
(MPPT) models

• Matching between consumption
and demand increase
• Reduction of costs

• The energy injected and consumed
from the grid is reduced by 76% and
78%, respectively
• Energy bill reduction of 87.2%

[134]

Stochastic
programming

• Daily operational
cost minimization

• Significant cost reduction when
operating all capacity resources
• Cost increment when, wind energy,
diesel generator, DR program, and
V2H are not employed by 900%,
322%, 230%, and 84%

[135]

MILP • Maximizing self-consumption

• Performance improvement
• The load-matching index (LMI)
improvements for the spring and
summer were 18.05 and 33.51% by
using storage
• The LMI improvements for the
spring and summer were 34 and
38.58% by using DR
• The LMI improvements for the
spring and summer were 46.05% and
53.7% by using storage and DR

[136]

LDC method • Minimizing operation cost

• Operating cost reduction
• PV restrictions reduction
• The minimum utilized state of
charge (SoC) range is 50.4%
• The maximum utilized SoC range
is 62.5%

[137]

• HDPV
• V2H model
• Cost–benefit

• Minimizing the net
electricity costs

• Improvement of self-consumption
with and without V2H on sunny,
cloudy, and rainy days are 38%, 59%,
and 53%
• Reduction of net electricity cost
only with V2H on short, mid and
long-distance journeys by 29.8%,
26.3%, and 22.9%

[138]

3.2.2. Environmental Objectives

This section presents an evaluation of the importance of environmental concerns by
analyzing various studies that employ different methods and algorithms. The analysis
includes a review of several articles that have been published in recent years, mainly
focused on the topics of life cycle assessment (LCA) and green building rating systems
(GBRS).

As previously mentioned, due to the energy consumption in buildings worldwide,
environmental objectives in the building sector hold critical significance [139]. Thus,
improving energy efficiency in buildings is essential to achieve climate objectives [140].
A combination of various solutions might be utilized to meet environmental objectives,
including efficient solutions for windows, insulation thickness, material types, thermal
insulation, and RES [141,142]. The LCA method is a crucial tool for evaluating the potential
environmental effect in the building sector [143]. LCA is a methodology to estimate and
assess the environmental impacts related to a product’s life cycle [144], which includes
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construction, operation and maintenance, and demolition, as reported by the International
Organization for Standardization [145].

Considering weighted scalarization approaches to combine LCA and life-cycle environ-
mental impact, a GA model was applied to optimize life-cycle environmental impacts [146].
Results demonstrated that GA has a good performance in locating the optimal region in
the building. The drawback of weighted sum techniques is that only one solution is found
from an optimization (for each weight set).

Based on EA and risk analysis, a MOO was developed to optimize a combined cooling,
heating, and power system for full-load operation in urban areas [147]. The goal was
transformed into a cost function to evaluate the environmental objective.

Due to climate change and environmental concerns, the building and construction
sector’s significance in addressing these issues has led to the emergence of the concept
of net zero carbon building (NZCB), which intends to achieve zero emissions within the
building sector [148]. Another systematic review gathered related research to assess how
LCA is included at different phases of the building design and what improvements are
essential to achieve NZCB [149]. Feng et al. [150] a review of the Whole Building Life Cycle
Assessment, exploring its uncertainties and potential solutions. Additionally, the study
proposed a conceptual framework outlining its typology, catering to LCA practitioners.

GBRS is another approach generally applied to analyze environmental impact as-
sessment tools in the building sector. Generally, GBRS is based on a list of numerous
quality standards. LCA has been incorporated as part of the evaluation system into some
GBRS [151].

3.2.3. Economic Objectives

Satisfying economic objectives is another significant MOO goal in the building sector.
From the end-users’ perspective, the most crucial target is cost minimization, which consid-
ers investment and operating costs. In such a context, the life cycle cost (LCC) includes all
the costs and revenues during the life of the buildings [152]. Hasan et al. [153] introduced a
model to minimize LCC in a detached house, applying integrated optimization and simu-
lation. Based on NSGA-II, an approach was implemented to optimize LCC and life cycle
carbon footprint in a single building [154]. In another study, by applying a multi-objective
GA, a model was introduced to optimize the costs and energy performance levels during
the life cycle [155].

Furthermore, by considering net present value, studies [156,157] developed models
for the LCC analysis. These papers presented MOO models for LCC analysis based on DE
and NSGA-II, respectively. In addition, based on using NSGA-II and the mixture of grey
correlation multi-level comprehensive evaluation, an optimization method was developed
in which one of the most important objectives is the economic impacts [158].

Table 2 summarizes the analysis performed in this section based on LCC considera-
tions, which includes details regarding the regions examined, the software employed for
analysis purposes, and the specific algorithms utilized during the study. This approach
ensures a well-informed assessment of the subject matter, fostering scientific rigor and
enhancing the reliability of the results. The role of the regions in LCC is significant because
it takes into consideration cost variations, regulations and standards, maintenance and
repair factors, energy costs, and market demand in different regions.



Energies 2023, 16, 6111 13 of 30

Table 2. Life cycle cost analysis.

Region Software/Algorithm Results Ref.

Finland

• IDA ICE 3.0
• GPSPSOCCHJ algorithm

A considerable reduction in the optimized house
heating energy (23–49%) [153]

• Excel-based model
• IDA ICE
• MOBO
• NSGA-II

The share of ECF is 28% of the life cycle carbon
footprint, in the optimal cost [154]

• MATLAB
• GA

• High exploration speed
• The economic and environmental objectives do
not necessarily contradict

[155]

South Africa DE The effectiveness of cost and energy efficiency in
the developed the MOO model [156]

Canada • jEPlus + EA
• NSGA-II

A remarkable amount of energy savings
(33% annually). [157]

China • eQuest
• NSGA-II Achieving economic issues [158]

3.3. Scope-Based Analysis

Studies on the building sector can focus on a single building or a community of
buildings. Most studies have traditionally examined individual buildings neglecting the
cooperation between buildings. The cooperation between buildings can enhance the per-
formance at the community level by allowing a controller to share renewable generation
surpluses and manage the combined use of flexibility resources. The International En-
ergy Agency (IEA) launched the Energy in Buildings and Communities Program (EBC),
Annex 67 [19], to explore “Energy Flexible Buildings”, which refers to residential and
non-residential buildings and clusters that can manage demand and self-generation based
on weather, user needs, and grid provisions.

Most studies conducted for communities demonstrate the potential for enhancing
diverse forms of flexibility to ensure multiple optimization objectives and their transforma-
tive impact on society. A community of renewable generation buildings can be managed
based on the predicted demand [159]. Bucking et al. [159] introduced a method to optimize
energy-saving trade-offs among buildings and regional energy systems to schedule energy.
Heine et al. [160] analyzed the potential of cool thermal ES in a single building and a
community of buildings. Applying MILP optimization, it was found that the total annual
cooling energy costs can be reduced by 17.8%, after accounting for the cost of storage.
Further, by applying GA, a hierarchical model for distributed static batteries in shared
solar power building communities was developed [161], which can reduce the capacity
of batteries and minimize energy losses in the sharing process. In the developed method,
surplus generation and storage can be shared in the community of buildings.

Sun et al. [162] evaluated the performance of a Net-ZEB community utilizing conven-
tional control strategies focusing on costs, grid interaction, and the matching between re-
newable generation and demand. Lopes, et al. [163] evaluated load-matching improvement
using GA in a community of Net-ZEBs. The evaluation considered the mismatch between
building generation and demand. In addition, multiple controllable energy-consuming
devices, and higher generation of on-site renewables for enhanced load matching at the
community level were considered. The findings indicated that Net-ZEBs can enhance the
coverage of electrical demand through on-site electricity generation by up to 21% over a
year. Additionally, the on-site generation utilized by the building can be increased by up to
15%.

Gao and Sun [164] suggested the utilization of a demand response control based on
GA to reduce the peak demand of a group of buildings while ensuring energy management.
The outcomes revealed that the proposed control had a better performance in limiting the
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peak demand of building groups and reducing additional energy consumption. Based on
the elitist GA-based algorithm [165], an approach for managing EV charging with on-site
PV generation was proposed. This approach involves a real-time, transactive energy system
for managing EV charging that was integrated into the BEMS. The proposed model enables
the BEMS to effectively schedule the exchange of electricity with the external grid, even
in the case of uncertainty surrounding EV parking and PV generation. Figure 5 shows an
overview of the interconnection of a Net-ZEBs community with the grid.
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Additionally, an intelligent renewable generation and demand management system
in a networked environment was developed [166], applying NSGA-II optimization and
fuzzy controllers based on five objectives which were minimizing total power consumption
cost, total power consumption expenses, micro smart grid loss of power supply probability,
maximizing the amount of RES utilization, and end-users’ welfare. By applying the inte-
gration of hydrogen storage, heat storage, and battery storage, Fan et al. [167] introduced a
near-zero energy community energy system. An energy management approach was then
developed using fuzzy logic to optimize the allocation of electricity between the hydrogen
and battery storage systems, without neglecting the health status of each of the components.

Using the Gurobi optimizer, Soares et al. [168] developed a framework for energy
storage optimization in a transactive energy community, located on a university campus.
The proposed methodology aimed at minimizing the total costs from the community
perspective by coordinating dedicated storage systems with renewable generation sys-
tems. According to the results, the community-level management of the energy systems
provided greater technical and economic advantages. Similarly, on a university campus,
Moura et al. [169] developed a model to address energy sharing in community microgrids
by utilizing static batteries and EVs through a transactive energy market. The findings
indicated that the proposed approach resulted in a rise in renewable self-consumption
levels for both individual buildings and the community, along with a reduction in the
overall electricity costs.

Likewise, a transactive control method for DR in commercial building heating, venti-
lation, and HVAC was proposed [170]. Results showed that this approach was extremely
effective in reducing peak energy demand, and load shifting in commercial buildings.
Moreover, Moura et al. [171] presented a method for effectively managing the sharing of
renewable generation surplus among buildings, utilizing EVs as a flexible resource. The re-
sults of simulations demonstrate that the approach can lead to increased self-consumption
of renewable energy both at the individual building and community levels while reducing
the overall electricity costs.

Ouammi [172] focused on optimal management in a smart network of residential build-
ings using bidirectional communication and MPC (model predictive control) technique
with a master controller to coordinate, manage and distribute power in the community.
MPC schedules the building community’s charging and discharging modes of static batter-
ies, EV charging modes, power exchange, etc. In another study, an LCMA (Lyapunov-based
cost minimization algorithm) was developed for the coordinated and decentralized opti-
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mization of flexible energy resources and intelligent appliances in smart buildings [173].
The algorithm’s performance was improved by increasing battery capacity and if energy
loads are mostly elastic.

Garcia et al. [174] used a simulation based on 3-year monitored historical PV data and
a random demand model (based on Markov chains probability theory and Monte Carlo
techniques) to predict the PV production and ES capacity at the community level, in order
to maximize the matching between generation and demand. Wu et al. [175] tackled the
obstacles of scheduling energy in office buildings with PV and workplace EV charging.
Stochastic programming was employed to handle the uncertainties that come with EV
charging demand.

Moreover, PV generation and electricity demand were analyzed for households and a
community of buildings on a 15-min basis, compared to a single home using a data-based
approach [176]. Further, Gupta et al. [177] looked at the energy flexibility and resilience
gained from PV systems and batteries in a community of buildings. By aggregating PV
and storage at a community level, the utilization of batteries resulted in an 8% reduction in
peak grid electricity demand. Fachrizal et al. [178] developed intelligent charging schemes
to minimize residential building load profile variability and specify optimal EV charging
schedules through self-consumption enhancement and peak shaving.

As an essential result, it can be mentioned that in a community of buildings, centraliz-
ing charging is more efficient, and in [179] the overall energy costs were minimized by incor-
porating EVs (V2B and V2G), flexible loads, batteries, clean energy sources, bi-directional
power flow, and an hourly pricing scheme based on MILP method. Henggeler et al. [180]
introduced a modular set of MILP models to facilitate their integration into HEMS. These
models enabled the integrated optimization of all energy resources, including exchanges
with the grid, EVs, static batteries, load management, and local microgeneration. Similarly,
a MILP optimization model was developed to evaluate multi-energy systems in a build-
ing’s energy community, while taking into account the difference between investors and
users [181]. In addition, using hourly consumption data for appliances, heating, and EVs,
the optimal configuration and dispatch of the energy system can be determined. Similarly
in [182], a collaborative decision model was proposed to optimize the flow of electricity
between commercial buildings, EV charging stations, and the power grid, applying MILP
and a two-stage stochastic programming model.

Additionally, customer satisfaction was maximized by planning energy consumption
across households and appliances while protecting user data through a PL-Generalized Ben-
ders Algorithm (PL-GBA), which satisfies the property (P) and is L-dual adequate [183,184].
Based on game theory, demand-side loads were managed through a grid-connected MG
method and community energy storage (CES)/PV systems [185]. The result was a Pareto-
efficient Nash balance solution that allows residents to optimize energy trading. Using PV
and ESSs in a community of buildings the objectives were the reduction of the consumption
from the electrical grid and the increase in self-consumption [186]. The results showed that
employing shared storage instead of individual storage increased the self-consumption
ratio.

J. Sardi et al. [187] developed an integrated CES unit model for a building community
with PV. They use three approaches to improve network performance: (1) determining the
CES location to minimize energy loss, (2) identifying the right CES capacity to increase
system load factor, and (3) flattening the daily load profile to improve the voltage profile
using the center of gravity (COG) theory, load-following control, and a method to estimate
optimal CES operational characteristics. The proposed framework considered both the
probability of PV generation and load variations. The PV generation model uses a beta
probability distribution function, and the model results are compared with exhaustive load
flow results.

Ebrahimi and Abedini [188] conducted a study that involved various shiftable loads
in the smart grid, such as residential, industrial, and commercial microgrids. The load shift
technique was then formulated as a MOO problem to manage the consumption of shiftable
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loads in the smart grid. Simulations were performed using two methods, namely simplex
and Improved Grey Wolf Optimization (IGWO), and the effects of implementation were
compared. The CPLEX solver generally yielded better results than the IGWO in several
cases. In [189], a zero-energy community was established through the effective utilization
of hybrid renewable energy systems. To achieve flexibility and economic efficiency, a
time-of-use grid penalty cost model was developed which evaluated both grid import
and export during on-peak and off-peak periods. In another study, a sharing economic
model was used to share both storage capacity and solar generation in a residential energy
community [190]. Based on the results, substantial cost savings can be attained when
compared to using these assets individually.

Table 3 provides a summary of various optimization techniques applied to an indi-
vidual or a community of buildings, the applied flexibility resources, and results obtained
from simulation studies.

Table 3. Multi-objective optimization in a building/a community of buildings at a glance.

Main Method Other
Methods Scope Aim Ref.

GA

-

Single

• Minimizing costs
• Minimizing net electricity consumption [101]

• Real-time energy generation and consumption optimization
• Real-time storage optimization [102]

• Reduction of the environmental impact [103]

• External energy consumption optimization
• Cost optimization
• Ecological impact optimization

[104]

NSGA-II

• Minimizing GHG emissions
• Minimizing LCC [105]

• Minimization of total costs
• Minimization of CO2 emissions
• Grid interaction

[106]

ANN • Reduction of dependency on the grid power
• Reliability of the renewable system [107]

NSGA-II
• Economic performance
• Technical performance
• Environmental performance

[108]

- • Reduction of environmental impacts
• Cost minimization [109]

NSGA-II

• Operation cost
• Energic efficiency
• Pollution gas emission penalty cost

[110]

• Reduction of annual specific energy demand
• Reduction of construction installation costs
• Reduction of annual energy operating costs
• Reduction of GHG emissions

[111]

Taguchi’s method • Improvement of electrical efficiencies in PVT
• Improvement of thermal efficiencies in PVT [113]

ANN • Energy consumption reduction
• Energy cost reduction [114]

-

Community

• Reducing the battery capacity
• Reducing energy loss in the sharing process [161]

• Evaluate the performance of a group of Net-ZEBs
• Economic cost reduction
• Load matching

[162]

• Load matching improvement in Net-ZEBs [163]

• Minimize the peak demand with energy efficiency [164]

Stochastic • Developing real-time EV charging management [165]

NSGA-II

• Maximum user comfort
• Maximum amount of renewable energy employment
• Minimize total power consumption cost
• Minimize total energy consumption at peak time
• Minimize MSG loss of power supply probability

[166]
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Table 3. Cont.

Main Method Other
Methods Scope Aim Ref.

DE -

Single

• Electrical energy cost saving
• Minimum electrical energy discomfort
• Minimization of carbon footprints

[115]

• Achieve a net zero balance energy
• Cost savings
• Carbon footprint reduction

[116]

Fuzzy logic

Bat
Algorithm

• Energy consumption reduction
• Increase user comfort [117]

-

• Energy demand satisfaction by PV generation
• User’s comfort [118]

• Optimization of energy resources
• Energy consumption reconciliation [119]

NSGA-II Community
• Community energy system that combines electricity,
hydrogen, and heat storage
• Energy management of the stored energy

[167]

MPC -

Single

• Dynamic optimization model [120]

• Consumption reduction
• Cost reduction [121]

Community

• Controlling an interconnected network of smart residential
buildings.
• Scheduling and management of energy exchanges at the grid
level

[172]

Transactive mechanisms

Gurobi • Developing a framework for the optimization of energy
storage [168]

-

• Addressing energy sharing through a transactive energy
market [169]

• Developing a transactive control model to engage several
HVAC subsystems
• Developing a double-auction market structure and
mechanism to coordinate them for DR

[170]

• Developing a model to aggregate and manage the sharing of
generation surplus [171]

Stochastic
Programming

LCMA • Minimization of the total energy cost in a household
•Minimization of the total energy cost in a neighborhood [173]

• Markov chains
• Monte Carlo

• Evaluating the PV power
• Evaluating storage capacity [174]

CPLEX

• Stochastic
Programming
• ANN

• Reducing total costs [175]

IGWO

• Reducing the cost of customer bills
• Reducing the peak load
• Reducing losses
• Improving network voltage

[188]

MILP
-

• Total energy procurement cost minimization [179]

• The integrated optimization of all energy resources [180]

• Developing a fundamental techno-economic model of
optimal energy system configurations [181]

Stochastic programming • Design an efficient collaborative scheme between the
charging stations and commercial buildings [182]

Other methods and
algorithms

Convex in LOT framework

Single

• Total cost reduction
• Thermal discomfort reduction
• Batteries and EV charging/discharging optimization

[122]

• MOPSO
• NSGA-II
• TOPSIS

• DSM to optimize the operation of appliances
• Electricity bill minimization
• User dissatisfaction minimization

[123]

HS

• Development of an EMS for smart building electrification in
remote areas
• Minimizing the total annual cost
• Maximizing the reliability of the system

[124]

HB-ACO • Shifting demand from on-peak to off-peak hours [125]
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Table 3. Cont.

Main Method Other
Methods Scope Aim Ref.

Clustering

Community

• Investigation of battery storage role in individual household
and community level [176]

• Empirical
• Socio-technical

• Evaluation of energy resilience achieved through the
deployment of several solar PV systems and batteries [177]

• Distributed
charging
• Centralized charging
• Quadratic programming

• Minimize the net load variability
• Flatten the net load profile [178]

Generalized
Benders

• Multi-residential electricity load scheduling
• Maximize satisfaction levels of residences [184]

Game theory • Energy trading management [185]

Shared grid
connection

• Self-consumption
• Integration of battery
• Peak shaving

[186]

• COG
• Load following

• Minimizing energy loss, annually
• Flattening the daily demand profile
• Improving the voltage profile

[187]

• TRNSYS
• jEplus + EA

• Improving self-consumption
• Improving load coverage
• Grid penalty cost reductions

[189]

Economy model • Sharing solar generation and storage capacity by an
economy model [190]

Upon analyzing Table 3, it was concluded that 45.28% of the studies are focused on
MOO within a single building, while 54.72% present MOO for communities of buildings.
Upon analysis of the studies conducted in a single building, it was determined that GA
was utilized as the primary method in 54.18% of the studies. Additionally, DE, MPC, and
fuzzy logic accounted for 8.33%, 8.33%, and 12.5%, respectively. The remaining 16.66% of
studies employed various other methods and algorithms, as presented in Figure 6.
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An analysis was also conducted on the statistical data about the research conducted on
building communities. In this case, the majority of the studies (20.69%) were also focused
on GA. Meanwhile, MILP, transactive mechanisms, CPLEX, stochastic programming, MPC,
and fuzzy logic accounted for 13.8%, 13.8%, 6.9%, 6.9%, 3.45%, and 3.45% of the studies,
respectively. The remaining 31% of studies utilized other methods and algorithms, as
presented in Figure 7.
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Within the last decade, the world has faced a significant increase in the amount of
available distributed energy resources [191]. In addition, a more decentralized and open
energy market can be achieved because of the proliferation of prosumers [191]. Thus, the
peer-to-peer (P2P) energy trading paradigm emerges, allowing consumers and prosumers
to exchange energy without the need for a broker [191]. In addition, P2P energy trading
seems essential for increasing system adaptability for the shift to low-carbon energy. As
P2P energy trading is still a relatively new field, more research is needed to implement the
real-world approach successfully [191].

In the building sector, P2P energy trading enables buildings to sell renewable genera-
tion surplus, such as PV, to other buildings within the same community. Energy producers
and consumers can benefit from P2P by reducing losses and costs. Articles [192–196] are
examples of research that has been conducted in this field.

In Table 4, various mechanisms of P2P energy trading, along with the challenges
and results gained from the simulations, are illustrated. An effort was undertaken to
explore the potential of communities of buildings that can efficiently share renewable
energy surplus and energy resources. The table highlights the resources considered in the
optimization process, which can include on-site renewable energy generation, integrated
energy management systems, and energy storage technologies. The used techniques to
provide flexibility are focused on the use of demand response and energy storage systems.
Furthermore, the table outlines the results achieved from the simulation studies conducted
for each optimization approach. These results demonstrate the improvements achieved
in terms of energy consumption reduction, peak demand management, carbon footprint
mitigation, cost savings, and overall building performance enhancement.

Table 4. P2P mechanism at a glance.

Method(s) Limitations Opportunities Ref.

Two-stage
stochastic

programming

• The local market in the smart grid
environments the proposed local market was only
compatible with the smart grid.
• Assuming full information exchange
between all technological devices.

• P2P trade reduces bills by 20–30%
• Battery storage reduces bills by 20–30%
• P2P trade and battery reduce bills by 60%

[192]

Iterative double
auction mechanism

• Does not consider other applicable business
models.

• Balancing electricity supply and demand
• Data security
• Social well-being increment

[193]
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Table 4. Cont.

Method(s) Limitations Opportunities Ref.

Mixed methods
approach

• Failure to evaluate the generalizability of the
findings in larger experiments and different
socio-economic contexts.

• Load-shifting
• Self-consumption increase
• DREs development

[194]

Canonical coalition game

• User participation in P2P trading under grid
limitations such as voltage constraints.
• The proposed coalition stability is affected by
multiple P2P energy trading platform providers in
the network that offer different pricing schemes.

• Cost saving to each prosumer
• Consumer-centric property [195]

Quadratic programming

• How the first optimization procedures are
affected if some P2P market price information is
available in advance.
• Failure to take into consideration, other
applicable business models.

• Reduction of EV charging effects on the power
grid during peak hours.
• Reduction of energy expenses up to 71%, daily

[196]

4. Discussion

The discussion section aims to provide the key findings on this topic. Based on
the tables presented in the previous section(s), the outcome of this literature review on
optimization in the building sector concerning flexible resources is expected to provide
insights into state-of-the-art research in this field. By summarizing and analyzing the
existing literature, researchers could identify the most effective methods and strategies for
optimizing flexible resources in buildings and building communities and highlight key
challenges and opportunities for future research. Hence, the outcomes of the study and
research gaps in the literature are analyzed, aiming to pave the way for future research.

4.1. Outcomes

The reviewed studies demonstrate the significant potential for MOO in the building
sector to reduce energy consumption, costs, and environmental impacts, in a context
with PV generation, flexibility resources, and communities of buildings. Several potential
outcomes include:

• Assessment of potential benefits of MOO in the building sector: There is a potential
for MOO to improve the utilization of flexible resources in both single buildings and
building communities, with a range of sources of flexibility identified as key areas
for optimization. It is important to assess the potential benefits of these optimization
strategies in terms of reducing energy costs, minimizing environmental impacts, and
increasing the efficiency and resilience of energy systems in buildings.

• Identification of key challenges and opportunities for future research: This review also
identifies the key challenges and uncertainties associated with MOO in the building
sector, such as the need for accurate data, the complexity of the optimization process,
and the potential trade-offs between different objectives. It is important to explore
these challenges and suggest potential avenues for future research, such as exploring
emerging technologies and market models, developing new optimization algorithms
and methods, and integrating uncertainty and risk into the optimization process.

Overall, the paper reviews the potential of MOO in the building sector, considering PV
generation, flexibility resources, and communities of buildings, highlighting the benefits of
MOO, including reduced energy consumption, costs, and environmental impacts.

4.2. Gaps and Future Work

It was possible to identify challenges and opportunities for future research, including
accurate data collection, optimization complexities, and integrating uncertainty, namely:

• Data availability: To conduct effective MOO, it is important to have access to accurate
and comprehensive data on energy demand, PV generation, and other key factors.
However, data availability can be a significant challenge in some communities, partic-
ularly in older buildings that may not have advanced monitoring, control, and data
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logger systems in place. More research is needed to explore how to effectively collect,
analyze data, and fill in missing data in these contexts.

• Accurate forecasting: To implement the control of flexible resources, accurate forecast-
ing of renewable energy generation and demand is crucial. The impact of weather
conditions on renewable generation and of weather conditions and human behavior
on energy demand is significant, and these factors are characterized by a high degree of
uncertainty. Therefore, there is a clear need for further research to enhance prediction
accuracy in these domains.

• Interoperability: As building communities become more complex, it will be important
to ensure that different systems and technologies can work together effectively. This
requires a focus on interoperability, or the ability of different systems to communicate
and exchange information seamlessly. More research is needed to explore how to
design and implement interoperable systems in these contexts.

• Scaling and replicability: While the implementation of communities of buildings has
demonstrated potential in various contexts, scaling and replicating such initiatives
in different communities can be challenging. Factors such as funding, regulatory
frameworks, and community engagement can all impact the ability to successfully
implement these approaches in new contexts. More research is needed to explore how
to effectively scale and replicate successful energy communities with MOO.

• Long-term performance: While many building communities have shown promising
results in the short term, it is important to understand how these systems will perform
over the long term. Factors such as maintenance, system degradation, and changes in
occupancy patterns can all impact the long-term performance of these systems. More
research is needed to explore how to design and implement communities that are
durable and sustainable over time.

• Health and well-being: It will also be important to understand how the implemented
control options impact the health and well-being of residents within a community.
MOO is a process of balancing multiple objectives, and as a result, the optimal solution
cannot fully satisfy all goals. Therefore, it is crucial to give particular consideration
to the well-being of occupants, including their visual and thermal comfort, as well as
indoor air quality. Therefore, the well-being of occupants can be included as one of
the objectives.

• Social and behavioral factors: While most of the research on the building sector with
MOO has focused on technical aspects, most MOO studies typically overlook the
influence of behaviors related to consuming energy and do not address the effective-
ness of implementing initiatives. Future research could investigate how different
communication strategies might be used to encourage residents to adopt the intended
behaviors.

• Other aspects: Due to the relatively recent topic of the P2P mechanism and its high
potential in the energy sector, sufficient studies have not been carried out in this field.
Moreover, MOO in buildings has mostly been completed using GA and less attention
has been paid to other algorithms and methods [99]. Therefore, future research can be
more focused on the optimization of energy considering the potential of the commu-
nity, paying more attention to the P2P mechanism, applying different and less used
meta-heuristic optimization algorithms and methods, such as Teaching Learning Based
Optimization Algorithm, Ant Colony Optimization, and Simulated Annealing, and
comparing the results with those from GA. The importance of comparing the results
with those from GA lies in their importance for validating the effectiveness and perfor-
mance of the alternative optimization algorithms and methods being proposed. By
comparing the outcomes obtained from different optimization techniques, researchers
can gain insights into the strengths and weaknesses of each method. Comparisons
help in assessing which algorithm performs better in specific scenarios, and how they
fare concerning efficiency and accuracy. It allows researchers to understand whether
the new approaches offer improvements over GA or if they need further refinement.
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5. Conclusions

The building sector is known to be a significant contributor to energy consumption
and GHG emissions, making it a crucial area for implementing measures to reduce its
environmental impact. To address this problem, building communities can offer significant
value in the transformation of the energy sector by enabling the deployment of distributed
generation and embracing sustainable energy practices. In addition, the MOO approach
can help to address the challenges faced by the building sector while meeting the needs of
both the residents and the utilities.

To provide insights for future research, a study was conducted to comprehensively
review the current state of MOO in the building sector. The primary focus of the study was
to review the available works on building communities in the energy sector. By integrating
building communities, consumers can pursue both their individual and collective economic,
environmental, and technical goals while also contributing to the decarbonization of the
energy sector. The reviewed articles were categorized based on their methods, objectives,
and scopes using a content analysis approach.

The findings of the study indicate that MOO can provide a comprehensive framework
for addressing energy flexibility, and environmental sustainability issues in the building
sector. In addition, studies have been conducted on optimization methods like exact and
meta-heuristic methods in individual buildings and building communities, considering
renewable energy and flexible sources. The article reviews both the advantages and areas for
future improvement and explores various technical objectives, such as balancing renewable
generation and demand, environmental objectives, including LCA, as well as economic
objectives, such as LCC.

Despite limited research in the community of buildings sector, there is great potential
to maximize self-consumption, reduce costs, and decrease GHG emissions. Building
communities can serve as a comprehensive framework for conducting multi-dimensional
trade-off analyses of the mentioned benefits. Therefore, this article can provide valuable
insights for community members, policymakers, utilities, and investors in making informed
decisions regarding energy community development. The energy community concept
presents a significant opportunity for energy researchers to delve deeper. Given the recent
emergence of the P2P mechanism and its vast potential, there remains a dearth of research
on the subject. Moreover, the application of GA in MOO for buildings has received greater
attention. Future studies should thus concentrate on optimizing energy consumption while
harnessing the potential of the community, with particular emphasis on exploring the P2P
mechanism. In addition, utilizing a variety of lesser-known meta-heuristic optimization
algorithms and methods, and comparing their results with those obtained using GA
will also be insightful to comprehend the capabilities of various algorithms in particular
scenarios. Furthermore, this comprehensive analysis also sheds light on the primary
obstacles and uncertainties related to MOO within the building sector. These challenges
encompass the indispensable requirement for precise data, intricacy in the optimization
procedure, and the possibility of compromising conflicting objectives. Delving into these
challenges is crucial to propose potential prospects for forthcoming research.
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